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Abstract

It is proved in this paper that for any point on an elliptic curve,
the mean value of z-coordinates of its n-division points is the same as
its x-coordinate and that of y-coordinates of its n-division points is n
times of its y-coordinate.
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1 Introduction

Let K be a field with char(K) # 2,3 and let K be the algebraic closure of
K. Every elliptic curve F over K can be written as a classical Weierstrass

equation
E:y=2>+ax+0b
with coefficients a, b € K. A point @ on E is said to be smooth (or non-

singular) if (%\Q, g—£|Q> # (0,0), where f(z,y) = y*—2* —az —b. The point
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multiplication is the operation of computing

nP=P+P+---+P

n

for any point P € E and a positive integer n. The multiplication-by-n map

[n]:E—)E
P — nP

is an isogeny of degree n?. For a point Q € E, any element of [n]~1(Q)
is called an n-division point of ). Assume that (char(K),n) = 1. In this
paper, the following result on the mean value of the x,y-coordinates of all
the n-division points of any smooth point on an elliptic curve is proved.

Theorem 1. Let E be an elliptic curve defined over K, and let Q) = (z¢g,yq) €
E be a point with Q # O. Set

Then {
E Z Irp = ;UQ
PeA
and 1
n2 Z Yyp = NYq-
PeA

According to Theorem 1, let P, = (z4,v;),i = 1,2,--- ,n?, be all the
points such that nP = @ and let \; be the slope of the line through P; and
@, then yg = \i(xg — x;) + y;. Therefore,

n2 7L2 n2 ’I’L2
R SRV DRV LS o
i=1 1 i=1 i=1
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Thus we have

7’L2 n2 TL2 n2
i=1 i=1 i=1 i=1 ~ _
?JQ:ZnQ 'an = 2 +Zn2 =\ " Ti — Niwi + i,



where \;, T;, \iz;, U; are the average values of the variables \;, z;, \;z; and
i, respectively. Therefore,

R _ 1_
Q= (rqQ,yq) = (Ti, N\i @i — \iw; +7;) = (%‘, E%) .
Remark: The discrete logarithm problem in elliptic curve E' is to find n by

given P, Q € E with Q = nP. The above theorem gives some information
on the integer n.

2 Proof of Theorem 1

To prove Theorem 1, define division polynomials [4] 1, € Z|x,y,a,b] on an
elliptic curve E : y? = 2 + ax + b, inductively as follows:

wﬂ = 07
wl = 17
¢2 = 2y7

Py = 3x* + 6ax?® + 12bx — a?,

Yy = 4dy(2® + Saxt + 2002 — 5a*x? — 4abx — 8b* — a®),
Vong1 = Unpols — hyath3 4, forn > 2,
2ython = ¢n(¢n+2¢3_1 - ¢n—2¢121+1)7 for n > 3.

It can be checked easily by induction that the 1),,’s are polynomials. More-
over, v, € Z[z,y?, a,b] when n is odd, and (2y)~'¢, € Z[z,y? a,b] when n
is even. Define the polynomial

an - $¢Z - Qﬁn—lwn—i-l

for n > 1. Then ¢, € Z[x,4?, a,b]. Since y* = x> + ax + b, replacing 3 by
z3+ax +0b, one have that ¢,, € Z[z, a,b]. So we can denote it by ¢, (z). Note
that, V¥, € Z[x,a,b] if n and m have the same parity. Furthermore, the
division polynomials 1, have the following properties.

Lemma 2.

7L2* 2 - 1 2 6 77/27
Uy = nz" T + n(n 6?3(71 i )axTE) + lower degree terms,



when n is odd, and

n2— 2 - 1 2 6 - 30 n2—
UVp = ny (x T 4 (n )0230—'— ) az" T + lower degree terms) ,

when n is even.

Proof. We prove the result by induction on n. It is true for n < 5. Assume
that it holds for all v,,, with m < n. We give the proof only for the case for
odd n > 5. The case for even n can be proved similarly. Now let n = 2k + 1
be odd, where k > 2. If k is even, then by induction,

k24

2_
f(/}k — k/y(x P) _i_wakgs_'_...),

2 2
Yrrs = (k; n Q)y(xk L4k n (k2+4k+3)(l§+4k+10)730ax% T )7
o K2=2k  (k—1)(k2—2k)(k2—2k+7)  k2=2k—d
Y1 = (k?—l)l’ 2+ 50 ar 2 +oe
Urpr = (k1) 5% 4 GEDUTROR 2T o it |

By substituting y* by (z® + az + b)?, we have

4(k + 1) (k3 + k% + 10k 2
(k+1)(+° + K>+ 10 +3)M2k+zk_2+”_)7

Vpoy = k> (k+2) (x2k2+2k + 50

and

3$2k2+2k+4k(k — 1)k + 2k* + 11k + 7)(k + 1)3%2’“2*2’“*2

¢k71¢2+1 = (k_1>(k+1) 60

Therefore

¢2k+1 - ¢k+2¢2_¢k—1w/§+1

= (2k+ 1);1:2’“2“’“ + (2k+1)(4k2+g§)(4k2+4k+7) a2k +2k=2 4

_ (2k+1)a:(2k+§)2_1 +(2k+1)((2k+1)2651)((2k+1)2+6)ax7(2k+;)2_5 +

The case when k is odd can be proved similarly. O]

The following corollary follows immediately from Lemma 2.

