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Abstract. We prove that Tandem-DM, one of the two “classical” schemes for turning a blockcipher of 2n-bit key
into a double block length hash function, has birthday-type collision resistance in the ideal cipher model. A collision
resistance analysis for Tandem-DM achieving a similar birthday-type bound was already proposed by Fleischmann,
Gorski and Lucks at FSE 2009 [3]. As we detail, however, the latter analysis is wrong, thus leaving the collision
resistance of Tandem-DM as an open problem until now.

1 Introduction

The Tandem-DM compression function is a 3n-bit to 2n-bit compression function based on two applications of a
blockcipher of 2n-bit key and n-bit word length (Fig. 1). While Tandem-DM was proposed by Lai and Massey in
1992 [7] the first proof of collision security for Tandem-DM (in the ideal cipher model, as is usual for all such proofs)
was only proposed in 2009 by Fleischmann, Gorski and Lucks [3]. Unfortunately, as we detail in Section 3, the “FGL
proof” (as we shall refer to it) has a number of serious flaws which make it false and nonobvious to repair. The purpose
of this paper is to offer a correct collision resistance analysis of Tandem-DM. We show that, as claimed in [3], Tandem-
DM does indeed have birthday-type collision security (necessitating at least 2120.8 queries to break when the output
length is 2n = 256 bits). A nice feature of our work is that the analysis is relatively simple compared to typical results
in this area. In Section 5 we also give a preimage resistance analysis for Tandem-DM, as the preimage analysis of [3]
suffers from similar flaws as the collision analysis.

RELATED WORK ON 2-CALL CONSTRUCTIONS. Another classical scheme for turning a 2n-bit key blockcipher into a
3n-bit to 2n-bit compression function is Abreast-DM, pictured in Fig. 2, which was proposed by Lai and Massey in the
same paper as Tandem-DM [7]. The collision resistance of Abreast-DM was independently resolved by Fleischmann,
Gorski and Lucks [4] and Lee and Kwon [8], who both showed birthday-type collision resistance for Abreast-DM. Be-
fore that, Hirose [5] had given a collision resistance analysis for a general class of compression functions that included
Abreast-DM as a special case, but under the assumption that the top and bottom blockciphers of the diagram be distinct
(this considerably simplifies the analysis). The work by Hirose was further generalized by Özen and Stam [11], who
additionally discuss schemes that are only secure in the iteration.

Another 3n-bit to 2n-bit compression function making two calls to a blockcipher of 2n-bit key was proposed
by Hirose [6], who proved birthday-type collision resistance for his construction in the ideal cipher model. Hirose’s
construction (Fig. 3) is simpler than either Abreast-DM or Tandem-DM and in particular uses a single keying schedule
for the top and bottom blockciphers. It is noteworthy that while Hirose introduced his construction over 10 years
after Abreast-DM and Tandem-DM his collision resistance analysis pre-dates similar collision resistance analyses for
Abreast-DM and Tandem-DM.

RELATED WORK ON 1-CALL CONSTRUCTIONS. Stam [16] proposed a class of “polynomial-based” 3n-bit to 2n-bit
compression functions making a single call to a 2n-bit key blockcipher, and subsequently proved [17] birthday-type
collision resistance for this construction. Lee and Steinberger [9] proved collision resistance for the same compression
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Fig. 1: The Tandem-DM compression function. All wires carry n-bit values. The top and bottom blockciphers are the same. Each
has a 2n-bit key and n-bit input/output. The wire marked L is an input to the compression function (along with A and B).

Fig. 2: The Abreast-DM compression function. The empty circle at bottom left denotes bit complementation.

function in the weaker “unpredictable cipher” model. Lucks [10] proposed a double length hash function using a 3n-
bit to 2n-bit compression function making a single call to a blockcipher of 2n-bit key, and proved this hash function
collision resistant in the ideal cipher model (see [11] for a generalization). However, Lucks’ construction is only secure
in the iteration, as the compression function itself is collision insecure.

Earlier, Yi and Lam [19] had proposed a 3n-bit to 2n-bit compression function making a single call to a 2n-bit
key blockcipher whose design was somewhat similar to Stam’s polynomial-based construction but which used a single
integer addition operation instead of several field multiplication operations. However, this construction was broken by
Wagner [18].

COMPARISON. Of the three well-known 3n-bit to 2n-bit compression functions making two calls to a 2n-bit key
blockcipher—those being Tandem-DM, Abreast-DM and Hirose’s construction—the two constructions whose colli-
sion resistance has been successfully resolved (Hirose and Abreast-DM) share the feature that the inputs to the top
and bottom blockcipher are bijectively related. For example, for Abreast-DM, if the top blockcipher call is EB∥L(A)

then the bottom blockcipher call (for the same input A∥B) is EL∥A(B), where B denotes bit complementation of
B; thus the inputs to the top and bottom blockciphers are related by the permutation π : {0, 1}3n → {0, 1}3n,
π(X∥Y ∥Z) = Y ∥Z∥X . (Here the last 2n bits are the key.) In Hirose’s construction, the inputs to the top and bottom
blockciphers are related by the permutation π′ : {0, 1}3n → {0, 1}3n, π′(X∥Y ∥Z) = X ⊕ c∥Y ∥Z.

By contrast, Tandem-DM exhibits a more subtle relationship between the inputs of the top and bottom blockci-
phers, as an output of the top blockcipher is used to key the bottom blockcipher. It is the presence of this “feedback”
within the construction, it seems, that has complicated efforts to prove a collision resistance bound. On the other hand,
Tandem-DM still has the agreeable feature that the top and bottom blockcipher calls uniquely determine each other
in the following sense: given the key B∥L and output R of the top cipher one can determine the key L∥R and the
input B of the bottom cipher, and vice-versa. This contrasts with constructions such as MDC-2 which use two calls to
a blockcipher of n-bit key, and in which the top and bottom blockcipher calls do not uniquely determine each other.
Typically, collision resistance analyses are much harder for the latter kind of compression functions. (MDC-2 can
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Fig. 3: Hirose’s compression function. The bottom left-hand wire is not an input; it carries an arbitrary nonzero constant c.

only be proved nontrivially collision resistant in the iteration, and the current best bound of O(2
3
5n) queries due to

Steinberger [15] is undoubtedly suboptimal.)
We note that the permutations π and π′ discussed above share the common feature of having small cycle lengths—

all cycles of π have length 6 and all cycles of π′ have length 2—which constitutes another strong similarity between
Abreast-DM and Hirose’s scheme. In fact, due to this reason, Hirose’s collision resistance proof and the Abreast-
DM collision resistance proof can be seen as special cases of the same framework, as noted in [4, 8]. Building on
this observation, Fleischmann et al. [4] defined a general class of compression functions called ‘Cyclic-DM’ that are
amenable to collision resistance analyses and that include Hirose’s scheme and Abreast-DM as special cases. Similarly,
one can define collision-resistant generalizations of Tandem-DM by isolating those properties of Tandem-DM that are
used in our proof. While defining the most all-encompassing possible collision resistant generalization of Tandem-
DM is not the goal of this paper we do briefly discuss these key properties and the corresponding collision-resistant
generalizations of Tandem-DM in Section 6, without proof of security.

A SECOND PROOF. The proof of collision resistance that we provide in this paper is very slick, but slightly mysterious
in its efficacy because it relies on a subtle trick that cuts out a large portion of the case analysis that “would have
been there” in a more standard proof. As a pedagogical bonus, and to provide some perspective on our proof, we also
show how to prove the collision security of Tandem-DM without this trick in Appendix A. We note this second, “brute
force” proof yields a slightly weaker bound.

FURTHER POSSIBLE IMPROVEMENTS. We note that our collision resistance has the form Õ(q/(2n − q)) rather than
Õ(q2/(2n − q)2). Both bounds reach constant values when q = Ω(2n), however q2/(2n − q)2 grows slower than
q/(2n − q) since our bound is (only) “linear birthday” rather than true “quadratic birthday”. We leave it as an open
problem to prove “quadratic birthday”-type collision resistance for Tandem-DM (as exists for Abreast-DM and Hi-
rose’s scheme). Moreover, it is an open problem to prove preimage resistance for values of q higher than 2n for either
Abreast-DM, Tandem-DM or Hirose.

VERSION HISTORY. After the initial posting of this (our) work, we became aware of another paper by Fleischmann
et al. [2], providing a comprehensive generalization of their earlier works [3, 4]. (In particular, a new, tighter collision
resistance claim for Tandem-DM is made.) Unfortunately, the problems in the (FSE’09) FGL proof are not addressed
and actually carry over to this new generalization (in particular, the crucial “Argument B” of [4] is incorrect), rendering
the resulting bounds meaningless. We will discuss it in detail at Appendix B.

2 Definitions

A blockcipher is a function E : {0, 1}m × {0, 1}n → {0, 1}n such that E(K, ·) is a permutation of {0, 1}n for
each K ∈ {0, 1}m. We call m the key size and n the word size of the blockcipher. It is customary to write EK(X)
instead of E(K,X) for K ∈ {0, 1}m, X ∈ {0, 1}n. The function E−1

K (·) denotes the inverse of EK(·) (as EK(·) is a
permutation).
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Given a blockcipher E : {0, 1}2n×{0, 1}n → {0, 1}n we define the Tandem-DM compression function TDME :
{0, 1}3n → {0, 1}2n by

TDME(A∥B∥L) = (A⊕R)∥(B ⊕ S)

where

R = EB∥L(A),

S = EL∥R(B).

In the collision resistance experiment, a computationally unbounded adversary4 A is given oracle access to a
blockcipher E uniformly sampled among all blockciphers of key length 2n and word length n. We allow A to query
both E and E−1. After q queries to E, the query history of A is the set of triples Q = {(Xi,Ki, Yi)}qi=1 such that
EKi

(Xi) = Yi and A’s i-th query is either EKi
(Xi) or E−1

Ki
(Yi) for 1 ≤ i ≤ q. We letQi = {(Xj ,Kj , Yj)}ij=1 be the

first i elements of the query history; thusQ = Qq . We say A succeeds or finds a collision after its first i queries if there
exist distinct 3n-bit values, A∥B∥L, A′∥B′∥L′ such that TDME(A∥B∥L) = TDME(A′∥B′∥L′) and such that Qi

contains both the queries necessary to compute TDME(A∥B∥L) and TDME(A′∥B′∥L′). More formally—and see
Fig. 4—we define this event by a predicate Coll(Qi), which is true if and only if there exist n-bit values A, B, L, R,
S, A′, B′, L′, R′, S′ such that

A∥B∥L ̸= A′∥B′∥L′ (1)
A⊕R = A′ ⊕R′ (2)
B ⊕ S = B′ ⊕ S′ (3)

and such that

(A,B∥L,R), (B,L∥R,S), (A′, B′∥L′, R′), (B′, L′∥R′, S′) ∈ Qi. (4)

We denote by
Advcoll

TDM (q)

the maximum chance of an adversary making q queries causing Coll(Q) to become true. The probability occurs over
the uniform choice of E and over A’s coin tosses, if any. Also note that n is a hidden parameter.

The “XOR-output” of a query (Xi,Ki, Yi) is the quantity Xi ⊕ Yi. Another predicate which plays an important
part in both our proof and the FGL proof is the “many queries with the same XOR-output” predicate Xor(Q), defined
on a query history Q = {(Xi,Ki, Yi)}qi=1 by

Xor(Q) ⇐⇒ max
Z∈{0,1}n

|{i : Xi ⊕ Yi = Z}| > α.

