A preliminary version is merged with [37] and [29], and published as [I] for presentation in Crypto
2010.

Signing on Elements in Bilinear Groups
for Modular Protocol Design

Masayuki Abe* Kristiyan Haralambiev** Miyako Ohkubo****

* Information Sharing Platform Laboratories, NTT Corporation, Japan
abe.masayuki@lab.ntt.co.jp

EES

Computer Science Department, New York University, U.S.A.
kkhQcs.nyu.edu

=k NICT, Japan
m.ohkubo@nict.or. jp

Abstract

A signature scheme is called structure-preserving if its verification keys, messages, and sig-
natures are group elements and the verification predicate is a conjunction of pairing product
equations. We answer to the open problem of constructing a constant-size structure-preserving
signature scheme. The security is proven in the standard model based on a novel non-interactive
assumption that can be justified and has an optimal bound in the generic bilinear group model.
We also present efficient structure-preserving signature schemes with advanced properties includ-
ing signing unbounded number of group elements, allowing simulation in the common reference
string model, signing messages from mixed groups in the asymmetric bilinear group setting, and
strong unforgeability. Among many applications, we show two examples; an adaptively secure
round optimal blind signature scheme and a group signature scheme with efficient concurrent
join. As a bi-product, several homomorphic trapdoor commitment schemes and one-time sig-
nature schemes are presented, too. In combination with the Groth-Sahai non-interactive proof
system, these schemes contribute to give efficient instantiations to modular constructions of
cryptographic protocols.

Keywords: Structure-Preserving Signatures, Simulatable Signatures, Groth-Sahai Proofs, Blind
Signatures

1 Introduction

BACKGROUND. Cryptographic protocols often allow modular constructions that combine general
building blocks such as commitments, encryption, signatures, and zero-knowledge proofs. While
modular design is useful to show feasibility of cryptographic tasks and also to illustrate a comprehen-
sible framework, efficient instantiations are sometimes left as a next challenge. Some cryptographic

"Work done while visiting NTT Information Sharing Platform Laboratories.
#Work done while working in NTT Information Sharing Platform Laboratories.

tasks find “cleverly crafted” efficient solutions dedicated for their own purposes. Nevertheless, mod-
ular construction makes it easier and can be a good alternative for comparison when the building
blocks have reasonable instantiations.

A combination of digital signatures and non-interactive zero-knowledge proofs of knowledge
appears frequently in privacy-protecting cryptographic protocols such as blind signatures [28] [3],
group signatures [0, 41], [§], anonymous credential systems [5], verifiably encrypted signatures [13],
49], non-interactive group encryption [26] and so on. An efficient non-interactive proof system in
the standard model, however, has been absent until recently. In [39], Groth and Sahai presented
the first (and currently the only) efficient non-interactive proof system based on bilinear mapping.
Their proof system (GS proofs for short) exerts its full power as a proof of knowledge system when
the proof statement is described as a conjunction of relations described by pairing product equations
and when the witnesses consists of group elements B To be compatible with the GS proof system,
a signature scheme is required to provide properties such that (1) the verification keys, messages,
and signatures are elements of bilinear groups, and (2) the verification predicate is a conjunction
of pairing products. A signature scheme with these properties is called structure-preserving in [1]
and have numerous applications.

RELATED WORK. There are efficient signature schemes, e.g., [11, 22, [5, 20], whose all but one
components are group elements. Research on structure-preserving signature schemes was initiated
in [35]. In [35], Groth showed the first feasibility result based on the decision linear assumption
(DLIN) [12]. The signature scheme yields a signature of size O(k) when the message consists
of k group elements. While it is remarkable that the security can be shown based on a simple
standard assumption, the scheme is not practical due to its large constant factor. Based on the
g-Hidden LRSW assumption for asymmetric bilinear groups, Green and Hohenberger presented a
structure-preserving signature scheme that provides security against random message attacks [34].
Unfortunately, an extension to the chosen message security is not known. In [29], Fuchsbauer
presented a scheme based on (a variant of) the Double Hidden Strong Diffie-Hellman Assumption
(DHSDH) from [30]. Their scheme is pretty efficient but has limited generality since a trusted
set-up is necessary and the messages must be in a special form called a Diffie-Hellman pair. In [26],
Cathalo, Libert and Yung showed a scheme based on a combination of the Hidden Strong Diffie-
Hellman Assumption (HSDH), Flexible Diffie-Hellman Assumption, and the DLIN assumption.
Their signature consists of 9k + 4 group elements and it is left as an open problem to construct
constant-size signatures.

OuUr CONTRIBUTION. We present the first constant-size structure-preserving signature scheme
for messages of general bilinear group elements. A signature consists only of 7 group elements
regardless of the size of the message. For a message (mq,...,my), a signature (z,7,s,t, u, v, w)
fulfills the verification equations

k
A= e(gzv Z) e(gT? T) 6(8, t) H e(giv mi): and
i=1
k
B = e(h, z) e(hy,u) e(v,w) H e(hi,m;)
1=1

determined by the verification key.

!Disjunction can be handled in somewhat tricky way with extra computation and storage[19]. When the witness
is a scalar, it is possible to preserve the proof of knowledge property, but it requires a bit-wise treatment and results
in proofs growing linearly in the security parameter.

The unforgeability against adaptive chosen message attacks is proven in the standard model
based on a novel non-interactive assumption called the Simultaneous Flexible Pairing Assumption
(SFP). It is a strong, i.e., so-called “g-type” assumption like the popular Strong Diffie-Hellman
Assumption (SDH) [II]. On the positive side, SFP is a rare strong assumption that achieves the
optimal quadratic security bound when analyzed in the generic group model [53] while SDH and
its variations suffer from a cubic bound. (We refer to [27] and [45] for a risk and discussion about
non-optimality in the generic model.) Another positive point is that SFP implies the Simultaneous
Double Pairing Assumption (SDP), a simple assumption implied by DLIN and that allows to build
useful commitment schemes that could be smoothly integrated into constructions based on SFP.
On the negative side, SFP is more complex than (H)SDH. Nevertheless, we enlighten the bright
side and hope that SFP be considered as a reasonable alternative for primitive designs when only
group elements are involved.

We then explore variations and a few applications as follows.

- In Section [5| based on the observation that the constant-size signatures allow unbounded
“signature chaining”, we present a signature scheme that signs unbounded-size messages. Since
the message space of the resulting scheme covers the verification key space, this extension gives
an automorphic signature scheme [29], which has number of interesting high-level applications
coupled with GS proofs.

- In Section [6| we addresses simulatability in the common reference string (CRS) model. With
simulatable signatures, a simulator can create signatures for arbitrary messages by using the
trapdoor for the CRS. Such a property is useful in building adaptively secure protocols where
a simulator has to have correct signatures without having help from a corrupted signer [3].
The resulting scheme gives an efficient instantiation to (adaptively secure variant of) Fischlin’s
round-optimal blind signature framework [28| [3] which we present in Section It has been
an open problem since Crypto’06 and considered as difficult [44].

- In Section [7] we present a scheme that works in the asymmetric setting where the symmetric
external Diffie-Hellman (SXDH) assumption holds. This setting is of interest as the GS proof
system can provide better efficiency and some protocols may demand such a setting. We
stress that it is not trivial to sign a message consisting of elements from both G; and Go
since there are no efficient mappings between both groups, and straightforward independent
signing allows a forgery.

- Finally, in Section [§] we show a variation that provides strong unforgeability with constant-
size signatures.

As a bi-product, we present several homomorphic trapdoor commitment schemes that are useful
in coupling with our signature schemes and the GS proofs. One of them is fully GS-compatible,
i.e., its commitment-key, message, commitment, and decommitment are in G; and G and the
verification predicate consists of pairing product equations. It is the first such scheme that binds
multiple messages at once.

ORGANIZATION. After introducing necessary notations and notions in Section[2] the main constant-
size signature scheme is presented in Section [d] It is followed by variations in Section [5], Section [6]
and Section [7] We show outline of high-level applications in Section [0] Some of the formal proofs
are shown in Appendix. The commitment schemes are presented in Appendix

2 Preliminaries

2.1 Common Setup with Bilinear Groups

Let A := (p,G1,G2,Gr, e, g, g) be a description of groups G1, G2 and Gr of prime order p equipped
with efficient bilinear map e : G; x Gy — Gp. It also includes a random generator g of G; and
g of Ga. By G} we denote G1 \ {lg,}, and the same for G5 and G}. By Agm we denote a
special case of A where G; = Go = G. Similarly, A,gn denotes a case where the Decision Diffie-
Hellman (DDH) assumption holds for G; (DDHg, in short). This setting implies that there is no
efficiently computable mapping G; — Ga2. And Aggn denotes a case where the DDH assumption
holds for both G; and Gs. This means that no efficient mapping is available for either direction.
The Aygn and Agqgn settings are usually referred to as the (Symmetric) External Diffie-Hellman
Assumption [52 12, 32] [54]. For differences of these settings in practice, we refer to [31]. A scheme
(or an assumption or a proof) designed and proven in one setting may not necessarily go through
in a different setting. In particular, if the scheme is for Asym and uses the homomorphism between
G1 and Go, it does not work, or not known to be secure when used with A,y or Aggn. We treat
A as a common parameter implicitly given to all algorithms of interest. However, we present our
constructions with care so that it is clear in which setting they work and are secure.

2.2 Digital Signatures

Definition 1 (Digital Signature Scheme). A digital signature scheme SIG is a set of algorithms
(SIG.Key, SIG.Sign, SIG.Vrf) such that:

SIG.Key(11): A key generation algorithm that takes security parameter 1* and generates a verifi-
cation key vk and a signing key sk. Message space M is associated to vk.

SIG.Sign(sk,m): A signature generation algorithm that computes a signature o for input message
m by using signing key sk.

SIG.Vrf(vk, m,o): A verification algorithm that outputs 1 for acceptance or 0 for rejection according
to the input.

A signature scheme must provide correctness in the sense that if the key pair and a signature on a
message are generated legitimately, SIG.Vrf returns 1. In this paper, algorithms works over common
bilinear setting A. The security parameter 1* allows SIG.Key to implicitly select A of appropriate
size. SIG.Key may also take some other parameters if necessary.

We use standard notion of existential unforgeability against adaptive chosen message attacks [33]
(EUF-CMA in short) formally defined as follows.

Definition 2 (Existential Unforgeability against Adaptive Chosen Message Attacks). A
signature scheme is existentially unforgeable against adaptive chosen message attacks if, for any
polynomial-time adversary A, the following experiment returns 1 with negligible probability.

Experiment :

(vk, sk) < SIG.Key(1*)
(m*, o) + A% (vk)

Return 1 if m* & Q,, and 1 «+ SIG.Vrf(vk*, m*,0*). Return 0, otherwise.

Osign is the signing oracle that takes message m and returns o < SIG.Sign(sk,m). @, is the
messages submitted to Ogign. By requiring (m*, 0*) € Qo where @, » is pairs of a message and a
signature observed by Osign, we have the notion of Strong EUF-CMA (denoted by sEUF-CMA for
short).

2.3 Assumptions

We start with introducing a simple assumption, called Double Pairing Assumption (DBP), that
holds in asymmetric bilinear setting, i.e., A € {Axdh, Asxdh }-

Assumption 1 (Double Pairing Assumption (DBP)). Given A € {Aydn, Asxdn } and (g2, gr) <
G%?, it is hard to find (z,7) € G4 x G such that

1=¢e(g.,2) e(gr, 7). (1)

It is obvious that DBP does not hold for A = Agm since (z,7) = (g, 1, 9:) # (1,1) fulfills the
relation. On the other hand, we can show that DBP holds for A € {Adn, Asxdh} where DDH is
assumed hard in Gj.

Theorem 1. If DDHg, holds for A, then DBP holds for A.

The proof is by a straightforward reduction and given in Appendix

We note that the DBP assumption could be viewed as a simpler version of the Simultaneous
Triple Pairing Assumption (STP) [37]. The DBP assumption was introduced in an earlier version of
this work, and independently in [38] (personal communication) by Groth, who also showed explicitly
that DBP implies STP.

Next is an extension of DBP, called Simultaneous Double Pairing Assumption (SDP), which
is a weaker assumption and can be justified in any setting A € {Agym, Axdh, Asxdh} by a standard
argument in the generic bilinear group model.

Assumption 2 (Simultaneous Double Pairing Assumption (SDP)). Given A and (g, h.,
9r,hy) < G¥1, it is hard to find (2,7, u) € G3® such that

1=¢e(g.,2) e(gr,) and 1 =e(hs,2) e(hy,u). (2)
As shown in [26], SDP is implied by DLIN.

Next we introduce a novel assumption by extending SDP so that it should be hard to find
another answer given several answers. Observe that, given an answer to an instance of SDP, one
can easily yield more answers by exploiting the linearity of the relation to be satisfied. We eliminate
such a linearity by multiplying random pairings to both sides of the equations in . Intuition
is that, it should be hard to merge two random pairings e(s,t) e(s’,t') into one equivalent pairing
e(s”,t"). We call such a random part flezible as random pairings can be easily randomized or
combined when their relation with respect to the same bases is known.

Assumption 3 (Simultaneous Flexible Pairing Assumption (SFP)). Let A be a common
parameter and let g,, h., g,, and h, be random generators of G;. Let (a,a), (b, b) be random pairs
in Gy x Gy. For j =1,...,q,let Rj = (z,7,5,t,u,v,w) that satisfies

e(a,a) = e(g., 2) e(gr,7) e(s,t) and e(b,b) = e(hs, 2) e(hy, u) e(v,w). (3)

Given (A, g., h, gr, hy,a,a,b, 5) and uniformly chosen Ry, ..., Ry, it is hard to find (2*, r*, s*, t*, u*, v*, w*)
that fulfill relations in under the restriction that z* # 1 and z* # z € R; for every R;.

Theorem 2. For any generic algorithm A, the probability that A breaks SFP with { group opera-
tions and pairings is bound by O(q* + £2)/p.

In Appendix [A.3] a proof of Theorem [2]is given for the case of A = Agym. The argument can
be translated to the asymmetric settings. Note that SFP is not covered by the Uber-assumption
family of [16]. Instead of extending their framework in a non-trivial way, we show a direct analysis
in Appendix The following holds with respect to SFP and SDP.

Theorem 3. SFP = SDP.

A formal proof is in Appendix An intuition is that, given an answer (z,7,u) to SDP,
setting (s,t,v,w) = (a, a, b, b) results in a correct answer, (z,7,u, s,t,v,w), to SFP.

2.4 Groth-Sahai Proof System for Pairing Product Equations

The Groth-Sahai (GS) proof system [39] gives efficient non-interactive witness-indistinguishable
(NIWI) proofs and non-interactive zero-knowledge (NIZK) proofs for languages that can be de-
scribed as a set of satisfiable equations, each of which falls in one of the following categories:
pairing product equations, multi-exponentiation equations, and general arithmetic gates. The
GS proof system could be instantiated under different assumption, in particular the Agqn setting
(which is asymmetric pairings for which the the DDH holds both in G; and G3) or under the DLIN
assumption in the Agym setting.

There are two type of CRS which are computationally indistinguishable: one called “real”
which yields perfect soundness and allows extraction if in possession of the trapdoor key, and
another “simulated” which yields perfect witness-indistinguishable (WI) proofs which could also be
made zero-knowledge (ZK) for some of the equations. When proving a statement, described as a
set of equations, the GS proof system first commits to the witness components and then for each
equation produces proof elements that the corresponding committed values satisfy the equation.

