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Abstract

Entities define their own set of rules under which they are willing to collaborate, e.g., interact, share
and exchange resources or information with others. Typically, these individual policies differ for different
parties. Thus, collaboration requires the resolving of differences and reaching a consensus. This process
is generally referred to as policy reconciliation.

Current solutions for policy reconciliation do not take into account the privacy concerns of reconcil-
iating parties. This paper addresses the problem of preserving privacy during policy reconciliation. We
introduce new protocols that meet the privacy requirements of the organizations and allow parties to
find a common policy rule which optimizes their individual preferences.

1 Introduction

Enabling collaboration between organizations is a very challenging task. The main difficulty lies in determin-
ing the policy rules that should govern this process. That is, the (two or more) participants must accept a
set of rules that they will follow for the duration of the collaboration. Each party has to express their desired
rules in a common format and follow a protocol with the other parties. The process will determine which
rules control their future collaboration. This protocol is called a reconciliation protocol and its output is a
policy that is consistent with the requirements of all the participants. If such a policy exists, the participants
can continue their collaboration. Otherwise, they can decide not to collaborate or they can decide to modify
their individual requirements and repeat the protocol.

Consider the following example: A company has posted a job opening. Multiple applications have been
received and HR would like to schedule interviews with some of the applicants. To successfully schedule an
interview, both HR and the respective applicant need to reach an agreement on the date and time for the
interview. I.e., they need to reconcile their policies, which—in this case—regulate the dates and times when
the individual parties are available for the interview.

Obviously, this is a simple example with respect to policy reconciliation and it is very unlikely that the two
parties will make use of any sophisticated reconciliation methods for scheduling such an interview. However,
we believe this example highlights some of the shortcomings of current policy reconciliation processes. To
date, policy reconciliation does not consider privacy. Continuing with our example, either party may want
certain information not to be disclosed to the other party during the reconciliation process, i.e., when
trying to find a date/time for the interview. For example, HR may not want to disclose its schedule to
the applicants in order not to allow for the applicants to infer the number of applicants interviewed for the
opening. Similarly, an applicant may not want to disclose its schedule to the HR department of its potential
new employer as the applicant may not want them to learn certain aspects of his personal circumstances,
e.g., regularly scheduled doctor’s appointments or a second job. Yet, state-of-the-art policy reconciliation
mechanisms require that at least one of the parties discloses all the information in order to allow for the
reconciliation process to work.
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It is in this context that this paper introduces preferences and privacy into the policy reconciliation
processes and as such provides for a major advancement in this area. In particular, with respect to privacy,
we propose new two-party protocols that guarantee that parties participating in the reconciliation process
learn nothing about the other party’s policies other than the policy they will eventually agree on. In our
initial example above, both the applicant and the HR department will learn nothing about each other’s
schedules other than the date and time at which the interview of this particular applicant will take place (or
the fact that there is no mutually agreeable time and date if such a match cannot be found). In addition, our
work is the first to introduce mechanisms that consider the privacy requirements and still permit optimizing
individual preferences that the parties may have. For example, HR may have preferences on interviewing
applicants based on its expectation to hear back from other applicants to which they have already made an
offer. If a higher ranked applicant accepts, this will eliminate the need to interview other applicants and
thus result in a saving of time. In this paper, we introduce a fair mechanism for parties to reconcile their
policies such that the preferences of all parties are optimized while none of the parties will have to disclose
any of its preferences.

Outline: The remainder of the paper is organized as follows: In the next section, we discuss previous
work in the area of policy reconciliation and privacy preserving set intersection. In Section 3, we provide
details on the policy representation, define the new privacy objectives, and review existing privacy-preserving
tools. The main contributions of this paper are in Section 4 where we present and discuss our new privacy-
preserving policy reconciliation protocols which allow the optimization of the preferences of the individual
parties. In Appendix A, we additionally outline some privacy-preserving policy reconciliation protocols
without considering preferences.

2 Related Work

In general, a policy is a collection of rules that express which actions are permitted and disallowed in a system
[22, 2, 29, 27]. They can take the form of specific access control rules [28], policy credentials [4, 3, 11, 10], or
security policy language statements [8, 26]. In this paper, we address policies that govern collaboration and
communication between a number of parties. In particular, these policies specify the algorithms, protocols,
and any other parameters that must be agreed upon to ensure that the conditions and requirements of all
parties are met.

Policy Reconciliation In [15] Gong and Qian analyze the complexity of secure interoperation between
systems with heterogeneous access control structures. They prove that composing authorization policies is
NP-complete. McDaniel and Prakash define the Ismene policy language [23] which permits the specification
and reconciliation of group security requirements. Policy rules are expressed as conditionals which contain
zero or more predicates that need to be satisfied for the policy to hold. In [24] McDaniel et al. specify an
algorithm for efficient two-policy reconciliation and show that, in the worst-case, reconciliation of three or
more policies is intractable.

Wang et al. demonstrate that it is possible to structure security policies in such a way that policy
reconciliation becomes tractable [30]. Specifically, they use a graphical policy representation. A graphical
policy is a series of policy operations represented in a directed acyclic graph with a single root. One reads
policies starting from the root node. The authors present a recursive algorithm for generating the conjunction
of graphical policies. The conjunction results in the reconciled policy. Their scheme also allows for specifying
preferences. In that case, the authors rank the graphical policies in preferential order before running their
conjunction algorithm.

Zao et al. propose the Security Policy System (SPS) which resolves IPsec security associations between
domains of communication [32]. Reconciliation is achieved by intersecting sets of policy values. Dinsmore
et al. [9] present the Dynamic Cryptographic Context Management project in which security policies are
negotiated between dynamic groups of participants. Their protocol involves multiple rounds of negotiation
between the participants, eventually producing a common policy that all of them agree upon.
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Our work focuses on ensuring privacy during policy reconciliation and on taking preferences into account.
Previous work on policy reconciliation focused on how to make policy reconciliation tractable with respect to
performance under various conditions without taking privacy concerns of the participants into account. For
this purpose, McDaniel et al. [24] introduced a tree-based policy representation. In this paper, we represent
a policy as a matrix and each policy rule as a row in the matrix. This is very simple and straightforward to
use, especially when optimizing for privacy and not for performance.

Privacy-Preserving Protocols Freedman et al. [12] proposed the first protocol specifically designed for
private intersection of datasets based on representing set elements as roots of polynomials. The proposed
protocol is a two-party protocol, which, in its simplest version, is secure in the semi-honest model. This
seminal work was extended by Kissner et al. [19, 20] to multiple parties and more set operations on mul-
tisets. In particular they propose privacy-preserving protocols for set intersection, set union, and element
reduction of multisets. In order to reach security in the malicious model Kissner et al. propose the use of
a zero-knowledge construction. Hohenberger et al. [17] constructed a more efficient two-party version of set
intersection that is secure against malicious provers. Camenisch et al. in [5] suggest to make use of a trusted
third party that certifies the sets of both parties in order to protect against either party being malicious and
in order to ensure that sets cannot be changed on several subsequent interactions. All of the approaches
mentioned so far are based on the oblivious polynomial evaluation construction introduced by Freedman et
al. [12].

Another approach to private set intersection is based on oblivious pseudo-random function evaluation.
This approach was first introduced by Hazay et al. [16] and subsequently further improved by Jarecki et
al. [18]. The two-party protocol suggested in [16] is more efficient than the protocols based on oblivious
polynomial evaluation. However, it is secure only in a relaxed version of the malicious model. Jarecki et al.
[18] improved this protocol to provide security in the standard malicious model with the help of requiring
the parties to commit on their input prior to the private set intersection. The computational effort of the
suggested protocol is linear in the cardinality of the input sets.

