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Abstract

This paper fills an important foundational gap with the first proofs, under standard assumptions
and in the standard model, of the existence of pseudorandom functions (PRFs) and pseudorandom
permutations (PRPs) resisting rich and relevant forms of related-key attacks (RKA). An RKA allows
the adversary to query the function not only under the target key but under other keys derived from
it in adversary-specified ways. Based on the Naor-Reingold PRF we obtain an RKA-PRF whose
keyspace is a group and that is proven, under DDH, to resist attacks in which the key may be
operated on by arbitrary adversary-specified group elements. Previous work was able only to provide
schemes in idealized models (ideal cipher, random oracle), under new, non-standard assumptions, or
for limited classes of attacks. The reason was technical difficulties that we resolve via a new approach
and framework that, in addition to the above, yields other RKA-PRF's including a DLIN-based one
derived from the Lewko-Waters PRF. Over the last 15 years cryptanalysts and blockcipher designers
have routinely and consistently targeted RKA-security; it is visibly important for abuse-resistant
cryptography; and it helps protect against fault-injection sidechannel attacks. Yet ours are the first
significant proofs of existence of secure constructs. We warn that our constructs are proofs-of-concept
in the foundational style and not practical.
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1 Introduction

Alarmed by the number of successful related-key attacks (RKAs) against real blockciphers [23] 25|
24, 48| 52), 28, [17), 18, 20, 19] 60, 66, 38, 46, 21, 49, 44], theoreticians have stepped back to ask to
what extent the underlying goal of RKA-secure PRFs and PRPs is achievable at all. The question is
made challenging by the unusual nature of the attack model which allows the adversary to manipulate
the key. Previous works providing RKA-secure PRFs and PRPs have bypassed rather than overcome
the core technical difficulties by using the ideal cipher or random oracle models, making non-standard
assumptions themselves “related-key” in nature, or limiting attackers to weak classes of RKAs for which
the problem disappears [I1], [56]. We provide a new technical approach based on which we obtain the
first designs of PRFs and PRPs secure against non-trivial and application-relevant forms of RKAs
under standard assumptions (DDH) and in the standard model. Our constructions are not practical,
providing, instead, in-principle proofs of achievability of the goals in the classical foundational style.

THE MODEL. RKAs were introduced by Biham and Knudsen [I6] 15, [50] and formalized by Bellare
and Kohno (BK) [11]. Referring to any ¢: K — K as a related-key deriving (RKD) function, the latter
define what it means for a family of functions F: K x D — R to be a ®-RKA-PRF, where ® is a class
(set) of RKD functions. The game begins by picking a random challenge bit b, a random target key
K € K and, for each L € K, a random function Gr: D — R. The adversary is allowed multiple queries
to an oracle that, given a pair (¢,r) € ® x D, returns Fyg)(x) if b = 1 and Gg(x)(z) if b = 0, and its
advantage is 2Pr[b = b'] — 1, where b’ is the bit it outputs. The definition of a family of permutations
(blockcipher) F: K x D — D being a ®-RKA-PRP is analogous, the difference being that each G, is
a random permutation on D rather than a random function. Note that when ® consists of just the
identity function, we recover the standard PRF [42] and PRP [55] notions.

GROUP-INDUCED CLASSES. We must beware of inherent limitations. It is observed in [I1] that some @
are “impossible” in the sense that no F' can be a ®-RKA-PRF or a ®-RKA-PRP. Indeed, any ¢ that
contains a constant function ¢(-) = C, for some attacker-known constant C' € K, is impossible. (For
some z, just query the RK-oracle with (¢, ) and return 1 if the response is Fo(z).) The class of all
RKD functions is impossible, and so is the class of all permutations. The basic foundational question,
then, is to identify specific classes ®, as rich, interesting and relevant as possible, for which we can
prove “possibility,” meaning existence of ®-RKA-PRFs and ®-RKA-PRPs. But which classes are good
candidates?

BK [I1] showed the (standard model) possibility of any class ® whose member RKDs modify only
the second half of the given key, and Lucks [56] gave, for the same class, an alternative construction with
better concrete security. But if part of the key is unmodified, we can just use it as the “actual” key and
put the rest in the input, meaning RKA-security here is for “trivial” reasons. For the proof-of-concept
results in which we are interested, we seek candidate classes where the core technical difficulties cannot
be bypassed in this way.

Luckily, Lucks [56] has already pinpointed a worthy target. His group-induced classes are elegant,
appealing, non-trivial and application-relevant. If (K, *) is a group under an operation “x”, the associ-
ated group-induced class is rkd[C,*] = { ¢}, : A € K} where ¢} (K) = K* A for all K € K. These
classes are rich because all group actions are included. They also have what in [41] is called the com-
pleteness property and viewed as important to non-triviality of the class, namely that for any K, K’ € K
there is a ¢ € rkd[K, *] such that ¢(K) = K’'. Security relative to these classes suffices for applications
and cannot be established by tricks such as the above. The quest that emerges is to find (non-trivial)
groups (IC, *) for which we can show the possibility of rkd[/C, %], meaning exhibit rkd[/C, x|-RKA-PRFs
and rkd[IC, #]-RKA PRPs F: K x D — R whose keyspace is K.

PREVIOUS WORK. Results of [11] imply that ideal ciphers achieve rkd[, ¥x]-RKA-PRP security for any
large enough group (K, x). Also, one can easily strengthen a given PRF or PRP to be a rkd[/C, x]-RKA
one by hashing the key with a random oracle before use [56]. However, it is unclear how to instantiate the



ideal primitives here to get “real” constructions for even a single group [34] [26]. For certain composite
numbers M, Lucks [56] provides rkd[Zys, +]-RKA-PRFs for the group (Zs,+), where + is addition
modulo M, but the assumptions on which he bases security are not only interactive and novel but
also themselves “related-key” in nature and uncomfortably close to just assuming the construct itself is
secure, making the value of the proofs debatable from the point of view of security assurance. Existing
PRFs such as the DDH-based one of Naor and Reingold [58] or the DLIN-based one of Lewko and
Waters [53] are subject to simple attacks showing they provide no RKA-security. (Nonetheless they
will be a starting point for our constructs.) Research has expanded to consider RKA-security of other
primitives while leaving the goal unachieved for the more basic PRF, PRP and PRG ones [2] [41].

The salient fact that emerges from this previous work is that we do not have even a single example
of a group (K, %) for which we can prove the existence of a rkd[/C, x|-RKA-PRF or rkd[KC, x]-RKA-PRP
under standard assumptions in the standard model. The reason for the lack of progress is technical
obstacles. The attack models underlying standard definitions of standard primitives do not allow any
key-manipulation by the adversary. This makes it unclear how one can do any reductions, which seem
to require applying RKD functions to an unknown key. This difficulty is appreciated, with Goldenberg
and Liskov [41l Section 4] saying “The major open problem in related-secret security is whether or not
related-key secure blockciphers exist ... related-secret pseudorandom bits cannot be constructed using
traditional techniques. This leaves a significant open problem ... can fundamentally new techniques be
found to create related-secret pseudorandom bits?”