4
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Corollary 3.

and

Proof of Theorem 1: Define w,, as

Aywn = Yniatlis 1 — Yooy

Then for any P = (zp,yp) € E, we have ([4])

= (e )

If nP = Q, then ¢,(zp) — 2gY2(xp) = 0. Therefore, for any P € A, the z-
coordinate of P satisfies the equation ¢, (z) — zg¥?(z) = 0. From Corollary
3, we have that

bn(x) — TQU2(7) = - nQ:CQ:v”Q’l + lower degree terms.

Since A = n?, every root of ¢,(x) — zg2(x) is the z-coordinate of some
P € A. Therefore
Z I'p = 7’L2JZQ

PeA

by Vitae’s Theorem.

Now we prove the mean value formula for y-coordinates. Let K be the
complex number field C first and let w; and wy be complex numbers which
are linearly independent over R. Define the lattice

L= Zw1 —|—Zw2 = {n1w1 + NoWwo ‘ ny, N € Z},

and the Weierstrass g-function by

o =veb=1+ ¥ (=)

w€eL,w7#0



For integers k > 3, define the Eisenstein series G by

Gy, = Gk(L) = Z wk.

weL,w#0

Set g = 60G4 and gs = 140G6, then

P (2)" = 4p(2)’ = g20(2) — g.
Let E be the elliptic curve given by y? = 423 — go2 — ¢g3. Then the map

C/L — E(C)

z = (p(2),9(2),
0 — oo,

is an isomorphism of groups C/L and E(C). Conversely, it is well known [4]
that for any elliptic curve E over C defined by y? = 2® + ax + b, there is a
lattice L such that go(L) = —4a, g3(L) = —4b and there is an isomorphism
between groups C/L and E(C) given by z — (p(z),10'(z)) and 0 — oo.
Therefore, for any point (z,y) € E(C), we have (z,y) = (p(z), 3¢ (2)) and
n(z,y) = (p(nz), 1p'(nz)) for some z € C.

Let @ = (p(20), 29 (20)) for a zg € C. Then for any P; € A, 1 < i <n?,
there exist integers j, k with 0 < j,k < n — 1, such that

Thus

n
which comes from Y ; = nzg. Differential for zg, we have
i=1

n—1 .
’ Z k
Z (9 (—Q + lwl + ﬁ%) = ngﬁ’l(zQ)-

: n n
J,k=0

That is

n2

Z yi = n’yq.

i=1



Secondly, let K be a field of characteristic 0 and let E be the elliptic curve
over K given by the equation y?> = 2% + ax +b. Then all of the equations
describing the group law are defined over Q(a,b). Since C is algebraically
closed and has infinite transcendence degree over Q, Q(a, b) can be considered
as a subfield of C. Therefore we can regard E as an elliptic curve defined
over C. Thus the result follows.

At last assume that K is a field of characteristic p. Then the elliptic curve
can be viewed as one defined over some finite field IF,, where ¢ = p™ for some
integer m. Without loss of generality, let K = I, for convenience. Let
K' = Q, be an unramified extension of the p-adic numbers Q,, of degree m,
and let E be an elliptic curve over K’ which is a lift of E. Since (n,p) = 1,
the natural reduction map E[n] — E[n] is an isomorphism. Now for any
point Q € E with Q # O, we have a point Q € E such that the reduction
point is Q. For any point P; € E(K) with nP; = @, its lifted point P;
satisfies nP; = Q and P; # ?j whenever P; # P;. Thus

> u(P) = '@

2

since K’ is a field of characteristic 0. Therefore the formula Y y; = ndyg
i=1

holds by the reduction from E to E. O

Remark:

(1) The result for xz-coordinate of Theorem 1 holds also for the elliptic
curve defined by the general Weierstrass equation 4% + a12y + asy =
.TS + (12.%2 + a4x + ag.

(2) The mean value formula for z-coordinates was given in the first version
of this paper [1] with a slightly complicated proof. The formula for y-
coordinates was conjectured by D. Moody based on [1] and numerical
examples in a personal email communication [2].

(3) Recently, a mean value formula for twisted Edwards curves was given
by D. Moody [3].



3 An application

Let E be an elliptic curve over K given by the Weierstrass equation y? =

3 + axr + b. Then we have a non-zero invariant differential w = %‘”. Let

xS Eﬂd(E) be a nonzero endomorphism. Then ¢*w = w o ¢ = cyw for some
¢y € K(E) since the space Qp of differential forms on F is a 1-dimensional
K (E)-vector space. Since ¢, # 0 and div(w) = 0, we have
div(cy) = div(¢*w) — div(w) = ¢*div(w) — div(w) = 0.
Hence ¢, has neither zeros nor poles and ¢, € K. Let ¢ and v be two nonzero
endomorphisms, then
Corpw = (P + ) w = P'w + VP w = cow + cyw = (¢p + ¢y )w.

Therefore, ¢,y = ¢, + ¢y. For any nonzero endomorphism ¢, set ¢(z,y) =
(Ry(z),ySs(x)), where Ry and S, are rational functions. Then

. R;S(a:)
©T Sy(x)’

where R;)(x) is the differential of Ry(z). Especially, for any positive integer
n, the map [n] on E is an endomorphism. Set [n](z,y) = (R.(x),yS.(z)).

From cpp = 1 and [n] = [1] 4+ [(n — 1)], we have
B _
[n] = S, () -

For any @ = (zg,yg) € E, and any
P = (xp,yp) eN= {P = (.Tp,yp) € E(F) ‘ nP = Q},

we have yp = %. Therefore, Theorem 1 gives

I D SL LD BT

PeA per J@  YQ py

Z%_Zns Zs ’

PeA ™ (:EP)

ZR QZR/ *nxQ pr

PeA p) PeA PeA

Thus

and
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