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Abstract: This document contains the Intellectual Property Statement and the technical descrip-
tion of the MQQ-SIG - a new public key digital signature scheme. The complete scientific publication
covering the design rationale and the security analysis will be given in a separate publication. MQQ-
SIG consists of n − n

4 quadratic polynomials with n Boolean variables where n = 160, 192, 224 or
256.
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1 Intellectual Property Statement

We, the seven names given in the title of this document and undersigned on this statement, the
authors and designers of MQQ-SIG digital signature scheme, do hereby agree to grant any interested
party an irrevocable, royalty free licence to practice, implement and use MQQ-SIG digital signature
scheme, provided our roles as authors and designers of the MQQ-SIG digital signature scheme are
recognized by the interested party as authors and designers of the MQQ-SIG digital signature scheme.
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2 Description of the MQQ-SIG digital signature scheme

A generic description for our scheme can be expressed as a 3
4 truncation of a typical multivariate

quadratic system: S ◦ P ′ ◦ S′ : {0, 1}n → {0, 1}n where S′ = S · x + v (i.e. S′ is a bijective affine
transformation), S is a nonsingular linear transformation, and P ′ is a bijective multivariate quadratic
mapping on {0, 1}n.

The bijective multivariate quadratic mapping P ′ : {0, 1}n → {0, 1}n is defined in Table 1.

Bijective multivariate quadratic mapping P ′(x)

Input: A vector x = (f1, . . . , fn) of n linear Boolean functions of n variables. We implicitly
suppose that a multivariate quadratic quasigroup ∗ is previously defined, and that n = 32k,
k ∈ {5, 6, 7, 8} is also previously determined.

Output: 8 linear expressions P ′
i (x1, . . . , xn), i = 1, . . . , 8 and n − 8 multivariate quadratic

polynomials P ′
i (x1, . . . , xn), i = 9, . . . , n

1. Represent a vector x = (f1, . . . , fn) of n linear Boolean functions of n variables x1, . . . , xn, as
a string x = X1 . . . Xn

8
where Xi are vectors of dimension 8;

2. Compute y = Y1 . . . Yn
8

where: Y1 = X1, Yj+1 = Xj ∗ Xj+1, for even j = 2, 4, . . ., and

Yj+1 = Xj+1 ∗ Xj , for odd j = 3, 5, . . .
3. Output: y.

Table 1. Definition of the bijective multivariate quadratic mapping P ′ : {0, 1}n → {0, 1}n

The algorithm for generating the public and private key is defined in the Table 2.

Algorithm for generating Public and Private key for the MQQ-SIG scheme

Input: Integer n, where n = 32 × k and k ∈ {5, 6, 7, 8}.

Output: Public key P: n− n
4 multivariate quadratic polynomials Pi(x1, . . . , xn), i = 1+ n

4 , . . . , n,

Private key: Two permutations σ0
0 and σ1

0 of the numbers {1, . . . , n}, and 81 bytes for encoding a
quasigroup ∗ .

1. Generate an MQQ ∗ according to equations (1) . . . (4).
2. Generate a nonsingular n × n Boolean matrix S and affine transformation S′ according to
equations (5), . . . , (8).
3. Compute y = S(P ′(S′(x))), where x = (x1, . . . , xn).
4. Output: The public key is y as n − n

4 multivariate quadratic polynomials Pi(x1, . . . , xn) i =

1 + n
4 , . . . , n, and the private key is the tuple (σ0

0 , σ
1
0 , ∗).

Table 2. Generating the public and private key

The algorithm for signing by the private key (σ0
0 , σ

1
0 , ∗) is defined in Table 3.

Algorithm for digital signature with the private key (σ0
0 , σ

1
0 , ∗)

Input: A document M to be signed.

Output: A signature sig = (x1, . . . , xn).

1. Compute y = (y1, . . . , yn) = H(M)|n, where M is the message to be signed, H() is a standard-
ized cryptographic hash function such as SHA-1, or SHA-2, with a hash output of not less than n
bits. The notation H(M)|n denotes the least significant n bits from the hash output H(M).
2. Set y′ = S−1(y).
3. Represent y′ as y′ = Y1 . . . Yn

8
where Yi are Boolean vectors of dimension 8.