NeEw RKA-PRFs. We fill the above gap, providing the first constructions, under the standard DDH
assumption and in the standard model, of ®-RKA-PRFs where ® is group-induced. We obtain and
analyze our designs via a general framework using two new primitives which may be of independent
interest, namely key-malleable PRFs and key fingerprints. However, (surprisingly) at least one of
our constructions, the DDH based RKA-PRF, is compact enough to state here. Let NR: (Z;;)”H X
{0,1}" — G denote the Naor-Reingold PRF [58] that given key a = (a[0],...,a[n]) € (Z5)"*! and input
x =z[1]...z[n] € {0,1}" returns

NR(a,z) = ¢2 ;L:la[z']l'[i]’ "

where G = (g) is a group of prime order p. The keyspace K = (Z;;)"Jrl is a group under the operation
« of component-wise multiplication modulo p, but simple attacks [II] show that NR is not itself a
rkd[KC, *]-RKA-PRF. Let h be a collision-resistant hash function with domain {0,1}" x G"™! and range
{0,1}"2. Given key a and input x, our construct F: (Z3)"*! x {0,1}" — G returns

F(a,z) = NR(a, 11][a(z, (¢°1), g2, . gallalnly))

where “||” denotes concatenation. Theorem H says that F'is a rkd[(Z5)" !, *]-RKA-PRF under the
DDH assumption. The difficulty such a proof had to overcome was how the “simulator,” given d, can
answer queries for F' on keys of the form a*d without itself knowing a and without contradicting RKA
security by enabling an attack.

This and other results are obtained via a general framework hinging on two new primitives. We
call a PRF M: K x D — R key-malleable relative to a class ® of RKD functions on K if there is
an efficient algorithm that given (¢,r) € ® x D and oracle access to Mg returns Mygy(z). That
this could be useful for building a ®-RKA-PRF is, on the one, hand, intuitive, because it allows us
to simulate an oracle for M (¢(K),) via an oracle for M (K, -). But it is, on the other hand, counter-
intuitive, because the same property immediately gives rise to an attack showing that M is not a
®-RKA-PRF! Something else is necessary. This turns out to be the new concept of a key fingerprint,
a vector w over D that uniquely identifies a key in the sense that for all (¢, ¢, K) € ® x & x K we
have My k) (w) # My (ro (w) whenever ¢ # ¢, where we have extended M to vector second arguments
on which it operates component-wise. Given M, w and a collision-resistant hash function, our general
construction shows how to build F: I x D — R that we can show is a ®-RKA-PRF (cf. Theorem (3.1)).



The DDH based RKA-PRF noted above is obtained by showing that NR is a key-malleable PRF relative
to rkd[(Z5)"*!, +] and then finding a key fingerprint for it. It is interesting that we turn malleability [37],
typically viewed as a “bad” property, into a “good” property that we can exploit.

There are groups where DDH is easy but the Decision Linear (DLIN) problem of [31] still seems hard.
Lewko and Waters [53] provide a DLIN-based analogue of the Naor-Reingold PRF, commenting that
they know of no “closed-form” rendition of it akin to the above Equation for NR. Using matrices, we
provide in Equation such a closed-form, and then, restricting attention to invertible matrices and
slightly modifying the function, we obtain in Equation a PRF that we can show is key-malleable
and admits a key fingerprint. Our framework then yields the DLIN-based RKA-PRF of Theorem

FroM RKA-PRFs ToO RKA-PRPs. Practical interest centers on RKA-secure blockciphers, meaning
PRPs, and the constructions above are RKA-PRFs. It is not clear how one might modify the con-
structions to get RKA-PRPs. We use a different approach. Using deterministic extractors [33] [39] 35],
we convert our P-RKA-PRFs into ®-RKA-PRGs with bitstring outputs. When these are used as
key-derivation functions to key an ordinary (not RKA) PRP, we obtain a ®-RKA-PRP. (This second,
composition step extends similar ones from [56, [41]). For each class ® for which we have a ®-RKA-PRF,
this not only yields a CPA-secure ®-RKA-PRP but even a CCA-secure one.

RELATED WORK AND TECHNIQUES. Based on the Boneh-Boyen short signature scheme [30], Dodis and
Yampolskiy [36] define a PRF BBDY: Z,xS — G via BBDY (k, z) = e(g, 9)"/*+%) where e: (g)x(g) —
G is a bilinear map and S C Z,,. This had seemed to us promising towards building a rkd[Z,, +]-RKA-
PRF, but (disappointingly) did not lead there. To begin with, BBDY is easily shown by attack to
not itself be a rkd[Z,, +]-RKA-PRF. (Adding 1 to k or to = yields the same outcome.) By exploiting
the symmetry between k£ and x and using the composition paradigm, it turns out one can show how
to construct a rkd[Z,, +]-RKA-PRF if BBDY was a (plain) PRF, but only if the input domain S was
equal to Z,. The problem is that the g-DBDHI-based proof of [36} [30] requires S to be “small” and in
particular delivers nothing at all when S = Z,. We comment that there is no attack showing BBDY is
not a PRF when S = Z, and one might prove this in the generic model, but there seems little reason to
pursue a generic group model solution when we already have a standard model, DDH-based solution.
(In fact, since DDH is hard in the generic group model [64], our results already imply a generic model
solution anyway.)

RKA-security is much easier for randomized primitives than deterministic ones. From the ElGamal
scheme over a group of prime order p, one can easily get a (randomized) rkd[Z,, +]-RKA-CPA-secure
DDH-based symmetric encryption scheme. Applebaum [2] presents a more efficient rkd[{0, 1}", ®]-RKA-
CPA-secure (still randomized) symmetric encryption scheme assuming hardness of the LPN problem.
There seems to be no simple way, from these techniques, to get the full-fledged group-induced RKA-
PRFs that we target, where the computation is deterministic. That the deterministic case is more
difficult than the randomized one is not surprising or unusual. In analogy, DDH based injective trapdoor
functions [59] were discovered much later than DDH-based public-key encryption schemes, and fully
PRIV-secure deterministic public-key encryption remains an open problem [7] 29].

Goldenberg and Liskov [41] broaden the scope to consider related-secret security. As with Lucks [56]
they can, via composition, reduce the design of ®-RKA-PRFs to the design of ®-RKA-PRGs, but
provide no new constructions of the latter and hence of the former. They have negative results indicating
the difficulty of getting these for non-trivial classes ®, and comment [41, Section 1] that “This leads
us to the conclusion that if related-secret pseudorandomness (including related-key blockciphers) are
possible, they must be proven either based on other related-secret pseudorandomness assumptions, or
a dramatically new way of creating pseudorandomness from hardness must be developed.” Our results
are answers to these questions, showing that one can in fact obtain related-key pseudorandomness under
standard assumptions. (Our RKA-PRFs of course directly yield RKA-PRGs.) Their negative results
are in a limited model of computation and do not apply in our context.

RKA-security and encryption of key-dependent messages [27] have in common the technical difficulty



of how to do reductions without access to the keys one is trying to attack, but no connection between
the two is known.

CONTEXT. Conceived with the goal of studying the strength of blockcipher key-schedules [16} 15} [50],
RKAs quickly became mainstream. RKA-security is viewed as necessary for the collision-resistance
of blockcipher-based compression functions [61]. (But one should note that this view has no formal
justification.) RKA-resistance was a stated design goal of AES and remains so for other modern ciphers.
A successful RKA is universally viewed by cryptanalysts as a break of the cipher. The recent attention-
grabbing attacks on AES-192 and AES-256 [25], 24, 23] were RKAs, and far from unique in this regard: a
look at the literature shows that RKAs abound [48], [52], 28], 17, [18, 20} 19, 60, 66, B8, 46, 21, 49, [44].
Several higher-level cryptographic constructs, including HMAC [8| [6], the 3GPP confidentiality and
integrity algorithms f8,f9 [45], and RMAC [47, 51], use related keys and thus rely for their (standard,
not RKA) security on RKA-security of the underlying compression function or blockcipher.