Here α is a free parameter of the analysis which appears in the final collision resistance bound. (In [3] this predicate is
named LUCKY(Q); in [15] a similar predicate is named Win0(Q).) Without going into details at this point, we mention
that the FGL collision resistance proof—and ours, essentially, as well—upper bounds Pr[Coll(Q)] by Pr[Xor(Q)] +
Pr[Coll(Q)∧¬Xor(Q)]. A larger α implies a lower value for Pr[Xor(Q)] and a higher value for Pr[Coll(Q)∧¬Xor(Q)].
The best value of α can be found numerically for a given value of n and q. Generally, readers may think of α as some
small constant value (e.g. for n = 128 and q = 2120.87, α = 16).

So far, we have described “infrastructure” that is common to both proofs. We shall now introduce some material
proper to our proof. Note a query history Q = {(Xi,Ki, Yi)}qi=1 does not record whether each triple (Xi,Ki, Yi)
was obtained by the adversary through a forward query EKi(Xi) or a backward query E−1

Ki
(Yi). For this, we maintain

two arrays Fwd[·] and Bwd[·] where Fwd[i] = 1 if and only if the adversary’s i-th query is a forward query and
Bwd[i] = 1 if and only if the adversary’s i-th query is a backward query. We then define an additional predicate

FB(Q) ⇐⇒ max
Z∈{0,1}n

|{i : (Yi = Z ∧ Fwd[i] = 1) ∨ (Xi = Z ∧ Bwd[i] = 1)}| > α. (5)

4 Our notation for the adversary and one of the Tandem-DM inputs collide, but without too much danger of confusion.
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(‘FB’ stands for “Forward Backward”.) Here α is the same free parameter as above. Note that ¬FB(Q) implies that

maxZ∈{0,1}n |{i : Yi = Z ∧ Fwd[i] = 1}| ≤ α, (6)
maxZ∈{0,1}n |{i : Xi = Z ∧ Bwd[i] = 1}| ≤ α. (7)

It is really consequences (6) and (7) of ¬FB(Q) that interest us, though we define FB(Q) via (5) because this makes
it slightly easier to bound Pr[FB(Q)]. We will use the bound

Pr[Coll(Q)] ≤ Pr[Xor(Q)] + Pr[Coll(Q) ∧ ¬Xor(Q)]
≤ Pr[Xor(Q)] + Pr[FB(Q)] + Pr[Coll(Q) ∧ ¬Xor(Q) ∧ ¬FB(Q)]. (8)

One should thus think of FB(Q) and Xor(Q) as bad events whose nonoccurrence helps bound the probability of
Coll(Q) occurring. We warn that (8) constitutes a slightly oversimplified encapsulation of our proof’s high-level struc-
ture. We refer to Section 4 for more details.

3 The FGL collision resistance proof

Since the interest of our paper would be substantially diminished (though not nullified, since our proof is much shorter)
if the FGL collision resistance proof were correct, we detail here some of our objections to [3]. This material also serves
as a good introduction to our own proof, and will give the reader more intuition about Tandem-DM.

TL

BL
B

B L

A R

R

S B⊕S

A⊕R
TR

BR
B′

B′ L′

A′ R′

R′

S′ B′⊕S′

A′⊕R′

Fig. 4: The collision diagram for Tandem-DM. The adversary must find blockcipher queries to fit both sides of the diagram such
that A ⊕ R = A′ ⊕ R′, B ⊕ S = B′ ⊕ S′ and A∥B∥L ̸= A′∥B′∥L′. More precisely, the adversary must find four queries of
the form EB∥L(A) = R, EL∥R(B) = S, EB′∥L′(A′) = R′, EL′∥R′(B′) = S′ such that the above conditions hold. Each query
could either be learned through a forward query (to E) or through a backward query (to E−1). The four queries in the diagram are
labeled ‘TL’, ‘BL’, ‘TR’, ‘BR’ for ‘Top Left’, ‘Bottom Left’, etc.

Starting with a q-query collision-finding adversary A, FGL first make the standard assumption that A never makes
a query to which it already knows the answer (this could occur two ways: A could make the exact same query twice, or
A could query (say) E−1

K (Y ) after having received Y as an answer beforehand to a query EK(X)). This ensures each
answer A receives comes uniformly at random from a set of size at least 2n− q (since EK(·) is a random permutation
for each K). Moreover, after A makes i queries its query history will contain exactly i distinct elements.

Say A succeeds at the i-th query if Coll(Qi) holds but Coll(Qi−1) and Xor(Qi−1) do not hold. By upper bounding
the probability that A ever succeeds we upper bound Pr[Coll(Q)∧¬Xor(Q)]. (Upper bounding Pr[Xor(Q)] is an easy
probability exercise that we overlook for the purposes of this proof sketch.) A good analogy is to view A as trying
to complete a puzzle where each element of its query history is a puzzle piece it can use to complete the collision
diagram of Fig. 4. We use the expressions “A succeeds”, “A finds a [puzzle] solution” or “A completes a collision”
interchangeably (and we will rarely remind that the condition ¬Xor(Qi−1) must hold for A to succeed). We refer to
the four queries (in any hypothetical puzzle solution (a.k.a. collision)) as ‘TL’, ‘BL’, ‘TR’ and ‘BR’; see Fig. 4.

Note the constraint A∥B∥L ̸= A′∥B′∥L′ does not imply that the queries TL, BL, TR, BR are all distinct. For
example, one could have TL = BR (in which case (A,B∥L,R) = (B′, L′∥R′, S′), so A = B′, B = L′, L = R′ and
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R = S′) or TL = BL (in which case we have the dramatic consequence that A = B = L = R = S, as is easy to
check). This gives rise to several combinatorially distinct cases to consider; A’s chance of obtaining a solution of each
kind is upper bounded separately, and these probabilities are added together to form a final upper bound on A’s chance
of success. (Oddly, FGL include the cases TL = TR and BL = BR in their analysis, while these are impossible since
they imply A∥B∥L = A′∥B′∥L′. This oversight, however, does not imply an incorrect proof in itself.)

We shall restrict our critique to FGL’s analysis of the “generic” case when the queries TL, BL, TR, BR are all
distinct. We note that, in these types of analyses, the generic case is usually the hardest to handle as A’s job typi-
cally grows harder when additional constraints are placed on its solution. (The possibility of reusing the same query
in two different positions of the collision diagram does however occasionally prove useful to A, depending on the
construction, so all cases must always be considered.) We call a puzzle solution in which TL, BL, TR, BR are distinct
a “generic solution.”

If A succeeds in finding a generic solution there is a smallest i such that a generic solution can be assembled
from the queries in Qi. The i-th query is then called the “last query” of A’s solution. To upper bound A’s chance of
obtaining a generic solution, FGL consider two cases. The first case is the event that A’s last query can be used in
position TL of the puzzle solution and the second case is the event that A’s last query can be used in position BL (one
of these two cases must occur). We shall focus on the first of these two cases, which is also the first analyzed in the
order of the FGL proof. We call it the “TL generic” case.

One would typically consider two subcases for the TL generic case (or any other) depending on whether A’s last
query is a forward query to E or an inverse query to E−1, but FGL lump their analysis into a single argument claiming
that the two types of queries can be handled the same (in fact, they make this claim for every case in their proof, and
never distinguish between forward and backward queries to E). For clarity, however, we shall restrict ourselves to
considering the case of a forward query to E, and discuss how their argument specializes to that case. We also choose
to specifically consider the forward query case because this is where FGL’s analysis seems to be the most problematic.

The task at hand is thus to upper bound A’s chance of completing a generic solution by making a forward query
to E that can be used as query TL of such a solution. The usual approach for this, and the one used by FGL, is to
consider any given forward query EKi(Xi) made by A and to upper bound the probability that the answer Yi to this
query is such that the query history element (Xi,Ki, Yi) can be used in the desired manner; one then multiplies this
probability by q since A can make q queries total. With foresight on how we wish to use the query EKi(Xi) it is
convenient to rename Ki as B∥L and Xi as A; thus the query is EB∥L(A). To proceed, one would typically upper
bound the number of values R ∈ {0, 1}n such that, if we had EB∥L(A) = R, the query (A,B∥L,R) could be used
in position TL of a generic solution together with previous elements of the query history, and divide this number by
2n − q, since the answer to the query EB∥L(A) will come uniformly at random from a set of size at least 2n − q.
In turn, the standard, formal way of bounding the number of such R’s would be to upper bound the possible number
of query triples (BL, BR, TR) in the query history that could potentially be used with the query EB∥L(A) to form a
generic solution, as the number of such triples is an upper bound for the number of R’s. Note such a triple must have
the form BL = (B,L∥R,S), BR = (B′, L′∥R′, S′), TR = (A′, B′∥L′, R′) where B ⊕ S = B′ ⊕ S′ (and note that
A, B and L are fixed here by the last query).

FGL do not adopt5 this approach for bounding the number of good R’s. Rather, they make the following argument:
take the value of R, whatever it is, that is returned by the query EB∥L(A); because ¬Xor(Qi−1) there will be at most
α queries TR = (A′, B′∥L′, R′) in the query history such that A⊕R = A′⊕R′; as the TR query uniquely determines
the BR query, there are at most α possibilities for the BR query; now “give the query BL = (B,L∥R,S) for free to
the adversary”; then since there are at most α possibilities for the query BR = (B′, L′∥R′, S′) there is chance at most
α/(2n − q) that B ⊕ S = B′ ⊕ S′ for one of the queries BR, so total chance at most qα/(2n − q) that the adversary
ever obtains a TL-generic solution with a forward query, there being at most q queries total.

The fallacy in the above argument can be succinctly summarized by pointing out that the query BL = (B,L∥R,S)
may already be in the query history, in which case there is no randomness left in the value B ⊕ S. However, let us
review in detail the argument in two different cases: when the query BL = (B,L∥R,S) is already in the query history
prior to the last query, and when it isn’t. (Note that query BL only depends on R (besides B and L which are fixed by

5 Neither do we, in fact. Using a careful trick, we manage to upper bound the number of good R’s by only considering the
possibilities for the query BL rather than by considering the possible triples (BL, TR, BR). In Appendix A, however, we give for
comparison the “brute force” proof which uses the method of upper bounding the number of triples (BL, TR, BR).
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the last query), and not on which queries are “chosen” for TR and BR.) In the latter case, when BL = (B,L∥R,S) is
not yet in the query history at the i-th query, then A’s last query can in any case not succeed in completing a generic
TL collision since the query BL is missing; thus there is no need to bound anything (and no need even to “give the
query BL for free”). In the case when query BL is already in the query history, on the other hand, all randomness is
lost once R is revealed. FGL successfully argue that, for a given value of R, there will be at most α possibilities for
the pair (TR , BR), but this does not in any way imply the non-existence of such queries TR, BR.

Other issues are raised by FGL’s casual comment that the query BL = (B,L∥R,S) is simply “given for free” to
the adversary. Indeed, if this query is not yet present, is it added to the query history before or after the i-th query itself?
Is this query only made after the value of R is revealed, or is it somehow inserted into the query history before the
value of R is revealed? The former might be all right; the latter not, since it would (drastically) alter R’s distribution
conditioned on the query history, i.e. R would no longer come uniformly at random from a set of size ≥ 2n − q.
Most importantly, since this free query becomes part of the query history, one should account for the possibility that
this query (not the i-th query) causes the adversary to succeed (and not necessarily by being used in position BL of
a generic solution). Indeed, we are forced to give such credit to the adversary, since we have required the adversary
never to make a query to which it already knows the answer, and since the adversary may have wished to subsequently
make this query itself; this means the case analysis should be applied recursively to the free query, but if the case
analysis requires other queries to be “given for free”, then we bite our tail and end up giving an astronomical number
of free queries to the adversary (e.g., nearly all possible queries).