Finally, and most recently, a private set intersection variant based on blind RSA signature schemes was
proposed by Cristofaro et al. in [7]. The proposed construction was first introduced in [6] for privacy-
preserving policy-based information transfer. The two-party private set intersection protocol proposed in
[7] is linear in the maximum of the cardinalities of the two private input sets and thus as efficient as the
oblivious pseudo-random function construction by Jarecki et al. [18]. Cristofaro et al. show that using pre-
computation their protocol can outperform all previously suggested protocols. Unfortunately, in practice,
pre-computation is not always usable. In particular, in the case of policy reconciliation, the private set of
each party may change over time and depends on the context in which the parties interact.

The main contribution of our paper is that we build on the privacy-preserving set intersection results to
construct two new and more complex privacy-preserving protocols for policy reconciliation with preferences
for two different notions of fair reconciliation. While any of the aforementioned private intersection protocols
can be used in our new construction, we detail our approach for the set intersection protocol introduced by
Freedman et al. in [12]. As we will show later on, this particular set intersection protocol allows for a reduction
of the communicational overhead in our construction. In the appendix, we additionally demonstrate how the
existing results can be applied to the problem of security policy reconciliation in the absence of preferences
in a straight-forward manner.

Kursawe et al. [21] address a similar problem of reconciling privacy policies in a privacy-preserving
manner. Their solution is based on modeling the function to evaluate as boolean circuits and evaluating
it on inputs encrypted with a threshold homomorphic cryptosystem. As opposed to this, we use privacy-
preserving set intersections [12] for our reconciliation protocols. While Kursawe et al. recognize the objective
of privacy-preserving preference-maximizing policy negotiation, their proposed solution is restricted to the
problem of finding the intersection of two sets of policy rules. As opposed to this, we provide solutions for
both, the privacy-preserving common policy as well as the preference-maximizing objective. To the best of
our knowledge our protocols are the first solutions proposed for the preference-maximizing objective.
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Applicant HR

Mo Tue Wed Thu Fri Mo Tue Wed Thu Fri
Rule 1 1 0 0 0 0 0 0 1 0 0
Rule 2 0 1 0 0 0 0 1 0 0 0
Rule 3 0 0 1 0 0 1 0 0 0 0
Rule 4 0 0 0 1 0 0 0 0 1 0
Rule 5 0 0 0 0 1 0 0 0 0 1

Figure 1: Policy rules expressed as bit strings and ranked in order of preference.

3 Preliminaries

In this section, we summarize the definitions, notation, and objectives used throughout this paper. Fur-
thermore, we briefly review existing privacy-preserving primitives that we use as tools in our new privacy-
preserving policy reconciliation protocols introduced in Section 4.

3.1 Policy Representation

To reconcile their policies, organizations must first agree on a common representation. This allows them
to compare their policies and determine whether a common subset exists. Otherwise the problem of policy
reconciliation becomes intractable [15, 24]. In this work, we represent a policy as a matrix. The rows
represent individual policy rules and the columns are the attributes for each rule. Consequently, policies are
represented as bit strings, which can be easily manipulated and operated on.

We illustrate our policy representation by continuing the example from Section 1. The first step is for
the participants to agree on a set of attributes that will be used to define policy rules. In our example, we
have settled for five attributes defining the day of the week on which the interview could take place, Monday,
Tuesday, Wednesday, Thursday, and Friday. (Obviously, in reality this would be much more fine grained,
i.e., one attribute could be Monday: 8:00-9:00AM.)

In some scenarios finding common policy rules will be the main objective of the participants. However,
in some scenarios, the participants may not only want to express which combinations of attributes are
acceptable for them but may also want to order these combinations according to their preferences. In these
cases the objective of the participants is to find a common policy rule that maximizes their preferences.

Taking preferences into account, each participant represents its requirements by defining rules in order
of preference. In our example, the applicant prefers to do the interview on Monday, but could do any other
day with lower preference. In turn, HR prefers to do the interview on Wednesday but can accommodate any
of the other days as well.

Definition 3.1 A policy rule ai = (ai1, . . . , ain) ∈ {0, 1}n is a bit string of length n indicating whether a
field aij , j = 1, . . . , n is defined or not. A policy PA is a set of rules a1, . . . , ak represented as a matrix
PA = (aij)1≤i≤k,1≤j≤n ∈ {0, 1}k×n. Attribute Aj is a string of characters that uniquely represents the j-th
field of the policy rules.

In our example from Figure 1, Monday, Tuesday, Wednesday, Thursday, and Friday are the attributes
defined in the policy. Rule a1 for the applicant is the bit string (1, 0, 0, 0, 0) specifying that his top priority
is to do the interview on a Monday.

Remark 3.1 Assuming parties A and B with policies PA and PB , attributes A1, . . . ,Au and B1, . . . ,Bv,
policy reconciliation for these parties requires u = v and Aj = Bj for j = 1, . . . , u. I.e. , the policy rules of
both parties have the same length and both parties associate the same attribute with each bit in the policy
rule.

Definition 3.2 A pre-order on a set X is a reflexive, transitive, binary relation R on X. A pre-order is
total if all x1, x2 ∈ X are comparable, i.e.,x1Rx2 or x2Rx1.
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Remark 3.2 Let X be a set and f be a real-valued function. Then f induces a total pre-order R on X, by
xRy iff f(x1) ≤ f(x2).

Remark 3.3 If f is a bijective function, then f induces a total order on X.

Throughout this paper we assume that a party A is able to totally order the policy rules in its policy
PA according to its preferences. We denote PA = {a1, . . . , ak}, where a1 is the rule that is most preferred
and ak is the rule that is preferred least. That is the policy rules are listed in decreasing order ak ≤A

ak−1 ≤A · · · ≤A a1. In other words we assume that the policy rules in PA are numbered such that f(ai) :=
k− i+1 (i = 1, . . . , k) is a bijective function that induces a total order ≤A on PA. In the sequel, we refer to
this function f(ai) as rankA(ai), i.e., the rank which induces a so-called simple preference order ≤A on the
set of policy rules PA.

Definition 3.3 Let ≤A be the simple preference order induced on the set of policy rules PA (by rankA) and
≤B be the simple preference order induced on the set of policy rules PB (by rankB). A combined preference
order ≤AB is a total pre-order induced on the set of policy rules PA ∩PB by a the real-valued function f—in
the sequel referred to as preference order composition scheme.

We focus on two specific preference order composition schemes:

Definition 3.4 The sum of ranks composition scheme combines the simple preference orders ≤A induced
by rankA on PA and ≤B induced by rankB on PB to the combined preference order ≤AB induced by f
on PA ∩ PB defined as fSoR(c) := rankA(c) + rankB(c) for c ∈ PA ∩ PB . I.e., if x, y ∈ PA ∩ PB , then
x ≤AB y :⇔ rankA(x) + rankB(x) ≤ rankA(y) + rankB(y).

Definition 3.5 The maximized minimum of ranks composition scheme combines the simple preference or-
ders ≤A induced by rankA on PA and ≤B induced by rankB on PB to the combined preference order ≤AB

induced by f on PA ∩ PB defined as fMMR(c) := min{rankA(c), rankB(c)} for c ∈ PA ∩ PB. I.e., if
x, y ∈ PA ∩ PB , then x ≤AB y :⇔ min{rankA(x), rankB(x)} ≤ min{rankA(y), rankB(y)}.

Remark 3.4 The functions fSoR(c) := rankA(c) + rankB(c) and f(c)MMR := min{rankA(c), rankB(c)} are
not bijective. Consequently, the induced combined preference orders are total pre-orders but not total orders.

