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Abstract

The general Huff curves which contains Huff’s model as a special
case is introduced in this paper. It is shown that every elliptic curve
with three points of order 2 is isomorphic to a general Huff curve. Some
fast explicit formulae for general Huff curves in projective coordinates
are presented. These explicit formulae for addition and doubling are
almost as fast as they are for the Huff curves in [9]. Finally, the
number of isomorphism classes of general Huff curves defined over a
finite field is enumerated.
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plication, cryptography

1 Introduction

The elliptic curve cryptosystem was independently proposed by Koblitz [10]
and Miller [12] which relies on the difficulty of discrete logarithmic problem in
the group of rational points on an elliptic curve. One of the main operations
and challenges in elliptic curve cryptosystems is the scalar multiplication.
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The speed of scalar multiplication plays an important role in the efficiency
of the whole system. Elliptic curves can be represented in different forms.
To obtain faster scalar multiplications, various forms of elliptic curves have
been extensively studied in the last two decades. Some important elliptic
curve families include Jacobi intersections, Edward curves, Jacobi quartics,
Hessian curves etc.. Details of previous works can be found in [1, 3, 9].
Recently, Joye, Tibouchi, and Vergnaud [9] revisit a model for elliptic curves
over Q introduced by Huff [8] in 1948. They presented fast explicit formulae
for point addition and doubling on Huff curves. They also addresses in [9]
the problem of the efficient evaluation of pairings over Huff curves such as
completeness and independence of the curve parameters.

In order to study the elliptic curve cryptosystem, one need first to answer
how many curves there are up to isomorphism, because two isomorphic ellip-
tic curves are the same in the point of cryptographic view. So it is natural to
count the isomorphism classes of some kinds of elliptic curves. Some formu-
lae about counting the number of the isomorphism classes of general elliptic
curves over a finite field can be found in literatures, such as [6, 11, 13, 14].

In this paper, the general Huff curves x(ay2 − 1) = y(bx2 − 1) which
contains Huff curves ax(y2 − 1) = by(x2 − 1) as a special case is introduced.
We show that every elliptic curve with three points of order 2 is isomorphic
to a general Huff curve. Some fast explicit formulae for general Huff curves
in projective coordinates are presented. These explicit formulae for addition
and doubling are almost as fast in the general case as they are for the Huff
curves. Finally, the number of isomorphism classes of general Huff curves
and Huff curves defined over a finite field is enumerated.

Throughout this paper, K will be a filed and Fq a finite field with q
elements. The algebraic closure of K is denoted by K.

2 General Huff curves

In [9], Joye, Tibouchi, and Vergnaud developed an elliptic curve model intro-
duced by Huff [8] in 1948 to study a diophantine problem. The Huff’s model
for elliptic curves is given by the equation ax(y2 − 1) = by(x2 − 1). They
also presented addition formula on Huff curves. Using (0, 0, 1) as the neutral
element, the addition formula was given by

(x1, y1) + (x2, y2) =

(
(x1 + x2)(1 + x1x2)

(1 + x1x2)(1− y1y2)
,

(y1 + y2)(1 + x1x2)

(1− x1x2)(1 + y1y2)

)
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in affine coordinates. Moreover, this addition law is unified, that is, it can be
used to double a point. Actually, curve families ax(y2 − 1) = by(x2 − 1) are
included in curve families x(ay2−1) = y(bx2−1). We call the curve with the
equation x(ay2−1) = y(bx2−1) the general Huff curve. For the general Huff
curve Ha,b : x(ay2−1) = y(bx2−1), if a = µ2 and b = ν2 are square elements
of the field K, and let x′ = νx and y′ = µy, then µx′(y′2 − 1) = νy′(x′2 − 1).
That is, curve families ax(y2 − 1) = by(x2 − 1) are part of curve families
x(ay2 − 1) = y(bx2 − 1) with a, b are square elements of the field K. Note
that Ha,b : x(ay2− 1) = y(bx2− 1) is a smooth elliptic curve if ab(a− b) 6= 0.
Let F (X, Y, Z) := aXY 2 − bX2Y − XZ2 + Y Z2, then the Hessian of the
curve F (X, Y, Z) = 0 is

H(F ) =

∣∣∣∣∣∣
FXX FXY FXZ
FY X FY Y FY Z
FZX FZY FZZ

∣∣∣∣∣∣ = 8

∣∣∣∣∣∣
−bY (aY − bX) Z

(aY − bX) aX −Z
Z −Z (X − Y )

∣∣∣∣∣∣ ,
where FXY is the second partial derivative of the polynomial F with respect
to X and Y . Since the general Huff curve is smooth, the inflection points of
F are the intersection points of F and H(F ). Hence, it is clear that (0, 0, 1)
is an inflection point and there is no inflection points with Z = 0.

Theorem 2.1. Let K be a field of characteristic 6= 2, and let a, b ∈ K with
a 6= b. Then the curve

Ha,b : X(aY 2 − Z2) = Y (bX2 − Z2)

is isomorphic to the elliptic curve

V 2W = U(U + aW )(U + bW )

via the change of variables ϕ(X, Y, Z) = (U, V,W ), where

U = bX − aY, V = (b− a)Z, and W = Y −X.

The inverse change is ψ(U, V,W ) = (X, Y, Z), where

X = U + aW, Y = U + bW, and Z = V.