Note also that nothing in the FGL argument precludes the possibility that, when the adversary makes its i-th query
EB∥L(A), there is not some very large number of distinct values of R—say 20.5n—for which there exists a triplet
of queries (BL, TR, BR) of the form BL = (B,L∥R,S), BR = (B′, L′∥R′, S′), TR = (A′, B′∥L′, R′) where
B ⊕ S = B′ ⊕ S′, and such that R does not yet appear as the third coordinate of any query in the query history with
key B∥L. Certainly, there being such a large number of values of R does not contradict ¬Xor(Qi−1). Also certainly,
the i-th query would have chance 20.5n/(2n − q) of making the adversary succeed if such a large number of values
of R existed, and not chance α/(2n − q). In other words, one can infer something is wrong with the FGL argument
because it does not address the main difficulty of the case at hand.

While we singled out the TL generic case for examination, the same kinds of problems recur throughout the
FGL case analysis, essentially invalidating the entire proof. Moreover, since the FGL proof sidesteps the most crucial
challenges posed by an analysis of Tandem-DM (see the previous paragraph), it leaves little for any subsequent analysis
to build on. We note that the FGL preimage resistance proof suffers from very similar flaws as the collision resistance
proof, as briefly discussed in Section 5.

4 Main result: collision resistance of Tandem-DM

It will be easier to explain the form of the probability bound in our main theorem if we explain a few high-level ideas
from the proof beforehand. The proof starts by considering an arbitrary q-query collision-finding adversary A for
Tandem-DM. We then construct an adversary A′ as follows: A′ simulates A, but after each forward query EV ∥W (U)

made by A, A′ makes the backward query E−1
U∥V (W ) if it does not already know6 the answer to this query, and after

each backward query E−1
U∥V (W ) made by A, A′ makes the forward query EV ∥W (U) if it does not already know7 the

answer to this query. (To better understand the relation of these instructions to Tandem-DM, view U , V , W as B, L,
R.) Moreover if A ever makes a query to which A′ already knows the answer from its query history, A′ ignores this
query. Thus A′ never makes a query to which it knows the answer.

Let Q′ be the query history of A′ and Q be the query history of A. Then Q ⊆ Q′ and |Q′| ≤ 2q. Since Q ⊆ Q′

we have

Pr[Coll(Q)] ≤ Pr[Coll(Q′)] ≤ Pr[Xor(Q′)] + Pr[FB(Q′)] + Pr[Coll(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)]. (9)

Our proof uses the inequality above to bound Pr[Coll(Q)]. Incidentally, we point out that if we construct an adversary
A′′ from A′ the same way A′ is constructed from A, then A′′ and A′ will have the same query history, as is not difficult

6 More formally, if its query history does not contain any triple of the form (·, U∥V,W ).
7 More formally, if its query history does not contain any triple of the form (U, V ∥W, ·).
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to see. In other words, every forward query EV ∥W (U) made by A′ (including its “own” queries) is followed by the
query E−1

U∥V (W ) unless A′ already knows this query, and likewise every backward query E−1
U∥V (W ) made by A′ is

followed by the forward query EV ∥W (U) unless A′ already knows the answer to this query. The use of the augmented
adversary A′ may seem superficially similar to Fleischmann et al.’s idea of “giving away a query for free”. However,
it will become clear from our case analysis that we exploit the added structure of Q′ entirely differently from the
way Fleischmann et al. exploit their free queries. We also point out that the added structure of Q′ enables the main
interesting trick of our analysis, found in case ‘TL Forward’ of Proposition 3 below.

We can now more easily discuss our main result:

Theorem 1. Let N = 2n, q < N/2, N ′ = N − 2q and let α be an integer, 1 ≤ α ≤ 2q. Then

Advcoll
TDM (q) ≤ 2N

(
2eq

αN ′

)α

+
4qα

N ′ +
4q

N ′ .

The term 2N
(

2eq
αN ′

)α
in Theorem 1 is an upper bound for Pr[Xor(Q′)] + Pr[FB(Q′)]. In fact Pr[Xor(Q′)] ≤

N
(

2eq
αN ′

)α
and Pr[FB(Q′)] ≤ N

(
2eq
αN ′

)α
. The two remaining terms 4qα/N ′ + 4q/N ′ are an upper bound for

Pr[Coll(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)]. To bound Advcoll
TDM (q) for a given value of n and q one should optimize α

numerically. For example, for n = 128, Theorem 1 yields that Advcoll
TDM (2120.87) < 1

2 using α = 16. Asymptotically,
Theorem 1 yields the following result:

Corollary 1. limn→∞ Advcoll
TDM (N/n) = 0.

Proof. Let q = N/n and α = n/ log n, where the logarithm takes base 2. Since N ′ > N/2 for n > 4, we have

Advcoll
TDM (q) ≤ 2N

(
2eq

αN ′

)α

+
4qα

N ′ +
4q

N ′ ≤ 2N

(
4eq

αN

)α

+
8qα

N
+

8q

N

≤ 2N

(
4e logn

n2

) n
log n

+
8

log n
+

8

n
= 2

(
4e log n

n

) n
log n

+
8

log n
+

8

n
.

The last expression obviously goes to zero as n→∞. ⊓⊔

In particular, limn→∞ Advcoll
TDM

(
2(1−ε)n

)
= 0 for any fixed ε > 0.

The proof of Theorem 1 uses refinements Coll1(Q), Coll2(Q), Coll3(Q) of the collision predicate Coll(Q), defined
as follows:

Coll1(Q) occurs if Q contains a collision with TL, BL, TR, BR distinct.
Coll2(Q) occurs if Q contains a collision with either TL = BL or TR = BR.
Coll3(Q) occurs if Q contains a collision with either TL = BR or BL = TR.

For example, Coll2(Q) occurs if there exist values A,B,L,R, S,A′, B′, L′, R′, S′ such that (1)–(4) hold and such that
(A,B∥L,R) = (B,L∥R,S). Since BL ̸= BR and TL ̸= TR in any collision, we have the following proposition.

Proposition 1. Coll(Q) =⇒ Coll1(Q) ∨ Coll2(Q) ∨ Coll3(Q) for any query history Q.

In view of proving Theorem 1, let A be an arbitrary q-query adversary for Tandem-DM, and let A′ be obtained from
A as outlined above; letQ be the query history of A andQ′ be the query history of A′. Then by (9) it suffices to show
that

Pr[Xor(Q′)] ≤ N

(
2eq

αN ′

)α

Pr[FB(Q′)] ≤ N

(
2eq

αN ′

)α

Pr[Coll(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤ 4qα

N ′ +
4q

N ′

8



since the sum of the above probabilities is an upper bound for Pr[Coll(Q)]. Moreover, by Proposition 1, Pr[Coll(Q′)∧
¬Xor(Q′) ∧ ¬FB(Q′)] can be upper bounded by finding upper bounds for Pr[Colli(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] for
i = 1, 2, 3 and taking the sum of these. We now upper bound these various probabilities in a series of propositions. For
these propositions q, N and α are as in Theorem 1, and Q′ is the query history of any adversary A′ as just specified.
We emphasize that |Q′| ≤ 2q and that probabilities are taken over the random cipher E and over the coins of A′, if
any (it inherits these from A).

Proposition 2. Pr[Xor(Q′)] ≤ N
(

2eq
αN ′

)α
and Pr[FB(Q′)] ≤ N

(
2eq
αN ′

)α
.

Proof. Let Q′ = {(X ′
i,K

′
i, Y

′
i )}

2q
i=1 denote the query history of A′. Since

Pr[|{i : X ′
i ⊕ Y ′

i = Z}| > α] ≤
(
2q

α

)(
1

N ′

)α

,

for each Z ∈ {0, 1}n, we have

Pr[Xor(Q′)] ≤ N

(
2q

α

)(
1

N ′

)α

≤ N

(
2eq

αN ′

)α

.

Pr[FB(Q′)] can be bounded similarly. ⊓⊔

Proposition 3. Pr[Coll1(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤ 4qα/N ′.

Proof. Let
Success1(Q′

i) = Coll1(Q′
i) ∧ ¬Coll1(Q′

i−1) ∧ ¬Xor(Q′
i−1) ∧ ¬FB(Q′

i−1)

for i = 1 . . . 2q. Then Pr[Coll1(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤
∑2q

i=1 Pr[Success1(Q′
i)] and Pr[Success1(Q′

i)] ≤
Pr[Coll1(Q′

i)|¬Coll1(Q′
i−1) ∧ ¬Xor(Q′

i−1) ∧ ¬FB(Q′
i−1)].

Fix a value of i, 1 ≤ i ≤ 2q. We call the i-th query made by A′ the last query. If Success1(Q′
i) occurs then either

the adversary (i.e. A′) can use its last query as query TL or as query BL of a collision in which TL, BL, TR and BR are
distinct, by symmetry. Moreover the last query could either be a forward query or a backward query. This gives rise to
four possible cases, and we bound Pr[Success1(Q′

i)] for each separately. (We note the very first case, ‘TL forward’, is
the case we discussed in Section 3.) For each case, we call the last query successful if this query completes a collision
with TL, BL, TR, BR distinct and where the last query is used in the position stipulated by that case (e.g., for the case
‘TL forward’, the last query must be used in position TL).

TL forward: Let the last query be EB∥L(A). Call a value R good if there exists a query of the form (B,L∥R, ·) in Q′

that was obtained by A′ as a backward query. We note that because of (7), ¬FB(Q′
i−1) implies there are at most α

good R’s.
We claim that for the last query to be successful the value R returned as an answer to the query must be good.

Indeed, let R be the value returned; then a prerequisite for the query to be successful is that there be a query of the
form (B,L∥R, ·) in Q′

i−1. We claim that this query must have been obtained as a backward query. Indeed, assume
that the query (B,L∥R, ·) was obtained as a forward query EL∥R(B) by A′. Then, by construction, A′ would have
immediately followed this query by the query E−1

B∥L(R) unless A′ already knew the answer to E−1
B∥L(R). Either way

A′ would have the query (A,B∥L,R) in its query history prior to the i-th (forward) query EB∥L(A), a contradiction
since A′ never makes a query to which it knows the answer. Thus the value R returned as an answer to the query
EB∥L(A) must be good for the query to be successful.

Since there are at most α good values of R and since A′ makes at most 2q queries, the probability that the last
query is successful is therefore at most α/(2n − 2q) = α/N ′.

TL backward: Let the last query be E−1
B∥L(R). For the last query to be successful, there must be a (necessarily unique)

query BL = (B,L∥R,S) ∈ Q′
i−1, for some value S ∈ {0, 1}n. From the condition B ⊕ S = B′ ⊕ S′ and from

¬Xor(Q′
i−1) there are at most α possibilities for the query BR. As each query BR uniquely determines the query TR,
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there are at most α possibilities for the query TR as well, and thus at most α possibilities for the value A′ ⊕R′. Thus
the value A returned by the last query has chance at most α/N ′ that A⊕ R will be equal to A′ ⊕ R′ for one of these
values A′ ⊕R′, and so the last query has chance at most α/N ′ of being successful.

BL forward: A 180◦ rotation of the collision diagram shows this case is symmetric to the case TL backward. The
chance of success in this case is therefore at most α/N ′.

BL backward: A 180◦ rotation of the collision diagram shows this case is symmetric to the case TL forward. The
chance of success in this case is therefore at most α/N ′.

The chance a forward last query is successful is therefore at most 2α/N ′ (adding the TL and BL forward cases)
and likewise the chance that a backward last query is successful is at most 2α/N ′. Thus Pr[Success1(Q′

i)] ≤ 2α/N ′

for all i and
∑2q

i=1 Pr[Success1(Q′
i)] ≤ 4qα/N ′. ⊓⊔

Proposition 4. Pr[Coll2(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤ 2q/N ′.