3.2 Protocols for Privacy-Preserving Policy Reconciliation

Drawing on the previous definitions, we now introduce the protocols for policy reconciliation and define when
we call these protocols privacy-preserving.

Policy reconciliation in general has the objective of two parties determining those policy rules they have
in common. In the course of conventional reconciliation protocols, at least one of the two parties learns
more of the other party’s policies than just what the two parties have in common. As discussed previously,
the latter constitutes a major problem in situations where privacy is of primary concern. The objective of
privacy-preserving policy reconciliation is not to reveal any more information about a party’s policy rules to
the other party than the common policy rules.

Let us now assume that two parties have total preference orders on their policies and have agreed upon
a preference order composition scheme. Then preference-maximizing policy reconciliation for a composition
scheme has the objective of determining a policy rule that maximizes the combined preference order. Again,
this problem could be solved by one party providing its policy as well as its total preference order to the
other party. However, in this case, the other party could chose a policy rule that only maximizes its own
preferences. The objective of privacy-preserving common policy reconciliation is to find a policy rule that
maximizes the combined preference order without revealing any information about a party’s policy rules and
preferences to the other party than the maximizing policy rule.

In both cases, with and without considering preferences, a trusted third party could be used to solve the
privacy problem. However, in practice such a trusted third party barely ever exists. Thus, the goal in secure
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multi-party computation in general, and here in particular, is to define protocols without a trusted third
party that provide the same view to each of the parties as if a trusted third party was present.

As we will see in the course of this paper, it is comparatively easy to implement privacy-preserving policy
reconciliation schemes that do not take preferences into account. We illustrate this with the help of the
private set intersection techniques introduced in [12]. Kursawe et al. reach the same goal with the help of
a boolean circuit and using efficient two-party computation techniques based on threshold homomorphic
cryptosystems [21]. However, implementing privacy-preserving preference-maximizing policy reconciliation
seems not quite that straight forward.1 Here, we introduce the slightly weaker notion of a privacy-preserving
multi-round preference-maximizing policy reconciliation scheme. In addition to a preference-maximizing
policy rule, such a scheme reveals the rank the other party has assigned to the resulting policy rule. Note
that the additional leakage of the rank of the result in the other parties preference order seems acceptable in
many situations as at the time of leakage the agreement has already been reached such that the other party
cannot use the additional information to influence the result anymore.

Keeping these considerations in mind, we define three different protocols for policy reconciliation as
follows:

Protocol 1 A privacy-preserving common policy scheme (PCP) is a two-party protocol between parties A
and B. Their respective policies PA and PB are drawn from the same domain of policy rules (see Remark 3.1).
Upon completion of the protocol, A and B learn nothing else about each other’s private policies but what can
be deduced from the policy rules they have in common.

In our example, this means that the parties determine all dates and times that would work for an interview
for both HR and the applicant.

Protocol 2 A privacy-preserving common policy cardinality scheme (PC2) is a two-party protocol between
parties A and B. Their respective PA and PB are drawn from the same domain of policy rules (see Re-
mark 3.1). Upon completion of the protocol, A and B learn nothing else about each other’s private policies
but what can be deduced from the number of policy rules they have in common.

A PC2 thus allows two parties A and B to determine how many policy rules they have in common
without revealing these policy rules to each other. A PC2 protocol could, for example, be used by A and
B to first determine the number of policies they have in common before reconciling their policies through a
PCP protocol.

In our previous example, this would translate into the parties determining how many dates and times
would work for both of them.

Protocol 3 A privacy-preserving preference-maximizing multi-round policy reconciliation scheme for a pref-
erence order composition scheme C (3PRC) is a multi-round two-party protocol between parties A and B.
Their respective policies PA and PB are drawn from the same domain of policy rules (see Remark 3.1).

Upon completion of the protocol, A and B learn nothing about each other’s policies but what can be
deduced from one common policy rule max that maximizes the combined preference order ≤AB (of ≤A and
≤B under C) and its respective rank under ≤AB.

Note that in a 3PRC scheme, the two parties should not learn anything about any other policy rules of the
respective other party and nothing about the other party’s preferences other than what can be deduced from
the run or the output of the protocol. Furthermore, the scheme must enforce the output to maximize the
combined preference order for the composition scheme in question. This guarantees that the two parties can
reconcile their preferences in a fair way, i.e., according to an agreed upon preference composition scheme.
Consequently, none of the parties has the power to set its preferences over the other party’s preferences. The
different preference composition schemes can hereby be used to express different notions of fairness in the
reconciliation process.

In our example, the use of a 3PRC scheme ensures that the interview will take place at a time and date
that optimizes, i.e., best meets the preferences of both the HR department and the applicant.

1Note that in [21] the problem of taking preferences into account is recognized but no solution for this case is proposed.
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3.3 Adversary Model and Privacy Requirements

We now describe the adversary models used in the remainder of this paper. Furthermore, we define the
security and privacy requirements for PCP, PC2, and 3PRC protocols.

Semi-Honest Model. In the semi-honest model, all parties act honestly, but may be curious. That is, all
parties act according to their prescribed actions in the protocol2. Yet, the participants may try to learn as
much as possible in the process of the protocol and may perform any additional arbitrary polynomial-time
computations apart from the prescribed protocol actions [14]. In particular, any party may store and use
any intermediate result of the protocol. Intuitively, a two-party protocol is said to be privacy-preserving
in the semi-honest model, if no party gains information about the other party’s private input other than
what can be deduced from the desired output of the protocol and the party’s own private input. In other
words, for each party there exists a simulator that produces an output distribution which is computationally
indistinguishable from the other party’s view executing the real protocol [13].3Note that while for a PCP and
a PC2 scheme the private inputs are the policies PA and PB only, the private input in the 3PRC additionally
includes the preference orders of A and B.

Malicious Model. In the malicious model, each party may behave arbitrarily. As detailed in [13], one
cannot prevent a party from (1) refusing to participate in the protocol; (2) substituting its private input
at the beginning of the protocol; or (3) aborting the protocol before completion. Intuitively, a two-party
protocol is said to be privacy-preserving in the malicious model, if apart from the unavoidable deviations
no other deviation of one malicious party leads to information leakage about the other (honest) party’s
private input, other than what can be deduced from the output of the protocol.4 Similarly, we say that a
3PRC scheme is preference-maximizing in the malicious model, if apart from the unavoidable deviations no
other deviation of one malicious party can lead to an output the malicious party prefers over the one that
maximizes the combined preference order.

4 Privacy-Preserving Reconciliation with Preferences

The main contribution of this paper is the introduction of a new 3PRC scheme for the sum of ranks com-
position scheme and a new 3PRC scheme for the maximized minimum of ranks composition scheme. These
protocols consist of several rounds. Each round uses a privacy-preserving set intersection protocol (PPSI)
as building block. In each round, the two parties commit to those policy rules that lead to the same rank in
their combined preference order. As soon as a match is found, the protocol terminates. The order in which
the parties commit to their policy rules thus guarantees the optimization of the combined preference order.