Proof. From U = bX − aY, V = (b − a)Z, and W = Y − X, we have
V 2W = (b−a)2(Y −X)Z2 and U(U+aW )(U+bW ) = (b−a)2XY (bX−aY ).
Therefore, V 2W = U(U +aW )(U + bW ) since X(aY 2−Z2) = Y (bX2−Z2).

3



On the other hand, since V 2W = U(U+aW )(U+bW ), X = U+aW, Y =
U + bW , and Z = V , we have W = X−Y

a−b and U = aY−bX
a−b . Therefore,

Z2(X−Y ) = XY (aY −bX), that is, X(aY 2−Z2) = Y (bX2−Z2). Obviously,
the maps ϕ and ψ are mutually inverse to each other.

For the affine edition, the general Huff curve x(ay2 − 1) = y(bx2 − 1)
is isomorphic to y2 = x(x + a)(x + b) over K. Tt was proposed in [7]
that an elliptic curve E over an algebraic number field K contains a copy
of Z/2Z × Z/2Z if and only if E admits one of the normal forms y2 =
x(x − a)(x − b), where a, b ∈ K and ab(a − b) 6= 0, and E over K contains
a copy of Z/2Z × Z/4Z if and only if E admits one of the normal forms
y2 = x(x2 + 2(a2 + 1)x + (a2 − 1)2)), where a ∈ K and a 6= 0,±1. Noting
that y2 = x(x2 + 2(a2 + 1)x+ (a2 − 1)2)) = x(x+ (a+ 1)2)(x+ (a− 1)2), E
contains a copy of Z/2Z × Z/4Z if and only if E admits one of the normal
forms y2 = x(x + t2)(x + (t + 2)2), where t ∈ K and t 6= 0,−1,−2. For

any a, b ∈ K with a 6= b, let u =
2

b− a
and t =

2a

b− a
, then

t

u
= a and

t+ 2

u
= b. Since y2 = x(x + t2)(x + (t + 2)2) is isomorphic to (

y

u3
)2 =

x

u2
(
x

u2
+(

t

u
)2)(

x

u2
+(

t+ 2

u
)2), and then is isomorphic to y2 = x(x+a2)(x+b2),

E contains a copy of Z/2Z× Z/4Z if and only if E is isomorphic over K to
a Huff curve ax(y2 − 1) = by(x2 − 1). Therefore we give another proof of
Theorem 2 in [9]. Note that the j-invariant of the curve x(ay2−1) = y(bx2−1)

is 28 (a2 − ab+ b2)3

a2b2(a− b)2
, and the j-invariant of the curve ax(y2− 1) = by(x2− 1)

is j = 28 (a4 − a2b2 + b4)3

a4b4(a2 − b2)2
.

2.1 Huff curves and twisted Jacobi intersections curves

Twisted Jacobi intersections elliptic curves were introduced in [5]. A twisted
Jacobi intersections elliptic curve over the field K is defined by the affine
equations au2 + v2 = 1, bu2 + w2 = 1 or by the projective equations aU2 +
V 2 = Z2, bU2 + W 2 = Z2, where a, b ∈ K with ab(a − b) 6= 0. In [5],
it was shown that a twisted Jacobi intersections curve Ea,b : au2 + v2 =
1, bu2 + w2 = 1 with ab(a − b) 6= 0 is a smooth curve and is isomorphic
to an elliptic curve y2 = x(x − a)(x − b) over K. However, every elliptic
curve over K having three K-rational points of order 2 is isomorphic to
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a twisted Jacobi intersections curve. Since the general Huff curve Ha,b :
x(ay2 − 1) = y(bx2 − 1) is isomorphic to y2 = x(x + a)(x + b) over K, the
general Huff curve Ha,b : x(ay2 − 1) = y(bx2 − 1) is isomorphic to a twisted
Jacobi intersections curve −au2 + v2 = 1, − bu2 +w2 = 1. Especially, a Huff
curve ax(y2− 1) = by(x2− 1) is isomorphic to a twisted Jacobi intersections
curve −a2u2 + v2 = 1, − b2u2 +w2 = 1. Actually, as proposed in [9], Huff [8]
considered rational distance sets S with some forms. Such a point must then
satisfy the equations x2+a2 = u2 and x2+b2 = v2 with u, v ∈ Q. The system
of associated homogeneous equations x2+a2z2 = u2 and x2+b2z2 = v2 defines
a curve of genus 1 in P3. This homogeneous equations is just a twisted Jacobi
intersections curve

−a2z2 + u2 = x2,−b2z2 + v2 = x2.

It is smooth if and only if a2 6= b2 and ab 6= 0 according to Theorem 1 in [5].

2.2 Huff curves and twisted Edwards curves

In [2] it is proved that every Edwards curve Ed : x2 + y2 = 1 + dx2y2 is
birationally equivalent to a Montogomery curve MA,B : By2 = x3 + Ax2 + x
via

ϕ : M 2(1+d)
1−d

, d
1−d

→ Ed with (x, y) 7→
(
x

y
,
x− 1

x+ 1

)
.

The map is not defined everywhere. However, this maps can be extended
to give an everywhere-defined isomorphism between the respective desingu-
larized projective models. The extended map takes the neutral element to
the neutral element, hence, ϕ and ϕ−1 commute with the group structures.
Moreover, the twisted Edwards curve Ea,d : ax2+y2 = 1+dx2y2 is isomorphic
to M 2(a+d)

(a−d)
, 4
(a−d)

. Since the Huff curve ax(y2 − 1) = by(x2 − 1) is isomorphic

to Ma2+b2

ab
, 1
ab

: 1
ab
y2 = x3 + a2+b2

ab
x2 +x, the Huff curve ax(y2−1) = by(x2−1)

is isomorphic to the Edwards curve E(a−b
a+b

)2 : x2 + y2 = 1 + (a−b
a+b

)2x2y2.