Proof. Note that when TL = BL, B∥L = L∥R, so B = L = R; moreover R = S and A = B, so A = B = L = R =
S. For the adversary to obtain a collision with TL = BL, therefore, it must obtain a query of the form (U,U∥U,U). The
same argument applies to the case TR = BR. The chance of a query EU∥U (U) or of a query E−1

U∥U (U) being answered
by U is at most8 1/N ′. Thus, since 2q queries are made total, Pr[Coll2(Q′)] ≤ 2q/N ′. ⊓⊔

Proposition 5. Pr[Coll3(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤ 2qα/N ′ + 2q/N ′.

Proof. Note that in a collision with TL = BR we must have TL ̸= BL and A⊕R = B⊕S (since B⊕S = B′⊕S′ =
A⊕R, using TL = BR). Say the event Coll′3(Q′

i) occurs if there exist distinct queries (A,B∥L,R), (B,L∥R,S) inQ′
i

such that A⊕R = B⊕S. With the same argument applied to the case BL = TR, we have Coll3(Q′
i) =⇒ Coll′3(Q′

i).
Therefore it suffices to show Pr[Coll′3(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤ 2qα/N ′ + 2q/N ′.

The analysis now proceeds rather similarly to Proposition 3. Let

Success′3(Q′
i) = Coll′3(Q′

i) ∧ ¬Coll
′
3(Q′

i−1) ∧ ¬Xor(Q′
i−1) ∧ ¬FB(Q′

i−1).

We have Pr[Coll′3(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤
∑2q

i=1 Pr[Success
′
3(Q′

i)].
Fix a value of i, 1 ≤ i ≤ 2q, and call the i-th query made by A′ the last query. If Success′3(Q′

i) occurs then
either the adversary (i.e. A′) can use its last query as query TL or as query BL of its Coll′3-solution. This gives rise to
four possible cases given that the last query could be either forward or backward. In each case, we call the last query
successful if Success′3(Q′

i) occurs and if the last query can be used in the position prescribed by that case (either TL
or BL) in the Coll′3-solution.

TL forward: We can use exactly the same analysis as in the case ‘Forward TL’ of Proposition 3. The probability that
the last query is successful is therefore at most α/N ′.

TL backward: Let E−1
B∥L(R) be the last query. For the last query to be successful, there must be a (necessarily unique)

query of the form (B,L∥R,S) ∈ Q′
i−1, for some S ∈ {0, 1}n. Since the answer A to the last query must be such that

A⊕ R = B ⊕ S (as per the definition of Coll′3) and B ⊕ S is uniquely determined, the last query has chance at most
1/N ′ of success.

BL forward: A 180◦ rotation of the collision diagram shows this case is symmetric to the case TL backward. The
chance of success in this case is therefore at most 1/N ′.

BL backward: A 180◦ rotation of the collision diagram shows this case is symmetric to the case TL forward. The
chance of success in this case is therefore at most α/N ′.

8 Since for each key there is only one relevant query, the tighter 1/N could be used as well.
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The chance a forward last query is successful is therefore at most (α+1)/N ′ (adding the TL and BL forward cases)
and likewise the chance that a backward last query is successful is at most (α+1)/N ′. Thus Pr[Success′3(Q′

i)] ≤ (α+

1)/N ′ for all i and
∑2q

i=1 Pr[Success1(Q′
i)] ≤ 2qα/N ′ + 2q/N ′. (In fact, we even have Pr[Coll3(Q′) ∧ ¬FB(Q′)] ≤

2qα/N ′ + 2q/N ′ since ¬Xor(Q′) was never used in the above.) ⊓⊔

Taking the sum of the bounds of Propositions 3, 4 and 5 one obtains that

Pr[Coll(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤ 6qα

N ′ +
4q

N ′ .

However, cases TL forward, BL backward and cases TL forward, BL backward of Propositions 3 and 5 reference the
same events (the adversary is successful in case TL forward of Proposition 3 if and only if it is successful in case
TL forward of Proposition 5, and likewise for the BL backward cases), which results in an “overcounting” of the
adversary’s probability of success by 2qα/N ′. A more careful accounting of the adversary’s probability of success
thus shows

Pr[Coll(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤ 4qα

N ′ +
4q

N ′ . (10)

Here we have not established (10) entirely formally, though this is the bound we use for Pr[Coll(Q′) ∧ ¬Xor(Q′) ∧
¬FB(Q′)] in Theorem 1. Establishing (10) formally would require dividing the event Coll(Q) into a different, less
intuitive set of events than Coll1(Q), Coll2(Q), Coll3(Q), events that are directly based on those that occur in the case
analyses of Propositions 3–5. (For example, one of these events would be the event that the adversary ever obtains a
“good R” through a forward or backward query, as defined for forward queries in case TL forward of Proposition 3
and implicitly defined (by symmetry) for backward queries in case BL backward of Proposition 3; another event would
cover the cases TL backward and BL forward of Proposition 5; and so on.) The current form of the proof is our best
compromise between readability and formality. In any case, the difference between 4qα/N ′ and 6qα/N ′ is relatively
minor.

Summing (10) with the bounds of Proposition 2 and using (9), we obtain

Pr[Coll(Q)] ≤ 2N

(
2eq

αN ′

)α

+
4qα

N ′ +
4q

N ′ . (11)

Since (11) holds for an arbitrary q-query adversary A, this establishes Theorem 1.

5 Preimage resistance

Ideally we would like to prove a strong bound on the everywhere preimage resistance [12] of Tandem-DM. In this
notion, the adversary first gets to pick a challenge digest and subsequently (using oracle access to E) needs to find a
preimage.

Unfortunately, Tandem-DM has the particularity that the point 02n is weaker than other range points with respect
to preimage resistance. Indeed, to find a preimage of 02n (given a random blockcipher) an adversary can make queries
of the form EU∥U (U) for different values of U until it finds a U such that EU∥U (U) = U ; then it is easy to see
that TDME(U∥U∥U) = 02n. The probability (over the choice of E) of this attack succeeding in q queries is 1 −
(1 − 1/N)q ≈ q/N = q/2n, since a different key is used for each query. On the other hand, we shall see that all
nonzero points in {0, 1}2n have much better preimage resistance than q/N , at least for q in the range of interest (i.e.
q = o(N), ω(1)). We also note this preimage attack on 02n is nearly matched by an easily-proved preimage resistance
bound of q/N ′ = q/(2n− q) for 02n (or any other point in {0, 1}2n); the bound follows from the fact that a necessary
condition for inverting 02n is to find a query with XOR output 0n.

One solution for avoiding issues associated to 02n is to have the point-to-invert be chosen at random from {0, 1}2n;
in this case there is chance at most 1/22n anyway that 02n is the image to invert. However, we find it slightly more
interesting to emphasize that 02n is the only “bad” point in the range by letting the adversary choose which point to
invert, under the stipulation that the adversary is not allowed to choose 02n (for which we anyway have the above
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q/N ′ preimage resistance bound which, though worse than the preimage resistance bound we shall prove for nonzero
points, is acceptable from a practical standpoint). A more detailed description of the preimage resistance experiment
can be found below.

We note that Fleischmann et al. [3] claim to prove preimage resistance of the type O(q/(2n − q)2) for Tandem-
DM. Unfortunately, their analysis has similar flaws to their collision resistance proof. For example, while examining
the case that the adversary’s last query may be used in the top row of a solution for the preimage, FGL “give for free”
the bottom row query if it is not already in the query history, and claim that the two queries (the last query and the free
query) have combined chance of success 1/(2n−q)2, since A⊕R must equal C1 and B⊕S must equal C2; the issue,
once again, is that if the “free” bottom row query is already in the query history, there is no randomness left in the
value B ⊕ S (whereas if the bottom row query was not in the query history, the adversary could not succeed anyway,
so in this case there is in fact no need to give it the bottom query for free). Moreover, Fleischmann et al. ignore the
possibility that the adversary may use the same query for the top and bottom row in its attack, which is associated
to the issues regarding 02n discussed above; however, since they work in a model where the range point to invert is
chosen at random, this particular omission would be easy to repair.

Our preimage resistance experiment will be as follows: an adversary A with oracle access to a randomly sampled
blockcipher E : {0, 1}2n × {0, 1}n → {0, 1}n selects and announces a point C1∥C2 ∈ {0, 1}2n, C1∥C2 ̸= 02n,
before making queries to E. The adversary wins after q queries if its query history Q = {(Xi,Ki, Yi)}qi=1 contains
the means of computing a preimage of C1∥C2, in the sense that there exist values A, B, L, R, S ∈ {0, 1}n such that
A ⊕ R = C1, B ⊕ S = C2 and such that the queries (A,B∥L,R), (B,L∥R,S) are in Q. (In this case, we say Q
contains a preimage of C1∥C2.) We denote by

Advpre̸=0
TDM (q)

the maximum advantage of any (probabilistic, computationally unbounded) adversary at this game. We note that here,
too, n is a hidden parameter of the advantage. Moreover, we let

Preim(Q)

be the predicate that is true if and only if Q contains a preimage of C1∥C2, where C1∥C2 is an elided-but-understood
parameter of the predicate. Thus, Advpre ̸=0

TDM (q) is the maximum of Pr[Preim(Q)] taken over all q-query adversaries
A, the probability being taken over E and the coins of A. We always assume that A is honest in the sense of choosing a
nonzero value C1∥C2. Now our preimage resistance theorem is the following (note that the definition of N ′ is different
than in Theorem 1):

Theorem 2. Let N = 2n, q < N , N ′ = N − q and let α be an integer, 1 ≤ α ≤ q. Then

Advpre ̸=0
TDM (q) ≤ 2

( eq

αN ′

)α

+
2α

N ′ .

Proof. The “preimage diagram” for Tandem-DM is the left-hand portion of Fig. 4. While there are no “right-hand
side” queries for the preimage diagram, we keep the labelling ‘TL’, ‘BL’ for the queries on the left-hand side. That is,
in the preimage resistance game, the adversary’s goal is to solve a “puzzle” by finding queries TL, BL of the form TL
= (A,B∥L,R), BL = (B,L∥R,S) such that A ⊕ R = C1, B ⊕ S = C2. We emphasize at the outset that the case
C1 = C2 does not require a separate analysis, and is handled in the same way as the case C1 ̸= C2.

We start by noting that, in any solution of the preimage diagram, the queries TL, BL are necessarily distinct.
Indeed, as discussed in Proposition 4, when the queries TL, BL are equal they have the form (U,U∥U,U) and the
output of Tandem-DM is 02n. We also note that if TL = (A,B∥L,R) then BL = (B,L∥R,B⊕C2), and, conversely, if
BL = (B,L∥R,S) then TL = (R⊕C1, B∥L,R). Thus the queries TL, BL uniquely determine each other in the strong
sense that all three coordinates of BL are determined by the query TL, and vice-versa.

As the preimage adversary A makes queries we maintain two sequencesWTL andWBL called wish lists, which
are initially empty, as well as two flags flag1 and flag2, which are initially zero. For each new query (X,K1∥K2, Y )
learned by A we update the wish lists and the flags as follows:

1. If (X,K1||K2, Y ) ∈ WTL or (X,K1||K2, Y ) ∈ WBL then flag1 ← 1.
2. If X ⊕ Y = C1 then (K1,K2||Y,K1 ⊕ C2) is added toWBL.
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3. If X ⊕ Y = C2 then (K2 ⊕ C1, X||K1,K2) is added toWTL.
4. If |WTL| > α or |WBL| > α, then flag2 ← 1.