The most direct use of RKA-security is for very cheap, simple and natural ways to rekey or tweak
block ciphers. Subkeys of K for use with modes of operation of a blockcipher E might be derived in
standard usage via Ex (A1), Ex(Asz),... where Ay, Ag, ... are constants. If £ is a RKA-PRP one can
just use instead K * A1, K x Ao, ..., where * is a group operation, saving many blockcipher operations.
On the other hand if E is a rkd[K, +]-RKA-PRP, then FZ(z) = Ek.r(x) is shown in [II] to be a
tweakable blockcipher, a primitive that has proven to be of great importance both conceptually and in
applications [54] 62]. More designs would probably use related keys if it were possible to do so safely.
Non-expert (in practice, most!) designers do it anyway, making RKA-security, in the words of Biryukov,
Dunkelman, Keller, Khovratovich and Shamir [23], central to abuse-resistant cryptography.

Beyond this, RKA-security provides resistance to fault injection attacks [32} [22] where the attacker
can inject faults that change bits of a hardware-stored key and observe the outputs of the crypto-
graphic primitive under the modified key, putting RKAs under the umbrella of sidechannel attacks.
This sidechannel connection is captured by the tamper-proof security model of Gennaro, Lysyanskaya,
Malkin, Micali and Rabin [40]. (They were apparently not aware of the prior model of [II] and the
cryptanalytic literature on RKAs. We hope our current paper helps connect these two lines of work.)

Overall, the motivation for the theoretical study of RKA-security is not just powerful but unusual
in coming from so many different parts of cryptography, namely foundations, cryptanalysis, protocol
design and resistance to sidechannel attacks.

SUBSEQUENT WORK. Since the appearance of the preliminary version of our work [9], there have been
further advances in RKA security. AHI [4] consider RKA-secure (randomized) symmetric encryption,
giving constructions and applications. BCM [10] show how to transfer RKA security from PRFs to
other primitives including encryption, signatures and IBE, which by our results yield RKA-secure con-
structions for these primitives. BPT [I3] extend our technique to directly achieve RKA-security for
IBE, encryption and signatures for classes of RKD functions that are richer than ours. Wee [65] con-
siders public-key encryption under RKA. BMT [12] show how to obtain RKA-secure signatures from
RKA-secure one-way functions. Applebaum [3] shows applications of RKA-security in circuit garbling.
AW [5] achieve relaxed forms of RKA security for simple addition operations on keys. ABPP [I] ex-
tend the framework of this paper to achieve RKA security for larger classes of key-deriving functions
including low-degree polynomials and also recover a result we had to retract as discussed below.

BuG FIXES AND RETRACTIONS. Our general construction uses what we call a hash function “compati-
ble” with (T, M, ®, w), where M is a key-malleable family of functions, T is a key transformer for (M, )
and w is a key fingerprint. The definition of compatibility in previous versions of our paper [9] had
been too weak, resulting in a gap in establishing Equation in the proof of Theorem We thank
Martijn Stam and Susan Thomson for pointing this out. The current version of our paper strengthens
the definition of compatibility to fill the gap. Our DDH and DLIN-based constructions are not affected,
the hash functions we gave satisfying the stronger definition. However, previous versions of our pa-
per [9] had also given a third construction claimed to be a rkd[Z3*!, x]-RKA-PRF under DDH, where



* is component-wise addition modulo p. The hash function we had given for this additive construction
does not meet our new definition of compatibility. We see no easy way to fill the gap within our current
framework and accordingly are retracting our claims about this construction and omitting it from the
current version. We think the additive construction might be provable by a direct and dedicated proof.
An interested reader can find the construction in earlier versions of our eprint posting. We note that
subsequently, our additive construction was in fact proved secure by ABPP [I]. In fact the latter were
able to prove the general construction we have retracted using novel techniques.

2 Basic definitions

A family of functions F: K x D — R takes a key K € K and input z € D and returns an output
Fi(z) = F(K,z) € R. Let FF(K,D, R) be the set of all families of functions F: K x D — R. For sets
X,Y let Fun(X,Y) be the set of all functions mapping X to Y. If S is a (finite) set then s <~ S denotes
the operation of picking s from S at random and |S| is the size of S. We denote by y & Az, x2,...)
the operation of running randomized algorithm A on inputs x1,xs,... and fresh coins and letting y
denote the output. If v is a vector then |v| denotes the number of its coordinates and v[i] denotes
its i-th coordinate, meaning v = (v[1],...,v[|v|]). A (binary) string x is identified with a vector over
{0,1} so that |z| is its length and z[7] is its i-th bit. If F: I x D — R is a family of functions and x is a
vector over D then F'(K,x) denotes the vector (F'(K,x[1]),..., F(K,x[|x|])). Read the term “efficient”
as meaning “polynomial-time” in the natural asymptotic extension of our concrete framework.

GAMES. Some of our definitions and proofs are expressed via code-based games [14]. Recall that such
a game —see Figure |1| for an example— consists of an (optional) INITIALIZE procedure and procedures
to respond to adversary oracle queries. A game G is executed with an adversary A as follows. First,
INITIALIZE (if present) executes. Then A executes, its oracle queries being answered by the correspond-
ing procedures of G. When A terminates, its output, denoted G4, is called the output of the game,
and we let “G# = 17 denote the event that this game output takes value 1. Boolean flags are assumed
initialized to false. The running time of an adversary by convention is the worst case time for the
execution of the adversary with any of the games defining its security, so that the time of the called
game procedures is included. When (as often) we describe a game in text and say the game “begins”
by doing something, we are describing how INITIALIZE works.

PRFs. The advantage of an adversary A in attacking the (standard) prf security of a family of functions
F: K xD — R is defined via

Adv?(4) = Pr[PRFRealf = 1] — Pr[PRFRand$ = 1] . 2)

Game PRFRealp begins by picking K < K and responds to oracle query F N(z) via F(K,z). Game
PRFRandy begins by picking f < Fun(D, R) and responds to oracle query FN(x) via f(z).

RKA-PRFs. We recall definitions from [II]. Let F: K x D — R be a family of functions and
¢ C Fun(K,K). The members of ¢ are called RKD (related-key deriving) functions. An adversary
is said to be ®-restricted if its oracle queries (¢, x) satisfy ¢ € ®. The advantage of a ®-restricted
adversary A in attacking the prf-rka security of F' is defined via

Advy ™ (A) = Pr[RKPRFReal$ = 1] — Pr[RKPRFRandt = 1] . (3)

Game RKPRFRealp begins by picking K < K and responds to oracle query RKFN(¢, ) via F(¢(K), z).

Game RKPRFRandpg begins by picking K & Kand G & FF(KC,D,R), and responds to oracle query
RKFN(¢, x) via G(¢(K), x).



CR HASH FUNCTIONS. The advantage of C' in attacking the cr (collision-resistance) security of H: D —
R is

Adv§i(C) = Pr[z # 2’ and H(z) = H(z')]

where the probability is over (z,z’) & C. For simplicity and to better reflect practice, we view hash
functions as unkeyed. This means there always exists an efficient C' whose cr-advantage is 1, but
that does not mean we can find it, and our results remain meaningful because the proofs give explicit
constructions of cr-adversaries from other adversaries [63]. We could extend our treatment to let hash
functions be families, which would be more rigorous. We can’t make the hash key part of the PRF
key because then it would be subject to the RKA, but since its secrecy is not needed for security, we
can make it a public parameter. Thus, keyed hash functions require an extended syntax for function
families in which functions in the family depended on a public parameter, and we have chosen to avoid
this.