3 Enumeration of isomorphism classes

Let E be an elliptic curve over a field K given by a Weierstrass equation

E : Y 2 = X3 + a2X
2 + a4X + a6
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with a2, a4, a6 ∈ K. An admissible change of variables defined over an exten-
sion field L/K in a Weierstrass equation is one of the form

X ′ = u2X + r and Y ′ = u3Y

with u, r ∈ L and u 6= 0. The elliptic curves E1/K and E2/K are said to be
isomorphic over L, denote by E1

∼=L E2, if there is an admissible change of
variables defined over L transforming E1 to E2.

Let E1/K : Y 2 = X3 + a2X
2 + a4X + a6 and E2/K : Y 2 = X3 + a

′
2X

2 +
a
′
4X + a

′
6 be two elliptic curves defined over K. It is well known from the

definition that E1
∼=L E2 if and only if there exists u, r ∈ L and u 6= 0 satisfy

the following equations
u2a

′
2 = a2 + 3r,

u4a
′
4 = a4 + 2ra2 + 3r2,

u6a
′
6 = a6 + ra4 + r2a2 + r3.

(1)

Note that E1 and E2 are isomorphic over K if and only if j(E1) = j(E2).
If K = Fq is a finite field, then the statement is not true. We have only
j(E1) = j(E2) if E1 and E2 are isomorphic over Fq. The reader is referred to
[15] for more results on the isomorphism of elliptic curves.

The Legendre elliptic curve over K is defined as

Eλ : y2 = x(x− 1)(x− λ),

where λ ∈ K. It is clear that the Legendre curve Eλ is nonsingular for
λ 6= 0, 1. The points O, (0, 0), (1, 0), and (λ, 0) are all the 2-division points,

that is, the points of order 2. The j-invariant of Eλ is j(Eλ) = 28 (λ
2−λ+1)3

λ2(λ−1)2 .
In this section, let K = Fq. It is clear that any general Huff elliptic curve

is isomorphic to a Legendre curve over the algebraic closure Fq. From the
enumeration result of the isomorphism classes of Legendre curves over Fq
([6]), we have the following theorem.

Theorem 3.1. Suppose Fq is a finite field with q elements and char(Fq) 6=
2, 3. Let N q denote the number of Fq-isomorphism classes of general Huff
curves Ha,b : x(ay2 − 1) = y(bx2 − 1)(which is the same as the Huff curves
ax(y2 − 1) = by(x2 − 1)) defined over Fq with ab(a− b) 6= 0. Then

N q =


q + 5

6
, if q ≡ 1, 7 (mod 12),

q + 1

6
, if q ≡ 5, 11 (mod 12).
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3.1 Fq-isomorphism classes of Huff curves

Since ax(y2− 1) = by(x2− 1) is Fq-isomorphic to y2 = x(x+ a2)(x+ b2), it is
also Fq-isomorphic to y2 = x(x−1)(x− (1− t2)) by (x, y)→ (x/a2 +1, y/a3),
where t = b/a.

Lemma 3.2. The Huff curves ax(y2 − 1) = by(x2 − 1) with a, b ∈ Fq and
ab(a− b) 6= 0 (or curves y2 = x(x− 1)(x− (1− t2)) with t ∈ Fq and t 6= 0, 1)
are isomorphic to Legendre curves y2 = x(x− 1)(x− λ) with at least one of
λ, 1− λ is a square element over Fq.

The following lemma can be gotten easily.

Lemma 3.3. Suppose that Fq is a finite field with char(Fq) > 3. Let N(s, t)

be the number of a ∈ Fq with
(
a
q

)
= s and

(
1−a
q

)
= t. Then

N(−1,−1) =


q − 1

4
, if q ≡ 1(mod 4),

q + 1

4
, if q ≡ 3(mod 4).

Firstly, assume that q ≡ 1(mod 4). According to [6], we can divide the
Legendre elliptic curves Eb : y2 = x(x − 1)(x − b) with b 6= 0, 1, into the
following 4 disjoint sets H1, H2, H3 and H4, where

H1 =
{
y2 = x(x− 1)(x− b)|

(
b
q

)
=
(

1−b
q

)
= 1
}
,

H2 =
{
y2 = x(x− 1)(x− b)|

(
b
q

)
= 1,

(
1−b
q

)
= −1

}
,

H3 =
{
y2 = x(x− 1)(x− b)|

(
b
q

)
= −1,

(
1−b
q

)
= 1
}
,

H4 =
{
y2 = x(x− 1)(x− b)|

(
b
q

)
= −1,

(
1−b
q

)
= −1

}
.

