
Comparison of seven SHA-3 candidates software

implementations on smart cards.

Mourad Gouicem∗

Oberthur Technologies
Contact : {g.piret, e.prouff}@oberthur.com

October 2010

Abstract

In this work, we present and compare seven SHA-3 second-round candidates imple-
mentations on two different architectures used on smart cards: the Intel 8051 and the
ARM7TDMI. After presenting the performances of our implementations, we explain for
each candidate the main differences between our 8-bit and 32-bit implementations. Then,
we compare our results to those of two benchmarks published at the second SHA-3 candi-
dates conference this summer, and deduce a ranking according to performance and what
we call 8-bit tolerance.

1 Introduction

In this study, we implemented seven SHA-3 second-round candidates: BLAKE [3], Blue
Midnight Wish [10], Grøstl [9], Keccak [4], Luffa [6], Shabal [5] and Skein [8].

We choose two platforms currently used in smart cards: the Intel 8051, an 8-bit micro-
controller, and the ARM7TDMI, a 32-bit processor. We list hereafter the features of both
architectures that are particularly relevant in our context.

The Intel 8051 is a very constrained architecture. The main constraints are:

• a low number of 8 general purpose registers,

• a low amount of fast RAM (less than 10 bytes of DATA memory),

• and a limited rotation (shift/rotate is possible by only one position).

It must be noted that we didn’t use “pure” 8051, but an extended set of instructions, allowing
fast loading of contiguous memory blocks.

The ARM7TDMI is a less constrained architecture. It is a 32-bit core based on the
ARMv4T ARM architecture version, with a three-stage pipeline. Its main constraints are:

• 13 general purpose registers

• and no division instruction. Fortunately, it is not a bottleneck for any of the candidates
we implemented.

∗This work is the result of an internship in Oberthur Technologies’ crypto team, supervised by Gilles Piret
and Emmanuel Prouff, from 06/04/2010 to 30/09/2010.

1



We added three more constraints on both architectures.

• Each program should manage all versions of the same candidate. More precisely, each
program implements the SHA-3 API [11] for all supported hash sizes (224, 256, 684 and
512 bits).

• Code size should not exceed 10 Kb. This limit only prevents us to unroll all the loops.

• We fixed a development period of two weeks per candidate. This duration corresponds
to a classical hash function development period in an industrial context. Thus, the
same effort and period have been dedicated to each candidate. So, if a candidate is
more optimized than another, it only means the first one was easier to implement and
to optimize than the other.

Under the above constraints our implementation strategy was to reach the best tradeoff
between timing efficiency and compactness. Thus, our implementations are neither the most
efficient nor the most compact ones.

2 Implementations

First of all, we have to precise the metric we use. We only considered the speed of the
compression function and ignored the initialization and finalization phases. As a consequence,
the speeds we mention only refer to the behavior of the candidates when hashing very long
messages.

As far as we were only interested in the compression functions speed, we implemented
them in assembly to optimize them as much as possible. As writing mode of operation in
assembly does not bring any significant improvement of the overall hash function speed, we
implemented them in C (in C51 for 8051 implementations). We list our implementations
results in Figure 1. The unit we use is the number of cycles per byte of message hashed. To
measure the number of cycles, we ran each function in a simulator and measured the number
of cycles necessary for the compression function to hash a message block. We then divided
this number of cycles by the size in bytes of the message blocks.

By looking at the results, it can be noted that the efficiency ranking of the seven candidates
is independent of the hash size produced by the algorithm for both 8051 (cf Figure 2, only
Skein and Keccak switch their respective positions) and ARM (cf Figure 3).

In Table 1, we also give the ratio between the 8051 and ARM versions of each function.
This ratio is the result of the division of the 8051 version speed by the ARM7TDMI version
speed. We mention this value to measure if the gap between a function performances widens
or narrows (cf Figure 4) with the passage from a 32-bit architecture to an 8-bit architecture.
A ratio close to 1 means the function can be ported to 8-bit architecture without great loss
of performance. A high ratio means a loss of performance when ported to 8-bit architecture.

In our study, we will not interpret these values in absolute terms, but only to compare the
behavior of the implemented candidates. We remark that all the functions do not support
equally the transposition, as we have a mean ratio of 6.5 and a standard deviation of 4.1.

A high ratio may be the result of one or a combination of the following three elements :

1. We tweaked the ARM7TDMI version more than the 8051 one. This argument
falls down as, for each function, the same tweaks have been applied to both versions by
the same developer.