We point out that, as long as A does not make redundant queries (which we assume it does not), the elements ofWTL

are all distinct from one another, as are the elements of WBL. Indeed, it is easy to see that each element of WTL

uniquely determines the query (X,K1||K2, Y ) which caused it to be added toWTL, and likewise forWBL.
We claim Preim(Q) =⇒ flag1. Indeed, if there are two queries (A,B∥L,R), (B,L∥R,S) in Q such that

A⊕R = C1, B ⊕ S = C2, then one of these two queries was made after the other. Reasoning on both cases, we find
that this query was an element of one of the wish lists at the point when it was learned, thus setting flag1. (The reverse
implication flag1 =⇒ Preim(Q) is also true and is trivial.) We thus have

Pr[Preim(Q)] = Pr[flag1 = 1] ≤ Pr[flag2 = 1] + Pr[flag1 = 1 ∧ flag2 = 0]. (12)

We can bound
Pr[flag2 = 1] ≤ 2

( eq

αN ′

)α

. (13)

The proof of (13) is similar to Proposition 2, except that one omits the final union bound which results in the multipli-
cation by N .

Let WishGrantedTL,i be the event that, at any point during the attack, A learns a query (X,K1∥K2, Y ), such that,
at that moment and prior to the updating of the lists for that query, the i-th element ofWTL is equal to (X,K1∥K2, Y ).
Define WishGrantedBL,i in the same way. We then have

Pr[flag1 = 1 ∧ flag2 = 0] ≤
α∑

i=1

Pr[WishGrantedTL,i] +

α∑
i=1

Pr[WishGrantedBL,i].

However, each wish list element can only be “wished for” once by A, due to the fact that EK1∥K2
(·) is a permutation.

Thus Pr[WishGrantedTL,i],Pr[WishGrantedBL,i] ≤ 1/N ′ and so

Pr[flag1 = 1 ∧ flag2 = 0] ≤ 2α

N ′ . (14)

By (13), (14) and (12) we obtain

Pr[Preim(Q)] ≤ 2
( eq

αN ′

)α

+
2α

N ′

thus establishing the Theorem. ⊓⊔

Here also, α must be optimized numerically for given values of n and q. For n = 128, for example, Theorem 2
yields Advpre

TDM (2127.0) ≤ 10−36 with α = 35, Advpre
TDM (2127.9) ≤ 10−35 with α = 95 and Advpre

TDM (2127.99) ≤
10−33 with α = 468. In fact, for n = 128 Theorem 2 gives a non-void upper bound for Advpre

TDM (q) for values of q
up to ≈ 2128−2−60

.
Theorem 2 should be compared with the trivial preimage resistance bound q/N ′ valid for any range point, that

follows from the above-mentioned observation that inverting a point C1∥C2 in particular implies finding a query
(A,B∥L,R) such that A⊕R = C1 (there is chance at most 1/N ′ of this occurring for any query). Firstly, q/N ′ = 1
when q = N/2, whereas the bound of Theorem 2 implies that for δ constant, δ < 1, and q = δN , Advpre

TDM (q)→ 0
as n → ∞ with any α(n) such that limn→∞ α(n) = ∞ and limn→∞ α(n)/N = 0. Secondly, q/N ′ exhibits a linear
growth in q for fixed n, whereas the bound of Theorem 2 pinpoints a much more “sudden threshold” of success, located
near q ≈ N ; this is illustrated by the two graphs for the case n = 128, shown in Fig. 5.

Using Theorem 2 we can also derive a preimage resistance bound for the more standard definition of preimage
resistance in which the adversary is given a random point in the range to invert. (A third definition, which we do not
consider, samples the point to invert by sampling and evaluating a random point in the domain. For further discussion
of these definitions and reductions among them, see [12].) Let Advpre$

TDM denote the maximum advantage of a q-query
adversary at inverting a random point in {0, 1}2n, where the probability of inversion is also taken over the random
choice of the point, and where “inverting the point” means, like above, constructing a query history that contains a
preimage of the point. As an easy consequence of Theorem 2, we have:
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Fig. 5: Comparison between Theorem 2 and the trivial bound for n = 128. The Theorem 2 bound has a very sharp inflection point

located near q = 2128−2−60

.

Theorem 3. Let N = 2n, q < N , N ′ = N − q and let α be an integer, 1 ≤ α ≤ q. Then

Advpre$
TDM (q) ≤ 2

( eq

αN ′

)α

+
2α

N ′ +
q

N2N ′ .

Here the additional term q/N2N ′ accounts for the event that the point to invert is 02n. This event happens with
probability 1/N2, in which case the adversary has chance at most q/N ′ of success.

6 A generalization

In this section we give (without proof) a generalization of Tandem-DM that has the same level of collision resistance
as Tandem-DM and that is subject to the same type of collision resistance analysis as the one we do in this paper.
The main purpose of this section is not to propose a new scheme for potential implementation but rather to shed some
additional light on Tandem-DM and on our proof by showing which key features enable our analysis.

Let F1 : {0, 1}n × {0, 1}n → {0, 1}n, F2 : {0, 1}n × {0, 1}n → {0, 1}n be functions such that Fi(U, ·) and
Fi(·, U) are permutations of {0, 1}n for any constant U ∈ {0, 1}n, i = 1, 2. Let G : {0, 1}n × {0, 1}n × {0, 1}n →
{0, 1}n×{0, 1}n×{0, 1}n be a permutation such that the first coordinate of G’s output is determined by the first two
coordinates of its input and such that the last coordinate of G’s input is determined by the last two coordinates of its
output (thus if G(X,Y, Z) = (U, V,W ) we can always compute U from X and Y only and always compute Z from
V and W only). Moreover let H : {0, 1}3n → {0, 1}3n be an arbitrary permutation. Our generalization is the function
TDME

F1,F2,G,H : {0, 1}3n → {0, 1}2n defined by

TDME
F1,F2,G(A∥B∥L) = F1(X1, Y1)∥F2(X2, Y2)

14



where

X1∥K1∥K ′
1 = H(A∥B∥L)

Y1 = EK1∥K′
1
(X1)

X2∥K2∥K ′
2 = G(K1,K

′
1, Y1)

Y2 = EK2∥K′
2
(X2)

where the penultimate assignment identifies ({0, 1}n)3 with {0, 1}3n. One may think of the value Y1 as R and of
the value Y2 as S. We note that TDME = TDME

F1,F2,G,H when G, H are identity functions and F1(X,Y ) =
F2(X,Y ) = X ⊕ Y .

This generalization is also preimage resistant up to the “trivial” bound of q/(2n − q). However we do not claim
TDME

F1,F2,G,H enjoys the same kind of preimage resistance as offered by Tandem-DM (under, say, the random-point-
in-the-range model). Indeed, preimage resistance seems more subtle to bound than collision resistance, mainly because
of attacks in which TL = BL and because we are not happy to give up a term q/(2n − q) for preimage resistance. We
leave the worst-case preimage resistance of TDME

F1,F2,G,H as an interesting open problem.

7 Conclusion

In this work, we have shown that an earlier work concerning the security of Tandem-DM was incorrect. However,
with a new proof (exploiting new ideas) we have shown that, in the ideal-cipher model, Tandem-DM is collision resis-
tant almost up to the birthday bound and (provably) preimage resistant essentially up to the birthday bound (leaving
considerable room for improvement for the latter).

On a high level, our proof of collision resistance adheres to a (by now) standard framework. We first modify the
collision-finding adversary by giving it several “free” queries and subsequently we bound the modified adversary’s
chance of success using a case analysis. This approach allows to easily bound both the number of free queries and the
probability of a query (free or not) causing a collision.

In contrast, the FGL proof directly uses a case analysis and subsequently uses free queries within the case analysis.
This ad hoc addition of free queries (and its binding to a particular case) is problematic, as it does not allow proper
accounting of the free queries. In particular, if a free query is fresh it might cause a collision (or other bad event)
elsewhere whereas if the free query has actually been asked before, no new randomness can be extracted from it.

Thus, apart from having established the security of Tandem-DM, we hope that our work also serves as a useful
reminder to some of the subtleties involved in ICM proofs and as a guideline on how to avoid certain pitfalls.
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A A second collision resistance proof: doing without the trick

The collision resistance analysis of Tandem-DM given in Section 4 depends on a rather subtle trick—namely, a mod-
ification of the adversary that allows us, later on in the proof, to infer that a particular type of query, if present in the
query history, must have been made in a particular direction (forward or backward); knowing the query direction then
allows us to conclude that very few queries of the given type can exist in the query history. This observation dispatches
the most crucial (i.e. difficult) cases of the analysis. We refer the reader back to Section 4, in particular cases Forward
TL of Proposition 3 and Forward TL of Proposition 5 for more details.

In this section we give a more standard collision analysis of Tandem-DM that does not use this trick. This analysis
does not modify the adversary in any way (in particular, the adversary will make q queries, not 2q) and resorts to
sub-analyses for dealing with difficult cases (i.e. cases that were previously handled via our trick). Some of the sub-
analyses require sub-sub-analyses of their own; the work is tedious, but straightforward, following the path laid out by
previous recursive analyses of this type, in particular the analysis of MDC-2 [15] (such recursive analyses may also
be found in [1, 13]). The purpose of presenting a second proof is purely for general interest: it shows “what the proof
looks like” (and in particular its length) when our trick isn’t used, and serves as a tutorial and reminder on the use of
recursive analyses. In particular, the collision resistance bound derived from this second proof is of birthday-type, but
worse than the bound of Theorem 1: while the adversary only makes q queries instead of 2q, the greater number of
cases considered in the proof yields a weaker bound overall. For n = 128, our second theorem gives that an adversary
making q = 2119.18 queries achieves chance < 0.5 of obtaining a collision (Theorem 1 gives q = 2120.87).

For the proof, we reuse the predicate Xor(Q) of Section 2. Writing the query history as Q = (Xi, Ui∥Vi, Yi)
q
1

(i.e. decomposing Ki as Ui∥Vi) we also define two predicates XorKL, XorKR (where ‘KL’ and ‘KR’ stand for ‘Key
Left’ and ‘Key Right’, respectively) as follows:

XorKL(Q) ⇐⇒ max
C∈{0,1}n

|{i : Xi ⊕ Yi ⊕ Ui = C}| > α,

XorKR(Q) ⇐⇒ max
C∈{0,1}n

|{i : Xi ⊕ Yi ⊕ Vi = C}| > α.