3 General Construction of RKA-PRFs and RKA-PRPs

In this section we describe and analyze our general RKA-PRF construction. We begin by defining the
notions of key-malleability and key fingerprints, on which the general construction is based. Theorem [3.1]
states the general construction and proves its security. In subsequent sections we show how to instantiate
the general construction to obtain DDH based RKA-PRFs for group-induced classes as well as other
RKA-PRFs.

3.1 Key-Malleability

Suppose M: K x D — R is a family of functions and ® C Fun(K,K) is a set of RKD functions.
Suppose T is a deterministic algorithm that given an oracle f: D — R and inputs (¢,z) € ® x
D returns a point TS (¢,z) € R. We say that T is a key-transformer for (M,®) if it satisfies two
conditions. The first, called correctness, asks that M(p(K),z) = TMUE) (4, x) for every (¢, K,x) €
® x I x D. This is a relatively straightforward condition saying that one can compute M (¢(K),x)
from ¢,z if one has an oracle for M(K,-). The second condition, called uniformity, is more subtle.
Roughly, it says that if the oracle provided to T is random then the outputs of T on any input sequence
(¢1,21),...,(¢g, z4) are uniformly and independently distributed as long as x1,...,z, are distinct.

Formally, game KTRealt begins by picking f < Fun(D, R) and responds to oracle query KTFN(¢, z)
via T/ (¢, z) while game KTRandy makes no initializations and responds to oracle query KTFN(¢, x)
by picking and returning a random point in R. Let us say a ®-restricted adversary is unique input if,
in its oracle queries (¢1,21), ..., (dq, zq), the points z1,..., x4 are always distinct, where by “always”
we mean with probability one regardless of how oracle queries are answered and what are the coins of
the adversary. The uniformity requirement is that

Pr[KTReal{ = 1] = Pr[KTRand{ = 1] (4)

for every unique-input ®-restricted adversary U against the uniformity of T. We say M is ®-key-
malleable if there exists an efficient key transformer for (M, ®).

That key-malleability might be useful to obtain RKA-PRFs is, on the one hand, intuitive, because
the correctness property clearly allows us to simulate queries to M(¢(K),-) via queries to M (K, ).
It is, on the other hand, counter-intuitive, because the same correctness property immediately yields
an attack showing that M is not a ®-RKA-PRF as long as ® contains the identity function id and
a function ¢ satisfying ¢(K) # K for all K € K, conditions met by any group-induced ®. Indeed,
consider ®-restricted adversary A that, for some = € D, makes query y < RKFN(¢p,x). Then it
runs T on inputs ¢, x to get an output z, answering any oracle query w made in this computation by
RKFN(id, w). It returns 1 if y = z and 0 otherwise. Correctness says that A always returns 1 in game



RKPRFRealy;. But the assumption on ¢ implies that A returns 1 with probability at most 1/|R| in
game RKPRFRandy;. So Adv ™ (A) is almost 1.

Although a key-malleable M 'is not a ®-RKA-PRF, one can show that it is an RKA-PRF versus
unique-input adversaries. (The adversary of the above attack need not be unique-input.) This leaves
two questions. The first is how to bridge the gap to arbitrary adversaries, which we do via the concept
of key fingerprints discussed below. The second is how to obtain key-malleable PRFs, which we will do
later via the Naor-Reingold [58] and Lewko-Waters [53] constructs.

3.2 Key fingerprints

Suppose M: K x D — R is a family of functions and ® C Fun(/C, K) is a set of RKD functions. Let w
be vector over D and let m = |w|. We say that w is a key fingerprint for (M, ®) if

(M(¢(K), w(l]), ..., M(¢(K), w[m])) # (M(¢'(K),w[1]),..., M(¢(K), w[m])) ()

for all K € K and all distinct ¢, ¢’ € ®.

Let’s call a class ® C Fun(K, K) of RKD functions claw-free if ¢(K) # ¢'(K) for every key K € K
and every distinct ¢,¢' € ® [56, [II]. We note that if (M, ®) has a key fingerprint then it follows
automatically that ® is claw-free. Indeed, if there is a K and ¢, ¢’ such that ¢(K) = ¢'(K) then there
can be no w for which Equation is true. We will use this frequently below.

We say that w is a strong key fingerprint for (M, ®) if

(M(K,w[l]),..., M(K,w[m])) # (M(K’,w[l]), . M(K’,W[m])) (6)

for all distinct K, K’ € K. If ® is claw-free then a strong key fingerprint for (M, ®) is also a key
fingerprint for (M, ®), which we will use in analyzing our constructs. If ® is complete —recall this
means that for every K, K’ € K there is a ¢ € ® such that ¢(K) = K'— then any key fingerprint for
(M, ®) is also a strong key fingerprint for (M, ®). In general, however, the existence of a key fingerprint
may not imply the existence of a strong key fingerprint.

3.3 Construction

Let M: K x D — R be a key-malleable family of functions and T a key transformer for (M, ®). For
x € Dand f € Fun(D,R) we let Qrs(T, M, ®,z, f) be the set of all w € D for which there exists ¢ €
such that the computation T7/(¢,z) makes oracle query w. For S C D we let Qrs(T, M, ®, S, f) be
the union of the sets Qrs(T, M, ®,x, f) as x ranges over S, and we let Qrs(T, M, ®,S) be the union of
the sets Qrs(T, M, ®,S, f) as f ranges over Fun(D,R). Let w € D™ be a key-fingerprint for (M, @)
and let W = {w[l],...,w[m]}. Let Qrs(T,M,®,w, f) = Qrs(T, M, ®, W, f) and let Qrs(T, M, P, w) =
Qrs(T,M,® ,W). Let D = D x R™. A hash function H: D — S is said to be compatible with
(T,M,®,w) if S C D and for all f € Fun(D,R), the sets Qrs(T, M, ®, S, f) and Qrs(T, M, P, w, f) are
disjoint. With this, we can say what are the ingredients of our construction of a ®-RKA-PRF: (1) a
®-key-malleable PRF, meaning a family of functions M: I x D — R such that, on the one hand, M is
a PRF and, on the other hand, there exists a key transformer T for (M, ®); (2) a key fingerprint w for
(M, ®); and (3) a collision-resistant hash function H: D — S that is compatible with (T, M, ®, w). We
combine them to build F: I xD — R that on input K,z computes W <— M (K, w) —recall that, as per
our notational conventions, M (K, w) is the vector whose i-th component is M (K, w|i]) for 1 <i < m—
and then returns M (K, H(z,w)). The following theorem says that F' is a ®-RKA-PRF assuming M
is a PRF and H is collision-resistant. No assumptions are made on ® beyond those implied by the
conditions stated here.