From the type of equations the GS proof system supports, this paper concerns pairing product

equations over variables z1,..., 2, € Gy and Z1,..., %, € Go:
n m m n
- - - e s
[Teti @) []et@ina) []]]e@a) =T
i=1 i=1 i=1j=1

where {g;}iy € Gi, {g:i}[2) € Goa, {cij},21j=1 € Zp, and T € Gy are constants. When the
equations involve variables only in one of the groups, we could use simpler, one-sided, equations

which also yield more efficient proofs:

We use this particular type in Section [9.1

Also, we note that the GS proof system is only witness indistinguishable (WI) when T € G is
an element in the target group without some particular structure. The WI proof size for a set of ¢
one-sided equations over n variables being satisfiable is 2(n + ¢) when working in the Agqp setting
and 3(n+q) for Asym. If for each equation, the corresponding 7" is equal to 1g,, or its representation
as a pairing product equation is known, the proof system could be transformed into zero-knowledge
(ZK) proof system, but this also increases the proof size.

Please refer [39] for further details.

3 Pairing Randomization Techniques

We introduce techniques that randomize elements in a pairing or a pairing product without changing
their value in Gp. These useful techniques are used throughout the paper.

e Inner Randomization (z',y) + Rand(z,y): A pairing A = e(x,y) # 1 is randomized as
follows. Choose 7 < Z5 and let (2',y') = (z7,y"/7). Tt then holds that (2/,7/) distributes
uniformly over G; x Gy under the condition of A = e(z’,y’). If A =1, then first flip a coin
and pick e(1,1) with probability 1/(2p — 1). If it is not selected, flip a coin and pick either
e(1,z) or e(x, 1) with probability 1/2. Then select x uniformly from the corresponding group
except for 1.

e Sequential Randomization {z,y!}* ; «+ RandSeq({z;,v;}¥ ;): A pairing product A =
e(z1,11) e(x2, y2) . . . e(xk, yi) is randomized into A = e(z], y)) e(z5,y5) . . . e(z},, ;) as follows:

Let (y1,..., VK1) < Z’;_l. We begin with randomizing the first pairing by using the second
pairing as follows. First verify that y; # 1 and xo # 1. If y; = 1, replace the first pairing
e(r1,1) with e(1,y;) with a new random y;(# 1). The case of 2o = 1 is handled in the same
manner. Then multiply 1 = e(z5 "', y1) e(x2,y]") to both sides of the formula. We thus obtain

A=e(xizy " y1) (w2, y'y2) e(x3,y3) . . . e(xk, Yi)- (4)

Next we randomize the second pairing by using the third one. As before, if y'ys = 1 or
z3 = 1, replace them to random values. Then multiply 1 = e(z3 ",y y2) e(z3, (y]" y2)72).
We thus have

A= e(zzy " 1) e(mazs 2,y y2) e(xs, (v y2)"y3) - . . e(Tk, yk)- (5)

This continues up to the (k—1)-st pairing. When done, the value of the i-th pairing distributes
uniformly in G due to the uniform choice of ;. The k-th pairing follows the distribution
determined by A and preceding k — 1 pairings. To complete the randomization, every pairing
is processed by the inner randomization.

The sequential randomization can be used to extend a product of k pairings a product
of arbitrary > k pairings by appending e(1,1) before randomization. By {z},y/}5, «
Extend({x;,y;}¥_,) for k'(> k) we denote the sequential randomization with extension. Pa-
rameters k and k&’ should be clear from the input and the output.

e One-side Randomization {z/}¥_, < RandOneSide({g;,z;}%_,): Let g; be an element in G}
of symmetric setting Asym. A pairing product A = e(g1, 1) e(g2, x2) . . . €(gk, 1) is randomized
into A = e(g1,]) e(g2,xh) ... e(gr, },) as follows. Let (y1,...,7k—1) < Z’;_l. First multiply
1=-e(g1,95") e(g2,9; ") to both sides of the formula. We thus obtain

A =e(g1,7199") e(g2, w29, ") e(g3, x3) . .. e(g,). (6)

Next multiply 1 = e(g2,94%) e(g3, 95 *). We thus have

A=e(g1,2197") e(g2, x291 "' g3°) €(g3,x395 *) - - - €(Gk> Tk)- (7)

This continues until 7;_; and we eventually have A = e(g1,})...e(gy, x}). Observe that
every x, for i = 1,..., k—1 distributes uniformly in G due to the uniform multiplicative factor
g;’jrl. In the k-th pairing, «}, follows the distribution determined by A and the preceding k —1
pairings. Thus (z},...,z}) is uniform over G* under constraint of being evaluated to A.

7

Note that the algorithms yield uniform elements and thus may include pairings that evaluate to
1g,. If it is not preferable, it can be avoided by repeating that particular step once again excluding
the bad randomness.

4 The Main Scheme: Constant-Size Signatures

4.1 Overview

Combining a trapdoor commitment scheme and a strong assumption is a well-known approach
for designing signature schemes. To bring this idea into a real construction, we need a trapdoor
commitment scheme and a useful (and acceptable) assumption which are compatible with each
other, something that is not easily obtained under strong design constraints. In our case, we can
build efficient multi-message trapdoor commitment schemes from SDP as shown in Appendix
Furthermore, SDP is implied by SFP as shown in Theorem so that should allow a smooth
combination.

A remaining technical issue is how to deal with “exceptions” such as z* # 1 in SFP. The
signature scheme should not inherit it since when proving a knowledge of a signature, the condition
z # 1 is not trivial to prove and affects the efficiency. We address this issue by involving another
set of elements (ag, dg) and (bg, by) in the verification predicate. In the proof of unforgeability, these
elements hold a secret random offset ¢ that will be multiplied to z in a forged signature so that
the answer to SFP, z* = 2§%, happens to be 1 only by chance. (The real proof is slightly more
involved.)

The randomization techniques from Section [3| also help the construction and the security proof
in such a way so that the signature elements are uniform conditioned on satisfying the verification
equations.

4.2 Construction

Let m = (my,...,mg) € G’g be a message to be signed. Parameter k determines the length of a
message and shorter messages are implicitly padded with 1g,-s. Let A € {Agym, Axdh; Asxdn}. We
remind that A := (p, G1, G2, Gr, e, g,) is an implicit input to the algorithms described below.

e Key Generation. SIG.Key(1*): Choose random generators g, h, < G}. For i = 1,... k,
choose 7;,0; Z; and compute g; = ¢/ and h; = hfj. Choose 7v,,0, Z;; and compute
g. = g'* and h, = hd:. Also choose a, 8 + Zy and compute {a;,a;}._, «+ Extend(gr,J%)
and {blybl}zlzo <~ EXtend(hUngﬁ)‘ Set vk = (gz7hzﬂgr’hu’{gi7hi}?:l7{ai’di7bi7b7:}il:0) and
sk = (vk, o, 8,72, 62, {vi,0: }¥_,). Output (vk, sk).

e Signature Issuing. SIG.Sign(sk,ni): Choose (, p, T, ¢, w randomly from Z, and set:
e=g r=g L m Y s=gf t=7,

B w— k —6; -
u:gﬁ pw 52(Hi:1mi , U:h;’f’ w:gw_

Output o = (z,7,s,t,u,v,w) as a signature.

e Verification. SIG.Vrf(vk,m,o): Parse o into (z,7,s,t,u,v,w). Output 1 if

k
A= e(gs, 2) e(gr,m) e(s,t) [] elgi,mi), and (8)
=1
k
B = e(hs, 2) e(hu,u) e(v,w) [e(hs,mi) (9)
i=1

hold for A = e(ag, o) e(a1,a1) and B = e(bg, bo) e(b1,b1). Output 0, otherwise.

4.3 Security
Theorem 4. SIG in Section[{.4 is correct. It is EUF-CMA if SFP holds for A.

Proof. CORRECTNESS. Observe that

k
e(gz,2) e(gr,7) e(s,t) [e(giymi) =
i=1

k k
=€ <g;yz?§g“> € <grv§a_p7—_%<Hmi%) gr’ He gr amz = (gr’ga) = A

i=1 i=1

holds. Thus is fulfilled. Relation @ is verified in the same manner.

UNFORGEABILITY. Let A be an adversary that has a non-negligible advantage of forging a signature
for the above scheme on a message m, m! ¢ {m; }?:1, after adaptively querying the signing oracle
on messages m;, for j = 1,...,¢q, and receiving signatures o;. We construct a reduction algorithm
which takes an input A, g., hz, gr, hy, (a,a), (b, I;), and uniformly chosen tuples R; for j =1,...,q
as defined in Assumption [3], and simulates the view of A in the attack environment as follows:

e (Simulating SIG.Key) : Use (g., h=, gr, hy) as given in the input. Fori = 1,... kset g; = gX' g

and h; = thh(Sl, where x;, Vi, 0; < Z,. As the probability that any g; or h;, ¢ =1,...,k, is
equal to 1g, is negligible, the reduction algorithm simply aborts in such cases. Otherwise, all
group elements are from G} and chosen uniformly at random, like in the key generation algo-
rithm. Then select ¢, p, ¢ < Z,, and compute ((ao, @), (a1,a1)) RandSeq((gggf,g), (a,a))
and ((bo, bo), (b1, b1)) < RandSeq((hSh€, §), (b, b)). For convenience, denote gSgf with a’ and
hShE with . The verification key is vk = (g, bz, gr, hus { i, hi¥e | {ai, @i, bi, biYg).

e (Simulating SIG.Sign) : Given message m, take a fresh tuple R; = (zj,rj,s;,t;,u;,vj, w;)
from the input instance. Then compute

k k
. —Xi Y —s _ _
z—zjgg Hml Lor=r;g° Hml , s=sj, t=t,
i=1 ‘

o P —0; — . .
u=1u; g Hml . U=, W= wj.

The signature is 0 = (z,7,s,t,u,v,w). It is easy to verify that the signature satisfies the
verification equations.

When A outputs (m', (21,77, sT, 7, ul, vT w')), compute

and set s* = sf, t* = ¢I, v* = of, and w* = w'. If any of the parameters xi,...,xs is O the
reduction algorithm aborts; otherwise, outputs (z*, r*, s*, t*, u*,v*,w*). Like in the previous abort
case, the chance for that is negligible because the parameters are chosen uniformly at random, and,
therefore, we could ignore those cases in our analysis without affecting the overall outcome. This
completes the description of the reduction algorithm.

The above signatures follow correct distribution. So, A outputs a successful forgery with a
non-negligible probability. Then, for the output of the reduction algorithm, it holds that

k k
Xi Vi
6(927 Z*) e(g’r'vr*) 6(3*7t*) =€ <gZ7 ZT g_c H (m;r)) € (g’r"v TT g_PH (mz>) € (sTvtT>
i=1 i=1
k
— e (5:507.5) ¢ (902) e (grr?) € (16) L (gmm)

i=1

1
-1
=e (gggfaé) H e(a;,a;) = e(a,a).

=0

One can also verify that e(g., z*) e(hy, u*) e(v*, w*) = e(b,b) holds in the same way.

What remains is to show that z* is not in {1, z1,...,2,}. For that, first notice that the param-
eters ¢ and {x;}¥_, are independent from the view of adversary A, as proved in Lemma Namely,
for any view of the adversary and for any choice of ¢ and x;, for i = 1,...,k, there exist unique
and consistent parameters p, ¢, v, 6;, ¢ =1,...,kand z;, rj, uj, 5 =1,...,q.

First we show that the probability z* € {z1,..., 24} is negligible. For every z; and signature
o= (z,r,s,t,u,v,w) on a message 1m simulated by using z;, it holds that

- k i Xi .
2* 2 g ITim (ml) 2t ﬁ m! X
Zj 2 §¢ [Ty my 2o \mi)

Since m! # i, there exists i such that mj # m;. Since x; € Z, is information theoretically
hidden from the view of the adversary, the probability that z* = z; is negligible due to the term
(mj/ml)xl in the above equation. To show that z* = (ZT) g ¢ Hle (m;r)xz is equal to 1g, only
with a negligible probability, notice that (is also independent from the view of the adversary and
the claim holds due to the uniform choice of . Therefore, when the reduction algorithm does not
abort, the probability that 2* ¢ {1, z1,..., z,} is overwhelming. |

Lemma 1. The parameters , X1, X2, ---» Xk chosen by the reduction algorithm in Theorem[] are
independent from A’s view. That is, independent from the verification key, the signed messages,
and the signatures.

Proof. Let vk = (g2, hz, Gry P, {9, hi }E_y, {ai,&i,bi,i)i}%:o) be the verification key the adversary
sees, M1, ..., My be the messages with which A queries the signing oracle, and oy, ..., o4 be the

10

corresponding signatures. Furthermore, let assume that (a,a) and (b, l~)) given to the reduction
algorithm are also fixed, though A does not see them. That yields unique a’ and b such that

A = e(ag,ag)e(ar,a1) = e(d,§)e(a,a) and B = e(bg,bo)e(br, b)) = e(b',§)e(b,b).

For any choice f ,Xi € Zyp of the parameters (,x; , for ¢ = 1,...,k, there exist a unique coin
toss p, 4, 4i, 0; such that @’ = ¢S¢gf , ¥/ = hShe | g = gXg), and h; = h;‘ihi". This shows that the
verification key and the parameters are independent. Next we show that the chosen parameters
remain independent from A’s view even after signing ¢ adaptively chosen messages due to the
uniform choice of the tuples R;, j = 1,...,¢, as defined in Assumption

Let the j-th message be m and the corresponding signature be o = (z,7,s,t,u,v,w). From
the specification of the reduction algorithm we know that (s,t) = (s;,t;) and (v,w) = (v;, w;),
where R; = (zj,7j,54,t;,uj,vj,w;) is the j-th tuple given as input. And for the fixed view,
¢, {xi}¥_, determine uniquely the values of z; = z §~¢ Hle m rj=1rg" Hle m)" | and
uj=ug ¥ Hle mf’ Regardless of the particular choice of parameters f) {)Qi}le, since o satisfies
the signature verification equations:

k k

A=elg..2) elgrr) es.t) [[egim) and B = e(he.2) e(huu) e(w,w) [e(himy).
i=1 1=1

it is true that the corresponding tuple Rj = (24,75, 85, tj,05,v;,w;) satisfies:
e(a,a) = e(gz, 25) e(gr,7j) €(sj,t;) and e(b, b) = e(hz, 25) e(hy, 45) e(vj, wy). (10)

What remains to show is that the uniform choice of ¢, {Xi}E_| together with A’s view yields uniform
distribution for the tuples]:Zj, for j =1,...,q, as specified by the assumption description. If that is
indeed the case, each set of tuples which could have been given as input to the reduction algorithm
is chosen with the same probability. And because for any choice of f ,X1s -+ Xk, there exist unique
set {R] };1-:1, those imply that each parameter selection looks equally likely for A.

To see the uniformity of R;, note again that (s;,¢;) and (vj,w;) are determined uniquely from
the view regardless of the parameters choice. Then, let’s define the homomorphism ¢:

k
b5 (C X1 xw) = § ¢ [[m
=1

It is easy to verify that for uniformly chosen parameters, the homomorphism’s range is uniformly
distributed over Go. This in turn implies that for a fixed z and uniformly chosen parameters,
Zj =z qﬁ(f X1, -5 Xk) is uniformly distributed over Gy. And because Rj satisfies , the values
of 7; and @; are determined uniquely by the other tuple values, which for a fixed view means
determined by Z;. To sum it up, for a fixed view, the uniform random choice of the parameters
gives uniformly distributed 2; which implies the uniformity of]:Zj.

4.4 Notable Properties
Partial Perfect Randomizability. Given a signature (z,r, s, t,u,v,w) one can randomize every
element except for z by applying the sequential randomization technique with small tweak as

follows. Define the function SigRand , (r,s',t', v/, v, w") « SigRand(r, s, t,u, v, w), as:

11

e Randomize (r,s,t) into (', s',t") as follows.

— First, if t =1, set s = 1 and choose ¢ < G3.
— Then, choose ¢ < Z, and compute

' =rt? (s,t) <+ Rand(sg, ?,1t) (11)
e Randomize (u, s,t) into (v, s',t") analogously.

Lemma 2. The above (v',s',t',u' v',w') distributes uniformly over (G x G1 x Gg)? under con-
straint that e(g.,r)e(s,t) = e(gr,) e(s',t') and e(hy,u) e(v,w) = e(hy,u') e(v',w').