We emphasize that the parameter α which appears in these definitions is the “same α” as for Xor(Q). We addi-
tionally define five predicates Triples+A∥B∥L, Triples−S∥R∥L, Doubles1A∥B∥L∥S′∥R′∥L′ , Doubles2+A∥B∥L∥A′∥B′∥L′ and
Doubles2−S∥R∥L∥S′∥R′∥L′ using two new parameters β > 0 and γ > 0. The definitions for these more complicated
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S′ B′⊕S′

A′⊕R′

Fig. 6: Definition of Triples+A∥B∥L(Q). For every A,B,L ∈ {0, 1}n, the event Triples+A∥B∥L(Q) occurs iff there are more than γ

values R ∈ {0, 1}n for which there exists an ordered triple of distinct queries (B,L∥R,S), (A′, B′∥L′, R′), (B′, L′∥R′, S′) ∈ Q
such that A⊕R = A′ ⊕R′ and B ⊕ S = B′ ⊕ S′, namely more than γ values R for which the adversary can complete the above
partial collision diagram using distinct queries. The wires A, B, L are drawn in bold to indicate that their values are “externally
fixed”.
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A⊕R
TR
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B′

B′ L′

A′ R′

R′

S′ B′⊕S′

A′⊕R′

Fig. 7: Definition of Triples−S∥R∥L(Q). For every S,R,L ∈ {0, 1}n, the event Triples−S∥R∥L(Q) occurs iff there are more than γ

values B ∈ {0, 1}n for which there exists an ordered triple of distinct queries (A,B∥L,R), (A′, B′∥L′, R′), (B′, L′∥R′, S′) ∈ Q
such that A⊕R = A′ ⊕R′ and B ⊕ S = B′ ⊕ S′, namely more than γ values B for which the adversary can complete the above
partial collision diagram using distinct queries.
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A′ R′
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Fig. 8: Definition of the event Doubles1A∥B∥L∥S′∥R′∥L′(Q). For every A, B, L, S′, R′, L′ ∈ {0, 1}n, the event
Doubles1A∥B∥L∥S′∥R′∥L′(Q) occurs iff the adversary obtains more than β solutions to the above diagram, where a “solution” con-
sists of an ordered pair of (distinct) queries (B,L∥R,S), (A′, B′∥L′, R′) ∈ Q such that A⊕R = A′⊕R′ and B⊕S = B′⊕S′.
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Fig. 9: Definition of the event Doubles2+A∥B∥L∥A′∥B′∥L′(Q). For every A, B, L, A′, B′, L′ ∈ {0, 1}n, the event
Doubles2+A∥B∥L∥A′∥B′∥L′(Q) occurs iff the adversary obtains more than β solutions to the above diagram, where a “solution”
consists of an ordered pair of (distinct) queries (B,L∥R,S), (B′, L′∥R′, S′) ∈ Q such that A⊕R = A′⊕R′ and B⊕S = B′⊕S′.
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Fig. 10: Definition of the event Doubles2−S∥R∥L∥S′∥R′∥L′(Q). For every S, R, L, S′, R′, L′ ∈ {0, 1}n, the event
Doubles2−S∥R∥L∥S′∥R′∥L′(Q) occurs iff the adversary obtains more than β solutions to the above diagram, where a “solution” con-
sists of an ordered pair of (distinct) queries (A,B∥L,R), (A′, B′∥L′, R′) ∈ Q such that A⊕R = A′⊕R′ and B⊕S = B′⊕S′.

predicates are given in Figures 6–10. We note that the ‘Doubles’ events are defined with respect to the parameter β
whereas the ‘Triples’ events are defined with respect to γ.

The reader may wonder as to the “logic” behind which wires are held constant in which diagram. Note, say, for
Triples+, that the wires A, L and B are all those which “would be held constant” if we had fixed a certain forward
query EB∥L(A) for position TL whose output R was not yet known; similarly, for Triples−, the wires S, R and L

are those which would be held constant if we had fixed a backward query E−1
L∥R(S) for position BL whose output B

was not yet known. The wires held constant in the event Doubles1 are similarly obtained by fixing a forward query
EB∥L(A) and a backward query E−1

L′∥R′(S
′) of unknown outputs, and so on for the events Doubles2+, Doubles2−.

We further define the existentially quantified versions of these predicates:

Triples+(Q) ⇐⇒ there exist A,B,L ∈ {0, 1}n such that Triples+A∥B∥C(Q)

Triples−(Q) ⇐⇒ there exist S,R,L ∈ {0, 1}n such that Triples−S∥R∥L(Q)
Doubles1(Q) ⇐⇒ there exist A,B,L, S′, R′, L′ ∈ {0, 1}n such that Doubles1A∥B∥L∥S′∥R′∥L′(Q)
Doubles2+(Q) ⇐⇒ there exist A,B,L,A′, B′, L′ ∈ {0, 1}n such that Doubles2+A∥B∥L∥A′∥B′∥L′(Q)

Doubles2−(Q) ⇐⇒ there exist S,R,L, S′, R′, L′ ∈ {0, 1}n such that Doubles2+S∥R∥L∥S′∥R′∥L′(Q).

We finally define the following shorthands:

X(Q) = Xor(Q) ∨ XorKL(Q) ∨ XorKR(Q)
Triples(Q) = Triples+(Q) ∨ Triples−(Q)
Doubles2(Q) = Doubles2+(Q) ∨ Doubles2−(Q)
Doubles(Q) = Doubles1(Q) ∨ Doubles2(Q).

Keeping the predicates Coll1(Q), Coll2(Q) and Coll3(Q) as defined in Section 4, we have the following elementary
implications:

Coll(Q) =⇒ X(Q) ∨ (Coll1(Q) ∧ ¬X(Q)) ∨ Coll2(Q) ∨ (Coll3(Q) ∧ ¬X(Q))
Coll1(Q) ∧ ¬X(Q) =⇒ (Triples(Q) ∧ ¬X(Q)) ∨ (Coll1(Q) ∧ ¬Triples(Q) ∧ ¬X(Q))
Triples(Q) ∧ ¬X(Q) =⇒ (Doubles(Q) ∧ ¬X(Q)) ∨ (Triples(Q) ∧ ¬Doubles(Q) ∧ ¬X(Q))
Doubles(Q) ∧ ¬X(Q) =⇒ (Doubles1(Q) ∧ ¬X(Q)) ∨ (Doubles2(Q) ∧ ¬X(Q)).

(The first implication follows from Proposition 1.) Thus, we have

Pr[Coll(Q)] ≤ Pr[X(Q)] + Pr[Coll2(Q)] + Pr[Coll3(Q) ∧ ¬X(Q)]
+ Pr[Coll1(Q) ∧ ¬Triples(Q) ∧ ¬X(Q)] + Pr[Triples(Q) ∧ ¬Doubles(Q) ∧ ¬X(Q)]
+ Pr[Doubles1(Q) ∧ ¬X(Q)] + Pr[Doubles2(Q) ∧ ¬X(Q)]. (15)
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We now proceed to individually upper bound each of the probabilities in (15). In each of the following propositions,
Q is the query history of a q-query adversary, N ′ = N −q = 2n−q and α, β, γ are integers such that 1 ≤ α, β, γ ≤ q
and α ≤ β and such that γ ≡ 0 mod 3 and β ≡ 0 mod 2. Moreover we let Qi denote the adversary’s query history
after the first i queries (including the answer of the i-th query), as usual.

Proposition 6. Pr[X(Q)] ≤ 3N
(

eq
αN ′

)α
.

Proof. We individually have Pr[Xor(Q)] ≤ N
(

eq
αN ′

)α, Pr[XorKL(Q)] ≤ N
(

eq
αN ′

)α and Pr[XorKR(Q)] ≤ N
(

eq
αN ′

)α.
Each of these inequalities can be proved as in Proposition 2. ⊓⊔

Proposition 7. Pr[Coll2(Q)] ≤ q/N ′.

Proof. Same as for Proposition 4 (which does not use the assumptions ¬Xor(Q), ¬FB(Q)). ⊓⊔

Proposition 8. Pr[Coll3(Q) ∧ ¬X(Q)] ≤ q(1 + α)/N ′.

Proof. Recall that, as observed in Proposition 5, Coll3(Q) implies that the adversary obtains two distinct queries
(A,B∥L,R), (B,L∥R,S) such that A ⊕ R = B ⊕ S. We let Coll′3(Q) denote the latter event, and upper bound
Pr[Coll′3(Q) ∧ ¬X(Q)] instead.

We say the i-th query is successful if it can be used either as query TL = (A,B∥L,R) or BL = (B,L∥R,S) of a
Coll′3-solution, where the other query of the solution is in Qi−1. Fixing a value of i, we upper bound separately the
probability that the i-th query can be used in position TL and that it can be used in position BL. We further divide each
case into forward and backward queries, giving four cases to consider:

TL forward: Let EB∥L(A) be the i-th query of the adversary. For this query to be successful (in this case) there must be
a query (B,L∥R,S) in the query history such that B ⊕S = R⊕A. Because ¬X(Qi−1) =⇒ ¬XorKR(Qi−1), there
at most α such queries (B,L∥R,S) in the query history, each determining a unique value of R. Thus the adversary’s
i-th query has chance of succeeding at most α/N ′.

TL backward: Same analysis as case TL backward of Proposition 5, with chance of success at most 1/N ′.

BL forward: Symmetrical to case TL backward, with chance of success at most 1/N ′.

BL backward: Symmetrical to case TL forward, with chance of success at most α/N ′.

Since each query must be either forward or backward (but not both), the chance of success of any given query is at
most (1 + α)/N ′, and the overall chance of success in q queries is at most q(1 + α)/N ′. ⊓⊔

Proposition 9. Pr[Coll1(Q) ∧ ¬Triples(Q) ∧ ¬X(Q)] ≤ q(α+ γ)/N ′.

Proof. By symmetry between the left- and right-hand sides of the collision diagram, we can divide the event Coll1(Q)
according to whether the last query made by the adversary to complete a Coll1-type collision is used in position TL or
BL. We further divide each of these two cases into forward and backward queries. We say the last (or “i-th”) query of
the adversary is successful if it completes a Coll1-type collision.

TL forward: Let EB∥L(A) be the i-th query of the adversary. For this query to succeed in completing a Coll1-type
collision at position TL, the answer R be this query must be such that there exists a triple of (distinct) queries
(B,L∥R,S), (A′, B′∥L′, R′), (B′, L′∥R′, S′) ∈ Q such that A ⊕ R = A′ ⊕ R′ and B ⊕ S = B′ ⊕ S′. How-
evever, ¬Triples(Qi−1) =⇒ ¬Triples+(Qi−1) implies that there are most γ such values R. The chance of success
of the i-th query is therefore at most γ/N ′.

TL backward: Same analyis as case TL backward of Proposition 3, with chance of success at most α/N ′.

19



BL forward: Symmetrical to case TL backward, with chance of success at most α/N ′.

BL backward: Symmetrical to case TL forward, with chance of success at most γ/N ′.

Since each query is either forward or backward, the chance of success of any given query is at most (α+ γ)/N ′, and
the overall chance of success in q is at most q(α+ γ)/N ′. ⊓⊔

Proposition 10. Pr[Triples(Q) ∧ ¬Doubles(Q) ∧ ¬X(Q)] ≤ 6N3
(

3eqβ
γN ′

)γ/3

.

Proof. We show

Pr[Triples+(Q) ∧ ¬Doubles(Q) ∧ ¬X(Q)] ≤ 3N3

(
3eqβ

γN ′

)γ/3

.

A similar analysis gives the same upper bound for Pr[Triples−(Q)∧¬Doubles(Q)∧¬X(Q)], thus yielding the bound.
We fix arbitrary values A,B,L ∈ {0, 1}n. It suffices to show

Pr[Triples+A∥B∥L(Q) ∧ ¬Doubles(Q) ∧ ¬X(Q)] ≤ 3

(
3eqβ

γN ′

)γ/3

(16)

as the desired bound will then follow by a union bound over A, B, L.
We let #R(Qi) be the number of values R ∈ {0, 1}n such that there exists an ordered triple of distinct queries

(B,L∥R,S), (A′, B′∥L′, R′), (B′, L′∥R′, S′) ∈ Qi such that A ⊕ R = A′ ⊕ R′ and B ⊕ S = B′ ⊕ S′. Moreover
we let #RBL(Qi) be the number of values R ∈ {0, 1}n such that a triple of this type exists where the last query made
completing the triple is used in position BL, namely where the first element of the triple is added to the query history
after the last two elements. We similarly define #RTR(Qi) and #RBR(Qi). Because

#R(Q) > γ =⇒ (#RBL(Q) > γ/3) ∨ (#RTR(Q) > γ/3) ∨ (#RBR(Q) > γ/3)

it suffices to show:

Pr[#RBL(Q) > γ/3 ∧ ¬Doubles(Q) ∧ ¬X(Q)] ≤
(
3eqα

γN ′

)γ/3

(17)

Pr[#RTR(Q) > γ/3 ∧ ¬Doubles(Q) ∧ ¬X(Q)] ≤
(
3eqβ

γN ′

)γ/3

(18)

Pr[#RBR(Q) > γ/3 ∧ ¬Doubles(Q) ∧ ¬X(Q)] ≤
(
3eqβ

γN ′

)γ/3

(19)

to show

Pr[#R(Q) > γ ∧ ¬Doubles(Q) ∧ ¬X(Q)] ≤ 3

(
3eqβ

γN ′

)γ/3

(20)

since α ≤ β.
We start by proving (17). Note, firstly, that #RBL(Qi)−#RBL(Qi−1) ≤ 1 for all i ≥ 1, because a query in posi-

tion BL uniquely determines the value R. We now bound Pr[#RBL(Qi)−#RBL(Qi−1) = 1], considering two cases
according to whether the i-th query is forward or backward. We write ‘BL forward’ and ‘BL backward’ to emphasize
the query is to be used in position BL. We say the i-th (or last) query is successful if #RBL(Qi)−#RBL(Qi−1) = 1.