Theorem 3.1 Let M: K x D — R be a family of functions and ® C Fun(K,K) a class of RKD
functions. Let T be a key-transformer for (M, D) making Qv oracle queries, and let w € D™ be a key
fingerprint for (M, ®). Let D =D x R™ and let H: D — S be a hash function that is compatible with



proc INITIALIZE /| G1, G2 proc INITIALIZE [/ Ga
$ .

proc INITIALIZE /| Gg 1 K&K, Ded 31 D+
01 K&K proc RKFN(¢’x)| //| G, proc RKFN(¢,z) J Gs

12 Fori=1,...,|w| do X
roc RKFN(¢, G O . 32 Fori=1,...,|w| do
poeTRTND) F o i M) | 5 e i g

or i = yeooy W] do ' 14 h < H(z,W) Lo )

0 Wil & M(6(K).wli)) | 15 1t j € D then uheHEw
04 h <« H(z,W) S 35 If h € D then h+ S\ D
05 y — M($(K),h) 16 bad < true; |h < S\ D 36 D <« DU{h}
06 Return y 17 D DU {h} 37 y + TME) (¢, h)

18 y < M(¢(K), h) 38 Return y

19 Return y
proc INITIALIZE‘ 1 Ga proc INITIALIZE J/ G5 proc RKFN(¢,x) [/ Gg
4 D05 f<Fun(D,R) | 51 D¢ @ f,g & Fun(D,R) 61 y &R
proc RKFN(¢,2) / G4 proc RKFN(¢,2) / G5 62 Return y
42 FOTZ":17-~’|W|§0 52 Fori=1,...,|w| do
43 Wli] « T/ (o, w[i]) 53 wWli] « T9(¢, wli]) proc INITIALIZE /| G7
4 h <+ H(z,w) $ 54 h H(z,w) 1 K&K
45 Ifh € Dthen h < S\ D | 55 1t ¢ D then h & S\ D 2 G & FF(K,D,R)
%6 D <_TDf Y {}};} 56 D <« DU{h} proc RKFN(¢,z) /) Gr
47 y <+ T/ (¢, h) 57 y < T/(¢,h) 73y G(o(K), )
48 Return y 58 Return y 74 Return y

Figure 1: Games for the proof of Theorem Game G2 includes the boxed code and game G does
not.

(T,M,®,w). Define F: KxD — R by
F(K,z) = M(K, H(z, M(K,w))) (7)

forall K € K and x € D. Let A be a ®-restricted adversary against the prf-rka security of F' that makes
Q4 < |S]| oracle queries. Then we can construct an adversary B against the prf-security of M and an
adversary C against the cr-security of H such that

AdvR(A4) < AdVY(B) + Adv§(C) . (8)
Adversary B makes (m + 1) - QrQa oracle queries, and B and C' have the same running time as A. |

Proof of Theorem We use the game sequence of Figure [I] in the analysis below abbreviating
by W; the event “Gf‘ = 17. We assume (wlog) that A never repeats an oracle query. Game Gy simply
instantiates game RKPRFRealr of the definition of Section [2| with our construction F', so

Pr [RKPRFRealp = 1] = Pr[Wp]. (9)

Game G, which does not include the boxed code, introduces some book-keeping, keeping track of hash
values in a set D and setting a flag bad to true if it ever sees a repeat. The book-keeping does not affect
the values returned by RKFN so

Pr[W;] = Pr[Wy] . (10)

Game G2 adds the boxed code which “corrects” a hash value repetition by picking instead a value that,
being drawn from S\ D, will not repeat any previous one. The addition of this “artificial” step, leading



to a game different from the “real” one, is to ensure that the values of h on which T/(¢,h) is later
called (lines 37,47,57) are distinct, putting us in a position to exploit the uniformity of T and replace
the outputs by random values. This, however, is some distance away. For the moment we observe that
games (G1, Gy are identical until bad —differ only in code following the setting of bad to true— and
hence the fundamental lemma of game playing [14] implies that

Pr[W1] < Pr[Ws] + Pr[B] (11)

where B; denotes the event that the execution of A with game G sets the flag bad to true. Making
crucial use of the assumption that w is a key fingerprint for (M, ®), we design adversary C attacking
the cr-security of H such that

Pr[By] < Adv$(C). (12)

Adversary C begins by picking K & K and initializing a counter j < 0. It then runs A. When the
latter makes a RKFN-query (¢, x), adversary C responds via

Fori=1,...,|w| do W[i] + M(¢(K),wli])
Jei+li¢j—¢ x4 x; Wj W, hj« H(z,W); y < M(¢(K),h); Return y

When A halts, C searches for a,b satisfying 1 < a < b < j such that h, = hy and, if it finds them,
outputs (z4, W), (p, Wp) and halts. Towards justifying Equation the main question is, why are
(T, Wa), (zp, Wp) distinct? The assumption that A never repeats an oracle query means that (¢, z,) #
(dp, xp). Now consider two cases. First, if ¢, = ¢, then we must have x, # z, whence of course
(Ta, Wa) # (zp,Wp). Second, if ¢ # ¢p then the assumption that w is a key fingerprint for (M, @)
means, by Equation , that W, # W}, and again (x4, Wg) # (Tp, Wp).

In game G3, we use the key transformer T, given by the assumed ®-key-malleability of M, to compute
M (¢(K),-) via oracle calls to M (K, -), both at line 33 and at line 37. The correctness property of the
key transformer implies

Pr[Ws] = Pr[Ws]. (13)

Game G4 replaces the oracle given to T by a random function. We design adversary B attacking the
prf-security of M such that

Pr[W3] — Pr[Wy] < Adv2(B). (14)

This is possible because the games make only oracle access to M(K,-) and f, respectively. In detail,
adversary B runs A. When the latter makes a RKFN-query (¢, x), adversary B responds via

For i =1,...,|w| do W[i] + T*N(¢,w[i]); h + H(z,W); y < T'N(¢,h); Return y

where FN is B’s own oracle. When A halts, B halts with the same output. Then
Pr [PRFRealy; = 1] = Pr[W3]  and  Pr[PRFRandy; = 1] = Pr[Wy]
so Equation follows from Equation .

Rather than return y = T/(¢, h) as at lines 47,48, we would like to pick and return a random y, as at
lines 61,62 of game G, saying this makes no difference by the uniformity of T. But we have to be careful,
because line 47 is not the only place f is used in G4. Oracle f is also being queried in the computation
T/ (9, wli]) at line 43, and if a f-query made here equals an input h at line 47, then it is unclear we can
argue randomness of the line 47 output y based on the uniformity of T. The assumed compatibility of H
with (T, M, ®, w) comes to the rescue. It says the queries to f in the computation T/ (¢, w[i]) at line 43,
which fall within the set Qrs(T, M, ®, w, f), are disjoint from the set of queries Qrs(T, M, ®, S, f) that
may be issued at line 47, because the latter queries are all induced by points A in the range of H. Thus,



the calls to f at lines 43 and 47 can be answered with different, independent random functions without
affecting the distribution of the procedure output. In other words, considering game G5, which switches
f to g at line 53 but not at line 57, the compatibility of H with (T, M, ®, w) implies that

Pr[Wy] = Pr[Ws] . (15)
We will now exploit the uniformity of T to show that
Pr[Ws] = Pr[Ws] . (16)
To do this we design unique-input ®-restricted adversary U against the uniformity of T such that
Pr[KTRealy; = 1] =Pr[W;] and  Pr[KTRandf; = 1] = Pr[Wg] . (17)

Equation follows from Equation . Adversary U begins by initializing set D < () and picking
g < Fun(D,R). (Adversary U of the uniformity condition is not required to be efficient so picking g
like this is okay but in any case we could make U efficient if we liked by simulating g via lazy sampling
rather than picking it upfront.) It then runs A. When the latter makes a RKFN-query (¢, x), adversary
U responds via

Fori=1,...,|w| do W[i] < T9(¢, wli])

e j+1; ¢ ¢;hj« H(x,W); If hj € D then hj & S\ D

y < KTFN(¢j,hj); Return y
where KTFN is U’s own oracle. The delicate question is, why is U unique-input? The boxed code
introduced at line 16, carried through to line 55, and reflected by the “If” statement in the code for U

above, ensures that hi,...,h; are all distinct at the end of U’s computation as long as Q4 < |S|, which
the theorem assumed. Equation follows.