Proof. Uniformity of 7’ € Gs follows from ¢ # 1 and the uniformity of ¢ in . Under the described
constraints, for any choice of 7/, their is a unique value e(s',t') = e(g,,r)e(s,t)e(gr,7")"'. Then,
uniformity of s’ and ¢’ holds from the property of Rand. The same is true for (u/, v, w’). |

The claim implies that (s',',v',w’) is information theoretically independent of the signature
element z, the message, and the verification key. (In general, the same is true for publishing any
two elements from (', s',¢') and (u/,v',w’) respectively.) This property is useful in reducing the
task of combined proofs. See Section for typical use of this property.

Signature Binding Property. Roughly, it claims that no one but the signer can obtain two
signatures which have the same s and v. In the following formal statement, the adversary is
allowed to submit both m and 7 to the signing oracle. Hence the property is not implied by
EUF-CMA in general.

Lemma 3. Under adaptive chosen message attacks, no adversary can output (m,o) and (m',o’)
such that 1 = SIG.Virf(vk, m, o) = SIG.Virf(vk, m/, a"), m £ nV, and (s,v) are shared in o and o’.

Lemma implies that publishing (s, v) together with the verification key works as a commitment
of the signature and the message. (Recall that s and v are uniformly chosen in the signature
generation algorithm.) This property is used in Section [5, and would find more applications.

Proof. Suppose that there is a successful adversary, A that outputs the signatures as in the lemma.
We then construct an adversary B that breaks EUF-CMA of SIG.

Given vk and oracle access to Osign, B invokes A with vk. Every signing query from A is
directly passed to Osign and the signatures are returned directly to A. Hence B’s simulation is
perfect. Eventually, A terminates and outputs o = (z,7,s,t,u,v,w), m = (my,...,my), o =
(2,7 st/ u v, w'), and M = (mf,...,m)).

B then chooses ¢ < Z, and computes

* 2\¢ * ~\¢ * ¢ * AN * __ w \? * __ Amgg
z-z(;),r—r7 , U=t 7)), w=uly), w=wly, ;oM =mg e

Then outputs o* = (2*, 7%, 5, t*, v*,v,w*) and m* = (m],...,my). This completes the specification
of B.
We verify the correctness of BB as follows. Since these signatures are valid, they satisfy
k k
A=e(g.,) e(gr, ') e(s,t") [] elgi-mi) = e(gz,2) egr,7) e(s, 1) T[] e(gi,mi), and (12)
i=1 =1
k
B =e(h,, 2 e(hy,u) e(v,w) He(hi,m/i) = e(hz, 2) e(hy,u) e(v,w) He(hi,mi). (13)
i=1 i=1

12

Note that we can divide the verification equations of the signatures which gives us:

4 r A m

1GT =€ (gm Z) € <g1”7 7"> € <Sa t> il_[le <gla Tnz)) and
2 ! w' k ml

lg, =e (hz, z) e (hu, u) e <v, w) il:Ile (hi, mz) .

Exponentiating these equations with ¢ and multiplying them with one of the signatures yields

o* = (2%, r*, s, t*, u*, v,w*) and m* = (m],...,m}) which clearly satisfy the verification equations.

Since m/ # m there exists j such that m; # mj. And due to the random choice of p,

N\ 0
mi = m; <%) distributes uniformly over Go. Accordingly, m

vector observed by Ogjgn with overwhelming probability. Thus, (o*,m*) is a valid forgery to SIG. 1

* is different from any message

4.5 Variations

e We can replace a;,a;, b;,b; with A = e(gr,) and B = e(hy,§?) in a verification-key, and
use the A and B directly in the verification equations and @ The reason we include a
representation of A (and B) in G; and Gy is to address the needs to put the verification key
into the base groups. The GS-proof system provides zero-knowledge property for statements
that do not include elements from G7 except for 1g,. When WI is of only concern, one can
include A and B in vk and use them directly in the verification. We use this modification in
Section The same is possible for other schemes in this paper.

e Let (n) denote a deterministic encoding of non-negative integer n (< p) to an element of G3.
By limiting the maximum message length to be k£ — 1 and putting (|7|) at the beginning of
the input message m, shorter messages can be treated. Since the encoding is deterministic
and black-box that is independent of the representation of the elements in m, it does not
impact the compatibility.

e As we observed in the very last stage of the security proof, (ag, dg) and (bg, by) in a verification
key is needed to handle the case where zf =1 and m! = (1,...,1) happen at the same time.
When such exception is not possible, for example when 1} is encoded with with its length as
m! = ((n),1,...,1) and the deterministic encoding (n) is never 1, the elements (ag,) and

(bo, bp) can be removed from the scheme.

e In the asymmetric settings, one can swap G1 and Gs in the description of SIG to get the 'dual’
scheme of SIG whose message space is GF.

e Dropping the flexible part e(s,t) and e(v,w) from the construction results in a strongly
unforgeable one-time signature scheme based on the SDP assumption. Also, the verification-
key size can be reduced a little. See Appendix [C| for details.

5 Signing Unbounded-Size Messages

5.1 Overview

This section presents a method to sign message (my, ..., m,) whose size n is not a-priori bounded
by the public-key. While some generic domain extension methods are available, we present a specific

13

and efficient construction based on a chain of signatures taking the advantage of the constant-size
signature scheme from Section [4f The idea is that, first sign m; to obtain o1, and next sign o1||ms
to obtain o9, then sign oa||ms and so on. (Note that this rough description lacks some important
details. In particular, signing only on m; at the beginning results in an insecure scheme.)

A technical highlight is that, with our constant-size signature scheme, we only need to involve
a part of a signature, elements s and v, in each step of chaining to constitute a secure chain. This
is possible due to the signature binding property of SIG as shown in Section

5.2 Construction

Let SIG be the constant-size signature scheme from Section 4] whose message space is G§ for
k > 3. We construct an unbounded-message signature scheme, USIGL, as follows. Let A = Agym be
implicitly given to the functions described below. Recall that (n) is an encoding of n to an element
of G3.

e USIGL.Key(1"): Generate random (s_1,v_1) € G2. Invoke (v, sk) < SIG.Key(1*). Output
vk = (vK,s_1,v_1) and sk.

e USIGL.Sign(sk,m): Parse 1 into (mq,...,my). Let £ = [#EL]. Let mg = (n) and m; = 1

fori =n+1,...,0(k—2). Fori =0,...,0—1, compute o; = (2,7, Si, ti, Ui, Vi, W;)
SIG.Sign(sk, m;) where mi; = (8;-1, Vi—1, Mj(k—2) - - -, M(i+1)(k—2)—1)- Output o = (o0,...,001).
e USIG1.Vrf(vk,m,o): Parse o into (oy,...,0¢—1) and m into (my,...,my,). Let mp = (n) and

m; =1fori=n+1,....,0(k—2). Fori=0,...,0 — 1, compute b; = SIG.Vrf(vk ,17;, 0;)
where m; is formed in the same way as in SIG.Sign. Output 1if b; =1 foralli=0,...,4— 1.
Output 0, otherwise.

The resulting signature is in the size of 7 - %’;}

Remarks. Filling 1g to the sloppy slots of the message space is for notational consistency. It does
not increase either computation or storage. Setting A = Agym is needed as (s;,v;) is in G? while
the message space is G’g. It can be modified for the case of A = Agqgn using the signature scheme
described in Section [7] (but not for the case of A = Ayqn). If 7 is given as an on-line stream
and the length is not known in advance, one can use the trapdoor commitment scheme TC2 from
Appendix [B]so that my is set to a random commitment and later opened to n when n is fixed. The
opening information is included as a part of a signature. Since the opening information is a group
element and the commitment verification predicate is a pairing product equation, the resulting
verification predicate for USIG1 remains as a conjunction of pairing product equations.

Theorem 5. If SIG is EUF-CMA, so is USIGL.

Proof. Suppose that there is a successful adversary, say A, that launches chosen message attacks

and outputs a valid forgery, ((mL ... ,mjl), (08, A Ug,l))- Let T?L;[be the message vector associated

to a;-r . We then have two cases.
Type-1. There is mj that has never been signed by the signing oracle.

Type-11. Every mj has been signed by the signing oracle (in separate queries).

14

Type-I forgery trivially breaks the unforgeability of SIG. For Type-II forgery, we show a re-
duction to the unforgeability of SIG as follows. Given verification key vk of SIG and access to
the signing oracle of SIG, we construct a simulator that uses adversary A and simulates USIG1 as
follows. Let Ogign be the signing oracle of SIG with respect to vk'.

e (Simulating USIG1.Key): Generate a random message vector mi_; of size k and send it to
Osign- Receive signature (z_1,7_1,s_1,t_1,u_1,v_1,w_1) and output vk = (vk, s_1,v_1).

e (Simulating USIG1.Sign): On input ni, follow the legitimate signing algorithm by asking Ogign
to compute SIG.Sign. Then output the resulting signature.

Observe that s_; and v_; generated in the simulated USIG1l.Key are uniform and independent of
m—1. Simulation for USIG1.Sign is clearly perfect as it follows the legitimate procedure.

Suppose that adversary A outputs a valid forgery for USIG1. Then there exists a signing query
(to the signing oracle of USIG1) in which Tﬁz_l is observed. Let ((mi,...,my),(00,...,0¢-1))
be the message and the signature with respect to the query and let ni; denote a message vector
assoclated to o;. Let ¢* be the index where ﬁi;_l = Mm;» happens. If £ —1 = 0, then * = 0 is
not the case because the message in the valid forgery must be fresh. In the case of £ — 1 # 0 and
7* = 0, it happens that ﬁi;_Q =# m_1 with overwhelming probability since m_; is chosen randomly
and information theoretically independent from the view of the adversary. The same is true for the
case of £ —1 =0 and ¢* > 0. In the case of £ —1 # 0 and i* > 0, since the messages are prefix-free,
there exists j* such that ﬁiLli i # my«_;+ happens for the first time when j* is increased from
0 to min(¢ — 1,7*) + 1. In any of the cases (j* is set to 1 for the case of i* = 0 or £ —1 = 0),
signature O‘;Llij* shares s and v with o;+_j» as they are included in 7«41 (= T?inlij,url). This
contradicts to the signature binding property of SIG as claimed in Lemma

6 Simulatable Signatures

6.1 Overview

A simulatable signature scheme is a signature scheme in the CRS model that allows to create valid
signatures without the signing-key but with a trapdoor associated to the common reference string.
The notion is introduced in [3] but in an informal way dedicated for their purposes. We elaborate
the notion and present a formal treatment with reasonable construction in this section.

A simulatable signature is a useful tool in combination with a witness indistinguishable (WI)
proof system. Unlike zero-knowledge (ZK) proofs, WI proof system does not accompany a simulator.
So when a signature is a part of the witness and the signer is corrupt and useless, simulatable
signature can provide a correct witness to the entity having the trapdoor. This situation happens
in reality, for instance, when we attempt to instantiate Fischlin’s round-optimal blind signature
scheme [2§] (modified to use WI as suggested in [40] 3]).

It is known that a simulatable signature scheme can be unconditionally constructed from any
regular signature scheme by modifying the verification predicate in such a way that a signature is
accepted if it passes regular verification with respect to the signer’s verification key or the verifica-
tion key included in the CRS. This generic construction, however, inherently involves disjunction
in the resulting verification predicate.

Our construction shares the idea of two-keys. But we use a trapdoor commitment scheme and
a signature scheme combined. We assign a commitment-key to the CRS and use a signing-key

15

for real signature generation. Then a reference signature on a default message is included into
a verification key. When simulation is needed, we use the trapdoor for the commitment scheme
and equivocate the reference signature to be valid with a given message. Since our main scheme
in Section [4] already integrate a trapdoor commitment scheme in its construction, it would seem
possible to move the commitment part of the verification key into the CRS. And we mostly follow
this way. A formal proof however reveals that we need to have k flexible pairings to sign messages
of size k, k > 1, without needing the trapdoor for the commitment part. This results in relying on
k-SFP rather than SFP when dealing with messages of size k > 2.

6.2 Definitions

Definition 3 (Simulatable Signature Scheme). A simulatable signature scheme SSIG consists
of algorithms SSIG.{Crs, Key, Chk, Sign, Vrf, Sim} where SSIG.{Key, Sign, Vrf} constitute a regular
signature scheme (except that they take the CRS), and the extra algorithms works as follows.

SSIG.Crs(1%): A CRS generation algorithm that, on input security parameter \, outputs a common
reference string > and a trapdoor 7.

SSIG.Chk(X, vk): A verification key checking algorithm that, on input a verification key, returns 1
or 0.

SSIG.Sim(X, vk, m,T): A signature simulation algorithm that computes a signature o for message
m by using trapdoor 7.

By M, we denote the message space associated to vk. By IC, we denote the set of (vk, sk) that can
be generated by SSIG.Key(X). Also by S, we denote the set of signatures that can be generated
by SSIG.Sign(X, sk, m).

Completeness is defined in a standard way; with respect to correctly generated CRS, verification
keys, and signatures, the verification function outputs 1 with probability 1.

Signature simulatability is defined in such a way that whenever adversary selects an appropriate
message and verification key, then, by using the trapdoor of the CRS, it is possible to generate
a signature that could have been generated by the proper signing operation. Formal definition
follows.

Definition 4 (Signature-Simulatability). A signature scheme in the CRS model is simulatable
if, for every CRS ¥ generated by (X, 7) < SSIG.Crs(1*), for any (m,vk), if 1 = SSIG.Chk(X, vk) A
m € My, then there exists sk such that (vk, sk) € K, and 1 = SSIG.Vrf(3, vk, m, o) holds for any
o « SSIG.Sim(X, vk, m,T).

A relaxation would allow a negligible error in SSIG.Vrf for a message and a verification key chosen
by an adversary. Note that the signature simulatability does not require simulated signatures be
indistinguishable from the real ones. It is considered as a role of witness indistinguishable proof
system coupled with the signature scheme.

Unforgeability is defined with respect to adaptive chosen message attacks. In the CRS model,
however, a CRS is used for generating many keys and therefore, we must be careful that the
keys should not be badly affected each other. By reflecting this concern, we allow an adversary
to access an oracle that outputs correctly generated verification keys with respect to the same
CRS. Furthermore, in our potential applications, the adversary is given a witness indistinguishable
proof of holding a correct signature with respect to a given message and verification key. Let
m < NIWLPrf((3, vk;, m), o) denote the proof system for this purpose. Here (X, vk;, m) is public,

16

and o is the witness, and 7 is the proof. We do not give much details to the proof system as only
the property needed in this formulation is the witness indistinguishability. The CRS for this proof
system is implicitly given to the adversary. In summary the attack model includes the following
three oracles.

e (Key Generation Oracle Oy): On receiving i-th request, compute (vk;, sk;) < SSIG.Key(X),
and return vk;. Record vk; to Q.

e (Signing Oracle Ogign): On input (vk;, m), return L if vk; is not recorded. Otherwise, compute
o + SSIG.Sign(%, sk;, m) and return o. Record m to QUF:.

e (Proof Oracle Oyi): On input (vk;, m), return L if 0 < SSIG.Chk(X,vk;) or m & Myy,.
Otherwise, compute o < SSIG.Sim(X, vk;,m,7), and 7 < NIWLPrf((X, vk;,m),0). Then
return 7.

Definition 5 (Unforgeability with WI-Simulation). A signature scheme in the CRS model
is unforgeable against adaptive chosen message and random verification key attacks with witness-
indistinguishable simulation if, for any polynomial-time adversary A, the following experiment
returns 1 with negligible probability.

Experiment :

(3, 7) < SSIG.Crs(17)
(m*,O'*,’Uk‘*) — AOsignyovkyowi(E)
Return 1 if vk* € Qg and m ¢ Q”mk* and 1 < SSIG.Vrf(X, vk*, m*, o*).

Return 0, otherwise.