From Lemma 3.3, we get that |H1| = q−5
4

and |H2| = |H3| = |H4| = q−1
4

.
Therefore, We know from [6] the Legendre curves from the 3 distinct sets

H1, H2 ∪ H3 and H4 can not be Fq-isomorphic to each other. let Nq,H4 be
the number of Fq-isomorphism classes of Legendre elliptic curves H4. Then
we have ([6])

Nq,H4 =


q − 1

8
, if q ≡ 1, 17 (mod 24),

q + 3

8
, if q ≡ 5, 13 (mod 24).
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Secondly, assume that q ≡ 3(mod 4). The number of Legendre curves
Eλ : y2 = x(x − 1)(x − b) with b and 1 − b are non-square elements equals
to q+1

4
. From [6], the number of curves isomorphic to a given curve with

both b and 1− b are non-square elements equals to 3 if the j-invariant j 6= 0,
and equals to 2 otherwise. But j = 0 occurs only when q ≡ 7(mod 12).
Therefore, the number of Fq-isomorphism classes of Huff curves equals to

(
q + 1

4
− 2)/3 + 1 =

q + 5

12
, if q ≡ 7 (mod 12),

(
q + 1

4
)/3 =

q + 1

12
, if q ≡ 11 (mod 12).

By subtracting above numbers from the number of Fq-isomorphism classes
of Legendre curves ([6]), we have the following enumeration result.

Theorem 3.4. Suppose Fq is a finite field with q elements and char(Fq) > 3.
Let Nq be the number of Fq-isomorphism classes of Huff curves ax(y2− 1) =
by(x2 − 1) defined over Fq with ab(a− b) 6= 0. Then

Nq =



q + 5

6
, if q ≡ 1 (mod 12),

q + 1

6
, if q ≡ 5 (mod 12),

q + 1

4
, if q ≡ 7 (mod 12),

q − 3

4
, if q ≡ 11 (mod 12).

3.2 Fq-isomorphism classes of general Huff curves

In order to enumerate the Fq-isomorphism classes of general Huff curves, it
is sufficient to count the Fq-isomorphism classes of elliptic curves of the form
Ba,b : y2 = x(x−a)(x−b). For any elliptic curve y2 = x3+ax+b defined over
Fq, the number of elliptic curves which are Fq-isomorphic to y2 = x3 +ax+ b
equals to ([11])

q − 1

6
, if a = 0 and q ≡ 1 ( mod 3),

q − 1

4
, if b = 0 and q ≡ 1 ( mod 4),

q − 1

2
, otherwise.
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Let E be an elliptic curve with at least one order 2 point then by moving this
point to (0, 0) it can be changed to the form Ea,b : y2 = x3 + ax2 + bx. The

j-invariant of Ea,b is 256(a2−3b)3
b2(a2−4b) . Note that j(Ea,b) = 0 if and only if a2 = 3b,

and j(Ea,b) = 1728 if and only if a(9b − 2a2) = 0 since Ea,b is isomorphic
to the elliptic curve y2 = x2 − (a2 − 3b)x + (1/2)a(9b − 2a2). Every order
2 point admits this change, hence, the number of elliptic curves which is Fq
isomorphic to Ea,b equals to

q − 1

2
, if j = 0 and q ≡ 1 (mod 3),

3(q − 1)

4
, if j = 1728 and q ≡ 1 (mod 4),

3(q − 1)

2
, otherwise.

if the curve has three order 2 points.
The number of elliptic curves with three order 2 points equals to (q−1)(q−2)

2

since they admit the normal forms y2 = x(x− a)(x− b). Hence, the number

of elliptic curves with only one order 2 points equals to q(q−1)− (q−1)(q−2)
2

−
(q− 1) = q(q−1)

2
. The number of elliptic curves Ea,b : y2 = x3 + ax2 + bx with

j(Ea,b) = 0 equals to q − 1 since j(Ea,b) = 0 if and only if a2 = 3b. Thus, if
it possess three order 2 points then

1 =

(
a2 − 4b

q

)
=

(
−b
q

)
=

(
−3

q

)
.

Hence, the number of elliptic curves Ea,b : y2 = x3 + ax2 + bx possess three
order 2 points with j(Ea,b) = 0 equals to (q− 1) if q ≡ 1 (mod 3), and equals
to 0 if q ≡ 2 (mod 3). Similarly, j(Ea,b) = 1728 if and only if a(9b− 2a2) = 0
and then if and only if b = 2(a/3)2. Therefore, the number of elliptic curves
Ea,b : y2 = x3 + ax2 + bx with j(Ea,b) = 1728 equals to (q − 1) + (q − 1) =
2(q − 1). Thus, if it possess three order 2 points then a2 − 4b is a square
element in Fq. From 9b = 2a2 we have a2 − 4b = b/2 = (a/3)2. Hence,
the number of elliptic curves Ea,b : y2 = x3 + ax2 + bx possess three order

2 points with j(Ea,b) = 1728 equals to 3(q−1)
2

. Thus, the number of elliptic
curves Ea,b : y2 = x3 + ax2 + bx which possess three order 2 points with
j(Ea,b) 6= 0, 1728 equals to

(q − 1)(q − 7)

2
, if q ≡ 1 (mod 3),

(q − 1)(q − 5)

2
, if q ≡ 2 (mod 3).

9



By the above argument, the number of Fq-isomorphism classes of elliptic
curves Ba,b : y2 = x(x− a)(x− b) defined over Fq equals to

q − 1
q − 1

2

+

3(q − 1)

2
3(q − 1)

4

+

(q − 1)(q − 7)

2
3(q − 1)

2

=
q + 5

3

if q ≡ 1 (mod 12). Other cases can be computed similarly. Therefore we
have the following theorem.