The claw-freeness of ® —recall this follows from the assumption that (M, ®) has a key fingerprint—
implies that if (¢, z) # (¢', 2') then (¢(K),x) # (¢'(K),2"). This together with the assumption that A
does not repeat an oracle query imply

Pr[Ws] = Pr[W;] = Pr[RKPRFRandf = 1] . (18)
Equation follows from Equations @, , , , , , , , , . |

4 DDH-based RKA-PRF

We instantiate our general construction to get a DDH-based ®-RKA-PRF where ® is group induced.
Let G be a (multiplicatively written) group of prime order p, and let ¢ € G be an arbitrary generator
of G. The classic Naor-Reingold [58] PRF NR: ZZH x {0,1}" — G is defined via

NR(a,z) = g0l 2l (19)
for all a € ZZ“ and = € {0,1}". Recall the advantage of an adversary B against the DDH problem in
G is

Advi™(B) = Pr|Blg" ¢"g") = 1| ~Pr| B(s".g".9%) = 1],

where the probabilities are over a, b, ¢ & Z,. The following result of [58] says that NR is a PRF if DDH
is hard in G.

Lemma 4.1 [58] Let G = (g) be a group of prime order p and NR: Zg“‘l x {0,1}" — G the family of
functions defined via Equation @) Let A an adversary against the prf-security of NR that makes Q
oracle queries. Then we can construct an adversary B against the DDH problem in G such that

AdvRE(A) <n-AdvE(B) . (20)

10



The running time of B is that of A plus the time required for 4 - Q exponentiations in G. |

We are now ready to instantiate the ingredients of our general construction and obtain our first concrete
construction.

GROUP-INDUCED CLASS. Define operation * by a xd = (a[0]d[0],...,a[n|d[n]) where operations on
components are multiplications modulo p. Then the set K = (Z;;)"+1 is a group under *. Let ¢7: K — K
be defined by ¢5(a) = axd for all a,d € K. Let ® = rkd[(Z;)" ", %] be the class of all ¢} as d ranges
over K. This class is group-induced, the group being (IC, ).

KEY MALLEABILITY. We claim that NR is ®-key-malleable. The key-transformer T, given oracle
f: {0,1}" — G and inputs ¢}, z, returns f(x)d[o} =14l Correctness holds because

TR (g5, 2) = NR(a,2)dO = A0 — NR(axd,z) .

In game KTRealyg, the responses received by unique-input, ®-restricted adversary U to KTFN-queries
(04, 21); -, (8, 7q) ave f(ag)BOTEL il p (g )dOTEL A" where f & Fun({0,1}",G)
was chosen by the game. Since z1,..., 2, are distinct and the exponents are non-zero, these responses
are randomly and independently distributed over G. We have verified the uniformity condition.

KEY FINGERPRINT. For i = 1,...,n let w[i] = 0"} || 1| 0" be the string that is all zeros except at
position i, where it has a one. Let w[0] = 0™. We claim that w is a strong key fingerprint for (NR, ®). To
see this, first note that (NR(a, w[0]),NR(a,w[1])...,NR(a, w[n])) = (¢, g2l0lalll  galllalr]y  Now
if a,a’ € K are distinct keys and a[0] # a’[0] then ¢2%) # ¢2'[). On the other hand if a[0] = a’[0] and
a[i] # a'[i] for some i > 0, then gal0lald £ ga'l0l2’l] - The claim follows from the definition of Equation ()
with M = NR. Since ® is claw-free, w is also a key fingerprint for (NR, ®), satisfying Equation
with M = NR.

COMPATIBLE HASH FUNCTION. For any set S, the set Qrs(T,NR, ®,S) = S, because on inputs ¢,z
the only oracle query made by T is x itself. Let D = {0,1}" x G, If h: D — {0,1}"~2 is collision
resistant, then let S = {0,1}"\ Qrs(T,NR, ®, w) and define H: D — S by H(x,z) = 11| h(x,2z). Then
H is collision resistant and compatible with (T, NR, ®, w) because all members of Qrs(T,NR, ®, w) have
Hamming weight at most 1 while all members of Qrs(T,NR, ®, S) have Hamming weight at least 2.

We have all the ingredients. The following theorem combines the above with Theorem [3.I]and Lemma[4.1
to present our DDH-based ®-RKA-PRF for group-induced ® and specify its security.

Theorem 4.2 Let G = (g) be a group of prime order p and NR: ZZ“ x {0,1}" — G the family of
functions defined via Equation (19). Let D = {0,1}" x G"*' and let h: D — {0,1}"2 be a hash
function. Define F: (Z3)""' x {0,1}" = G by

F(a,z) = NR(a, 11 h(z, (621, g2, .. g20R0Y))

for alla € (Z2)"*! and x € {0,1}". Let ® = rkd[(Z})"+!, «] where * is the operation of component-wise
multiplication modulo p. Let A be a ®-restricted adversary against the prf-rka security of F' that makes
Qa4 <272 oracle queries. Then we can construct an adversary B against the DDH problem in G and
an adversary C against the cr-security of h such that

Advy(A) < - AdvE(B) + AdvT(C) .

The running time of B is that of A plus the time required for 4 - Q exponentiations in G. C has the
same running time as A. 1
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5 DLIN-based RKA-PRF

There are groups where DDH is easy but the DLIN problem still seems hard, which motivated Lewko
and Waters [53] to find a DLIN-based PRF. In the same vein, we seek a DLIN-based RKA-PRF.

Let G = (g) be a group of prime order p. Lewko and Waters [53] describe their DLIN-based PRF as
having key a randomly chosen tuple (o, 20, Y1, 21, W1, V1, - -« Yny Zns Wh, Up) € Zé"” and then on input
x € {0,1}" computing its output via

a$yo; b 2o
Fori=1,...,ndo

If z[i] = 1 then a < ay; + bz; ; b < aw; + bv;
Return g*

Lewko and Waters [53, Section 1] comment that “the additional complexity required to accommodate
the weaker assumptions means that our functions can no longer be described by closed-form formulas
like ...,” referring, in the “....,” to the formula for NR that we have given as Equation . We provide
such a closed-form formula based on matrices. (This will put us in a position, via a slight modification of
the construction, to apply Theorem and obtain a RKA-PRF.) Let ALy(p) denote the set of all 2 by
2 matrices over Z,. If M € AL (p) and b € {0, 1} then M? is the identity matrix if b = 0 and is of course
just M if b = 1. If u = (u[1], u[2]) is a 2-vector over Z, then u-M denotes the 2-vector obtained by the
vector-matrix product in which u is viewed as a 1 by 2 matrix. We define LW: ALy (p)"*! x{0,1}" = G
via

IW(A.2) = ¢} where y = (1,0)- A0 [T, AL]E (21)

for all A € ALy(p)"*! and = € {0,1}". Here the key is an (n -+ 1)-vector A = (A[0],..., A[n]) of 2 by 2
matrices over Z,. The formula left-multiplies the matrix product by the 2-vector (1,0) to get a 2-vector
y whose first component y[1] becomes the exponent to which ¢ is raised to get the function output.
We claim LW is exactly the function described by the code above. (To verify this it helps to recall that
matrix multiplication is associative. Strictly speaking the LW key is longer, being 4n + 4 elements of
Zy, but the second row of A[0] is effectively unused due to the product with (1,0) so the effective key
is 4n + 2 points in Z,, as in the original construct.) Comparing with Equation , the closed-form
formulation of Equation makes clearer how LW is an analogue of NR. Recall the advantage of an
adversary B against the Decision Linear (DLIN) problem [31] is

AdvA™(B) = Pr| B(hkh' K. g"") = 1| = Pr| B(h kb K g%) = 1],

where the probabilities are over h, k & G and a,b,c & Zy. The result of [53] says LW is PRF under
DLIN:

Lemma 5.1 [53] Let G = (g) be a group of prime order p and let LW: ALs(p)"™t x {0,1}" — G
be defined via Equation . Let A an adversary against the prf-security of LW that makes QQ oracle
queries. Then we can construct an adversary B against the DLIN problem in G such that

AdvPi(4) <nQ - AdvE™(B) . (22)

The running time of B is equal to the running time of A. 1

To obtain a key-malleable PRF admitting a key fingerprint, we need two modifications. (The modifi-
cations are in fact to get the key fingerprint, not the key malleability.) First, we restrict the keyspace,
drawing the matrices from GLa(p) C ALy(p) rather than ALs(p), where GLa(p) is the set of in-
vertible matrices in ALs(p), usually referred to as the general linear group. Second, if y[1] = 0,
we use y[2], which we will be able to guarantee is not 0 in this case, in its place. In detail, define
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LW*: GLa(p)"*! x {0,1}"* — G via

. YOI if y[1] # 0 n ezl
LW*(A,z) — { s otiirivﬁe where y = (1,0) - A[0] [T, A[i]*l (23)

for all A € GLa(p)"*! and x € {0,1}". The modifications are “low-probability” enough to leave
unchanged the status of the function as a DLIN-based PRF upto a new term in the bound.

Lemma 5.2 Let G = (g) be a group of prime order p and let LW*: GLa(p)"*t! x{0,1}" — G be defined
via Equation . Let A an adversary against the prf-security of LW* that makes QQ oracle queries.
Then we can construct an adversary B against the DLIN problem in G such that

+2n+ 2
L@t
p

AdvP!

P (A) < nQ - AdvE™(B) (24)

The running time of B is equal to the running time of A. |
Proof: A random matrix from ALs(p) is in GLg(p) with probability
(»* =1 (@* - p) 2
1 >1——.
p p
The probability that a random function with range G returns the identity element of G across @) queries
to it is @/p. A short game sequence can use these facts in conjunction with Lemma to conclude. 1

We proceed to instantiate our general construction.

THE cLASs ®. For d € (Z3)"! let ¢pg: GLa(p)" ™' — GLa(p)"*! be defined by ¢q(A) = (d[0]A[0], ...,
d[n]A[n]). (When a matrix is multiplied by a scalar as here, each entry of the matrix is multiplied by
the scalar.) Let ® = {¢q : d € (Z;;)”Jrl }. @ is not a group-induced class, and is also not complete.
Despite this, ® is interesting in that the entire key can be modified. Previous work did not provide
constructions of RKA-PRF's under standard assumptions for classes with this property. On the other
hand, ® is claw-free. This follows from the restrictions we put on the keyspace.

KEY MALLEABILITY. We claim that LW* is ®-key-malleable. The key-transformer T, given ora-
cle f: {0,1}" — G and inputs ¢q,z, returns f(z)d H?:ld[i}zm, just as for NR. Noting that s =
d[0] T, d[i]*l¥) # 0 we have

. sy[U if yv[1]1 £ 0
T (¢a,) { ¢l otherwise

where y = (1,0) - A[O]H?zlA[i]””“]. But
V= (d[O]HLd[i]xm) <(1’0)‘A[0]H?:1A[i]$[i]> = (1,0) - (A[0JA[0]) [T, (d[i]A[i])*

and correctness follows. Since the formula defining T has not changed, the argument for uniformity is
the same as the one we gave for NR.

KEY FINGERPRINT. Making crucial use of both the modifications we made to the LW construct, we
can show that the same key fingerprint as for NR continues to work for LW*. Namely, for i =1,...,n
let w[i] = 0"1 || 1]/0"~¢ be the string that is all zeros except at position 4, where it has a one. Let
w[0] = 0". We claim that w is a key fingerprint for (LW*, ®). (We do not, as before, claim it is a
strong key fingerprint, but this was not necessary for Theorem ) Indeed, suppose d,d’ € (Z;j)”+1
are distinct and A € GLa(p)"*!. We consider two cases, the first being that d[0] # d’[0]. Since A[0]
is non-singular, the 2-vector a comprising its first row is not (0,0). If a[l] # 0 then the 2-vectors
d[0]a, d’[0]a have distinct, non-zero first components d[0]a[1], d'[0]a[1], and thus

LW*(¢a(A), wl0]) = g4l0ll £ g0l = Tw*(¢q/(A), w(0]) .
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On the other hand if the first component of a is 0 then the second, a[2], is non-zero, and we have
LW* (¢a(A), wlo]) = g9 3£ gT10RE) = TW* (6ar(A), wlO]) .
The second case is that d[0] = d’[0] and d[i] # d'[i] for some ¢ > 0. The matrix M = A[0]A[] is
non-singular and hence its first row a is not (0,0). Let d = d[0]d[i] and d' = d'[0]d’[i]. If a[1] # O then
the 2-vectors da,d'a have distinct, non-zero first components da[l],d'a[l], and thus
LW*(¢a(A), wli]) = g™ g™l = LW* (¢a (A), w[i]) -
On the other hand if the first component of a is 0 then the second, a[2], is non-zero, and we have

LW*(¢a(A), wli]) = g%l £ g?2l = LW*(pa(A), wli]) .

COMPATIBLE HASH FUNCTION. No changes here. We continue to have Qrs(T,LW*, &, S) = S for
any set S. Let D = {0,1}" x G"". If h: D — {0,1}"2 is collision resistant, then H: D —
{0,1}™\ Qrs(T,LW*, &, w) defined by H(z,z) = 11 || h(x,z) is collision resistant and compatible with
(T,LW*, &, w).

Combining the above with Theorem [3.I] and Lemma [5.2] we obtain a DLIN-based ®-RKA-PRF:

Theorem 5.3 Let G = (g) be a group of prime order p. Let LW*: GLa(p)"*! x {0,1}" — G be the
family of functions defined via Equation (23). Let D = {0, 1}"xG"* and let h: D — {0,1}"2 be a hash
function. Fori=1,....n letw[i] = 01| 1]0"* and let w[0] = 0™. Define F: GLa(p)"*1 x{0,1}" —
G by

F(A,z) = LW*(A, 11| h(z, LW* (A, w)))

for all A € GLy(p)"™ and z € {0,1}". Let ® = { ¢q : d € (Z;)""' } where ¢q(A) = (d[0]A, ...,
d[n]A[n]) for all A € GLa(p)"*L. Let A be a ®-restricted adversary against the prf-rka security of F'
that makes Q4 < 2"~2 oracle queries. Then we can construct an adversary B against the DLIN problem
in G and an adversary C against the cr-security of h such that
Q+2n+2

p

where Q@ = (n+ 2) - Q4. B has running time equal to that of A plus the time required to compute
O((n+2)-Qa) exponentiations in G. C has the same running time as A. |

AdvPET(A) < n- AdvE™(B) + Adv§T(O) +

6 From RKA-PRFs to RKA-PRPs

Cryptanalytic interest has mostly been in RKA-secure blockciphers, meaning, families of permutations.
It is not clear how one might directly modify the constructions of Section [3, which are families of
functions, to make them families of permutations. We use, instead, a simple but powerful composition
approach that produces a ®-RKA-PRP from a given ®-RKA-PRG and an ordinary PRP. We obtain
appropriate ®-RKA-PRGs by combining our ®-RKA-PRFs with deterministic extractors [35, B39 [33].
This approach not only yields RKA-secure PRPs under chosen-plaintext attack (CPA) but even under
chosen-ciphertext attack (CCA).