6.3 Construction

Let A = (p,G1,G2,Gr,¢€,9,7) € {Asym, Axdh, Asxdn } be implicitly given to the algorithms below.

e SSIG.Crs(11): Choose random generators g.,h., g, h, from Gj. For ¢ = 1,...,k, choose
Xi, Vi, 0; from Z,, and compute g; = g¢X'g)" and h; = h¥'h%. The CRS is set to ¥ =
(gZa hZagTa hua {gi?hi}?:1)7 and the tI‘apdoor is tk = (Xl,Vla(Sla “ee 7Xk7’yk35k‘)'

e SSIG.Key(%): Choose a, 3 < Z, and compute {a;,a;}¥_, < Extend(g,,§*) and {b;,b;}*_,
Extend(h,, §?). Let sk = (a, 8). For some default message m* € G5, compute a reference
signature o* = SSIG.Sign(%, sk, 1m*) as shown below. Let vk = ({a;, @, bi, b; }¥_,, 0*). Output
(vk, sk).

e SSIG.Sign(%, sk, mi): For i =1 to k and randomly chosen (;, p;, ;i < Zp, set

(Ifm; #1): s, = ggigﬁ"gi_l, th=m;, v = hgihfihi_l, w; = m;,

(Ifm; =1): s, = g5 gl ti=g, v = KRS hEi, w; = g.
and
k k k
Z:Ht;_<i7 ngaHtg_pi7 u:gﬁHw;_¢L
i=1 i=1 i=1

17

Then, compute {s;,t;}% ; « RandSeq({sz,t; ¥) and {v;,w;}¥_; < RandSeq({v}, wi}¥ ;).

Output o = (z,7,u, {si, t;, vi, w; }¥_,) as a signature.

e SSIG.Vrf(X, vk, m, 0): Parse o as (z,7,u, {s;, t;, vi, w; }5_;). Output 1 if

Ew

A=ce(g.,2)e(gr,T) e(gi, m;i) e(s;,t;), and (14)

.

—, I

B = e(hy, 2) e(hy,u) e(hi, m;) e(vi, w;) (15)

1

]

hold for A = Hf:o (ai,a;) and B = HZ o el(bi,b;). Output 0, otherwise.

e SSIG.Chk(X,vk): Parse vk into ({ai,&i,bi,l;i}fzo,a*) and return 0 if it fails. Check if every
element of o* is in the appropriate group G; or Go, and verify that 1 = SSIG.Vrf(X, vk, m*, o*).
If any of the checks fails, output 0. Otherwise, output 1.

e SSIG.Sim(%, vk, m, tk): Take o* from vk and parse it into (z,7,u, {si, t;, vi, w; }¥_;). By using
tk - (le 71, 615 < Xk Vs 5]6)7 ComPUte (Z/a TJ? ul) as
k k k
=z- H mi/m;)X, =r- H mi/mi)~ ", and u' = uH(mZ/mf)_él
i=1 i=1 i=1
Output o = (2/, 7,4, {si, i, vi,w; }£_|) as a signature for .

6.4 Security

The security of SSIG relies on k-SFP, a generalization of SFP that has k flexible pairings in each
relation as formally defined below. In the case of kK = 1, k-SFP becomes SFP.

Assumption 4 (Simultaneous k-Flexible Pairing Assumption (k-SFP)). Let A be a com-
mon parameter and let g., h,, g,, and h, be random generators of Gy. Let {(a;, a;), (b;, bi)}z | be
random elements in (Gy x G2)?*. For j = 1,...,q, let R; be a tuple (z,7,u, {si, ti,vi,w;}F_|) €
Go® x (G1 x Gg x Gy x Gg)k that satisfies

k k
He(aiadi) = 6(927 gTa He 517 l) (16)

i=1 i=1

k) k

He(bi,bi) = e(hz, z) e(hy, u) He (vs, wy). (17)
i=1 i=1

Given A, g., h., gr, hy, {(al,dz) (bz,b)}¥_,, and uniformly chosen Ry, ..., Ry, it is hard to find
(z r u*, {85t v, witE), that fulfill relations (16]) and (17). A restriction is that 2* # 1 and

171 Y

z* #zeR foreveryR

Theorem 6. For any generic algorithm A, the probability that A breaks k-SFP with ¢ group oper-
ations and pairings is bound by O(k? - ¢ + £?)/p.

18

Proof of Theorem [0] that justifies the assumption in the generic bilinear group model is in
Appendix As well as Theorem [3, k-SFP implies SDP for any k > 1. Somewhat contradictory
to the fact that k-SFP is a generalization of SFP, we do not see useful reduction between them for
k> 2.

Theorem 7. Signature scheme SSIG is correct and signature-simulatable. It is FUF-CMA with
Wi-simulation in the multi-user setting if k-SFP holds for A.

Proof. CORRECTNESS. Let I (and I*) denote the set of indexes where m; # 1 (and m; = 1,

respectively) in SIG.Sign. Regarding the first relation in the verification predicates, we have:

::]w

e(9z,2) e(gr,7)

e(gi, m;) e(si, t;) =

I
—

%
=€ <927 Ht/ CZ <g7'7.q Htg_pi € <g7«7m1) (gz gr gz ’ Z) H € (gglgfz7t;>
el iel*

J oot
_e<gz,Ht’ CZ) <gr,g HtépZ) ﬁe(ggzgfl’t;)

(97’7 -

The other relation can be verified in the same manner as z = HZ 2 G = HZ Wi “,

SIGNATURE-SIMULATABILITY. For every vk = ({a;, a;, b;, Ei}fzo, 0*) such that 1 = SSIG.Chk(%, vk),
every elements in {a;, a;, b;, b; 3k, is in the correct group G; and Gy. Clearly there are (a,3) so
that [T, e(ai, a;) = e(gr, §*) and [TF_, e(bi, b:) = e(hy, §°) hold. Therefore such {(as, a;, bi, bi)}r_y
and («,) are a correct key pair. The rest is to show that SSIG.Sim correctly works to turn valid
signature o* = (2,7, u, {s;, t;, v;, w; }£_,) for m* into a signature o = (2, ', v/, {s;,t;,v;, w; }¥_,) for
message m. It holds that

k
e(gz,2) elgr 1) [] e(gisma) e(sisti)
=1

k k k
= e(gz, 2 - [[(mi/m})) elgr,r - [[(ma/mi) ™) [] e(9X g7 mi) e(si, 1)
i=1 i=1 i=1

k

=e(gz,2) e(gr,T) He(gi, m;)e(s;,ti) = A.

=1

The other relation e(h,, 2") e(hy, u’) Hle e(hi,m;) e(v;,w;) = B can be verified in the same way.
Thus the output from SSIG.Sim is a valid signature for m.

EUF-CMA wiTH WI-SIMULATION. Given an instance of k-SFP, we simulate the view of A in the
attack environment as follows.

e (CRS generation) : Do the same as original SSIG.Crs by using given generators (g, hy, gz, hz)
in the input instance. The commitment-key is assigned as a CRS, ¥ = (g2, hz, gr, hu, {i, hi }F_,),
and the trapdoor is tk = (X1,71, 01, -+ Xk> Vks Ok)-

19

e (Key Generation Oracle Oy) : Take {ai,di,bi,gi}le from the input instance. Choose
¢,p, ¢ < Zpand g < G3. Then compute {az, a Yk, RandSeq((ggg{f,g), (a1,a1),...,(ak, ax))
and {0}, b} f 0 RandSeq((hChu,g) (b1,b1),. .., (b, by)). Then simulate a reference signa-

ture og as described below. The verification key is vk = ({a}, a}, b, bz i—0,00). Record vk to
QK-

e (Signing Oracle Ogign) : Given message m and vk, return L if vk is not in Qx. Take a new
tuple Rj = (2,75, uj, {sij, tij, vij, wi; }¥_;) from the given instance. Then compute

k k k

I ~ —Xi r_ ~ —Yi r_ ~ —d;

2= Zj g Hmz o= g° Hm’L Yoouy =y g¥ Hmz . (18)
i=1 i=1 i=1

by using (C, p,) used for generating vk in Owk. The signature is o5 = (2}, 75, u}, {si5, ij, vij, wii }*_p)

e (Simulation Oracle Oy;) : Given m and vk, return L if 0 «— SSIG.Chk(X, vk;) or m ¢ ka
If vk is in Qg , compute o < Osign(ni, vk). Otherwise, compute o < SSIG.Sim(X, vk, ni, tk).
Then compute 7 <— NIWI.Prf((2, vk, m), o) and return 7.

When A outputs (mf, 2, rf uf {s v) ,tj, T} 1), compute

— (ZT> §<ﬁ (mj)Xi, r* = (H) gpﬁ (m;.f)%’ u = <UT> g@ﬁ (m;[>6i7 (19)
=1 =1 =1

and set s} = SI, tr = tT vy = vT and w; = wg for i =1,...,k. The reduction algorithm outputs a
tuple (z*, 7%, u* {sz,t;‘,vl,w* f 1) and terminates.

It can be verified by inspection that the CRS, the verification-key and the signatures perfectly
follow the legitimate distribution. When A is successful, for the outputs of the reduction algorithm,

it holds that

(o) elarr) [T <sz,t:>:e(gz,(z*)§ <ﬁ) <gﬂ(r* g—pﬁ(bk)He(smi)
=1

i=1 i=1
k
=< (9:0:75) e (921) e (sror") [T (oml) e (s1:0)
i=1
k
= e(ag, dp) He(ai, a;) = He(ai,ai).
=0 i=1

One can also verify that e(g,, 2%) e(hy, w*) [1F; e(vf, w?) = [1%_, e(bi, b;) holds in the same way.
What remains is to show that z* is not in {1, 21, ..., z4}. Basically the argument is the same as
the one in the proof of Theorem [4]in Section 4.3 by using the fact that the parameters ¢, x1, ..., X
are independent from A’s view. For the same argument to hold, we have to show that when
those values are also used for simulating O,;, they remain information theoretically hidden even
after 7 is seen by the adversary. For vk generated by Ok, simulation is done just by calling the
signing oracle, and, as we know, the signature does not reveal any information about the param-
eters. On the other hand, for vk that is not generated by Ok, SSIG.Chk guarantees that there
exists a corresponding signing key sk. Since NIWI.Prf is witness indistinguishable and there exists
randomness that is consistent to a valid signature that could have been generated by the signing
algorithm using sk, like in the previous case the parameters remain hidden. Thus the claim holds. 1

20

7 Signing Mixed-Group Messages in the SXDH Setting

7.1 Overview

By using the idea of signature chaining, we construct a signature scheme whose message space
consists of a mixture of G; and Go. We use two signature schemes: SIG1 signing messages from
the space G’fl and SIG2 signing messages from the space GSQ. A part of a signature from SIG2 is
included into the message given to SIG1 as a joint. Surprisingly, the joint can be as minimal as
only one group element s in this case.

7.2 Construction

Let SIG2 be the constant-size signature scheme from Section [4] whose message space is GSQ. Let
SIG1 be a ’dual’ scheme obtained by exchanging Gy and G in the same scheme. Let the message
space of SIG1 is Glf1+1. (Note that we use the same letters for variables in a signature. Accordingly,
z,7,u,t, and w are in the same group as the input message while s and v are in the other group.) By
using these signature scheme, we construct signature scheme XSIG whose message space is G¥ x G52
as follows. Let (172,7) be a message in (G}]fl X (G];Q. For vector m € G’fl and single element s € Gy,
let m||s denote a vector in G’flﬂ obtained by appending s to the end of m. Let A = Aggn be given
to the functions described below.

e XSIG.Key(1*): Run (vky, skp) < SIG1.Key(1*) and (vky, sky) < SIG2.Key(1*). Output (vk, sk) =
((’Ukl, ’U]{}Q) (Sk‘l, 8]4,'2))
m)
/

e XSIG.Sign(sk (): Run o9 = (2,7, 8,t,u,v,w) + S|G2.Sign(sk2,ﬁ_i)
and o1 = (2/,r', ¢, ¢/, v/, v, w') < SIG1.Sign(sky,mi||s). Output o = (071, 02).

o XSIG.Vrf(vk, (1, m), (01,02)): Take s € Gy from op. Run by = SIG2.Vrf(vky, m,05) and
by = SIGL.Vrf(vky, m||s,01). Output 1 if by = by = 1. Output 0, otherwise.

7.3 Security
Theorem 8. If SIG1 and SIG2 are EUF-CMA, so is XSIG.

Proof. Suppose that there is a successful adversary that launches chosen message attacks and
outputs a valid forgery, ((m',m), (JI,a;)). Consider s’ included in a; Observe that O'J{ is a

signature for m||s". We then have 3 cases.

Type-I 7f||s! has never been signed by the signing oracle. This case contradicts to the unforge-
ability of SIG1.

Type-11 m! has never been signed by the signing oracle. This case contradicts to the unforgeability
of SIG2.

Type-III Both mf||s" and m' have been signed by the signing oracle in separate queries. This
case contradicts to the DBP assumption.

Since the first two forgery cases are trivial, we focus on Type-III. We construct a reduction
algorithm that simulates the environment for adversary A launching an adaptive chosen message
attack on XSIG. The simulator only simulates SIG2 and honestly acts with respect to SIG1. We
thus describe the simulation only with respect to SIG2. Given an instance of the DBP assumption,
(A, g2, gr), the simulator works as follows:

21

e (Key Generation): Choose random h, and h, from Gj. Then, for i = 1,... ko, set g; =

gX'glt and h; = hX'hd for random Yy;, s, and §; in Zy. Choose a, 8 from Z, and g from

G3. Then compute {az,az} o — Extend(gT, g*) and {b;,b;}}_, + Extend(hy,§®). Output
’Ukl (gZahZ7g’r‘ahua{g’Lvh }Z 1a{alaa1)bl7b })

e (Signature Issuing): Given message m € G’;Q, choose ¢, p, 7, ¢, w < Z, and set

kz k?2
=g [[mi¥, r=gwre][m, s=glgt, t=g "
i i=1

ko
u = L(}C‘P/“’Jrﬁl_[mi_éi, v=hURE, w=g .
i=1
Output o9 = (2,7, 8, t,u,v,w).

To see the correctness of the simulated signatures, observe that

6(92,) gT7 5 t He gumz

ko ko ko
—c <gz,g<Hm;Xf> e <gr,g<p/f+aHm;”) e (s,t) [e (a7 my)
=1

=1 =1

:e(gz,gc) (9 gcp/”“) (gzgr, C/T)
gra He auaz

holds. The other verification predicate holds in the same way. It is also not hard to inspect that
the signatures follow a proper distribution due to the random coins in the simulation.

Let of = (01,0;), where ag = (2f,rf, st t1,ul,vf, w'), be the forged signature for a message
(m!,mt). By the forgery type constrains, there exists a signing query with message (7, m) such
that m + m! and its signature oo = (z,7,8,t,u,v,w) satisfies s = sT. Accordingly, we have

ko ko
e(gs, 21 e(gr, 1) e(sT,th) He(gi,fnz) = e(g., 2) e(gr,7) (s, 1) He(gi,mi). (20)
i=1 =1

Recall that st = s = gTgr. By dividing the left-hand of the above equation by its right-hand, we

have
t t T\ k2
z r t
(oo) o) () e o)

T ko -t Xi t ko -t Vi +
Z m; r m; r P t

e<gz’z,1[1<fnz>) €<gr’7"]‘_[1 ﬁTz e(gzgr>t>

1= 1=

- e(QZ) Z*) e(gm T*)v

T
k3

where 2* = %(ﬂ)T Hz(m)Xt and r* = =z (%)p Hz(n})7

T

22

Since ! #* m, there exists i* such that mzt /mix # 1. Observe that x;+ is independent of the
view of the adversary. Hence the probability that z* = 1 is negligible. The reduction algorithm
outputs (z*,7*) as a valid answer to the given instance of DBP. |

8 Strongly Unforgeable Signatures

The following generic construction of sSEUF-CMA signature scheme is in [9]. Let SIG be a signature
scheme and OTS be a one-time signature scheme. The construction requires that the message space
of SIG covers the public-key space of OTS.

e FSIGL.Key(1"): Run (vk, sk) < SIG.Key(1%). Output (vk, sk).

e FSIGL.Sign(sk,m): (vk, sky) < OTS.Key(1}), o1 < SIG.Sign(sk, vk||17), o2 < OTS.Sign(sko, o1).
Output o = (vky, 01, 09).

e FSIGL.Vrf(vk,m,o): Parse o into (vk,,o01,02). Compute by < SIG.Vrf(vk, vk,||m,o1) and
by <— OTS.Vrf(vk,, 01,02). Output 1 if by = by = 1. Output 0, otherwise.