Theorem 3.5. Let Fq be a finite field with q elements and char(Fq) > 3. Let
N ′q denote the number of Fq-isomorphism classes of x(ay2 − 1) = y(bx2 − 1)
defined over Fq with ab(a− b) 6= 0. Then

N ′q =



q + 5

3
, if q ≡ 1 (mod 12),

q + 1

3
, if q ≡ 5 (mod 12),

q + 2

3
, if q ≡ 7 (mod 12),

q − 2

3
, if q ≡ 11 (mod 12).

4 Arithmetic on general Huff curves

Let C be a nonsingular cubic curve defined over a field K, and let O be a
point on C(K). For any two points P and Q, the line through P and Q
meets the cubic curve C at one more point, denoted by PQ. With a point
O as zero element and the chord-tangent composition PQ we can define the
group law P +Q by P +Q = O(PQ) on C(K) making C(K) into an abelian
group with O as zero element and −P = P (OO). If O is an inflection point
then −P = PO and OO = O.

4.1 The addition law on general Huff curves

Let the line joining P = (x1, y1) and Q = (x2, y2) be y = y1 + λ(x − x1) =
λx + µ, where λ is the slope of the line. Substituting this expression for y

10



into the Huff equation x(ay2 − 1) = y(bx2 − 1), we get x(a(λx + µ)2 − 1) =
(λx+ µ)(bx2 − 1), that is,

(aλ2 − bλ)x3 + (2aλµ− bµ)x2 + (aµ2 + λ− 1)x+ µ = 0.

Let PQ = (x3, y3), then

x1 + x2 + x3 = −2aλµ− bµ
aλ2 − bλ

.

Hence,

−x3 = x1 + x2 +
[2a(y2 − y1)− b(x2 − x1)](x2y1 − x1y2)

(y2 − y1)(a(y2 − y1)− b(x2 − x1))
.

Noting that

(a(y2 − y1)− b(x2 − x1))(x2 + x1)y1y2
= (a(x1y2 + x1y2 − x2y1 − x1y1)− bx22 + bx21) y1y2
= (ax2y

2
2 − bx2y2)y1 − (ax1y

2
1 − bx21y1)y2 + a(x1y2 − x2y1)y1y2

= (x2 − y2)y1 − (x1 − y1)y2 + a(x1y2 − x2y1)y1y2
= (x1y2 − x2y1)(ay1y2 − 1),

we have

−x3 = x1 + x2 −
a(x1 + x2)y1y2
ay1y2 − 1

+
(a(y2 − y1)− b(x2 − x1))(x2 + x1)y1y2

(y1 − y2)(ay1y2 − 1)

= x1 + x2 +
x1y2 − x2y1
y1 − y2

− a(x1 + x2)y1y2
ay1y2 − 1

=
x1y1 − x2y2
y1 − y2

− a(x1 + x2)y1y2
ay1y2 − 1

.

(2)
From

(y1 − y2) (ax1x2(y1 + y2) + (x1 + x2))
= (ax1y

2
1 + y1)x2 − (ax2y

2
2 + y2)x1 + (x1y1 − x2y2)

= (bx21y1 + x1)x2 − (bx2y
2
2 + x2)x1 + (x1y1 − x2y2)

= bx1x2((x1y1 − x2y2)) + (x1y1 − x2y2)
= (x1y1 − x2y2)(bx1x2 + 1),

we get
x1y1 − x2y2
y1 − y2

=
ax1x2(y1 + y2) + (x1 + x2)

bx1x2 + 1
.
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Furthermore, from formula (2) we get

−x3 =
ax1x2(y1 + y2) + (x1 + x2)

bx1x2 + 1
− a(x1 + x2)y1y2

ay1y2 − 1

=
(ax1x2(y1 + y2) + (x1 + x2))(ay1y2 − 1)− a(x1 + x2)y1y2(bx1x2 + 1)

(bx1x2 + 1)(ay1y2 − 1)
.

(3)
Again from

(ax1x2(y1 + y2) + (x1 + x2))(ay1y2 − 1)− a(x1 + x2)y1y2(bx1x2 + 1)
= a2x1x2(y1 + y2)y1y2 − ax1x2(y1 + y2)− (x1 + x2)− ab(x1 + x2)x1x2y1y2
= a(ax1y

2
1x2y2 + ax2y

2
2x1y1 − bx21y1x2y2 − bx22y2x1y1)− ax1x2(y1 + y2)− (x1 + x2)

= a((x1 − y1)x2y2 + (x2 − y2)x1y1)− ax1x2(y1 + y2)− (x1 + x2)
= −ax2y1y2 − ax1y1y2 − (x1 + x2)
= −(x1 + x2)(1 + ay1y2),

(4)
we have

x3 =
(x1 + x2)(ay1y2 + 1)

(bx1x2 + 1)(ay1y2 − 1)
.

Similarly, by symmetry we have

y3 =
(y1 + y2)(bx1x2 + 1)

(bx1x2 − 1)(ay1y2 + 1)
.

we claim that the third intersection point (x3, y3) of the tangent line at P
has coordinates

x3 =
2x1(ay

2
1 + 1)

(bx21 + 1)(ay21 − 1)
, and y3 =

2y1(bx
2
1 + 1)

(bx21 − 1)(ay21 + 1)
.

Note that the slope of the tangent line at P is

λP =
ay21 − 2bx1y1 − 1

bx21 − 2ax1y1 − 1
.