We recall that the objective of the sum of ranks composition scheme is for the two parties A and B
to determine one common policy rule max in a privacy-preserving manner that maximizes the combined
preference order on PA ∩ PB defined by x ≤AB y ⇔ rankA(x) + rankB(x) ≤ rankA(y) + rankB(y). Using
a PPSI as a building block, the protocol can generically be implemented as illustrated in Figure 2 on an
example where both parties A and B have four policies each, sorted in decreasing order of their individual
preferences. In order to determine a policy that maximizes the preferences of both parties A and B, the
protocol progresses in a number of rounds. Each round consists of a number of PPSIs (each indicated by
a line in Figure 2). For example, in Round 1, party A carries out one PPSI to determine whether there is
a match between its top policy and that of party B. If so, the protocol terminates as it found a common
policy rule that maximizes the combined preference order. Otherwise, the protocol moves on to the next

2Note that the parties may keep a record of all their intermediate computations.
3As generally is the case with secure multi-party computation, we assume the channel over which messages are exchanged

to be an authenticated channel.
4As a consequence of the three above mentioned unpreventable actions a malicious party can take, a PCP scheme, for

example, without any further external protection mechanism cannot prevent a malicious party from extracting the other parties
policy: the malicious party simply substitutes its own input with a policy containing all possible policy rules and consequently
learns the honest parties policy as output of the PCP scheme. Similarly, a PC2 scheme cannot protect the cardinality of an
honest party’s private input policy against a malicious party.
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A B A B A B A B A B A BA B

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7

Rank 3

Rank 2

Rank 1

Rank 4

Figure 2: Sum-of-ranks: order in which A and B compare policy rules in case of 4 rules

round. All PPSIs carried out in one round result in the same sum of ranks. In particular, the sum of ranks
in Round 1 is eight (in the example, or 2k in case of both parties holding k policy rules). In each round, the
sum decreases by one, i.e., Round i corresponds to a sum of ranks of 2k − i + 1 thus guaranteeing that the
protocol will in fact always maximize the sum of ranks. In the worst case, the protocol will carry out 2k− 1
rounds of PPSIs.

For the maximized minimum of ranks composition scheme, the order of executing PPSIs to obtain the
3PRC is slightly different as the two parties A and B strive to determine a common policy rule max in a
privacy-preserving manner such that it maximizes the combined preference order on PA ∩ PB defined by
x ≤AB y ⇔ min(rankA(x), rankB(x)) ≤ min(rankA(y), rankB(y)). Figure 3 illustrates the generic implemen-
tation of the multi-round protocol using some PPSI as a building block. Unlike before, the focus in each

A B A B A BA B

Round 1 Round 2 Round 3 Round 4

Rank 3

Rank 2

Rank 1

Rank 4

Figure 3: Maximized-minimum-of-ranks: order in which A and B compare policy rules in case of 4 rules

round is now on the policy rule with the smaller preference as the goal is to maximize that. Consequently,
the respective 3PRC requires fewer rounds and executes the PPSI in a different fashion. In fact, the number
of protocol rounds never exceeds the number of policy rules the parties hold. As before, both parties A and
B each carry out a certain number of PPSIs in each round of the 3PRC . For example, in Round 3 in Figure 3,
party B will carry out up to two PPSIs, that is, the PPSI between its top policy and party A’s third policy
and possibly a PPSI with its second policy and A’s third policy. Obviously, the minimum preference of all
policies considered in this round is two. If no intersection is found, the protocol will move on to the next
round which is characterized by the fact that the minimum of the preferences of the policy rules considered
is decreased by one. This procedure ensures that the protocol will determine a common policy rule that
maximizes the combined preference order.

Assuming that the PPSI is privacy-preserving in the semi-honest model automatically implies that the
new 3PRC protocols are privacy-preserving in the semi-honest model—irrespective of the PPSI and combined
preference order used. This is due to the fact that in the semi-honest model both parties will follow the
protocol. Consequently, if the PPSI used is privacy-preserving in the semi-honest model, then a party will
not learn anything about any policies unless a common policy is determined through the respective PPSI.
Obviously, an analogous statement for the malicious model does not hold true as malicious behavior in the
3PRC protocols may come into play both within a specific round (including multiple PPSIs) as well as in
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between different rounds.
While any PPSI may be used as building block for our 3PRC protocols, in the following we will focus our

attention on the PPSI introduced in [12]. In particular, we will detail and optimize our protocols using the
PPSI constructions by Freedman et al. which is based on private polynomial evaluation. While any other
PPSI can be employed in a generic straight-forward manner as explained above, we expect that the use of
some specific PPSIs (see Section 2) can lead to protocols that are more efficient than others.

4.1 Privacy-Preserving Tools by Freedman et al.

Privacy-Preserving Set Intersection The PPSI of [12] is a two-party protocol between a chooser C and
a sender S. At the beginning of the protocol, both parties have private data sets (ZC and ZS) drawn from
some common domain. At the conclusion of the protocol, the chooser learns the intersection ZC ∩ ZS , but
nothing about any other data in ZS . The sender learns nothing about any data in ZC . That is, Freedman
et al. prove that their protocol is privacy-preserving in the semi-honest model. For data sets of size O(k),
the protocol results in a communication overhead of O(k) and computational overhead of O(k ln ln k).

The Freedman protocol is based on a semantically secure homomorphic encryption scheme: If E is a
public encryption function of a homomorphic encryption scheme, then, given the ciphertexts c1 = E(m1)
and c2 = E(m2), the ciphertext c∗ = E(m1 + m2) can be computed efficiently without knowledge of the
private key. Similarly, given c = E(m) and some r from the group of plaintexts, then c∗ = E(rm) can be
computed efficiently without knowledge of the private key. A public encryption function E is semantically
secure if it is computationally infeasible for an attacker to derive significant information about a plaintext
given only its ciphertext and the public encryption key. An example of a semantically secure homomorphic
encryption scheme is Paillier’s cryptosystem [25]. The homomorphic property of an encryption function E
implies that anyone in possession of the encrypted coefficients of a polynomial f(X) can compute a valid
encryption of f(y) for any y from the group of plaintexts without the knowledge of the private key or the
coefficients. In particular, for any known plaintexts y1, y2 and any known constant r, a valid encryption
E(rf(y1) + y2) can be computed without the knowledge of the private key or the coefficients of f(X).
The property of the encryption scheme to be semantically secure is crucial for the protocols to be privacy-
preserving. That is, if the encryption scheme was not semantically secure, then it would be computationally
feasible to violate privacy, i.e., determine the plaintexts—which, in the context of Freedman’s work, are
the elements of the private data sets of the parties—without knowledge of the private key. This would be
possible by simply encrypting all candidate plaintexts using the party’s respective public key and checking
the results against the publicly known ciphertexts.

Private Cardinality Matching [12] also presents a protocol to compute the cardinality of the intersection
of two data sets that is privacy-preserving in the semi-honest model. In fact, this protocol is a variant of
the set intersection protocol. The chooser learns nothing about the data sets of the server, except for the
cardinality of the intersection of the chooser’s and the server’s data sets.5 For data sets of size O(k), the
protocols results in a communication overhead of O(k) and computational overhead of O(k ln ln k).

As illustrated in Appendix A, building on the work of Freedman et al. it is possible to build protocols
for PC2 and PCP in a straight-forward manner. However, implementing a 3PRC schemes requires some
sophisticated protocol design.

In the following, we assume that prior to the execution of any of the protocols introduced in this section
the two parties A and B agree upon a semantically secure homomorphic encryption scheme. The parties
choose their public and private key pairs for the encryption scheme and exchange their public keys. We
denote the public encryption functions of A and B with EA and EB and their private decryption functions
with DA and DB. Parties A and B have policies PA = (a1, . . . , ak) and PB = (b1, . . . , bl) consisting of policy
rules drawn from the same domain {0, 1}n (Remark 3.1). In addition, in both 3PRC protocols we assume

5It is important to note that in the Freedman et al. schemes the server learns the size of ZC . Other schemes avoid this
leakage at the cost of efficiency (e.g., [1] in the case of private cardinality matching and [31] for private set intersection).
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that PA and PB have the same number of policy rules, that is k = l. Furthermore, the policy rules in PA

and PB are enumerated in decreasing order of ≤A and ≤B such that a1 is A’s favorite policy rule and ak is
A’s least favorite policy rule.