As shown in [9], signature scheme FSIG1 is strongly EUF-CMA if SIG is EUF-CMA and OTS
is sSEUF-CMA against one-time chosen message attacks. In the one-time chosen message attacks,
the adversary is allowed to make at most one signing query. We refer to [9] for a proof.

By instantiating SIG and OTS by the ones in Section[d]and Appendix[C.T|with setting A = Agym,
the resulting FSIG1 outputs a signature of 32 group elements (|vk,| = 22, |o1| = 7, |o2| = 3) which
is a constant in the size of M.

We can gain efficiency by using the same bases in SIG and OTS in the above instantia-
tion. Let FSIG2 denote this variant. Concretely, in FSIG2, one-time signature OTS takes bases
(92 hzy Gry By 91, R, - - ., g7, h7) from those of SIG. Then vk, only includes a and b. As a result, a
signature of FSIG2 consists of 12 group elements.

The generic security argument for FSIG1 no longer holds for FSIG2 since SIG and OTS are not
independent. We are still able to show that FSIG2 is sEUF-CMA as follows.

Theorem 9. Signature scheme FSIG2 is sEUF-CMA if SFP holds for A = Agym.

Proof. First observe that we cannot show a black-box reduction to the security of SIG and OTS
by using their signing oracles since they share the bases. We instead construct reduction to their
underlying assumptions. This is possible because, in both security proofs for SIG and OTS, bases
(91, h1,...,97,h7) are set in the same manner with respect to (g, hs, gr, hy). Thus, while we
simulate the signing oracle for SIG, we can also simulate signatures of OTS.

Let Ogign be the signing oracle of FSIG2. Suppose that an adversary outputs a valid forgery
(vkl, O‘I,O’;,ﬁﬂ). Let Q; = (vky,01,09,m) for i = 1,...,q be the record of interaction between the
adversary and Osigp.

For a type of adversary that causes (vkl, mt) # (vky,m) for any Q;, we construct a reduction
to SFP by simulating SIG as shown in the proof of Theorem [d] We also simulate OTS as shown in
the proof of Theorem Note that the simulation of OTS is possible since the way bases g; and h;
are set in simulating SIG is exactly the same as that in simulating OTS. Thus we can successfully
simulate FSIG2 by using these simulated SIG and OTS. It is important to see that exponents hidden
in g; and h; remain independent of the view of the adversary even with the simulation of OTS.
Thus a successful forgery results in a contradiction to SFP as shown in the proof of Theorem

23

For the other type of adversary that causes (vk!, ') = (vk,,m) and (a]{, 0;) # (01, 09) for some
Qi+, we show a reduction to SDP by simulating OTS as shown in the proof of Theorem Since
simulation of SIG needs an instance of SFP, we generate a random instance of SFP from that of SDP
as follows. Given an SDP instance (g, h,, gr, hy), set a = g and b = h3. Then for i=1,...,q,
compute reference R; = (2,7, u, s,t,v,w) by choosing { - Z, and setting z = 3, =g s =g,
t'=g% o = g% v = h,, w = 3¢ and applying (r,s,t,u,v,w) < SigRand(r',s',t',u/,v',w’). The
rest of the simulation for SIG is the same as that in the proof of Theorem {4l As well as the pre-
vious case, the simulation of SIG retains independent of the exponents hidden in g; and h;. Thus
a successful forgery contradicts to SDP as shown in the proof of Theorem Finally, applying
Theorem [3] to reduce SDP to SFP completes the proof. |

9 Applications

In some cryptographic protocols, the existing state of the art constructions achieve the desired
security properties with good efficiency, whereas for others certain compromises are made (achieving
slightly weaker notion of security or being somewhat inefficient). Below we present constructions for
round-optimal blind signatures following the framework of [28], the efficient instantiation of which
has been an open problem since Crypto’06; and efficient fully secure group signatures supporting
concurrent join procedure, with previous constructions being not in the standard model, secure
under weaker model, not supporting concurrent join procedure, or being inefficient. Our signature
schemes not only embody known modular protocol designs, but also achieve an excellent efficiency.
These are good examples that enlightens the usefulness of modular protocol design and significance
of developing efficient building blocks.

9.1 Round-Optimal Blind Signatures

We present an efficient instantiation of Fischlin’s round-optimal blind signature scheme [28]. In
fact, we use the modification of [40), 3] for which the generic construction uses a non-interactive
witness indistinguishable (NIWI) proof system and a simulatable signature scheme. This gives
the first efficient round-optimal non-committing blind signature scheme adaptively secure in the
universally composability framework [24].

The structure of the framework is the following. A user commits to a message m with opening d
and send the commitment ¢ to the signer. The signer signs commitment ¢ and return the signature
o to the user. Then the user computes a NIWI proof © with witness (c,d, o) for the fact that
he knows a commitment ¢ of the message m, he knows the correct opening d, and he has a valid
signature on ¢ with respect to a verification key vk of the signer. The security follows from the
generic framework in [3].

To instantiate this generic scheme, we use the GS proof system, the simulatable signature
scheme SSIG from Section [6] for k& = 1 (i.e. for signing only a single group element), and the
commitment scheme TC2 in Appendix[B.2] In fact, any commitment scheme suffices for our purpose
as long as commitment key, commitments, and openings to be group elements and the verification
is by pairing product equations. The choice of TC2 is due to the efficiency; it has the smallest
commitment size. The commitment scheme TC2 could be viewed as a “pairing-based variant” of
Pedersen commitment [48], and, indeed, is almost as efficient.

Let A € {Asym, Asxdn} be the common parameter. Let (Xcom,tk) < TC2.Key(1%), (Xsig, tk')
SSIG.Crs(l)‘). Let Yniwi be the common reference string for the GS proof system in the simulation
mode. Concretely, those are Ycom = f € Ga, Xsig = (92, Iz, gr, hus g1, h1) € GY, and Spwi set up in

24

Scheme #(rounds) Communication Signature Size Security Model Assumption
Oka06[46] 4 3V 4 400 4 10lP) 400 4 1Pl SA 2SDH,DCR
KZ0844] 6 9INv*] 4 7011 4 7lp) 4l1] 4 1[7) ucC 2SDH,DCR
Fucl0[29] 2 2201 3011 SA DAHSDH,HDL,DLIN
(ours) 2 sl 2811 ucC SFP, DLIN

Table 1: Summary of efficiency of concurrently secure efficient blind signatures. Columns for “Commu-
nication” and “Signature Size” count the number of elements, indicating the groups they belong to ([N?],
(1], and [p], respectively, for Zy2, G; and Z,). UC: Universally Composable Security with Adaptive Cor-
ruption [25, [3]. SA: Stand-Alone Security. 2SDH: 2-Variable Strong Diffie-Hellman Assumption [46]. DCR:
Decision Composite Residuosity [47]. DAHSDH,HDL: See [29]

the way the simulated CRS is created according to Section The CRS for the blind signature
scheme is 3 = (A, Ycom, Ssig, Lniwi)- A signer runs (vk, sk) < SSIG.Key(Esig) where vk = (A, B, o)
and publish vk as his verification key. The blind signature issuing protocols is as follows:

e On input m € Z,, a user computes (c,d) < TC2.Com(Zcom,m) where (c,d) = (§™f%,¢°) €
Gg x Gq. Then the user sends ¢ to the signer.

e The signer computes (z,r, s,t,u, v, w) < SSIG.Sign(sk, ¢) and sends o to the user.

e The user computes (r',s',t',u’,v',w') + SigRand(r, s,t,u,v,w) as in Section [4.4] and gives a
GS-proof 7w with a witness (¢, d, z,r’,u’) for pairing product equations

e(g.c) e(d, f) = eg,5™), (21)
e(gz,2) e(gr, ") eg1,0) = A-e(s',)71, (22)
e(hs,2) e(hy,u) e(hy,¢) = B-e(v,w')™ L. (23)

Then output a signature o = (s',¢,v',w’, 7) for m.

Given (o, m), a verifier accepts o = (s',t,v',w’, 7) if 7 is a correct GS-proof with respect to
relations , , and .

In the construction, the use of SigRand is for better efficiency and does not affect to the frame-
work due to the nature of perfect randomness. The resulting blind signature consists of 4 group
elements, 5 GS commitments to group elements, and proof elements for 3 pairing product equa-
tions. Note that when A = Agym, we could swap the elements in the second pairing of the first
equation and get all three equations to be one-sided pairing products. Thus, the size of final blind
signature is 28 group elements for A = Agym using GS-proof system with DLIN setting. It can
be reduced to 26 group elements (precisely 8 in G; and 18 in Gg) for A = Aggn using GS-proof
system with SXDH setting. The communication complexity is quite low. Only 8 group elements
are exchanged in total, and achieves optimal 2 moves. These figures could be a good efficiency
standard for “crafted” constructions to compare.

By replacing SSIG with SIG from Section [4] one could also instantiate the very original Fis-
chlin’s scheme that is secure against static adversaries. This, however, requires NIZK proofs and
hence becomes less efficient; NIZK requires that we replace A and B with their pairing product
representations as originally described for SIG in Section [We also remark that the construction
can be extended to a partially-blind scheme [2] as SSIG (and SIG) can sign multiple group elements
at once.

25

Table [1| summaries efficiency of some known blind signature schemes. There are other schemes
that achieve concurrent security without random oracles, e.g., [21], [43], [40], [44]. [46] is a represen-
tative from those without GS-proofs. Sizes for [46] vary in parameter setting and include some
approximation. Numbers for [44] translates numbers in Zys and Zy into that of Zy2 with appro-
priate factors . (Precisely, 9V “l'is a translation of 1V 4+ 6[V?] 4 3V 1) Our instantiation is very
strong in communication while the schemes in [46] [44] with classical blind-then-unblind structure
have an advantage in the signature size.

9.2 Group Signatures with Concurrent Join

This section highlights a useful property of our signature schemes that the message space is com-
patible with the verification key space. In particular, we present the most efficient instantiation of
a group signature scheme that allows efficient concurrent join protocol [42].

In the symmetric setting A = Agym, the message space of USIGL from Section [5| includes the
verification key space. This allows Alice to sign Bob’s key and Bob can sign Charlie’s key and so
on. Such a chaining can be hidden by applying NIZK. A signature scheme that allows to sign its
own verification key is introduced as automorphic signatures in [29]. It is proven to have some
interesting high-level applications such as proxy signatures.

Conceptually, a group signature scheme is a special case of such anonymous delegation system
with only one hop of delegation. As sketched in [23] and embodied in [42], the above single-round
certification protocol between Alice and Bob brings some favorable properties in the construction
of efficient group signature schemes. In the following, we revisit the general idea of [23| [42] [36]
with CPA-anonymity [12] by using terminology of proof of knowledge. The construction extends
to CCA-anonymity by following the generic construction in [36]. Let SIGO and SIG1 be signature
schemes, and NIWI be a witness indistinguishable proof of knowledge system. A group signature,
GSIG, consists of 5 algorithms {Setup, Join, Sign, Vrf, Open} such that:

e GSIG.Setup is a setup algorithm that takes security parameter 1* and runs (vkc,sk.) ¢
SIG0.Key(1*) and also sets up a CRS i and a trapdoor sk, for NIWI. Group verification-
key is vky = (vkc, Xniwi). The certification-key sk is given privately to the issuer and the
opening-key sk, is given privately to the opener.

e GSIG.Join is an interactive protocol between a group member and the issuer. The group
member generates his own key-pair (vky,sky) <+ SIG1.Key(1?) and send vk, to the issuer.
The issuer signs on vky by o, < SIG0.Sign(sk., vk,) and send the certificate o, to the member.

e GSIG.Sign is a signing algorithm run by a group member to sign message m. It consists of
signing on message m by o, < SIGL.Sign(sk,, m) and generating a non-interactive witness
indistinguishable proof of knowledge m < NIWLPrf(3wi, pub, wit) that proves relation 1 =
SIGO.Vrf(vke, vky, 0.) and 1 = SIGL.Vrf(vk,, m, oy,) with respect to witness wit = (vky, oc, oy)
and public information pub = (vk., m). Final output is 7, which is a group signature.

o GSIG.Vrf takes (vkg,m,m) as input and verifies correctness of 7 by verifying 7 as a NIWI
proof with respect to pub = (vk., m) and CRS Xjwi.

e GSIG.Open is an opening algorithm run by the opener who has opening-key sk,. Given 7
and sk, as input, the algorithm runs the knowledge extractor of the NIWI proof system and
extracts witness (vky, oc,0y). The exposed verification key vk, identifies the group member
who actually created 7. This algorithm will be associated with another algorithm that publicly
verifies the correctness of the opening.

26

Theorem 10. Group signature scheme GSIG is CPA-anonymous, traceable, and non-frameable.

We refer to [12] and [§] for formal definitions of the security notions stated in the theorem.
Intuitively, CPA-anonymity is that the adversary cannot distinguish group signatures from two
members. As CPA security, the adversary is not given oracle access to the opener. Traceability
guarantees that once a group signature is opened, it identifies a group member who once completed
GSIG.Join. Non-frameability means that no one but a group member can issue a valid group
signature that points to the member if opened.

Proof. CPA-anonymity follows directly from the (computational) WI property [39] of the proof
system NIWI. For traceability, suppose that there is a valid signature = on message m. Due to
the knowledge soundness of NIWI, the opener can extract (vky, o¢, oy) from 7 and (vky, o) fulfills
1 = SIGO.Vrf(vkc, vky, oc). If vk, does not point any group member registered through GSIG.Join,
oc is a valid forgery for SIGO, which contradicts to the EUF-CMA property of SIGO. Thus vk,
allows tracing. For non-frameability, suppose that the opener extracts (vky,oc,oy) from a group
signature on message m. If 1 = SIGL.Vrf(vk,, m,o,) holds but the owner of vk, have never signed
on m, it is a valid forgery against SIG1, contradicting the EUF-CMA property of SIG1. |

As mentioned in [42], the above framework has been known without efficient instantiation in
the standard model. Using our main signature scheme SIG as SIGO and GS-proof system as NIWI,
we can instantiate the construction with efficiency. We assess the efficiency in the setting A = Agym
as follows. Let SIG1 be a signature scheme whose verification key vk, and signature o, consist
of o and [group elements, respectively. Let v be the number of group elements needed to prove
relation 1 = SIGL.Vrf(vk,, m,o0y) including GS-commitments for vk, and o,. Regardless of size
vk, to be certified, our SIGO outputs o. of size 7. Since 4 out of the 7 elements in o, can be
perfectly randomized and given in the clear as we have done in Section we need only 3 GS-
commitments in proving relation 1 = SIG0.Vrf(vke, vky, o), which consists of two one-sided pairing
product equations and costs 6 elements in a proof. (Commitments of vk, is already included in ~.)
In total we have (Group Sig Size) = 19 + . One can instantiate SIGO with the signature scheme
n [20], that has 9« + 4 elements in o, and 3« + 3 one-sided and 3o double-sided pairing product
equations in SIG0.Vrf. In that case, the size of a group signature is (Group Sig Size) = 63a+21+.

If we instantiate SIG1 with full EUF-CMA Boneh-Boyen signature scheme from [10], vk, consists
of a = 4 group elements (including the bases). A signature consists of one group element and one
scalar value but the scalar value is totally random and independent of the verification-key. So we
have 4+ 1 GS-commitments in proving 1 = SIG1.Vrf(vk,, m, oy). The verification predicate consists
of a double-sided pairing product equation, which yields 9 group elements in a proof. In total, we
have v = 24 and a group signature consists of 43 group elements and 1 scalar value. With [26] for
SIGO, the signature size will be 297 group elements and 1 scalar value. These figures can be slightly
decreased by using the GS proofs in the SXDH setting.