In order to prove the claim we need only to check

ay21 − 2bx1y1 − 1

bx21 − 2ax1y1 − 1
=

2y1(bx
2
1 + 1)

(bx21 − 1)(ay21 + 1)
− y1

2x1(ay
2
1 + 1)

(bx21 + 1)(ay21 − 1)
− x1

.
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This is true since the right side of the above equation is

2y1(bx
2
1 + 1)− y1(bx21 − 1)(ay21 + 1)

2x1(ay21 + 1)− x1(bx21 + 1)(ay21 − 1)

(bx21 + 1)(ay21 − 1)

(bx21 − 1)(ay21 + 1)

=
y1(bx

2
1 + ay21 − abx21y21 + 3)

x1(bx21 + ay21 − abx21y21 + 3)

(bx21 + 1)(ay21 − 1)

(bx21 − 1)(ay21 + 1)

=
y1(bx

2
1 + 1)(ay21 − 1)

x1(bx21 − 1)(ay21 + 1)
=

(ay21 − 1)(−y1(bx21 + 1))

(bx21 − 1)(−x1(ay21 + 1))

=
(ay21 − 1)(y1(bx

2
1 − 1)− 2bx21y1)

(bx21 − 1)(x1(ay21 − 1)− 2ax1y21)
=

(ay21 − 1)(x1(ay
2
1 − 1)− 2bx21y1)

(bx21 − 1)(y1(bx21 − 1)− 2ax1y21)

=
(ay21 − 1)(x1(ay

2
1 − 2bx1y1 − 1))

(bx21 − 1)(y1(bx21 − 2ax1y1 − 1))
=
x1(ay

2
1 − 1)(ay21 − 2bx1y1 − 1)

y1(bx21 − 1)(bx21 − 2ax1y1 − 1)

=
ay21 − 2bx1y1 − 1

bx21 − 2ax1y1 − 1
= λP .

Let Ha,b be a general Huff curve X(aY 2−Z2) = Y (bX2−Z2). We know
that (0, 0, 1) is an inflection point and (1, 0, 0), (0, 1, 0) and (a, b, 0) are exactly
the three infinite points from Section 2. For any two points P = (X1, Y1, Z1)
and Q = (X2, Y2, Z2), the third intersection point (U3, V3,W3) of the line
joining P and Q has coordinates

U3 = (X1Z2 +X2Z1)(bX1X2 − Z1Z2)(aY1Y2 + Z1Z2)
2,

V3 = (Y1Z2 + Y2Z1)(aY1Y2 − Z1Z2)(bX1X2 + Z1Z2)
2,

W3 = (b2X2
1X

2
2 − Z2

1Z
2
2)(a2Y 2

1 Y
2
2 − Z2

1Z
2
2).

Firstly, choose O = (1, 0, 0) as then neutral element. Then for any
point P = (X1, Y1, Z1) with X1Y1Z1 6= 0 on the curve, the point OP =
(−Z2

1 , bX1Y1, bX1Z1). Furthermore OO = (0, 0, 1), O(a, b, 0) = (0, 1, 0),
O(0, 1, 0) = (a, b, 0), O(0, 0, 1) = (1, 0, 0), and −(X1, Y1, Z1) = (X1, Y1,−Z1).
Hence, let P +Q = (X3, Y3, Z3), then

X3 = (bX1X2 − Z1Z2)(bX1X2 + Z1Z2)(Z1Z2 − aY1Y2),
Y3 = b(X1Z2 +X2Z1)(bX1X2 + Z1Z2)(Y1Z2 + Y2Z1),
Z3 = b(X1Z2 +X2Z1)(bX1X2 − Z1Z2)(aY1Y2 + Z1Z2).

(5)
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The affine addition formula is

(x1, y1) + (x2, y2) =

(
(bx1x2 + 1)(1− ay1y2)
b(x1 + x2)(1 + ay1y2)

,
(y1 + y2)(bx1x2 + 1)

(1 + ay1y2)(bx1x2 − 1)

)
.

Secondly, choose O = (0, 1, 0) as the neutral element. Then for any
point P = (X1, Y1, Z1) with X1Y1Z1 6= 0 on the curve, the point OP =
(aX1Y1,−Z2

1 , aY1Z1). We also have OO = (0, 0, 1), O(a, b, 0) = (1, 0, 0),
O(1, 0, 0) = (a, b, 0), O(0, 0, 1) = (0, 1, 0), and −(X1, Y1, Z1) = (X1, Y1,−Z1).
Hence, letP +Q = (X3, Y3, Z3), then

X3 = a(X1Z2 +X2Z1)(Y1Z2 + Y2Z1)(aY1Y2 + Z1Z2),
Y3 = (Z1Z2 − bX1X2)(aY1Y2 − Z1Z2)(aY1Y2 + Z1Z2),
Z3 = a(bX1X2 + Z1Z2)(aY1Y2 − Z1Z2)(Y1Z2 + Y2Z1).

(6)

The affine addition formula is

(x1, y1) + (x2, y2) =

(
(x1 + x2)(1 + ay1y2)

(1 + bx1x2)(ay1y2 − 1)
,
(1− bx1x2)(1 + ay1y2)

a(y1 + y2)(bx1x2 + 1)

)
.

Thirdly, choose O = (0, 0, 1) as the neutral element. Then for any
point P = (X1, Y1, Z1) with X1Y1Z1 6= 0 on the curve, the point OP =
(aX1Y1,−Z2

1 , aY1Z1). Now OO = (0, 0, 1) and−(X1, Y1, Z1) = (X1, Y1,−Z1).
Hence, let P +Q = (X3, Y3, Z3), then

X3 = (X1Z2 +X2Z1)(aY1Y2 + Z1Z2)
2(Z1Z2 − bX1X2),

Y3 = (Y1Z2 + Y2Z1)(bX1X2 + Z1Z2)
2(Z1Z2 − aY1Y2),

Z3 = (b2X2
1X

2
2 − Z2

1Z
2
2)(a2Y 2

1 Y
2
2 − Z2

1Z
2
2).