4. By using the left and right parastrophes \ and / of the quasigroup ∗ compute x′ = X1 . . . Xn
8
,

such that: X1 = Y1, Xj = Xj−1\Yj , for even j = 2, 4, . . ., and Xj = Yj/Xj−1, for odd j = 3, 5, . . ..
5. Compute x = S−1(x′) + v = (x1, . . . , xn).
6. The MQQ-SIG digital signature of the document M is the vector sig = (x1, . . . , xn).

Table 3. Digital signing



The algorithm for signature verification with the public key P = {Pi(x1, . . . , xn) | i = 1+ n
4 , . . . , n}

is given in Table 4.

Algorithm for signature verification with a public key P = {Pi(x1, . . . , xn) | i = 1 + n
4 , . . . , n}

Input: A document M and its signature sig = (x1, . . . , xn).
Output: TRUE or FALSE.

1. Compute y = (y1+n
4
, . . . , yn) = H(M)|n−n

4
, where M is the signed message, H() is a stan-

dardized cryptographic hash function such as SHA-1, or SHA-2, with a hash output of not less
than n bits, and the notation H(M)|n−n

4
denotes the least significant n − n

4 bits from the hash

output H(M).
2. Compute z = (z1+n

4
, . . . , zn) = P(sig).

3. If z = y then return TRUE, else return FALSE.

Table 4. Digital verification

3 Multivariate Quadratic Quasigroups

A Multivariate Quadratic Quasigroup (MQQ) ∗ of order 2d used in this version of MQQ-SIG can be
described shortly by the following expression:

x ∗ y ≡ B ·U(x) ·A2 · y +B ·A1 · x+ c (1)

where x = (x1, . . . , xd), y = (y1, . . . , yd), the matrices A1, A2 and B are nonsingular in GF (2), of
size d× d, the vector c is a random d-dimensional vector with elements in GF (2) and all of them are
generated by a uniformly random process. The matrix U(x) is an upper triangular matrix with all
diagonal elements equal to 1, and the elements above the main diagonal are linear expressions of the
variables of x = (x1, . . . , xd). It is computed by the following expression:

U(x) = I +

d−1∑
i=1

Ui ·A1 · x, (2)

where the matrices Ui have all elements 0 except the elements in the rows from {1, . . . , i} that are
strictly above the main diagonal. Those elements can be either 0 or 1.

Once we have a multivariate quadratic quasigroup

∗vv(x1, . . . , xd, y1, . . . , yd) = (f1(x1, . . . , xd, y1, . . . , yd), ..., fd(x1, . . . , xd, y1, . . . , yd))

we will be interested in those quasigroups that will satisfy the following conditions:

∀i ∈ {1, . . . , d}, Rank(Bfi) ≥ 2d− 4, (3a)

∃j ∈ {1, . . . , d}, Rank(Bfj ) = 2d− 2 (3b)

where matrices Bfi are 2d× 2d Boolean matrices defined from the expressions fi as

Bfi = [bj,k], bj,d+k = bd+k,j = 1, iff xjyk is a term in fi. (4)

Proposition 1. For d = 8, a multivariate quadratic quasigroup that satisfies the conditions (1), . . . ,
(4) can be encoded in a unique way with 81 bytes.



4 Nonsingular Boolean matrices in MQQ-SIG

In MQQ-SIG the nonsingular matrices S are defined by the following expression:

S−1 =

n
16⊕
i=0

Iσ0
i
⊕

n
16+1⊕
i=0

Iσ1
i
, (5)

where Iσ0
i
, i = {0, 1, 2, . . . , n

16} and Iσ1
i
, i = {0, 1, 2, . . . , n

16 +1} are permutation matrices of size n, the
operation ⊕ is a bitwise exclusive or of the elements in the permutation matrices and permutations
σ0
i and σ1

i are permutations on n elements. They are defined by the following expressions:
σ0
0 − random permutation on {1, 2, . . . n},

σ0
i = RotateLeft(σ0

i−1, 8), for i = 1, . . . , n
16 ,

σ1
0 − random permutation on {1, 2, . . . n},

σ1
i = RotateLeft(σ1

i−1, 8), for i = 1, . . . , n
16 + 1,

(6)

We chose the permutations σ0
0 and σ1

0 until we obtain a non-singular matrix S−1. Once we have a
nonsingular matrix S−1 we will compute its inverse obtaining