4.2 3PRC Protocol for the Sum of Ranks Composition Scheme

In this section we detail the 3PRC protocol for the sum of ranks (SoR) composition scheme. The basic idea
of the multi-round protocol using any private set intersection protocol was illustrated in Figure 2. In the
following, we formally describe the protocol messages for the case that the private set intersection protocol
introduced by Freedman et al. is used.

3PRSoR Protocol: For each policy rule ai ∈ PA (i = 1, . . . , k) we define f
(i)
A := (X − ai). The polynomial

with coefficients encrypted under EA is denoted by E
(i)
A . Similarly, for each bi ∈ PB (i = 1, . . . , k) we define

f
(i)
B and E

(i)
B .

Commitment Phase:

Round 0: B sends E
(1)
B to A.

Round 1: A chooses a random r
(1)
A,1, computes c

(1)
A,1 = EB

(
r
(1)
A,1 · f (1)

B (a1) + a1

)
, and sends it together

with E
(1)
A to B. B decrypts c

(1)
A,1 under DB and compares the result to b1. If b1 = DB(c

(1)
A,1), then

b1 = a1, that is, B has found max := b1 = a1 and continues with the Match Confirmation Phase.

Otherwise, B sends E
(2)
B to A and A continues with Round 2 of the Commitment Phase.

Round 2 ≤ i ≤ k: For j = 1, . . . , �i/2�, A chooses random r
(i−j+1)
A,j and computes the ciphertexts

c
(i−j+1)
A,j := EB

(
r
(i−j+1)
A,j · f (i−j+1)

B (aj) + aj

)

and sends them as well as E
(i)
A to B. For j = 1, . . . , �i/2� B decrypts c

(i−j+1)
A,j with DB and checks

whether the decrypted value equals bi−j+1. If for some j =: m the ciphertext c
(i−m+1)
A,m decrypts

to bi−m+1, B has found max := bi−m+1 = am and continues with the Match Confirmation Phase.

Otherwise, for 1 ≤ j ≤ �i/2	, B chooses random r
(i−j+1)
B,j and computes the ciphertexts

c
(i−j+1)
B,j := EA

(
r
(i−j+1)
B,j · f (i−j+1)

A (bj) + bj

)

and sends them to A. For 2 ≤ i < k B additionally sends E
(i+1)
B to A. For 1 ≤ j ≤ �i/2	, A

decrypts c
(i−j+1)
B,j with DA and checks whether the decrypted value equals ai−j+1. If c

(i−m+1)
B,m decrypts

to ai−m+1, A has found max := ai−m+1 = bm and continues with the Match Confirmation Phase.
Otherwise, A continues with Round i+ 1 of the Commitment Phase.

Round k < i < 2k − 1: For j = 1, . . . , k − �i/2	, A chooses random r
(k−j+1)
A,i−k+j and computes the

ciphertexts

c
(k−j+1)
A,i−k+j := EB

(
r
(k−j+1)
A,i−k+j · f (k−j+1)

B (ai−k+j) + ai−k+j

)

and sends them to B. For j = 1, . . . , k − �i/2	 B decrypts c
(k−j+1)
A,i−k+j with DB and checks whether the

decrypted value equals bk−j+1. If for some j =: m the ciphertext c
(k−m+1)
A,i−k+m decrypts to bk−m+1, B has

found max := bk−m+1 = ai−k+m and continues with the Match Confirmation Phase. Otherwise, for

1 ≤ j ≤ k − �i/2�, B chooses random r
(k−j+1)
B,i−k+j and computes the ciphertexts

c
(k−j+1)
B,i−k+j := EA

(
r
(k−j+1)
B,i−k+j · f (k−j+1)

A (bi−k+j) + bi−k+j

)
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and sends them to A. For 1 ≤ j ≤ k − �i/2�, A decrypts c
(k−j+1)
B,i−k+j with DA and checks whether the

decrypted value equals ak−j+1. If c
(k−m+1)
B,i−k+m decrypts to ak−m+1, A has found max := ak−m+1 =

bi−k+m and continues with the Match Confirmation Phase. Otherwise, A continues with Round i+ 1
of the Commitment Phase.

Round i = 2k − 1: A chooses random r
(k)
A,k and computes the ciphertext

c
(k)
A,k := EB

(
r
(k)
A,k · f (k)

B (ak) + ak

)

and sends it to B. B decrypts c
(k)
A,k with DB and checks whether the decrypted value equals bk. If

c
(k)
A,k decrypts to bk, B has found max := bk = ak and continues with the Match Confirmation Phase.
Otherwise, B sends a message to A indicating that no match was found and aborts the protocol.

Match Confirmation Phase: If B found the match b1 = a1 = max in the first round of the Commitment
Phase, then B computes c

(1)
B,1 and sends it to A. A decrypts the received ciphertext with DA to a1. Thus A

and B both know that max = a1 = b1.
If B found max = bi−m+1 = am in Round 2 ≤ i ≤ k of the Commitment Phase, then B computes

c
(m)
B,i−m+1 and sends it to A. A decrypts the received value under DA to am. Thus, A and B both know that
am = bi−m+1 = max.

If A found max = ai−m+1 = bm in Round 2 ≤ i ≤ k of the Commitment Phase, A computes c
(m)
A,i−m+1

and sends it to B. B decrypts c
(m)
A,i−m+1 with DB and checks that DB(c

(m)
A,i−m+1) decrypts to a value

bm ∈ {b1, . . . , b�i/2�}. Thus, both parties A and B know that ai−m+1 = bm = max.
If B found max = bk−m+1 = ai−k+m in Round k < i < 2k − 1 of the Commitment Phase, then B

computes c
(i−k+m)
B,k−m+1 and sends it to A. A decrypts the received value under DA to ai−k+m. Thus, A and B

both know that ai−k+m = bk−m+1 = max.
If A found max = ak−m+1 = bi−k+m in Round k < i < 2k − 1 of the Commitment Phase, A computes

c
(i−k+m)
A,k−m+1 and sends it to B. B decrypts c

(i−k+m)
A,k−m+1 with DB and checks that DB(c

(i−k+m)
A,k−m+1) decrypts to a

value bi−k+m ∈ {bi−k+1, . . . , b�i/2�}. Thus, both parties A and B know that ak−m+1 = bi−k+m = max.

If B found max = bk = ak in Round i = 2k − 1 of the Commitment Phase, then B computes c
(k)
B,k and

sends it to A. A decrypts the received value with DA to ak. Thus A and B both know that ak = bk = max.

Remark 4.1 Unlike in PCP and PC2 we have assumed for the 3PRSoR protocol that A and B have the
same number k of policy rules and each rank is assigned to exactly one policy rule. However, this does not
limit A and B to define less than k valid policy rules, as A and B can simply augment their valid policies
to contain k rules by appending special rules agreed upon to be dummy rules. E.g., policy rules containing
only zeros for every attribute could be interpreted as such dummy rules. A matching zero policy as result of
3PRSoR then indicates that A and B do not share a single valid policy rule.

Intuitively, the protocol works as follows: The homomorphic encryption function allows a party A to encrypt
a polynomial corresponding to one of its own policy rules in a way that the encrypted polynomial does not
reveal any information to party B. In addition, if B evaluates the encrypted polynomial on one of its own
policy rules, then its policy rule is blinded and encrypted. From this blinded ciphertext A learns nothing
about B’s policy rule, unless the policy rule A used for the creation of the polynomial and the policy rule
on which B evaluated the polynomial coincide. This is because, if and only if the policy rules coincide,
the blinded ciphertext decrypts to A’s policy rule. A and B can thus determine a common policy rule
without revealing rules to each other that they do not have in common. Our protocols make use of this basic
procedure in multiple rounds.