(7)

The affine addition formula is

(x1, y1) + (x2, y2) =

(
(x1 + x2)(ay1y2 + 1)

(1 + bx1x2)(1− ay1y2)
,

(y1 + y2)(1 + bx1x2)

(1 + ay1y2)(1− bx1x2)

)
.

The Addition Law on the Huff curve ax(y2 − 1) = by(x2 − 1). Let
us consider the curve aX(Y 2 − Z2) = bY (X2 − Z2). For any two points
P = (X1, Y1, Z1) and Q = (X2, Y2, Z2) on the curve, the third intersection
point (U3, V3,W3) of the line joining P and Q has coordinates ([9])

U3 = (X1Z2 +X2Z1)(X1X2 − Z1Z2)(Y1Y2 + Z1Z2)
2,

V3 = (Y1Z2 + Y2Z1)(Y1Y2 − Z1Z2)(X1X2 + Z1Z2)
2,

W3 = (X2
1X

2
2 − Z2

1Z
2
2)(Y 2

1 Y
2
2 − Z2

1Z
2
2).
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Choose O = (1, 0, 0) as the neutral element. Then for any point P =
(X1, Y1, Z1) withX1Y1Z1 6= 0 on the curve, the pointOP = (−Z2

1 , X1Y1, X1Z1).
FurthermoreOO = (0, 0, 1), O(a, b, 0) = (0, 1, 0), O(0, 1, 0) = (a, b, 0), O(0, 0, 1) =
(1, 0, 0) and −(X1, Y1, Z1) = (X1, Y1,−Z1). Hence, let P + Q = (X3, Y3, Z3)
then 

X3 = (X1X2 − Z1Z2)(X1X2 + Z1Z2)(Z1Z2 − Y1Y2),
Y3 = (X1Z2 +X2Z1)(X1X2 + Z1Z2)(Y1Z2 + Y2Z1),
Z3 = (X1Z2 +X2Z1)(X1X2 − Z1Z2)(Z1Z2 + Y1Y2).

(8)

Similarly, choose O = (0, 1, 0) as the neutral element Then for any
point P = (X1, Y1, Z1) with X1Y1Z1 6= 0 on the curve, the point OP =
(X1Y1,−Z2

1 , Y1Z1). Now we haveOO = (0, 0, 1), O(a, b, 0) = (1, 0, 0), O(1, 0, 0) =
(a, b, 0), O(0, 0, 1) = (0, 1, 0), and −(X1, Y1, Z1) = (X1, Y1,−Z1). Hence, let
P +Q = (X3, Y3, Z3) then ([9])

X3 = (X1Z2 +X2Z1)(Y1Z2 + Y2Z1)(Y1Y2 + Z1Z2),
Y3 = (X1X2 − Z1Z2)(Z1Z2 − Y1Y2)(Y1Y2 + Z1Z2),
Z3 = (X1X2 + Z1Z2)(Y1Y2 − Z1Z2)(Y1Z2 + Y2Z1).

(9)

Now we choose O = (0, 0, 1) as the neutral element. Let P + Q =
(X3, Y3, Z3) then ([9])

X3 = (X1Z2 +X2Z1)(Y1Y2 + Z1Z2)
2(Z1Z2 −X1X2),

Y3 = (Y1Z2 + Y2Z1)(X1X2 + Z1Z2)
2(Z1Z2 − Y1Y2),

Z3 = (Z2
1Z

2
2 −X2

1X
2
2 )(Z2

1Z
2
2 − Y 2

1 Y
2
2 ).

(10)

4.2 Algorithms

Noting that formula (5) and (6) are symmetric to each other, we need only
to consider the formula (5) in algorithms.
Addition on X(aY 2 − Z2) = Y (bX2 − Z2). By formula (5), the following
algorithm compute (X3 : Y3 : Z3) = (X1 : Y1 : Z1) + (X2 : Y2 : Z2) in
11M+3D costs, i.e., 11 field multiplications and 3D constant multiplications
by a, b and 1/b respectively.

A = X1X2; B = Y1Y2; D = Z1Z2; E = bA; F = aB;
G = (X1 + Z1)(X2 + Z2)− A−D;
H = (Y1 + Z1)(Y2 + Z2)−B −D;
X3 = (1/b) · (E +D)(E −D)(D − F );
Y3 = GH(E +D);
Z3 = G(E −D)(F +D).
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By formula (7), the following algorithm compute (X3 : Y3 : Z3) = (X1 : Y1 :
Z1)+(X2 : Y2 : Z2) in 12M+2D costs, where 2D are constant multiplications
by a and b respectively.

A = X1X2; B = Y1Y2; D = Z1Z2; E = bA; F = aB;
G = (X1 + Z1)(X2 + Z2)− A−D;
H = (Y1 + Z1)(Y2 + Z2)−B −D;
L = (D − E)(D + F ); M = (D + E)(D − F );
X3 = GL(D + F ); Y3 = HM(D + E); Z3 = LM.