Table [2] summarizes some efficient group signature schemes that provide CPA-anonymity in the
standard model with non-interactive assumptions. ([42] allows concurrent join but the security is
argued in the random oracle model [7]. A scheme in [4] is non-frameable but only allows sequential
join. It bases on strong interactive assumptions.) [I8] (and also [I7]) provides efficiency with
reasonable assumptions but are frameable. The scheme in [36] is non-frameable but does not allow
concurrent join as their Join protocol includes 6 rounds of interaction. Also, the traceability of
[36] demands a strong dedicated assumption on top of the security of the building blocks. Our
construction GSIG(SIG+BBJ[I0]) yields a signature that includes 15 more group elements than that
of [36]. This is the price for achieving concurrent join property and allowing very simple and
modular security argument without dedicated assumptions.

27

Scheme Concurrent Non- Signature Assumptions
Join Frameability Size
BWO7[18] yes no 6] SD, HSDH
Gro07[36] no yes 28] SDH, ¢-U, DLIN
GSIG([26]+BBI10]) yes yes 2970 + 1/l DLIN,SDH,HSDH
GSIG(SIG+BB[10]) yes yes 4311 4 1[P] SFP, SDH

Table 2: Summary of efficiency and properties of group signature schemes with CPA-anonymity. The
signature size counts the number of elements and indicating the groups they belong to ([1], [N], and [p]
respectively for G, Zy, and Z,). SD: Subgroup Decision Assumption [I4]. g-U: See [36].

Some final remarks follow:

e CCA-anonymity is obtained by following the approach in [36], which uses a strong one-time
signature scheme and a selective-tag CCA secure tag-based public-key encryption scheme. By
using the same instantiation as in [36], this strengthening costs extra 15 group elements in a
signature. Accordingly, we have a CCA-anonymous group signature scheme with concurrent
join whose signature consists of 58 group elements and one scalar value.

e One of the advantages of using our SIG for SIGO is that it allows to insert a warranty in
the clear to o, so that the signing policy given to a group member is explicit. Due to the
constant-size property of SIG, this useful extension can be done without impacting to the size
of the group signature (except for the warranty itself) at all.

10 Conclusion

This paper presented a practical signature scheme all components of which are group elements in
bilinear settings. Signing arbitrary k group elements at the same time results in a signature of size
only 7 group elements. This solves an open problem in [35] (explicitly stated in [26]). Its technically
interesting properties are enlightened by presenting variations with advanced properties. Combined
with Groth-Sahai proof system, our signature schemes give handy and reasonably practical solutions
to many cryptographic tasks.

The most challenging open problem is to base security on weaker and well studied assumptions
while retaining the efficiency and compatibility. Also, it is left as an open problem to construct
a homomorphic trapdoor commitment scheme for group elements with constant-size commitments
in the base groups.

References

[1] M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo. Structure-preserving
signatures and commitments to group elements. In Advances in Cryptology - CRYPTO 2010,
LNCS, pages 209-237. Springer-Verlag, 2010. (Cited on page)

[2] M. Abe and E. Fujisaki. How to date blind signatures. In K. Kim and T. Matsumoto, editors,

Advances in Cryptology — ASIACRYPT ’96, volume 1163 of LNCS, pages 244-251. Springer-
Verlag, 1996. (Cited on page [25])

28

[3]

M. Abe and M. Ohkubo. A framework for universally composable non-committing blind
signatures. In M. Matsui, editor, Advances in Cryptology - ASIACRYPT 2009, volume 5912

of LNCS, pages 435-450. Springer-Verlag, 2009. (Cited on page)

G. Ateniese, J. Camenisch, S. hohenberger, and B. de Medeiros. Practical group signatures
without random oracles. Cryptology ePrint Archive, Report 2005/385, 2005. http://eprint.

iacr.org. (Cited on page[27})

M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya. Non-interactive anonymous cre-
dentials. In R. Canetti, editor, Theory of Cryptography, Fifth Theory of Cryptography Confer-
ence, TCC 2008, volume 4948 of LNCS. Springer-Verlag, 2008. Also available on IACR ePrint
Archive, 2007/384. (Cited on page [2])

M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal defini-
tions, simplified requirements and a construction based on general assumptions. In E. Biham,
editor, Advances in Cryptology - EUROCRPYT 2003, volume 2656 of LNCS, pages 614—629.
Springer-Verlag, 2003. (Cited on page [2})

M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient
protocols. In First ACM Conference on Computer and Communication Security, pages 62-73.
Association for Computing Machinery, 1993. (Cited on page)

M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of dynamic
groups. In A. Menezes, editor, Topics in Cryptology — CT-RSA 2005, volume 3376 of LNCS,
pages 136-154. Springer-Verlag, 2005. Full version available at IACR e-print 2004/077. (Cited

on page)

M. Bellare and S. Shoup. Two-tier signatures, strongly unforgeable signatures, and fiat-shamir
without random oracles. In Proceedings of the 10th International Conference on Theory and
Practice of Public-Key Cryptography - PKC 2007, volume 4450 of LNCS, pages 201-216.
Springer-Verlag, 2007. (Cited on page [23])

D. Boneh and X. Boyen. Short signatures without random oracles. In C. Cachin and J. Ca-
menisch, editors, Advances in Cryptology — Furocrypt 04, volume 3027 of LNCS, pages 56-73.

Springer-Verlag, 2004. (Cited on page)

D. Boneh and X. Boyen. Short signatures without random oracles and the sdh assumption in
bilinear groups. Journal of Cryptology, 21(2):149-177, 2008. (Cited on page)

D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin, editor, Advances
i Cryptology — CRYPTO 04, volume 3152 of LNCS, pages 41-55. Springer-Verlag, 2004.

(Cited on page 27)

D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signatures
from bilinear maps. In E. Biham, editor, Advances in Cryptology - EUROCRYPT 2003, volume
2656 of LNCS, pages 416-432. Springer-Verlag, 2003. (Cited on page [2])

D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts. In J. Kilian,
editor, Theory of Cryptography Conference— TCC 2005, volume 3378 of LNCS, pages 325—341.
Springer-Verlag, 2005. (Cited on page)

29

http://eprint.iacr.org
http://eprint.iacr.org

[15]

[18]

[19]

[22]

[23]

D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In C. Boyd, editor,
Advances in Cryptology — Asiacrypt 2001, volume 2248 of LNCS, pages 514-532. Springer-
Verlag, 2001. (Cited on page [39})

X. Boyen. The uber-assumption family: A unified complexity framework for bilinear groups.
In Pairing 2008, volume 5209 of LNCS, pages 39-56. Springer-Verlag, 2010. (Cited on page @)

X. Boyen and B. Waters. Compact group signatures without random oracles. In Advances
i Cryptology — Furocrypt 06, volume 4004 of LNCS, pages 427—444. Springer-Verlag, 2006.
Full version available from IACR ePrint Archive 2005/381. (Cited on page [27])

X. Boyen and B. Waters. Full-domain subgroup hiding and constant-size group signatures.
In Public Key Cryptography—PKC 2007, volume 4450 of LNCS, pages 1-15. Springer-Verlag,
2007. Available at http://www.cs.stanford.edu/~xb/pkc07/. (Cited on page [27] [28])

J. Camenisch, N. Chandran, and V. Shoup. A public key encryption scheme secure against key
dependent chosen plaintext and adaptive chosen ciphertext attacks. In Advances in Cryptology
- EUROCRYPT 2009, volume 5479 of LNCS, pages 351-368. Springer-Verlag, 2009. (Cited

on page [2])

J. Camenisch, M. Kohlweiss, and C. Soriente. An accumulator based on bilinear maps and
efficient revocation for anonymous credentials. In Public Key Cryptography, PKC 2009, volume
5443 of LNCS, pages 481-500. Springer-Verlag, 2009. (Cited on page)

J. Camenisch, M. Koprowski, and B. Warinschi. Efficient blind signatures without random
oracles. In C. Blundo and S. Cimato, editors, Security in Communication Networks, 4th
International Conference, SCN 2004, Amalfi, Italy, September 8-10, 2004, Revised Selected
Papers, volume 3352 of LNCS, pages 134-148. Springer-Verlag, 2005. (Cited on page)

J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials from bilinear
maps. In Advances in Cryptology — CRYPTO 04, volume 3152 of LNCS, pages 56-72.
Springer-Verlag, 2004. (Cited on page[2])

J. Camenisch and M. Stadler. Efficient group signature schemes for large groups. In B. S.
Kaliski Jr., editor, Advances in Cryptology — CRYPTO ’97, volume 1294 of LNCS, pages
410-424. Springer-Verlag, 1997. (Cited on page [26])

R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
Proceedings of the 42nd IEEE Annual Symposium on Foundations of Computer Science, pages
136-145, 2001. (Cited on page [24])

R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Technical Report 2000/067, TACR e-print Archive, 2005. 2nd version updated on 13 Dec 2005.

(Cited on page [25])

J. Cathalo, B. Libert, and M. Yung. Group encryption: Non-interactive realization in the
standard model. In M. Matsui, editor, Advances in Cryptology - ASIACRYPT 2009, volume

5912 of LNCS, pages 179-196. Springer-Verlag, 2009. (Cited on page)

J. H. Cheon. Security analysis of hte strong diffie-hellman problem. In Advances in Cryptology
— Eurocrypt ’06, volume 4004 of LNCS, pages 1-11. Springer-Verlag, 2006. (Cited on page)

30

http://www.cs.stanford.edu/~xb/pkc07/

[28]

[29]

[40]

[41]

M. Fischlin. Round-optimal composable blind signatures in the common reference model. In
C. Dwork, editor, Advances in Cryptology — CRYPTO ’06, volume 4117 of LNCS, pages

60-77. Springer-Verlag, 2006. (Cited on page 24])

G. Fuchsbauer. Automorphic signatures in bilinear groups. TACR ePrint Archive 2009/320.
Version 20091217:153918 (dated Dec. 17, 2009)., 2009. (Cited on page [26])

G. Fuchsbauer, D. Pointcheval, and D. Vergnaud. Transferable anonymous constant-size fair
e-cash. TACR ePrint Archive 2009/146. Also to appear in CANS 2009., 2009. (Cited on page)

S. Galbraith, K. Paterson, and N. Smart. Pairings for cryptographers. Technical Report
2006,/165, IACR ePrint archive, 2006. (Cited on page [4])

S. D. Galbraith and V. Rotger. Easy decision-diffie-hellman groups. LMS Journal of Compu-
tation and Mathematics, 7:2004, 2004. (Cited on page [4])

S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive
chosen-message attacks. SIAM Journal on Computing, 17(2):281-308, April 1988. (Cited on

page [4])

M. Green and S. Hohenberger. Universally composable adaptive oblivious transfer. In
J. Pieprzyk, editor, Advances in Cryptology - ASIACRYPT 2008, volume 5350 of LNCS,
pages 179-197. Springer-Verlag, 2008. Preliminary version: IACR ePrint Archive 2008/163.

(Cited on page [2])
J. Groth. Simulation-sound nizk proofs for a practical language and constant size group

signatures. In X. Lai and K. Chen, editors, Advances in Cryptology - ASIACRYPT 2006,
volume 4284 of LNCS, pages 444-459. Springer-Verlag, 2006. (Cited on page)

J. Groth. Fully anonymous group signatures without random oracles. In Advances in Cryp-
tology — Asiacrypt’07, volume 4833 of LNCS, pages 164-180. Springer-Verlag, 2007. (Cited on

page 26} 27, [28})

J. Groth. Homomorphic trapdoor commitments to group elements. Cryptology ePrint Archive,
Report 2009/007, January 2009. (Cited on page B7)

J. Groth. Homomorphic trapdoor commitments to group elements. Unpublished Manuscript,

2010. (Cited on page [} [36])

J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In Advances
in Cryptology — FEurocrypt 08, volume 4965 of LNCS, pages 415-432. Springer-Verlag, 2008.
Full version available: TACR ePrint Archive 2007/155. (Cited on page [2} [6] 27])

C. Hazay, J. Katz, C. Koo, and Y. Lindell. Concurrently-secure blind signatures without
random oracles or setup assumptions. In Theory of Cryptography Conference, TCC 2007,
volume 4392 of LNCS, pages 323-341. Springer-Verlag, 2007. (Cited on page)

A. Kiayias and M. Yung. Group signatures with efficient concurrent join. In Advances in
Cryptology — Eurocrypt 2005, volume 3494 of LNCS, pages 198-214. Springer-Verlag, 2005.

(Cited on page [2})

A. Kiayias and M. Yung. Group signatures with efficient concurrent join. In R. Cramer,
editor, Advances in Cryptology — EUROCRYPT 2005, volume 3494 of LNCS, pages 198-214.

Springer-Verlag, 2005. (Cited on page)

31

[43] A. Kiayias and H. Zhou. Concurrent blind signatures without random oracles. In SCN 2006,
volume 4116 of LNCS, pages 49-62. Springer-Verlag, 2006. (Cited on page)

[44] A. Kiayias and H. Zhou. Equivocal blind signatures and adaptive uc-security. In R. Canetti,
editor, Theory of Cryptography Conference, TCC 2008, volume 4948 of LNCS, pages 340-355.

Springer-Verlag, 2008. (Cited on page)

[45] N. Koblitz and A. Menezes. Another look at generic group. TACR ePrint Archive 2006/230,
2006. (Cited on page [3])

[46] T. Okamoto. Efficient blind and partially blind signatures without random oracles. In S. Halevi
and T. Rabin, editors, Theory of Cryptography Conference, TCC 2006, volume 3876 of LNCS,
pages 80-99. Springer-Verlag, 2006. Full version avaialble on ePrint archive. (Cited on page

261)

[47] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In J. Stern,
editor, Advances in Cryptology — EUROCRYPT 99, volume 1592 of LNCS, pages 223-238.
Springer-Verlag, 1999. (Cited on page)

[48] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
J. Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91, volume 576 of LNCS, pages
129-140. Springer-Verlag, 1992. (Cited on page)

[49] M. Riickert and D. Schroder. Security of verifiably encrypted signatures and a construction
without random oracles. IACR ePrint Archive 2009/027, 2009. (Cited on page [2])

[50] A. Rupp, G. Leander, E. Bangerter, A.-R. Sadeghi, and A. W. Dent. Sufficient conditions
for intractability over black-box groups: Generic lower bounds for generalizaed dl and dh
problems. TACR ePrint Archive 2007/360, 2007. (Cited on page)

[51] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Journal
of the ACM, 27(4), 1980. (Cited on page 33| [34})

[52] M. Scott. Authenticated id-based key exchange and remote log-in with simple token and pin
number. Cryptology ePrint Archive, Report 2002/164, 2002. http://eprint.iacr.org/.

(Cited on page [4])

[53] V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy, editor,
Advances in Cryptology — EUROCRYPT 97, volume 1233 of LNCS, pages 256—266. Springer-

Verlag, 1997. (Cited on page 34])

[54] E. R. Verheul. Evidence that xtr is more secure than supersingular elliptic curve cryptosystems.
J. Cryptology, 17(4):277-296, 2004. (Cited on page [4])

Appendices

A Proofs Related to Assumptions

A.1 Proof of Theorem (1) (DDHg;, = DBP)

Proof. Assume that the DBP assumption does not hold and there is an adversary A that produces
a pair (z,7) # (1,1) satisfying the equation e(g.,z) e(gr,7) = 1 for randomly chosen g, g, with
non-negligible probability. We construct B which breaks the DDH assumption in Gj.