In each round, parties A and B exchange polynomials and blinded ciphertexts corresponding to previously
received polynomials. They each decrypt the blinded ciphertext and compare the result to the policy
rules corresponding to the previously sent polynomials. The order in which the information is exchanged
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Figure 4: Commitment Phase of the 3PRSoR protocol. For example, in Round 2 ≤ i ≤ k, A for j =
1, . . . , �i/2	 compares ai−j+1 with bj and B for j = 1, . . . , �i/2� compares bi−j+1 with aj without obtaining
knowledge of these values (unless they are equal), that is, in a privacy-preserving manner. Note that in each
Round 1 ≤ i ≤ 2k − 1 all policy rules are compared that result in the same sum of ranks i+ 1.

guarantees that the protocol terminates when a common policy rule is found that maximizes the sum of
ranks of the common policies of A and B. For example, in the first round of the protocol, A can check

whether the two most preferred policy rules of both parties are the same (a1
?
= b1). If this is not the case, A
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does not learn anything about b1. As a general rule, in Round i of the protocol, A and B compare all policy
rules that result in the same sum of ranks in the combined preference order of A and B.

Discussion:
For PA ∩ PB 
= ∅, the Commitment Phase of the 3PRSoR protocol always terminates with one of the

parties finding a match. This is due to the fact that for each pair (l, s) 1 ≤ l, s ≤ k, al is compared with
bs in Round l + s − 1. To be precise, for l < s, al is compared with bs by A and for s ≤ l, bs is compared
with al by B in Round l + s− 1. Let max = al = bs be a match found in Round l + s− 1. Then no match
was found in any previous round of the Commitment Phase. We claim that then max maximizes the sum
of the ranks of all elements in the intersection PA ∩PB . If this was not the case, then there would be a pair
(ar, bv) with ar = bv ∈ PA ∩ PB and r + v < s+ l. As a consequence, ar would have been compared to bv
already in Round r + v − 1 of the Commitment Phase. This obviously contradicts the assumption.

In order to prove that the 3PRSoR protocol is privacy-preserving in the semi-honest model (see Proto-
col 3), it is necessary to show that the information that either party can deduce from the 3PRSoR protocol
is equivalent to either party knowing nothing else but what can be de deduced from knowing the match-
ing rule max (maximizing the sum of ranks composition scheme) and its rank fSoR(max) in the combined
preference order ≤AB. As discussed before, finding a match with the 3PRSoR protocol implies that both
parties know the policy rule max which maximizes the combined preference order as well as the round in
which it was found. The latter corresponds to the rank of the matching rule under the sum of ranks com-
position scheme.6 In turn, knowing max itself and its rank fSoR(max) allows party A (B) to determine
rankB(max) (rankA(max)). Furthermore, since max maximizes fSoR(x) with x ∈ PA ∩ PB, it holds that
� a ∈ PA, b ∈ PB such that a = b and fSoR(a) = fSoR(b) > fSoR(max). Since fSoR(max) directly corre-
sponds to the round in which the 3PRSoR protocol would find the match, this implies that the operations
in Rounds i with i < fSoR(max) in the 3PRSoR protocol should yield no information other than that the
respective policy rules do not match. Using Freedman’s PPSIs in each round, the 3PRSoR protocol achieves
this by construction as Freedman’s PPSI is privacy-preserving in the semi-honest model.

It is important to note that while deviations from the protocol always imply privacy violations, a malicious
party will not necessarily profit from deviations in terms of maximizing its preferences. This is due to the
fact that the combined preference order depends on the preference order of the honest party. In order to
profit from deviations a malicious party would need to know the honest party’s preference order at the time
of initiation of reconciliation. As a consequence, in situations where A and B reconcile their policies only
once and have to follow the result later on, deviations from the protocol are unattractive for either party.

We evaluate the worst case performance of the protocol by counting (1) the number of times A and B
have to compare a received decrypted policy rule of the other party with one of their policy rules, (2) the
number of decryptions A and B have to perform, (3) the number of encryptions of coefficients of polynomials,
(4) the number of ciphertext A and B have to compute to commit to their policy rules, (5) the number of
messages exchanged between A and B, as well as (6) the overall size of the payload of all messages exchanged,
counted in the number of ciphertexts included in all messages.

We count the above numbers for three different relations between the overall number of n of policy rules
and the number k of policy rules A and B choose from the overall set of policy rules.

In the first case, we assume that n equals k. In this case, A and B share all policy rules and differ only
in their preferences. The worst case occurs if the policy rules of A and B are in exactly the opposite order.
In this case, the match is found in Round k of the protocol. Table 1 shows the results.

For example, the number of comparisons is counted as follows: In the worst case, the match is found
in Round k by one comparison and confirmed in the confirmation phase by yet another comparison. The
preceding k − 1 rounds are unsuccessful. In the i − th round (i = 1, . . . , k − 1), i comparisons take place.

Therefore the overall number of comparisons is 1 + 2 + · · ·+ k − 1 + 2 =
∑k−1

r=1 r + 2 = k(k−1)
2 + 2.

6It is important to note that if a match is found by A (B), A (B) may learn more than one preference maximizing policy
rule. This is due to the fact that more than one pair of policy rules may be evaluated by A (B) in each round. This asymmetry
can be prevented by adding subrounds to the Commitment Phase such that each party commits to only one policy rule in each
subround of each round in the Commitment Phase. This, however, would result in a higher communication overhead.
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k = n

# Comparisons k(k−1)
2 + 2

# Encryption of coefficients 4k − 3

# Decryptions k(k−1)
2 + 2

# Commitment of rules k2+2
2 (k even); k2+3

2 (k odd)
# Messages 2k + 1
Size of payload in # ciphertexts k2/2 + 4k − 2

Table 1: Sum-of-ranks: Worst case performance for n = k, where n is the overall number of policy rules A
and B choose from and k is the number of policy rules A and B choose.

In the second case, we assume that k ≤ n ≤ 2k− 1. That is A and B differ in at least one policy rule and
have at least one policy rule in common. In this case, the worst case occurs if A and B share only exactly
one policy rule and this policy rules is the least preferred rule of both parties. In this case, the match is
found in Round 2k − 1 of the protocol. The results are shown in Table 2.

k ≤ n ≤ 2k − 1

# Comparisons k2 + 1
# Encryption of coefficients 4k
# Decryptions k2 + 1
# Commitment of rules k2 + 1
# Messages 4k − 1
Size of payload in # ciphertexts k2 + 4k + 1

Table 2: Sum-of-ranks: Worst case performance for k ≤ n ≤ 2k − 1

Finally, in the third case, we assume that n > 2k − 1. In this case, the policies of A and B may be
disjunct, which is also the worst case for this relation between n and k. A and B realize that they do not
have a policy rule in common when no match is found after 2k− 1 rounds. Table 3 shows the results for this
case.

n > 2k − 1

# Comparisons k2

# Encryption of coefficients 4k
# Decryptions k2

# Commitment of rules k2

# Messages 4k − 1
Size of payload in # ciphertexts k2 + 4k

Table 3: Sum-of-ranks: Worst case performance for n > 2k − 1

Overall we can conclude that the computational overhead as well as the communication overhead of the
protocol are bounded by O(k2).

4.3 3PRC Protocol for the Maximized Minimum of Ranks Composition Scheme

In this section we detail the 3PRC protocol for the maximized minimum of ranks (MMR) composition scheme.
The main difference to the 3PRC protocol for the sum of ranks composition scheme is the order in which
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private set intersections are executed (see Figure 3). In the following, we formally describe the protocol
messages and processing for the case that the private set intersection protocol introduced by Freedman et
al. is used.

3PRMMR Protocol: Within this protocol description, we reuse the definitions of f
(i)
A , f

(i)
B , E

(i)
A , E

(i)
B , c

(i)
A,j ,

and c
(i)
B,j introduced in the previous section.