BL forward: Let EL∥R(B) be the i-th query. Then because ¬X(Qi−1) there are at most α queries (A′, B′∥L′, R′) ∈
Qi−1 such that A′ ⊕ R′ = A⊕ R (recall A is fixed) and each of these queries for position TR uniquely determines a
query for position BR. Thus, there are at most α possibilities for the value B′ ⊕ S′ and thus at most α values S that
would make the last query successful. The chance of success is therefore at most α/N ′.
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BL backward: Since the value B is fixed, the chance of success in this case is trivially at most 1/N ′.

Therefore, Pr[#RBL(Qi) −#RBL(Qi−1) = 1] ≤ α/N ′. Using a similar bound as in Proposition 2 (with q instead
of 2q, α/N ′ instead of 1/N ′ and γ/3 instead of α) we thus get (17).

We now prove (18). Here too we have #RTR(Qi) − #RTR(Qi−1) ≤ 1 for all i. Indeed, a given value of
A′ ⊕ R′ uniquely determines R, since A is fixed. We bound Pr[#RTR(Qi) − #RTR(Qi−1) = 1] considering
two cases, according to whether the i-th query is forward or backward. We again say the i-th query is successful
if #RTR(Qi)−#RTR(Qi−1) = 1.

TR forward: Let EB′∥L′(A′) be the i-th query. Then because ¬Doubles2+(Qi−1) there are at most β pairs of queries
(B,L∥R,S), (B′, L′∥R′, S′) ∈ Qi−1 such that A⊕R = A′ ⊕R′ and B ⊕ S = B′ ⊕ S′. Each such pair determines
a unique value R′, and the output of the i-th query must be one of these values R′ for the i-th query to be successful.
Thus the i-th query is successful with chance at most β/N ′.

TR backward: Let E−1
B′∥L′(R

′) be the i-th query. Then this query uniquely determines the BR query, so uniquely de-
termines the values B′ ⊕ S′ = B ⊕ S making at most α possibilities for the query BL (using ¬X(Qi−1)). But each
query BL uniquely determines the values A⊕R, so the last query has chance at most α/N ′ of being successful.

Since α ≤ β we therefore have Pr[#RTR(Qi) − #RTR(Qi−1) = 1] ≤ β/N ′, and (18) follows by a similar
computation as in Proposition 2 (with q instead of 2q, β/N ′ instead of 1/N ′ and γ/3 instead of α).

We finally prove (19). Once again we have #RBR(Qi)−#RBR(Qi−1) ≤ 1 because a given query BR uniquely
determines the query TR, which uniquely determines the value A′ ⊕ R′ = A ⊕ R and hence the value R. We bound
Pr[#RBR(Qi)−#RBR(Qi−1) = 1] using the same method and conventions as above:

BR forward: Let EL′∥R′(B′) be the i-th query. This query uniquely determines the query TR, so uniquely determines
the values of R (as A is fixed and A′ ⊕ R′ = A ⊕ R) and hence the query BL (as B, L are fixed), and so the value
B ⊕ S is uniquely determined. The chance of success in this case is thus at most 1/N ′.

BR backward: Let E−1
L′∥R′(S

′) be the i-th query. Because ¬Doubles1(Qi−1) there are at most β pairs of queries
(B,L∥R,S), (A′, B′∥L′, R′) such that A⊕R = A′ ⊕R′ and B ⊕ S = B′ ⊕ S′. Each such pair of queries uniquely
determines a value B′, and an output of the i-th query cannot be successful unless it is the B′ of such a pair. Thus the
i-th query has chance of success at most β/N ′.

Thus we have Pr[#RBR(Qi) − #RBR(Qi−1) = 1] ≤ β/N ′, leading to (19) by the same computation as for (18).
This concludes the proof of (20) which is the same as (16), and thus completes the proof of the proposition. ⊓⊔

Proposition 11. Pr[Doubles1(Q) ∧ ¬X(Q)] ≤ 2N6
(

2eqα
βN ′

)β/2

.

Proof. We fix values A,B,L, S′, R′, L′ ∈ {0, 1}n. By a union bound, it suffices to show that

Pr[Doubles1A∥B∥L∥S′∥R′∥L′(Q)] ≤ 2

(
2eqα

βN ′

)β/2

. (21)

Let #D(Qi) be the number of pairs of queries (B,L∥R,S), (A′, B′∥L′, R′) ∈ Qi such that A ⊕ R = A′ ⊕ R′ and
B ⊕ S = B′ ⊕ S′. Moreover we let #DBL(Qi) be the number of such pairs where the query (B,L∥R,S) was made
after the query (A′, B′∥L′, R′), and let #DTR(Qi) be the number of such pairs where the query (A′, B′∥L′, R′) was
made after the query (B,L∥R,S). Since

#D(Q) > β =⇒ (#DBL(Qi) > β/2) ∨ (#DTR(Qi) > β/2)
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it suffices to show

Pr[#DBL(Q) > β/2 ∧ ¬X(Q)] ≤
(
2eqα

βN ′

)β/2

(22)

Pr[#DTR(Q) > β/2 ∧ ¬X(Q)] ≤
(
2eqα

βN ′

)β/2

(23)

in order to show

Pr[#D(Q) > β ∧ ¬X(Q)] ≤ 2

(
2eqα

βN ′

)β/2

. (24)

We show only (22) because the proof of (23) is entirely similar. First note that #DBL(Qi) −#DBL(Qi−1) ≤ 1
for all i because a query BL uniquely fixes A⊕R which uniquely fixes A′⊕R′ and hence uniquely fixes A′, whereas
the query BL also fixes B ⊕ S = B′ ⊕ S′ and hence uniquely fixes B′; since the value L′ is already fixed anyway, a
query BL uniquely determines a query TR (and vice-versa).

We now bound Pr[#DBL(Qi)−#DBL(Qi−1) = 1], considering separately the cases when the i-th query is for-
ward and backward. We label these cases as ‘Forward BL’ and ‘Backward BL’. We say that the i-th query is successful
if #DBL(Qi)−#DBL(Qi−1) = 1.

Forward BL: Let EL∥R(B) be the i-th query. Then A ⊕ R = A′ ⊕ R′ is uniquely determined by the i-th query. In
particular, since ¬X(Qi−1) implies there are at most α queries of XOR output A′⊕R′, there are at most α possibilities
for query TR and hence α possibilities for the value B′⊕S′. Hence the i-th query has chance of success at most α/N ′.

Backward BL: Trivially, since B is fixed, the i-th query has chance of success at most 1/N ′.

In any case, thus, the chance of success of the i-th query is at most α/N ′. The bound (22) then follows from a similar
computation as in Proposition 2 (with q instead of 2q, α/N ′ instead of 1/N ′ and β/2 instead of α).

Together with the (identical) proof of (23), this implies (24) which is equivalent to (21), and thus completes the
proof. ⊓⊔

Proposition 12. Pr[Doubles2(Q) ∧ ¬X(Q)] ≤ 4N5
(

2eq
βN ′

)β/2

.

Proof. We show that

Pr[Doubles2+(Q) ∧ ¬X(Q)] ≤ 2N5

(
2eq

βN ′

)β/2

since the same bound can be proved for Pr[Doubles2−(Q) ∧ ¬X(Q)] by the same method.
We fix values A, B, L, A′, B′, L′ ∈ {0, 1}n. By a union bound, it suffices to show that

Pr[Doubles2+A∥B∥L∥A′∥B′∥B′(Q) ∧ ¬X(Q)] ≤ 2

(
2eq

βN ′

)β/2

. (25)

(Indeed, since the constraint A ⊕ R = A′ ⊕ R′ is equivalent to R ⊕ R′ = A ⊕ A′, the two values A, A′ are only as
relevant as their xor A ⊕ A′, thus removing one factor of N from the union bound; formally, we should say that we
“fix a value of the xor A⊕A′”, but this is not notationally convenient.)

Overwriting the notation of Proposition 11, we now define #D(Qi) to be the number of pairs of queries (B,L∥R,S),
(B′, L′∥R′, S′) ∈ Qi such that A⊕R = A′⊕R′ and B⊕S = B′⊕S′. We further define #DBL(Qi) and #DBR(Qi)
analogously to previous such definitions. Since

#D(Q) > β =⇒ (#DBL(Qi) > β/2) ∨ (#DBR(Qi) > β/2)
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it suffices to show

Pr[#DBL(Q) > β/2 ∧ ¬X(Q)] ≤
(

2eq

βN ′

)β/2

(26)

Pr[#DBR(Q) > β/2 ∧ ¬X(Q)] ≤
(

2eq

βN ′

)β/2

(27)

in order to show

Pr[#D(Q) > β ∧ ¬X(Q)] ≤ 2

(
2eq

βN ′

)β/2

. (28)

We prove only (26) since (27) is analogous. We have #DBL(Qi) −#DBL(Qi−1) ≤ 1 for all i because a query
BL uniquely fixes A⊕R which uniquely fixes A′⊕R′ and hence uniquely fixes R′. We now bound Pr[#DBL(Qi)−
#DBL(Qi−1) = 1], considering separately the cases when the i-th query is forward and backward. As usual, we say
that the i-th query is successful if #DBL(Qi)−#DBL(Qi−1) = 1.

Forward BL: Let EL∥R(B) be the i-th query. Then A ⊕ R = A ⊕ R′ is uniquely determined, so R′ is uniquely
determined and hence the query BR is uniquely determined. Thus B′ ⊕ S′ is uniquely determined and the i-th query
has chance 1/N ′ of success.

Backward BL: Since B is fixed, the i-th query has chance of success at most 1/N ′.

In any case, thus, the chance of success of the i-th query is at most 1/N ′. The bound (22) then follows from a similar
computation as in Proposition 2 (with q instead of 2q and β/2 instead of α).

Together with the (identical) proof of (27), this implies (28) which is equivalent to (25), and thus completes the
proof. ⊓⊔

Adding together the bounds of Propositions 6–12, we thus obtain the following Theorem:

Theorem 4. Let 1 ≤ q < N , N ′ = N − q. Let α, β, γ be integers between 1 and q such that α ≤ β, β ≡ 0 mod 2
and γ ≡ 0 mod 3. Then

Pr[Coll(Q)] ≤ 3N
( eq

αN ′

)α

+
2q

N ′ +
2qα

N ′ +
qγ

N ′

+ 6N3

(
3eqβ

γN ′

)γ/3

+ 2N6

(
2eqα

βN ′

)β/2

+ 4N5

(
2eq

βN ′

)β/2

.

For n = 128 and with α = 13, β = 156 and γ = 195 Theorem 4 shows that an adversary making q = 2119.18 achieves
chance less than 0.5 of obtaining a collision. Moreover, Theorem 4 has the same “qualitative” corollary as Theorem 1:

Corollary 2. limn→∞ AdvTDM
coll (N/n) = 0.