Doubling on X(aY 2 − Z2) = Y (bX2 − Z2). By formula (5), the following
algorithm compute (X3 : Y3 : Z3) = 2(X1 : Y1 : Z1) costs 6M + 5S + 3D,
where 3D are constant multiplications by a, b and 1/b respectively.

A = X2
1 ; B = Y 2

1 ; C = Z2
1 ; D = bA; E = aB;

F = (X1 + Z1)
2 − A− C;

G = (Y1 + Z1)
2 −B − C;

X3 = (D − C)(D + C)(C − E);
Y3 = FG(C +D);
Z3 = F (D − C)(C + E).

By formula (7), the following algorithm compute (X3 : Y3 : Z3) = 2(X1 : Y1 :
Z1) in 7M + 5S + 2D costs, where 2D are constant multiplications by a and
b respectively.

A = X2
1 ; B = Y 2

1 ; C = Z2
1 ; D = bA; E = aB;

F = (X1 + Z1)
2 − A− C;

G = (Y1 + Z1)
2 −B − C;

L = (E + C)(C −D); M = (C +D)(C − E);
X3 = LF (C + E); Y3 = GM(C +D); Z3 = LM.

The costs of addition and doubling on the Huff curve aX(Y 2 − Z2) =
bY (X2−Z2) are 11M and 7M + 5S, respectively in [9]. Therefore, the addi-
tion in general Huff curves X(aY 2−Z2) = Y (bX2−Z2) are almost as fast as
that in the curves aX(Y 2−Z2) = bY (X2−Z2), but the general Huff curves
possess more curves.

Tripling on X(aY 2 − Z2) = Y (bX2 − Z2).
We can get the tripling formula from addition formula when using O =
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(1, 0, 0) as the neutral element. Assuming that (X3 : Y3 : Z3) = 3(X1 : Y1 :
Z1), then

X3 = X1(abX
2
1Y

2
1 − aY 2

1 Z
2
1 − bX2

1Z
2
1 − 3Z4

1)(abX2
1Y

2
1 + 3aY 2

1 Z
2
1 + Z4

1 − bX2
1Z

2
1)2;

Y3 = Y1(abX
2
1Y

2
1 − aY 2

1 Z
2
1 − bX2

1Z
2
1 − 3Z4

1)(abX2
1Y

2
1 + 3bX2

1Z
2
1 + Z4

1 − aY 2
1 Z

2
1)2;

Z3 = Z1(abX
2
1Y

2
1 + 3aY 2

1 Z
2
1 + Z4

1 − bX2
1Z

2
1)(abX2

1Y
2
1 + 3bX2

1Z
2
1 + Z4

1 − aY 2
1 Z

2
1)

· (3abX2
1Y

2
1 + aY 2

1 Z
2
1 + bX2

1Z
2
1 − Z4

1).

This algorithm compute (X3 : Y3 : Z3) = 3(X1 : Y1 : Z1) costs 10M + 6S by
using temporary variables X2

1 , Y
2
1 , Z

2
1 , Z

4
1 , X

2
1Y

2
1 , Y1Z

2
1 , X1Z

2
1 .

Similarly, we can also get the tripling formula from addition formula when
using O = (0, 0, 1) as the neutral element. Assuming that (X3 : Y3 : Z3) =
3(X1 : Y1 : Z1), then

X3 = X1(Z
4
1 − bX2

1Z
2
1 + 3aY 2

1 Z
2
1 + abX2

1Y
2
1 )2(3Z4

1 + bX2
1Z

2
1 + aY 2

1 Z
2
1 − abX2

1Y
2
1 );

Y3 = Y1(Z
4
1 + 3bX2

1Z
2
1 − aY 2

1 Z
2
1 + abX2

1Y
2
1 )2(3Z4

1 + bX2
1Z

2
1 + aY 2

1 Z
2
1 − abX2

1Y
2
1 );

Z3 = Z1(Z
4
1 + 3bX2

1Z
2
1 − aY 2

1 Z
2
1 + abX2

1Y
2
1 )(Z4

1 − bX2
1Z

2
1 − aY 2

1 Z
2
1 − 3abX2

1Y
2
1 )

· (Z4
1 − bX2

1Z
2
1 + 3aY 2

1 Z
2
1 + abX2

1Y
2
1 ).

The following formula can be used to triple the points on general Huff curves
which is independent with the curve parameter a and b.

X3 = X1(Z
4
1 −X2

1Z
2
1 + 3Y 2

1 Z
2
1 +X2

1Y
2
1 )2(3Z4

1 +X2
1Z

2
1 + Y 2

1 Z
2
1 −X2

1Y
2
1 );

Y3 = Y1(Z
4
1 + 3X1Z1 − Y 2

1 Z
2
1 +X2

1Y
2
1 )2(3Z4

1 +X2
1Z

2
1 + Y 2

1 Z
2
1 −X2

1Y
2
1 );

Z3 = Z1(Z
4
1 + 3X1Z1 − Y 2

1 Z
2
1 +X2

1Y
2
1 )(Z4

1 −X2
1Z

2
1 − Y 2

1 Z
2
1 − 3X2

1Y
2
1 )

· (Z4
1 −X2

1Z
2
1 + 3Y 2

1 Z
2
1 +X2

1Y
2
1 ).

This algorithm compute (X3 : Y3 : Z3) = 3(X1 : Y1 : Z1) in 10M + 6S + 3D
costs by using temporary variables X2

1 , Y
2
1 , Z

2
1 , Z

4
1 , X

2
1Y

2
1 , Y1Z

2
1 , X1Z

2
1 .
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