Commitment Phase:

Round 0: B sends E
(1)
B to A.

Round 1: A sends E
(1)
A and c

(1)
A,1 to B. B decrypts c

(1)
A,1 under DB and compares the result to b1. If

b1 = DB(c
(1)
A,1), then b1 = a1, that is, B has found max := a1 = b1 and continues with the Match

Confirmation Phase. Otherwise B sends E
(2)
B to A and A continues with Round 2 of the Commitment

Phase.

Round 2 ≤ i ≤ k: For j = 1, . . . , i, A computes the ciphertexts c
(i)
A,j and sends them as well as E

(i)
A to

B. B decrypts c
(i)
A,1, . . . , c

(i)
A,i with DB and checks whether any decrypted value equals bi. If for some

j =: m the ciphertext c
(i)
A,m decrypts to bi, B has found max := bi = am and continues with the Match

Confirmation Phase. Otherwise, B computes the ciphertexts c
(i)
B,j for 1 ≤ j ≤ i− 1 and sends them to

A. For 1 ≤ i < k B additionally sends E
(i+1)
B to A. A decrypts c

(i)
B,1, . . . , c

(i)
B,i−1 with DA and checks

whether any decrypted value equals ai. If for some j =: m the ciphertext c
(i)
B,m decrypts to ai, A has

found max := ai = bl and continues with the Match Confirmation Phase. Otherwise, if i + 1 ≤ k, A
continues with Round i+ 1 of the Commitment Phase. If i+1 > k, the protocol terminates without a
match being found.

Match Confirmation Phase: If it was A who found max in Round i of the Commitment Phase, A

computes c
(m)
A,i and sends it to B. B decrypts c

(m)
A,i with DB and checks that DB(c

(m)
A,i ) decrypts to a value

bm ∈ {b1, . . . , bi}. Thus, both parties A and B know that ai = bm = max.

If it was B who found max in Round i of the Commitment Phase, then B computes c
(m)
B,i and sends it to

A. A decrypts the received value under DA to am. Thus, A and B both know that am = bi = max.

Remark 4.2 Unlike in the 3PRSoR protocol for, the 3PRMMR protocol allows the same rank to be assigned
to multiple policy rules assuming that A and B still have the same number k of policy rules.

Intuitively speaking, the difference between this and the previously described protocol is that the order in
which A and B exchange information and compare policies is changed. As a general rule, in Round i of the
protocol A and B compare all policy rules that lead to the same maximum of minimum of ranks.

Discussion:
For PA ∩ PB 
= ∅, the Commitment Phase of the 3PRMMR protocol always terminates with one of the

parties finding a match. This is due to the fact that for each 1 ≤ i ≤ k, ai is compared with b1, . . . , bi−1 by
A in Round i. Similarly, for each 1 ≤ i ≤ k, bi is compared with a1, . . . ai by B.

Let max be the first match found in Round i of the Commitment Phase and let without loss of generality
max(min(rankA(max), rankB(max))) = rankA(max). Then, max maximizes the minimum of the ranks of
all policies in the intersection PA ∩ PB . If this was not the case, then there was a policy rule p ∈ PA ∩ PB

with min(rankA(p), rankB(p)) > rankA(max).
This implies that rankA(p) > rankA(max) and rankB(p) > rankA(max) and A and B would have

committed to p in a round prior to Round i. As a consequence, p would have been found in a prior round.
This obviously contradicts the assumption.

In order to prove that the 3PRMMR protocol is privacy-preserving in the semi-honest model (see Proto-
col 3), it is necessary to show that the information that either party can deduce from the 3PRMMR protocol
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Figure 5: Commitment Phase of the 3PRMMR protocol. In Round i, A compares ai with b1, . . . , bi−1 and
B compares bi with a1, . . . , ai without obtaining knowledge of these values, that is, in a privacy-preserving
manner.

is equivalent to either party knowing nothing else but what can be de deduced from knowing the matching
rule max (maximizing the minimum of ranks composition scheme) and its rank fMMR(max) in the combined
preference order ≤AB. As discussed before, finding a match with the 3PRMMR protocol implies that both
parties know the policy rule max which maximizes the combined preference order as well as the round in
which it was found. The latter corresponds to the rank of the matching rule under the maximized minimum
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of ranks composition scheme.7 In turn, knowing max itself and its rank fMMR(max) allows party A (B) to
determine rankB(max) if rankA(max) > fMMR(max) (rankA(max) if rankB(max) > fMMR(max)).

Furthermore, since max maximizes fMMR(x) with x ∈ PA ∩ PB , it holds that � a ∈ PA, b ∈ PB such
that a = b and fMMR(a) = fMMR(b) > fMMR(max). Since fMMR(max) directly corresponds to the
round in which the 3PRMMR protocol would find the match, this implies that the operations in Rounds i
with i < fMMR(max) in the 3PRMMR protocol should yield no information other than that the respective
policy rules do not match. Using Freedman’s PPSIs in each round, the 3PRMMR protocol achieves this by
construction as Freedman’s PPSI is privacy-preserving in the semi-honest model.

It is important to note that while deviations from the protocol always imply privacy violations, a malicious
party will not necessarily profit from deviations in terms of maximizing its preferences. This is due to the
fact that the combined preference order depends on the preference order of the honest party. In order to
profit from deviations, a malicious party would need to know the honest party’s preference order at the time
of initiation of reconciliation.

As in the sum of ranks case, we evaluate the worst case performance of the protocol by counting (1)
the number of comparisons, (2) decryptions, (3) encryptions of coefficients, (4) ciphertext commitments,
(5) messages exchanged, as well as (6) the overall size of the exchanged messages counted in number of
ciphertexts. Again, we consider three different relations between the overall number of n of policies and the
number k of policy rules A and B choose from the overall set of policies.

In the first case, we assume that n equals k. In this case, A and B share all policy rules and differ only
in their preferences. The worst case occurs if the policy rules of A and B are in exactly the opposite order.
In this case, the match is found in Round �k/2	+ 1 of the protocol. Table 4 shows the results.

k = n k odd k even

# Comparisons k2+1
4 + 2 k(k+2)

4 + 1
# Encryption of coefficients 2k + 2 2k + 4

# Decryptions k2+1
4 + 2 k(k+2)

4 + 1

# Commitment of rules k−1
2 (k−1

2 + 1) + 2 k
2 (

k
2 + 1) + 1

# Messages k + 2 k + 3

Size of payload in # ciphertexts 2k + 4 + k−1
2 (k−1

2 + 1) 2k + 5 + k
2 (

k
2 + 1)

Table 4: Maximized-minimum-of-ranks: Worst case performance for n = k

In the second case, we assume that k ≤ n ≤ 2k − 1. In this case, A and B have at least one policy rule
in common but may differ greatly in their preferences. In this case, the worst case occurs if A and B share
only exactly one policy rule and this policy rules is the least preferred rule of both parties. In this case, the
match is found in Round k of the protocol. The results are shown in Table 5.

Finally, in the third case, we assume that n > 2k − 1. In this case, the policies of A and B may be
disjunct, which is also the worst case for this relation between n and k. A and B realize that they do not
have a policy rule in common when no match is found after k rounds. Table 6 shows the results for this case.

Overall we can conclude that the computational overhead of the protocol is bounded by O(k2) and that
the communicational overhead is bounded by O(k2).