SOME DEFINITIONS. A family of functions E: K x D — R is a family of permutations, or blockcipher,
if R =D and Ex: D — D is a permutation for all K € K, in which case E~1': K x D — D denotes
its inverse. Let PF(KC, D) C FF(KC,D, D) be the set of all families of permutations E: I x D — D and
let Perm(X) C Fun(X, X) be the set of all permutations on X. The advantage of an adversary A in
attacking the (standard) prp-security of a family of permutations E: K x D — D is defined via

AdvPP(A) = Pr[PRPRealy = 1] — Pr[PRPRandf = 1] . (25)
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Game PRPRealy begins by picking K < K. It responds to oracle query FN(z) via E(K,z) and to
oracle query FN"!(y) via E~!(K,y). Game PRFRandy begins by picking f & Perm(D). It responds
to oracle query FN(z) via f(x) and to oracle query FN"!(y) via f~!(y). The oracles are referred to as
the encryption and decryption oracles, respectively, and while the definition captures cca attacks, we
can recover the cpa case by considering adversaries that make no decryption queries. The advantage of
a O-restricted adversary A in attacking the prp-rka security of a family of permutations £: K xD — D
is defined via
-rka

AdvyZ™(4) = Pr [ RKPRPReals = 1] — Pr[RKPRPRand4 = 1] . (26)
Game RKPRPRealz begins by picking K & K. Tt responds to oracle query RKFN(¢, 7) via E(¢(K),x)
and to oracle query RKFN~!(¢,y) via E_l(gb(F), y). Game RKPRPRandz begins by picking K &K

and G & PF(K,D). It responds to oracle query RKFN(¢,z) via G(¢(K),z) and to oracle query
RKFN"!(¢,y) via G™1(#(K),y). Again, the oracles are referred to as the encryption and decryption
oracles, respectively, and while the definition captures cca attacks, we can recover the cpa case by
considering adversaries that make no decryption queries.

Our constructs rely on RKA-PRGs. Let S: K — K. An adversary against S is said to be ®-
restricted if its oracle queries are functions ¢ € ®. The advantage of such an adversary A in attacking
the prg-rka security of S is defined via

Advggrka( A) = Pr[RKGReal§ = 1] — Pr[RKGRand§ = 1] . (27)

Game RKGRealg begins by picking K < K. It responds to oracle query GFN(¢) via S(#(K)). Game
RKGRandg begins by picking K < K and R & Fun(KC, K). It responds to oracle query GFN(¢, ) via
R(¢(K)).

CONSTRUCTION. Let E: K x D — D be a PRP and S: K — K a ®-RKA-PRG. Theorem says that
E: K x D — R defined by F(K,z) = E(S(K), ) is a ®-RKA-PRP. This holds for any ®, the only

(mild) restriction being that it is claw-free.

Theorem 6.1 Let E: K xD — D be family of permutations and let S: I — KC. Define E: KxD — R
by E(K,z) = E(S(K),z). Let ® C Fun(K,K) be any claw-free class of RKD functions. Let A be a
-restricted adversary attacking the prp-rka security of E. Assume it makes qe encryption and qq
decryption queries, with the number of different RKD functions involved in its oracle queries being
q < qe + qq- Then we can construct a ®-restricted adversary A1 attacking the prg-security of S and an
adversary As attacking the prp-security of E such that

q2

+ .

K]
Adversaries A1, Ay have the same running time as A. Adversary Ay makes qe + qq oracle queries and
Ao makes q. encryption queries and qq decryption queries.

Adv{;%‘rka(A) < AAVRET (A1) + ¢ AdvRP(A2)

Proof: Game Gy begins by picking K < K. It responds to RKFN-query (¢,z) with E(S(¢(K)), x)
and to RKFN~!-query (¢,y) with E~1(S(¢(K)),y). Game Gy, having initially picked K < K and
R & Fun(K, K), responds to RKFN-query (¢, z) with E(R(¢(K)), z) and to RKFN"'-query (¢, y) with
EY(R(¢(K)),y). Game Gy, having initially picked K & K, R & Fun(K,K) and H & PF(K, D), re-
sponds to RKFN-query (¢, z) with H(R(¢(K)), z) and to RKFN"-query (¢,y) with H~Y(R(¢(K)),y).
Game G3, having initially picked K & K and G & PF(K,D), responds to RKFN-query (¢,z)

with G(¢(K),z) and to RKFN"l-query (¢,y) with G~'(¢(K),y). Letting W; abbreviate the event
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“Gf‘ = 1,” we have

Advgr%rka(A) = Pr[W] — Pr[Ws]
= (Pr[Wo] — Pr(Wh]) + (Pr[Wh] — Pr{Wa]) + (Pr[Wa] — Pr{W3]) .
A straightforward simulation allows us to construct A; such that
Pr[Wo] — Pr[W1] < Advh%™(4)).
Also,
2

a
K]
Finally we use a hybrid argument to construct As such that

Pr[Wi] — Pr[Ws] < ¢q-AdviP(4s) .

Pr[Ws] — Pr[W3] <

It is this last step that relies on the assumption that ® is claw-free. We omit the details. |

Any of our ®-RKA-PRFs —let’s take the multiplicative DDH-based F: (Z3)"™! x {0,1}" — G for
concreteness— can of course easily be turned into a ®-RKA-PRG, in this case 5": (Z3)""! — G defined
by S'(K) = F(K,C) for some fixed, public constant C' € {0,1}". (This function is not length-increasing
as with a normal PRG, but that doesn’t matter here.) And, of course PRPs F exist aplenty. But we are
not done. We would like to let S’ play the role of S in Theorem The problem is that we need FE, S
which “match up” in the sense that the keyspace of E is the range of S. But the range of F, and hence
of S’ in this construction, is a group. Getting a PRP whose keyspace is this group isn’t immediate. The
best choices for PRPs have keyspace a set {0,1}" of bitstrings. (For example [55] [57], one-way function
based PRPs via [43] 42, 55], or even blockciphers like AES.) To get a ®-RKA-PRG with range {0,1}",
we can apply an extractor to the output of S’. But randomized extractors (LHL) are ruled out because
the key has nowhere to go other than in the key of the RKA-PRG and would then become subject to
the RKA. Luckily, there exist deterministic extractors Ext: G — {0,1}" for certain groups G and we
can let S(K) = Ext(S’(K)). Now to permit extraction of suitable quality we need to choose appropriate
parameters. Let p, g be primes such that ¢ = 2p + 1 has bitlength 2r + 4, let G be an order p subgroup
of Zy, and let Ext(h) return the r least significant bits of the integer h € G. Then [35, Theorem 8] says
that the statistical distance between the distribution Ext(h), when h is drawn at random from G, and
the uniform distribution on {0,1}", is at most 5 - 277/2,

The following lemma summarizes how we can get a ®-RKA-PRG with bit outputs from one whose
range is an appropriate group. Let bin(h) denote the binary representation of an integer h. Combining
this with Theorem and our RKA-PRF's constructions we get RKA-PRPs.

Lemma 6.2 Let p,q be primes such that ¢ = 2p + 1 has bitlength 2r + 4, let G be an order p subgroup
of Z;, and let Ext(h) return the r least significant bits of bin(h) for h € G. Let S": K — G. Define
S: K — {0,1}" by S(K) = Ext(S(K)). Let ® C Fun(K,K) be any claw-free class of RKD functions.
Let A be a ®-restricted adversary attacking the prg-rka security of S. Assume it makes q oracle queries.
Then we can construct a ®-restricted adversary Ay attacking the prg-security of S’ such that

5q

or/2 ”

Adversaries Ay has the same running time as A and makes the same number of oracle queries as A.

AdvEET(A) < AdvEE™ (A +
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