Proof. Let q = N/n, α = 7n/ log n (more precisely, α = ⌈7n/ log n⌉), β = 2α and γ = 3α, where the logarithm
takes base 2. Since N ′ > N/2 for n > 2, we have

Advcoll
TDM (q) ≤ 3N

( eq

αN ′

)α

+
2q

N ′ +
2qα

N ′ +
qγ

N ′

+ 6N3

(
3eqβ

γN ′

)γ/3

+ 2N6

(
2eqα

βN ′

)β/2

+ 4N5

(
2eq

βN ′

)β/2

≤ 3N

(
2eq

αN

)α

+
4q

N
+

10qα

N
+ 6N3

(
4eq

N

)α

+ 2N6

(
2eq

N

)α

+ 4N5

(
2eq

αN

)α

≤
(
3N + 4N5

)(2e log n

7n2

) 7n
log n

+
4

n
+

70

logn
+ 6N3

(
4e

n

) 7n
log n

+ 2N6

(
2e

n

) 7n
log n

.

23



Using the equality N = nn/ logn, we can show that the last expression goes to zero as n → ∞. For example, the last
term

2N6

(
2e

n

) 7n
log n

= 2 · n
6n

log n

(
2e

n

) 7n
log n

= 2

(
2e

n
1
7

) 7n
log n

goes to zero as n→∞. ⊓⊔

B A critique of the ProvSec’10 paper [2]

Fleischmann et al. [2] revisited the collision resistance of Tandem-DM in the context of a comprehensive generalization
of various earlier works [3, 4, 8, 11]. Their main result of this new paper is Theorem 5 below.

To understand the theorem statement, some notations should be explained: ‘Parallel-DL’ and ‘Serial-DL’ are two
classes of double block length blockcipher-based compression functions; Tandem-DM is a special case of Serial-DL.
Moreover, ζ is a separate, scheme-dependent probability. For Tandem-DM one has ζ = 1/N3. (In fact Fleischmann et
al. omit to explicitly compute ζ for Tandem-DM; see also the comments below.)

Theorem 5 (Fleischmann et al. [2, Theorem 3]). Let H be a Parallel-DL or Serial-DL compression function as
given in Section 2.3 [of [2]]. Let α, β, κ, n be constants such that α, k > e and let τ = N ′α/q,N = 2n, N ′ = N − q.
Then

Advcoll
H (q) ≤ q ·

(
2α/N ′ + 2β/(N ′)2 + qζ/N ′ + 1/N ′)+ qκ/N ′ + L,

where
L = 2q2neτq(1−ln τ)/N ′

+ 2q2/(βN ′) + 2qeκ(1+ln q
N′ −lnκ).

(Compared to [2], we have slightly modified the statement of Theorem 5: the term qκ/N ′, erroneously omitted in [2],
has been added to the main bound; note that without this term, there would be no disadvantage to setting κ arbitrarily
large; see also the comment ‘A Missing Term’, below.)

By setting α = 24, β = 2120 and κ = 14, Fleischmann et al. conclude that for n = 128 any adversary asking at
most 2120.66 queries has chance less than 1/2 of obtaining a collision in a Serial-DL compression for which ζ = 0. In
Table 1 of their paper, Fleischmann et al. also list 2120.66 as the collision resistance of Tandem-DM, seemingly as a
corollary of this computation, even though Tandem-DM has ζ = 1

N3 . (This seems to be an oversight, but since ζ is
so small anyway for Tandem-DM, it is unlikely that taking into account the term qζ/N ′ would actually change their
bound for Tandem-DM; hence this oversight does not seem significant.)

Unfortunately, [2, Theorem 3] is incorrect; its derivation builds on the earlier mistakes by Fleischmann et al. [3]
and adds a few of its own (tellingly, the errors in the original [3] are never mentioned). Below we will give a list of
problems, where we will initially concentrate on a fatal one, concerning subcase “OL̸= QR” of “argument B” (we will
explain what this means momentarily). Afterwards we will discuss some other (mostly non-fatal, but yet nontrivial to
correct) errors in the paper.

THE MAIN FLAW. The main problem in [2, Theorem 3] relates to the terms 2qβ/(N ′)2 and 2q2/(βN ′). The parameter
β itself is introduced to bound the occurrence of a certain configuration. For simplicity we look at the concrete case
of Tandem-DM, in which case β is simply a bound on the number of collisions in the (single-length) Davies–Meyer
construction. Concretely, define

NumColl(Q) = |{(i, j) ∈ {1, . . . , q}2, i ̸= j : Xi ⊕ Yi = Xj ⊕ Yj}|

then the claim is that if NumColl(Q) ≤ β then a specific type of collision is unlikely to occur. It is shown (in their full
version) that Pr[NumColl(Q) > β] ≤ 2q2/(βN ′). So what is the probability of a collision occurring if we know that
NumColl(Q) ≤ β?

Argument B relates (among others) to the case that a EB||L(A) (forward) query is used in position TL and subcase
OL̸=QR in that case translates9 to BL ̸=TR. The event NumColl(Q) ≤ β implies that there are at most β pairs BR, BL

9 In [2] ‘QR’, ‘OR’, ‘QL’ and ‘OL’ are acronyms respectively for ‘Query row Right’, ‘Other row Right’, ‘Query row Left’ and
‘Other row Left’. Roughly speaking QR ↔ TR, OR ↔ BR, QL ↔ TL, OL ↔ BL under our notation.
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that cause a collision in the lower part of the diagram in Fig. 4). Since any query at position BR uniquely determines a
corresponding TR query, we can instead consider β triples BR, BL, TR. For the current TL query to cause a collision,
it needs to fit with one of these triples. This poses two restrictions on the output R (of TL): it needs to collide with
the TR query (R = A′ ⊕ R′ ⊕ A) and it needs to fit with the BL query (R being part of the key input of BL). Since
R is essentially random over a set of size (at least) N ′, the probability of satisfying either condition (for a fixed triple
BR, BL, TR) is at most 1/N ′. From this, Fleischmann et al. conclude that the probability of satisfying both conditions
is at most (1/N ′)2 (which leads to the claimed β/(N ′)2 after using a union bound). However, this multiplication of
probabilities requires independence of events, yet both probabilities exploit exactly the same random choice of R. In
fact, if there exists a possible R satisfying both constraints, it will be chosen with probability at least 1/N ≫ (1/N ′)2,
so clearly capping the probability at (1/N ′)2 cannot be correct.

An easy fix to this problem is to use the correct bound β/N ′ instead. Unfortunately, the overall collision upper
bound will then feature a term qβ/N ′+2q2/(βN ′). It is not hard to see that β ≈ N1/3 is optimal, leading to a vacuous
bound for q > N2/3. In other words, one cannot prove collision resistance with this method for q beyond 22n/3. This
is still quite far removed from optimal collision resistance.

A possible solution would be to give a more accurate bound on the number of possible R that could complete
a collision. Most of the β triples (BL, BR, TR) with BL, BR colliding are useless because the constraints imposed
separately by TR and BL on the output R of the query TL are incompatible (i.e. no such R exists). However, as should
be evident from Appendix A, a proper analysis bounding the number of relevant triples (BL, BR, TR) is far from
trivial, and is in fact rather laborious.

PROBLEMS WITH THE CASE TL=BL. To upper bound the probability of the adversary obtaining a collision in which
TL=BL, Fleischmann et al. [2, Definition 1] introduce the parameter ζ. Roughly speaking, ζ is the probability that
once a query is made intended for the top row, that very same query would also fit in the bottom row. Here the
probability is taken over the randomness of the ideal cipher, as well as over a random choice of the input (the latter
being a key/plaintext pair, or a key/ciphertext pair in case of a backward query) to the top-row query.

Later, ζ is used in [2, Proposition 5] to bound the probability that an adversary poses a query that can be used
concurrently in the top and bottom row. The mismatch should be obvious: in the definition of ζ the inputs (to the
blockcipher) are randomly chosen, whereas for this proposition, they are adversarially chosen. The probability exper-
iment used to define ζ, simply put, has no relation whatsoever to a setting in which queries are made by an adaptive
adversary.

In general, one can fix this problem by redefining ζ: instead of randomizing over the blockcipher input, condition
the probability on an arbitrary q-query history (subject, potentially, to some “lucky” events not having been triggered)
and on an arbitrary input for the last query; only by doing the latter does one accurately capture the success chance of
an adaptive adversary. In the specific case of Tandem-DM, we compute exactly such a bound in propositions 4 and 7,
where we show the adversary’s query has chance at most 1/N ′ of succeeding (one can slightly sharpen this result10).
But we note that even with such a corrected (and much more stringent11) definition of ζ, the proof of Proposition 5
is actually still flawed. Fleischmann et al. multiply the probability ζ that the last query can be used both in positions
TL and BL by the probability q/N ′ that the last query also collides with some query in position TR, whereas the two
events (being functions of the last query’s output) are of course not independent, rendering multiplication of these
probabilities meaningless. We do note, however, that under the more stringent definition of ζ just discussed, qζ is a
correct and often satisfactory upper bound for the probability of an adversary mounting an attack where a query is
used simultaneously in positions TL and BL.

INCORRECT PROOF OF LEMMA 3. In Lemma 3 of [2], Fleischmann et al. upper bound the probability that the adver-
sary obtains queries Qi and Qj , j ̸= i, such that query Qi can be used both in positions TR and BL and query Qj

used in position BL. Firstly, Fleischmann et al. omit to consider that Qj may be obtained after the query Qi (the rest
of this discussion presumes the only case they consider, namely that j < i). Secondly, letting Qi be the last query, and

10 Namely, an adversary whose sole purpose was to trigger the event Coll2(Q) would only make queries of the form EU∥U (U) or
E−1

U (U∥U) for (necessarily distinct) values of U ; such an adversary (who is optimal for the purpose of triggering Coll2(Q)) has
advantage exactly q/N . One can use this observation to sharpen propositions 4 and 7. We chose the current form of propositions
4 and 7 to keep our proof more uniform.

11 For Tandem-DM, the value of ζ is 1/N ′ under the new definition, up from 1/N3 under the old.
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from the fact that the XOR output of BL (to be filled by query Qi) equals the XOR output of BR (to be filled by query
Qj for some j < i), Fleischmann et al. draw the erroneous conclusion that the last query Qi has chance at most 1/N ′

of succeeding because, in their words, for a given XOR output of query Qi there exists at most one matching XOR
output (of a potential Qj). This is similar to arguing, say, that a ball thrown at random among n slots has chance at
most 1/n of falling in one of the first n/2 slots because for a given output of the experiment the ball has fallen into at
most one of the first n/2 slots. Moreover, it is in fact easy to see there exists a partial query history Qi−1 with respect
to which the i-th query has chance (i− 1)/N ′ of success, thus directly contradicting this claim.

A trivial correct upper bound on the probability of success of Qi is q/N ′, as follows by union bounding over j.
However this is quite suboptimal. A less trivial (and closer to optimal) upper bound, in the case of Tandem-DM, is
α/N ′, where, here, α is the parameter used to define the events XorKR(Q), XorKL(Q) of (our) Appendix A. This
presumes that ¬XorKL(Q) ∧ ¬XorKR(Q) holds, so one must separately account for Pr[XorKL(Q) ∨ XorKR(Q)], as
in e.g. Proposition 6 of Appendix A.

THE USE OF FREE QUERIES. Argument A deals with the scenario that the input to the last query uniquely determines
the input to the other row. Assume that the last query itself is used in position TL, then the corresponding BL query
is uniquely determined. Fleischmann et al. “we give the query [BL] to the adversary for free.” Under the normal and
usual understanding of giving queries for free—namely posing that query without charging the adversary—this runs
into the same problems as in their FSE paper (cf. Section 3).

A MISSING TERM. In Argument B, Subcase OL=QR the chance of success for any single query is upper bounded by
κ/N ′. Using a union bound, this should result in a term qκ/N ′ in the final bound. This term is missing in [2, Theorem
3], as already noted.
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