5 Conclusions

In this paper we introduced a new paradigm—preference-based privacy-preserving policy reconciliation.
We proposed a new general multi-round construction that makes use of a set intersection protocol and

7It is important to note that if a match is found by A (B), A (B) may learn more than one preference maximizing policy
rule. This is due to the fact that more than one pair of policy rules may be evaluated by A (B) in each round. This asymmetry
can be prevented by adding subrounds to the Commitment Phase such that each party commits to only one policy rule in each
subround of each round in the Commitment Phase. This, however, would result in a higher communication overhead.
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k ≤ n ≤ 2k − 1

# Comparisons k2

# Encryption of coefficients 4k
# Decryptions k2

# Commitment of rules k2

# Messages 2k + 1
Size of payload in # ciphertexts k2 + 4k

Table 5: Maximized-minimum-of-ranks: Worst case performance for k ≤ n ≤ 2k − 1

n > 2k − 1

# Comparisons k2

# Encryption of coefficients 4k
# Decryptions k2

# Commitment of rules k2

# Messages 2k + 1
Size of payload in # ciphertexts 4k + k2

Table 6: Maximized-minimum-of-ranks: Worst case performance for n > 2k − 1

maximizes the combined preferences of two parties reconciling their policies. We focused on two approaches
for combining individual preferences to combined preferences: computing the sum of ranks assigned by
each party or using the minimum of ranks assigned by the two parties. We showed that the new general
construction is privacy-preserving in the semi-honest model as long as the set intersection protocol is privacy-
preserving in the semi-honest model. We furthermore detailed our new construction for the private set
intersection protocol based on oblivious polynomial evaluation introduced by Freedman et al. for two different
notions of fairness and analytically determined their performance.

A Appendix: Privacy-Preserving Policy Reconciliation in the Ab-

sence of Preferences

For reason of completeness, in this appendix, we provide the straight forward protocols for PC2 and PCP
introduced in Section 3.2. As a main component we use the protocols of Freedman et al. PC2 and PCP
are straight-forward adaptations of the protocols of Freedman et al. to the problem of privacy-preserving
policy reconciliation in the absence of preferences. The description and discussion of these protocols are
included here to provide a complete picture of how the privacy-preserving policy reconciliation problem can
be tackled. As pointed out previously, the main contribution of this paper is, however, the design and
analysis of protocols in the presence of preferences which is provided in Section 4.

We assume that prior to the execution of any of our protocols the two parties A and B agree upon a
semantically secure homomorphic encryption scheme. The parties choose their public and private key pairs
for the encryption scheme and exchange their public keys. We denote the public encryption functions of A
and B with EA and EB and their private decryption functions with DA and DB. Parties A and B have
policies PA = (a1, . . . , ak) and PB = (b1, . . . , bl) consisting of policy rules drawn from the same domain
{0, 1}n (see Remark 3.1).
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A.1 Privacy-Preserving Common Policy Cardinality

The objective of the following protocol is for the two parties A and B to determine the number of policy
rules they have in common in a privacy-preserving manner.

PC2 Protocol: The parties A and B agree on some constant γ. A computes the polynomial

fA(X) = (X − a1)(X − a2) · · · (X − ak) =:

k∑
i=0

αiX
i,

encrypts its coefficients αi (i = 0, . . . , k) under EA, and sends them to B. Similarly, B computes the
polynomial

fB(X) = (X − b1)(X − b2) · · · (X − bl) =:

l∑
i=0

βiX
i

and encrypts its coefficients βi (i = 0, . . . , l) under EB. Then, for each bi ∈ PB (i = 1, . . . , l), B chooses
a random ri and computes cB,i = EA(ri · fA(bi) + γ). B sends the ciphertexts cB,i and the encrypted
coefficients EB(βi) to A. A decrypts the received ciphertexts under DA. For each bi ∈ PA, the ciphertext
cB,i will decrypt to γ, while for any other bi the decryption of the ciphertext cB,i under DA will yield some
arbitrary value. Consequently, the cardinality of the intersection PA ∩ PB corresponds to the number of
ciphertexts that decrypt to γ. Then, for each ai ∈ PA (i = 1, . . . , k), A chooses a random r′i and computes
cA,i = EB(r

′
i ·fB(ai)+γ). A sends these ciphertexts to B. For each ai ∈ PB, the ciphertext cA,i will decrypt

to γ, while for any ai /∈ PB the corresponding ciphertext will decrypt to some arbitrary value. Consequently,
B also determines the cardinality of the intersection PA ∩ PB as the number of ciphertexts that decrypt to
γ.

Discussion: If parties A and B follow the PC2 protocol, both will learn the cardinality of the intersection
of their policies. Following the detailed proof in [12], each direction of our PCP is privacy-preserving in the
semi-honest model. This is due to the fact that ciphertexts sent from A (B) to B (A) that do not correspond
to a common policy rule of both parties decrypt to some arbitrary value. As the encryption function is
semantically secure, the ciphertexts B(A) receives from A (B) are for two inputs of A (B) indistinguishable
for B (A).

We evaluate the complexity of the PC2 protocol by counting (1) the number of comparisons A and B have
to conduct, (2) the number of polynomial coefficients they need to encrypt, (3) the number of decryptions,
and (4) the number of commitments of rules exchanged. The result is shown in Table 7.

# Comparisons l + k
# Encryption of Coefficients l + k + 2
# Decryptions l + k
# Commitment of rules l + k
# Messages 2

Table 7: Performance of PC2, where l and k are the number of policy rules of A and B.

A.2 Privacy-Preserving Common Policy

The objective of the following protocol is for the two parties A and B to determine the policy rules they
have in common in a privacy-preserving manner.

PCP Protocol: A computes the polynomial

fA(X) = (X − a1)(X − a2) · · · (X − ak) =:

k∑
i=0

αiX
i,
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encrypts the coefficients αi (i = 0, . . . , k) under EA, and sends the encrypted coefficients to B. Similarly, B
computes the polynomial

fB(X) = (X − b1)(X − b2) · · · (X − bl) =:

l∑
i=0

βiX
i

and encrypts the coefficients βi (i = 0, . . . , l) under EB. Then, for each bi ∈ PB (i = 1, . . . , l), B chooses a
random ri and computes the ciphertexts cB,i = EA(ri ·fA(bi)+bi). B sends the ciphertexts cB,i (i = 1, . . . , l)
and the encrypted coefficients EB(βi) to A. A decrypts the received ciphertexts cB,i (i = 1, . . . , l) under DA.
For each bi ∈ PA∩PB, the ciphertext cB,i will decrypt to bi (matching some aj ∈ PA). For each bi /∈ PA∩PB ,
cB,i will decrypt underDB to some arbitrary value. A thus learns all elements of the intersection, but nothing
about any other rule in PB . Then, A computes cA,i = EB(ri · fB(ai) + ai) (i = 1, . . . , k) and sends these
ciphertexts to B. B decrypts the received ciphertexts under DB. For each ai ∈ PA ∩ PB, cA,i will decrypt
to ai (matching some bj ∈ PB). For each ai /∈ PA ∩PB , cA,i will decrypt under DB to some arbitrary value.
B thus also learns all elements in the intersection PA ∩ PB.

Discussion: If parties A and B follow the PCP protocol, both will learn the intersection of their policies.
The PCP protocol simply uses the private cardinality protocol of [12]. Following the detailed proof in [12],
each direction of the protocol is privacy-preserving in the semi-honest model. This is due to the fact that
ciphertexts sent from A (B) to B (A) that do not correspond to a common policy rule of both parties decrypt
to some arbitrary value. Moreover, the views of B (A) for two inputs of A (B) are indistinguishable due to
the semantical security of the encryption scheme used.

We again evaluate the complexity of the PCP protocol by counting (1) the number of comparisons A
and B have to conduct, (2) the number of polynomial coefficients they need to encrypt, (3) the number of
decryptions, and (4) the number of commitments of rules exchanged. The result are the same as shown in
Table 7.
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