32

http://eprint.iacr.org/

The DDHg, assumption says that given a tuple e(g, ga, gb, 9c) € G}, where g, = g%, g, = q°,
and g. = ¢¢, for a,b,c € Zj it is hard to distinguish distinguish between ¢ = ab and ¢ # ab with
non-negligible probability. For a challenge tuple (g, ga, 9, 9c), B chooses a random ¢ € Z,, and gives
to A an input (g, gff) along with the appropriate public parameters. If A outputs (z,7) # (1,1)
satisfying e(g?, z) e(g¥,r) = 1, it is true that z = r~. Then, e(gp, z) e(ge, 7) = e(g?,77%) e(g®, 1) =
e(g,r)°%; that equation is equal to 1 if and only ab = ¢ mod p.

Therefore, B has the same success probability of breaking the DDHg, assumption as A of break-

ing the DBP assumption. |

A.2 Proof of Theorem (3| (SFP = SDP)

Proof. Suppose that there exists an algorithm, .4, that successfully finds (z, 7, u) that fulfills . We
construct an algorithm that breaks SFP as follows. Given an SFP instance (A, g,, bz, gr, hu, a, @, b, 5,
Ry,...,Ry), input (g, hs, gr, hy) to A. If A outputs (2*, 7%, u*), set (s*,t*,v*, w*) = (a,a, b, b) and
output R* = (2*,r*, s*, t*, u*, v*, w*).

Now, multiplying 1 = e(g., 2*),e(gr,7*) to both sides of (a,a) = e(s*,t*) results in the first
equation in . Similarly, multiplying 1 = e(h., 2*), e(hy, u*) to both sides of (b,b) = e(v*, w*)
results in the second equation in ([3). Thus R* fulfills relations in (3). Since (2*,7*,u*) is a
valid answer to SDP, z* # 1 holds. Since every z; in R; is uniformly chosen and independent of
(92, hz, gry By, a, a, b, l~)), it is independent of the view of the adversary. Thus z* = z; happens only
with negligible probability for every j € {1,...,q}. Thus R* is a correct and valid answer to the
SFP instance. 1

A.3 Proof of Theorem [2| and Theorem [6] (Justification of SFP and k-SFP)
Proof.

OUTLINE. In the generic model, every group element is represented by a unique index. The group
operation to two group elements corresponds to addition of two indices. In the simulation, the
index for an independent group element is represented by a unique variable. The index for a group
element that is related to independent group elements is represented by a function of the variables
determined by the relation.

A security argument in the generic group model consists of three steps. First we argue that
no linear combinations of indices of initially given group elements could yield a new set of indices
that fulfills the target predicate implied by the assumption. This step is done by inspecting the
form of possible representation of indices. Although the argument looks intricate and lengthy, the
underlying idea follows the standard approach.

The second step is to estimate the success probability of the adversary when uniform assignment
is done to the variables. The adversary is considered as successful either when the simulation
happens to be inconsistent to the concrete assignment or when the output of the adversary happens
to fulfill the target predicate. For this, we estimate the probability that two indices represented
by functions of variables are not identical but fall into the same value when concrete values are
assigned to the variables. A common idea for this step is to apply Schwartz’s lemma [53, [51] to
the formula representing the difference between two indices. When the formula is a polynomial,
it promptly gives an upper bound to the probability due to the degree of the polynomial. In the
case of SDH, however, the formula will be in the form of —— + ... 4+ —L— that results in having

r—cq r—c,
2 in the polynomial expression of the formula. Thus it gives an upper bound with factor of q. By

33

accumulating the error probability for all combinations of indices that could be generated through
¢ group operations, total error probability is bound by O(g¢?), which is apart from the optimal
O(¢%) bound in DL and CDH [53] by the factor of ¢. In the case of SFP, the formula is in the form
of uy + u% + ot ug + i, which is a Laurent polynomial. Directly applying Schwartz’s lemma as
introduced in [53] or its variation for Laurent polynomial in [50] results in loose bound with factor
of ¢ since the formula is in degree ¢ in its (regular) polynomial form. We instead follow the proof
idea of the original Schwartz’s lemma as introduced in [5I] and show a constant bound with factor
of 2. In the actual argument, we have to consider products of two indices to take care of pairing
operations, which makes the analysis more intricate. But we can show a constant bound in the
same way. As a result, the factor of ¢ is eliminated and we have optimal O(#?) bound.

DETAILS. SFP is a special case of k-SFP at & = 1. For simplicity, we start with the case of SFP
and then show how to generalize the argument to the case of k-SFP. We consider the generic group
model for symmetric group setting where G; = G2 = G. The symmetric setting is not just for
simplicity but also for generality as our argument in the symmetric setting trivially holds in the
asymmetric setting as well. (The error probability can be slightly improved in the asymmetric
setting since each group has less elements.)

In the following, we focus on the relation between the indexes of the group elements by trans-
lating the assumption appropriately. To make the argument easily linkable to its original rep-
resentation, we use the same letter to denote the index of a group element with respect to an
implicit fixed base. For instance, for a € G, we denote loga € Z, by a itself. By using this no-
tation, SFP is translated as follows. Let I be a tuple that consists of (g, hz, gr, hu, a, a, b, lN)) and
R; = (zj,7j,85,tj,uj,vj,w;) for j =1,...,q, which in total consists of 8 + 7¢ variables. Recall R;
fulfills relations

de

Ya-a= “Zj+gr-rj+sj-t;, and (24)

d

@
—h

A
B

9=z

Let O = (z*,r*, s*,t*,u*, v*, w*) be a 7-tuple of linear combinations of the variables in I. We show
that there is no O that identically fulfills relations

A=g, - 2"+ g -1+ s -t*, and (26)
B=h, 2"+ hy v +0v°w* (27)
under the constraint that z* & {0, z1,..., 24}

For a polynomial x € Zy[I] of degree 1, let ¢)(x) be the linear form (line matrix of 1 x |I])
associated to z. Then, for z,y € Z,[I], product z -y is represented by a |I| X |I| symmetric matrix,
say W(z - y),

1

U(z-y) =5 (V@) o) +v(y) ov(@)"). (28)

It is important to see that Rank(¥(x-y)) = 2. Each row and column is associated to a variable, e.g.,
a in I and called a-row and a-column. By ¥(X+Y') we denote a matrix obtained by ¥(X)+W¥(Y). In
the following, we re-write a, a, b, b by so, to, vo, Wo, respectively, and let zo = rg = ug = 0 for seamless
argument. Define A; and B as A; = V(g,-2j+gr-1j+s;-t;) and Bj = Y(h, - zj + hy -7 +vj - wj)
for j=0,...,q.

Relation holds if and only if ¥(g, - 2* + g, - 7* + s* - t*) is identical to a quadratic form
representation of A. Since Rank(VU(g, - z* + g, - r* + s* - t*)) < 6, it suffices to consider a quadratic
form representation of A whose rank is less than 6. Recall that A is defined by Ag and equivalently

34

by Aj for j = 1,...,q. For some symmetric matrix X of size |I| x |I|, Consider R = (((X mod
Ap) mod Ap)...). If R # (), there exists an assignment to the variables that evaluates the quadratic
form associated by R to a non-zero value. Accordingly, for a matrix X to be evaluated to A for any
valid assignments to the variables, X must be identical to) ¢;A; where) ¢; = 1 for some constant
¢j € Zyp. Observe that Rank(A;) =6 for j =1,...,¢. Also observe that for any j =0,...,q, and
for any j' # j, it holds that Rank(c;jA; + ¢y A7) > 8 when ¢; # 0 and ¢y # 0. Thus only individual
Aj for j =0,...,q are the quadratic form representations of A with rank equal to or less than 6.
It therefore suffices to consider A; for the left hand of . By the same argument, it suffices to
consider B; for the left hand of .

Observe that Rank(A;) =6 for j =1,...,¢. Also observe that for any j =0,..., ¢, and for any
J' # j, sj-row and tj-row in A; are linearly independent from A; and these rows are zeros in Aj.
Accordingly, Rank(c;Aj +cj Ajr) > 8 if ¢; # 0 and ¢y # 0. Thus only individual A; for j =0,...,q
are quadratic form representation of A with rank equal to or less than 6. It therefore suffices to
consider A; for the left hand of . The same argument applies to .

Suppose that holds, namely:
V(g - 2j) + V(gr 1) + ¥(s5 - tj) = ¥(gs - 2%) + U(gyr - 1) + ¥(s* - ¥) (29)

holds. Observe that all cells in matrix W(g, - 2*) are zeros except for those in the g,-row and g,-
column. Thus ¥(s;-t;) is not covered by ¥(g, -2*). Similarly, ¥(s;-t;) is not covered by ¥(g, -r*),
either. Thus W(s* - t*) covers W(s; - t;). Observe that Rank(W¥(s*-t*)) = 2 and the sj-row and
tj-row in W(s* - t*) are linearly independent each other. Since z* # z;, we have either 2* = c¢- z; for
some constant ¢ # 1 or z* is a linear combination of variables including at least one variable other
than z;. In either case, the g,-row of ¥(g, - z*) is linearly dependent on the sj-row and ¢j-row in
W (s*-t*). This results in having non-zero terms of s; or ¢; or both in z*. Without loss of generality,
assume that z* includes a term in s;. Now consider the other relation

U(h, - zjr) + U(hy 1) + V(vjr - wjr) = U(hy - 2%) + U(hy - 177) + U (0" - w¥) (30)

where j' can be different from j in (29). Since z* includes s, cell (h., s;) is non-zero in W(h; - 2*).
Since the cell is zero in the matrices in the left hand of (30)), it must be offset by W (hy,-r*)+ W (v*-w*).
In W(hy - 7*), the cell is zero since only h,-row and h,-column can have non-zero cells. Therefore
cell (h,s;) is non-zero in W(v* - w*). Due to the same reason as before, ¥(v* - w*) must cover
U(vj - wy) in . Since Rank(¥(vj - wj)) is two, the h.-row must be linearly dependent on v;/-
row and wj-row. Thus either (v, s;) or (wj/, s;) must be non-zero. However, none of the matrices
in has non-zero value in (v;/, s;) and (wjr, sj). Thus (30) cannot hold. This completes the case
of k =1.

To generalize the above argument to the case of & > 2, simply replace W(s;-t;) with \P(Zle R
tj;) and argue in the same way based on the observation that Rank(\Il(Zle sji - tji)) = 2k.

We now proceed to evaluate the error probability of the generic group oracle simulation for the
case of general k. Namely, we consider the probability, say Pj, that two distinct elements in G
evaluates to the same value by assignment. An index for an element in G is a linear combination of
variables in I. For index f and f’ of two distinct elements in Gp, probability Py is Pr[f — f' = 0].
Here the probability is taken over uniform assignments to the independent variables in /. Among

35

the variables in I we consider r; and u; be dependent and represent them by

rj = (@i -

VRS
-
Il >
—_

o

—Sji - tji) — gz - zj) /gr, and (31)

uj = (i (bi b — Vji - wji) —h, - zj> [y (32)
i=1

Let F' be a polynomial obtained by replacing r; and w; in f with the right hands of the above
equations and multiplying g, - hy. Define F” for f’ in the same way. Then we have P, = Pr[F —
F’ = 0]. Since deg(F — F') = 3, we have P, < 3/p from Schwartz’s lemma. Having initial
|I| = 2 + 4k + (3 + 4k)q elements and at most ¢; group operations, we have the upper bound

(2+4k+(3+4k)q+£1

)) 3lp< 0+)y (33)

for the simulation error of elements in G.

The error probability, say Pr, in simulating G is estimated in the similar way. An index of an
element in Gy is in a quadratic form of variables in I. Let Fr and F. be polynomials obtained from
the indexes of two distinct elements in Gr in the same way as above. Then Pr = Pr[Fp — FJ. = 0].
Since deg(Fr — F}) = 4, we have Pr < 4/p from Schwartz’s lemma. Having at most ¢7 pairing
operations and group operations in Gp, at most 7 elements appear in Gp during the simulation.
Thus the error probability throughout the simulation is bound by (KQT) - Pr = O({2)/p.

In total, the simulation error is upper bound by Py + Pr = O(¢% + (k - ¢ + ¢1)?) /p. By setting
0 = 0y ~ lp, it is simplified to O(k? - ¢> 4+ £?)/p as stated in Theorem @ Setting k = 1 gives
O(q* + ¢2)/p as in Theorem |

B Homomorphic Trapdoor Commitment Schemes

This section presents several homomorphic trapdoor commitment schemes in bilinear settings. Not
all of them are used in our construction. Nevertheless, we introduce them because they have
different properties and may be useful in applications needing specific properties. We note that all
the schemes in this section can also work as a chameleon hash. Namely, it is possible to equivocate
any commitment generated by TC.Com rather than the ones simulated by TC.Sim. Indeed, we
integrate TC1 as a chameleon hash in the construction of SSIG in Section [6]

By (K, M,C,D) we denote spaces for commitment-keys, messages, commitments, and decom-
mitments. The commitment-key refers to elements not included in A. Table [3] shows a summary of
the schemes in their space parameters and performance in verifying the correct opening. For com-
parison, we list schemes from [37] and [26] which are the only homomorphic trapdoor commitment
schemes we aware in the literature whose messages are group elements and the verification is done
by checking pairing product equations.

TC3 and [26] are GS-compatible schemes whose components are all in the base groups. In
particular, TC3 is the first multi-commitment scheme that commits to k elements at a time. Its
commitment has 2k + 2 group elements while it will be 3k if we repeatedly use [26] for & times.
It is an interesting open problem to construct a constant-size commitment scheme while being
compatible with GS-proofs.

Scheme TC4 is independently found in [38], the updated version of [37], and is included in [I].

36

Scheme A K M C D #(pairings) #(PPE) assumption
TC1 any 2k 4+ 20T k2 2IT] 20 2k + 2 2 SDP < DLIN
TC4 Asdn, Asxah ke + 100 £ 117] 12l k+1 1 DBP < DDHg,

Gro09[37] any 2k + 40 g2 2171 202] 2k + 4 2 STP < DLIN
TC3 Asym 2k 4 2T g 2f 4 oM ofl] 2k+ 2 2 SDP < DLIN
CLY09[26] Asym 5] 11 30 30 9 3 DLIN
TC2 any 2171 117! 112 1 2 1 XDHI (< DLIN)

Table 3: Summary of homomorphic trapdoor commitments. Columns from K to D count the number of
elements and indicating the groups they belong to ([1], [2], [T, and [p] respectively for G, G2, Gr, and Z,).
#(pairings) and #(PPE) count the number of pairings and pairing product equations in the verification
predicate. On top are the multi-message schemes committing to k group elements at once; in the middle are
the schemes not using any group element in Gp; and at the bottom is the efficient scheme when the message
is in Z, and the other components are in G; and G,. X < Y: Assumption X is implied by ¥ (if A = Agym).

For multi-message commitment schemes, TC1, TC3, TC4, let m = {mq,...,mx} € Go* be a
message. For single-message commitment scheme, TC2, let m be an element of Z,. In the following
description, we assume that A is given to all algorithms implicitly.

B.1 Scheme TC1

TC1.Key(1*): Choose random generators g,., h, from G}. Fori = 1,...,k, choose ; and §; from Ly
and compute g; = ¢/ and h; = hfj. Output commitment-key ck = (g, hu, g1, h1, - -, gk, Pk)
and trapdoor tk = (1,01 ..., Yk, Ok)-

TC1.Com(ck,m): Choose r and u randomly from G, and compute

k k
Ci =e(gr,7) H e(gi,m;) and Co = e(hy,u) He(hi,mi). (34)

i=1 =1
Output commitment ¢ = (C1,C2) and decommit-key dk = (r,u).

TCL1.Vrf(ck, ¢, m,dk): Parse c into (C1,C2) and dk into (r,u). Output 1 if holds. Output 0,

otherwise.

TC1.Sim(ck): Choose r and u randomly from Go and compute C1 = e(g,,7) and Co = e(hy,u).
Output commitment ¢ = (C1,Cs) and equivocation-key ek = (r, u).