S = (S−1)−1

and from there we will obtain the affine transformation

S′(x) = S · x+ v, (7)

where the vector v is n–dimensional Boolean vector defined from the values of the permutation
σ1
0 = (s1, s2, . . . , sn) by the following expression:

v = (v1, v2, . . . , vn),where vi =

((
s
1+⌊ i−1

8
⌋

)
mod 16

)
×16

2(8−i) mod 8

+
( s

65+⌊ i−1
8

⌋

2(8−i) mod 8

) mod 2. (8)

In words: we construct the bits of the vector v by constructing two arrays. The first array is
constructed by taking the four least significant bits of the values s1, . . . , sn

8
and each of them is

shifted by four positions to the left. The second array is just simple extraction of the values s65, . . . ,
s65+n

8
. Finally we XOR correspondingly those two arrays of values in order to produce the vector v

of n bits.

Proposition 2. The linear transformation S−1 can be encoded in a unique way with 2n bytes.

5 Characteristics of the MQQ-SIG digital signature scheme

The main characteristics of our MQQ-SIG digital signature scheme can be briefly summarized as
follows:

• there is no message expansion;
• the length of the signature is n bits where (n = 160, 192, 224 or 256);
• its conjectured security level is 2

n
2 ;

• its verification speed is comparable to the speed of other multivariate quadratic PKCs;
• in software its signing speed is in the range of 300–7,000 times faster than RSA and ECC

schemes;
• in hardware its signing or verification speed is more than 10,000 times faster than RSA and

ECC schemes;
• it is also well suited for producing short signatures in smart cards and RFIDs;



5.1 The size of the public and the private key

The size of the public key is 0.75× n× (1 + n(n+1)
2 ) bits. The private key of our scheme is the tuple

(σ0
0 , σ

1
0 , ∗). The corresponding memory size needed for storage of the private key is 2n+ 81 bytes. In

Table 5 we give the size of the public key (in KBytes) and the size of the private key (in bytes) for
n ∈ {160, 192, 224, 256}.

n
Size of the

public key (KBytes)
Size of the

private key (bytes)

160 188.69 401
192 325.71 465
224 516.82 529
256 771.02 593

Table 5. Memory size in KBytes for the public key and in bytes for the private key

5.2 Performance of the software and hardware implementation of the MQQ-SIG
algorithm

We have implemented MQQ-SIG in C for the SUPERCOP benchmarking system http://bench.cr.

yp.to/supercop.html and tested it together with the corresponding RSA and ECC. In Table 6 we
give the comparison of MQQ-SIG with RSA and ECC in 64-bit mode of operation on Intel Core i7
920X machine running at 2 GHz. The numbers in the table represent CPU cycles. Although, our C
code is not yet optimized for the key generation part, we expect that the performance of key generation
part would be the most time consuming part of our algorithm.

On the other hand, from the Table 6 it is clear that in signing of 59 bytes MQQ-SIG is faster than
RSA in the range from 565 up to 6836 times, and is faster than ECC in the range from 325 up to 517
times.

The verification speed in our code is not so distinctively faster than the corresponding RSA and
ECC since it is programmed for one core. We expect that the high parallelizable nature of MQQ-SIG
can be used to achieve much higher speeds in multicore systems (CPUs or GPUs).

Security in bits Algorithm KeyGen
Signing of
59 bytes

Verification of a
signature of 59

bytes

RSA1024 102,869,553 2,230,848 61,116
80 ECC160 1,201,188 1,284,800 1,476,196

MQQSIG160 1,062,182,500 3,440 97,644

RSA1536 322,324,721 7,346,420 123,140
96 ECC192 1,799,284 1,895,752 2,242,988

MQQSIG192 1,882,301,276 4,260 72,680

RSA2048 786,466,598 14,815,324 174,792
112 ECC224 2,022,896 2,108,556 2,501,108

MQQSIG224 2,539,322,544 4,160 92,960

RSA3072 2,719,353,538 31,941,760 315,904
128 ECC256 2,296,976 2,418,968 2,833,856

MQQSIG256 4,896,642,448 4,932 138,148
Table 6. Comparison between performance of RSA, ECC and MQQ-SIG in CPU cycles in 64-bit mode of
operation on Intel Core i7 920X machine running at 2 GHz.