TC1.Equiv(ck,m, ek, tk): Parse ek into (r,u) and tk into (y1,01...,7k, k). Then compute ' =
r- Hle m; ", and v = u- Hle m;él Then output decommit-key dk = (1, u').

The above scheme shares many similarities with that of Groth [37], but the security is based
on a different computational assumption, i.e., SDP. It should be noted that both assumptions are
implied by DLIN.

Theorem 11. Trapdoor commitment scheme TCI is perfectly hiding and computationally binding
under the SDP assumption.

Proof. For perfect hiding, observe that, for any (C1,C2) € G%, any m € Gg, there exits a unique
(r,u) € G2 that fulfills relation (34)).

37

For computational binding, suppose that there exists an adversary that successfully opens a
commitment to two distinct messages. We show that one can break SDP by using such an adversary.
Given an instance of SDP, (A, gy, hu, g2, hz), do as follows.

e Set g; = gX'g)" and h; = hX'hdi fori = 1,..., k. Run the adversary with ck = (g, hu, {gi, hi }¥_,).
e Given two openings (m,r,u) and (m/,r’,u') from the adversary, compute

m; \ X rkmi% ukmi&
“=10(5) - =sll() - = sll() (35)

i=1 g ¢

e Output (z*,7*,u*).

Since the openings fulfills (34)), we have

k Xi Yi
T m; m; r m;
1= ()7> iy =) sy
I He(g’ m) <9H<m> >(9 H(m))

=e(g.,2") e(gr, ™), and

. k 2\ Xi k N i
e G T () = (T G)) < (511G
=e(hy, 2%) e(hy, u”).

But m # m/, so there exists i such that m;/m} # 1. Also, x; is independent from the view of the
adversary. That is, for every choice of y;, there exist corresponding v; and §; that gives the same
gi and h;. Therefore, z* = [],(m;/m])X: # 1 with overwhelming probability. Hence (z*,7*,u*) is a
valid answer to the instance of SDP. 1

B.2 Scheme TC2

Let g € G1 and § € G2 be random bases. Common parameter A is given to all algorithms described
below.

e TC2.Key(1*): Select v € Z, and set f = 3. Output commitment key ck = (A, f) and
trapdoor tk = .

TC2.Com(ck,m): Choose random 6 € Z, and compute commitment ¢ = §"f% € Gy and
decommit-key d = ¢’ € G;. Output ¢ and d.

TC2.Vrf(ck,c,m,d): Output 1 if e(g,c/g™) = e(d, f) Output 0, otherwise.

TC2.Sim(ck): Choose random & € Z, and output a commitment ¢ = f° and an equivocation-
key ek = 4.

TC2.EqOpen(ck, m, ek, tk): Let § = ek and v = tk. Output d = go~"/7.

38

The correctness follows since

e(g,c/q™) = e(g. f°) = e(g”, f) = e(d, f).

The trapdoor property holds because

e(d,) =e(g® ™7,) = e(g, 57" °) = e(g,¢/3™).

To prove computational binding property, we assume that the following variant of Diffie-Hellman
inversion problem (XDHI) is hard with respect to A.

Assumption 5 (XDHI). Given A and (g, g,§%) € G} x G3 x G3 for random a € Zy, it is hard to
compute ¢/ € G.

Depending on setting A, the XDHI assumption is implied by basic assumptions, Computational
Diffie-Hellman Assumption (CDH), Computational Co-Diffie-Hellman Assumption (co-CDH) [I5],
and Decisional Diffie-Hellman Assumption in Go (DDHg,), as follows. Note that, CDH is implied
by DLIN in Agym and DDHg, is implied by SXDH in Aggh.

Lemma 4. CDH = XDHI for Asym. co-CDH = XDHI for Aygn. DDHg, = XDHI for Agqp.

Proof. Let A be an XDHI adversary. In Agym, given an CDH instance (g, g%, ¢°), input (9%, ¢°, 9)
to A. It outputs ¢, which is the answer to the CDH instance. Next, in Aygh, given an co-CDH
instance (g,9%,9,3°%) € G;g, input (¢, 3°,3) to A. It outputs g®?, which is the answer to the co-
CDH instance. In Aggh, observe that, on input (g, §%, g), adversary A outputs g*. Thus A provides
a mapping from Gy to G;. Now, given an instance (g, 3%, §°,§”) of DDHg,, input (g,3% §) to A
and receive ¢®. Then v = af3 can be tested by checking if (g%, §°) = e(g, §7) holds or not. |

Theorem 12. Trapdoor commitment scheme TC2 is perfectly hiding. It is binding if the XDHI
assumption holds for A.

Proof. The perfect hiding property holds from the fact that, for any ¢ € G, for every m € Z, there
exists a single consistent d € Z,,.

The binding property is proven by showing a reduction to XDHI. Given an instance of XDHI,
(9,9,9%), set f = §*. Suppose that an adversary outputs a commitment ¢ correctly opened to (m,d)
and (m/,d') for m # m’. Then e(g,¢/§™) = e(d, f) and e(g, ¢/§™) = e(d', f) hold. By dividing both
sides of the equations, we have e(g, §™ ™) = e(d'/d,) = e(d'/d,§*). Thus (d'/d)}/™™ = gl/a,
which is a correct answer to the XDHI instance. |

B.3 Scheme TC3

All components for this scheme is in G; and Go. The underlying idea is to use TC1 and, instead of
publishing a commitment in G7, we publish the decommit-key and the message in a randomized
way by applying the one-side randomization RandOneSide from Section

TC3.Key(1*): Choose random generators g, h, from G5. For i = 1,...,k, choose 7; and §; from

Zy and compute g; = g and h; = h%. Output commitment-key ck = (A, g, hu, ..., g, P
and trapdoor tk = (1,01 ..., Yk, Ok)-

39

TC3.Com(ck,m): Choose r and u randomly from Gs, and compute

{cai}i—o + RandOneSide((gr,7), (g91,m1), - .., (gr, ™)), and (36)
{chi}i_o + RandOneSide((hy,), (h1,m1), ..., (hg, my)). (37)
Output commitment ¢ = ({cq; }¥_, {cpi}5_) and decommit-key dk = (r,u).

TC3.Vrf(ck, ¢, m, dk): Parse ¢ into ({cai g, {ci}o_y) € G2¥T2 and dk into (r,u) € G3. Output 1
if they satisfy the following predicates. Output 0, otherwise.

k

k
1 =-e(gr,7/cq0) He(gi,mi/cai) and 1 = e(hy,u/cy) He hi,m;/cp;) (38)
i=1 =1

TC3.Sim(ck): Do the same as TC3.Com with m = (1,...,1) and set ek = (r,u).

TC3.Equiv(ck, m, ek, tk): Parse ek into (r,u) and tk into (y1,01...,7k, k). Then compute ' =
r- Hle m; ", and v = u- Hle m;él Then output decommit-key dk = (1, u').

Theorem 13. Trapdoor commitment scheme TC3 is perfectly hiding and computationally binding
under the SDP assumption.

The hiding property is clear from the uniform output property of RandOneSide and that of TC1.
The binding property is taken over from TC1 and can be proven in the same way as for TCL.

B.4 Scheme TC4

This is the most efficient scheme both in computation and storage. The scheme virtually "half’ the
scheme of TC1. Let A € {Axdh, Asxdh }-

TC4.Key(17): Choose random generators g, from Gj. Fori =1,...,k, choose ; from Z; and com-
pute g; = ¢g7*. Output commitment-key ck = (A Jry 1y - - - ,gk) and trapdoor tk = (y1,...,Vk)-

TC4.Com(ck,m): Choose r randomly from G, and compute

k
c= e(gr,r)He(gi,mi). (39)
=1

Output commitment ¢ and decommit-key dk = r.
TC4.Vrf(ck, c,m,dk): Output 1 if holds. Output 0, otherwise.

TC4.Sim(ck): Choose r randomly from Gy and compute ¢ = e(g,,r). Output commitment ¢ and
equivocation-key ek = r.

TC4.Equiv(ck,m, ek, tk): Take r and (71, ...,7,) out from ek and tk, respectively. Then compute
r'=r. Hle m; ", and Then output decommit-key dk = r’.

Theorem 14. TC4 is perfectly hiding and computationally binding if the DBP assumption holds
for A.

40

Proof. The hiding property holds because, for any commitment ¢ € Gy and any 1 € G§, there
exists consistent ¢t € Go that fulfills relation (39).

The binding property is shown similarly to Theorem
Given an instance of DBP, (A, g, gr), do as follows.

e Set g; = g¥'g)". Run the adversary with ck = (g,, {g; }*_,).

e Given two openings (m,7) and (m/,7’) from the adversary, compute
k k
H (mgi/m)X = (r/r) H (mi/m)" (40)
=1 =1

e Output (z*,r*).

Since the openings fulfills , we have

k Xi k ¥i
T my; m; T m;
1= (77) | | 2 ; = 9 | | ; L) | | ;
o\ r! ‘ <gz ’”;) ‘ (92 i=1 <”L§ “\” v i=1 m;
= e(QZaZ*) e(gr,r*).

But ni # i/, so there exists i such that m;/m] # 1. Also, x; is independent from the view of
the adversary. That is, for every choice of y;, there exist corresponding ~; that gives the same g;.
Therefore, z* = [[,(m;/m])X¢ # 1 with overwhelming probability. Hence (z*,7*) is a valid answer
to the instance of SDP. 1

One can have a variant of TC4 whose commitment is in G; and Gg in a similar way we convert
TC1 to TC3. Unlike the previous case, however, RandOneSide cannot be used as TC4 isin A = Aggn.
So we instead use RandSeq keeping ¢, and h, intact. This modification results in 2k + 1 group
elements in a commitment, which is 1 element less than that of TC3. However, depending on the
applications, this may be less efficient since the verification predicate is not one-sided.

C One-Time Signature Schemes

C.1 A One-Time Signature Scheme in Any Setting

Let A € {Asymy Axdh7 ASth}'

e OTS1.Key(1}): Choose random generators 9z, Pz, gy hy = G, Fori=1,...,k, choose xi, v,
8; < Z, and compute (g;, h;) = (g g)", hX*h%). Also choose (, p, ¢ + Zp and set a = gSgf
and b = hghf Set vk = (Qz, hZ7 () h’U7 {gla h’b}i:lv a, b) and sk = (Uku C) P, ¥, {XZ) Vis 61}?:1)
We also use g in A. Output (vk, sk).

e OTS1.Sign(sk,m): Compute

Output o = (z,7,u) as a signature.

41

e OTS1.Vrf(vk,m,o): Parse o into (z,r,u). Output 1 if the following equations hold. Output
0, otherwise.

z?r

e(a, g) = e(gz, 2) e(gr,7) e(gi, m;) (41)

.

—. I

e(b,g) = e(h, z) e(hy,u) e(hi,m;) (42)

1

7

Theorem 15. One-time signature scheme OTS1 is strongly unforgeable against one-time chosen
message attacks if SDP holds for A.

Proof. Suppose that there is an adversary, A, that finds a forged signature of = (2, !, ul) for
message 1 after seeing a one-time signature (z,7,u) for message 1 of its choice. We construct a
reduction algorithm to SDP as follows.

Given an instance (g, hz, gr, hy) of SDP, do the same as OTS1.Key by using the input instance
as the bases. When A submit message mi, run OTS1.Sign and return (z,7,u) to A. Given output
(zf,rt,ut) and m! from A, compute

ml Jmi) (43)

:w

k
(ml/m)*, =t [ml/ma)", w* = (uf ju)

1:1 =1 z:l

::]»

T/z

Then output (z*,7*,u*). This completes the description of the reduction algorithm.
Suppose that adversary A is successful. By dividing both sides of with respect to (z*,r*, u*)
and (z,7,u), we have

k
1 =e(g., zT/z) e(gr,rT/T) He(giam;f/mi)
i=1

k k

= e(g., 2T /2 [T (ml/ma)™") egr ot /e T (md fma)™)

i=1 i=1
= 6(927 Z*) e(g'ﬁ T*)'
Similarly, with respect to , we have

k
1= e(hs,21/2) e(husul fu) T e(hism! /mq)
=1

k

:e(hz,,ZT/ZIT(mj/mi)xZ hu,uT/uH T/ml

i=1
= e(hy, 2%) e(hy, u).

Hence (z*,7*,u*) is a correct answer to the SDP instance.

What remains to show is z* # 1. We first consider the case of m = mf. In this case,
(2", rt,ut) # (2,7,u) must hold. Observe that 2T = 2 cannot be the case since it implies r = r
and u! = w to fulfill (41)) and . Thus we have 2t # z and 2* = 21 /2 # 1. Next we consider the

case of m # mf. In this case, there exists i* for which m # m;f* holds. For such i*, parameter

42

xi+ is information theoretically hidden from the view of the adversary. Namely, for any view of the
adversary and for any y;~, there exists a consistent coin toss which yields the same view. This can
be verified by seeing that (a,b), and (g;, h;) are perfectly hiding commitments of ¢ and x;, and the
one-time signature does not identify them despite establishing relation between them. Therefore,
due to the term (mj* /mi*)Xi*, for 'mj* # m;+, the probability that z* = 1 is negligible. |

C.2 More Efficient Scheme in the Asymmetric Setting

In the case of A € {Axdh, Asxdh} We can construct a more efficient scheme, say OTS2, that halves
OTS1 just like TC4 does for TCL. The verification equation is:

k

e(a, g) = e(gz, 2) e(gr,7) He(gi, m;) (44)

=1

Scheme OTS2 is strongly unforgeable against one-time chosen message attacks under the DBP
assumption.

C.3 Signing An Unbounded-Size Message

Using OTS1 from Section we construct OTS1u that can sign unbounded-size message. (Thus it
is an automorphic one-time signature scheme.) The idea is to sign a block of message together with
a fresh verification-key used to sign the next message block. A problem is that the verification-key
of OTS1 is too large and not covered by its message space. We can get around the problem by
reusing the bases (g, hz, gr, hu, {gi, hi}¥_;) and only renew (a,b) for every message block. The
same trick is used in Section The unforgeability against one-time chosen message attacks can
be proven based on SDP. The proof is almost the same as that for OTS1 and omitted. (Since
fresh a and b brings new randomness (, the information theoretic nature exploited in the proof is
preserved.)

In the asymmetric case A = Aggh, one can do the similar construction based on OTS2. Since a
is not in the message space, we use dual signature scheme as in Section [7] and sign messages in Go
and G in alternating manner.

43

	1 Introduction
	2 Preliminaries
	2.1 Common Setup with Bilinear Groups
	2.2 Digital Signatures
	2.3 Assumptions
	2.4 Groth-Sahai Proof System for Pairing Product Equations

	3 Pairing Randomization Techniques
	4 The Main Scheme: Constant-Size Signatures
	4.1 Overview
	4.2 Construction
	4.3 Security
	4.4 Notable Properties
	4.5 Variations

	5 Signing Unbounded-Size Messages
	5.1 Overview
	5.2 Construction

	6 Simulatable Signatures
	6.1 Overview
	6.2 Definitions
	6.3 Construction
	6.4 Security

	7 Signing Mixed-Group Messages in the SXDH Setting
	7.1 Overview
	7.2 Construction
	7.3 Security

	8 Strongly Unforgeable Signatures
	9 Applications
	9.1 Round-Optimal Blind Signatures
	9.2 Group Signatures with Concurrent Join

	10 Conclusion
	A Proofs Related to Assumptions
	A.1 Proof of Theorem 1 (DDHG1 DBP)
	A.2 Proof of Theorem 3 (SFP SDP)
	A.3 Proof of Theorem 2 and Theorem 6 (Justification of SFP and k-SFP)

	B Homomorphic Trapdoor Commitment Schemes
	B.1 Scheme TC1
	B.2 Scheme TC2
	B.3 Scheme TC3
	B.4 Scheme TC4

	C One-Time Signature Schemes
	C.1 A One-Time Signature Scheme in Any Setting
	C.2 More Efficient Scheme in the Asymmetric Setting
	C.3 Signing An Unbounded-Size Message