2



Algorithm
8051 ARM7TDMI

ratio
cycles cycles/byte cycles cycles/byte

Blake 224
41135 642.7 8215 128.4 5

Blake 256
Blake 384

81390 635.9 19157 149.7 4.2
Blake 512
BMW 224

36234 566.2 2227 34.8 16.3
BMW 256
BMW 384

75621 590.8 7316 57.2 10.3
BMW 512
Grøstl 224

84915 1326.8 56618 884.7 1.5
Grøstl 256
Grøstl 384

228781 1787.4 155542 1215.2 1.5
Grøstl 512
Keccak 224

237352

1648.3

50834

353

4.7
Keccak 256 1745.2 373.8
Keccak 384 2282.2 488.8
Keccak 512 3296.6 706
Luffa 224

28030 875.9 2361 73.8 11.9
Luffa 256
Luffa 384 39573 1236.7 3476 108.6 11.4
Luffa 512 52166 1630.1 4758 148.7 11

Shabal 224

25079 391.9 4284 66.9 5.9
Shabal 256
Shabal 384
Shabal 512
Skein 224

62222 1944.4 10079 315 6.2
Skein 256
Skein 384

131001 2046.9 18260 285.3 7.2
Skein 512

Figure 1: Speeds of the implemented candidates.

Figure 2: Rankings for 8051.

3



Figure 3: Rankings for ARM.

Figure 4: Ratio between 8051 and ARM7TDMI implementations.

2. The candidate takes advantage of the 32-bit architecture. Two design choices
make the function more efficient:

• the use of 32-bit words and interleaved 32-bit logical or arithmetic instructions and
rotations (or shifts). As the ARM is a 32-bit architecture equipped with a barrel
shifter, both operations can be carried out in a single cycle. The candidates taking
advantage of this free rotation are Blake, BMW, Luffa and Shabal.

• the computation on intermediate results whose size is smaller than the global
register size. Here, we mean a huge number of operations on data of size less than
416 bits (= 13 · 32 bits, the capacity of the 13 ARM registers) and more than 64
bits (= 8 · 8 bits, the size of eight 8051 registers) as the Qis in Luffa.

4



3. The candidate is affected by a constraint of the 8-bit architecture. Two design
choices can affect the candidates performances:

• an intensive use of word rotation. As rotation or shift on 8-bit architecture can
only be made bit by bit through the carry, it badly impacts the performances. The
most affected candidates are BMW, Luffa and Skein.

• the use of 64-bit words. As we can put in registers only one 64-bit word, each
byte of the second operand of any binary operation must be loaded one by one
via the accumulator, which is less efficient than using instructions loading multiple
registers at once. All the candidates are affected except Grøstl and Shabal (and
256-bit output versions of BMW, BLAKE and Luffa).

Grøstl is the only function dealing with 8-bit words. Thus, it doesn’t suffer from any
limitation of the 8051, and doesn’t take advantage of the 32-bit words. This explains why its
ratio is close to 1.

3 Comparison with state of the art implementations

The main goal of this section is to compare our results with two performances evaluations
presented at the second SHA-3 candidates conference. Since our analysis essentially corrob-
orates the previous ones, our final purpose is to reveal a tendency on these seven candidates
performances and their abilities to be ported on embedded architectures.

The first work is sphlib [12]. We choose it because the author followed an approach very
similar to ours : each function is implemented by the same developer in two weeks. However,
he doesn’t target embedded architectures in his study.

The second one is the XBX benchmark [7], an extension of the SUPERCOP-eBASH frame-
work that allows benchmarking on small devices. According to the authors, “The main sources
of implementations were SUPERCOP[2] (supercop-20100712.tar.bz2), the avr-crypto-lib [1],
it’s derivate arm-crypto-lib and sphlib [12]” except for Grøstl and Skein for which assembly
implementations have been adapted. We choose this one to compare our implementations to
embedded speed reference implementations.

3.1 Ranking comparison

For 8-bit implementations, only XBX benchmark is eligible for comparison. We choose to
compare our 8051 results with XBX’s ATmega1281 results (cf Figure 5), which is an Atmel
AVR microcontroller. The 8051 and the AVR are quite similar except that AVR has 32
registers versus only 8 registers for 8051. We notice that the two rankings differ only by the
ranks of Grøstl and Skein. They both have better ranks on XBX implementation because
they are the only functions implemented in assembly in XBX benchmark.

For 32-bit implementations, we are able to compare to sphlib and XBX results. We choose
to compare to sphlib’s ARM920T results and to XBX’s Atmel AT91RM9200 results (cf Figure
6). The Atmel AT91RM9200 is a processor based on the ARM920T core. The reason why
we choose the ARM920T is that it is based on the same version of the ARM architecture as
ARM7TDMI: the ARMv4T. So we can expect the two platforms to behave the same way.

A general tendency emerges. Blue Midnight Wish and Shabal are always on top, followed
by BLAKE, Luffa and Skein. Finally, Grøstl and Keccak are behind.

5



256 bit output
Rank 8051 ATmega1281 [7]

1 Shabal Shabal
2 BMW BMW
3 BLAKE BLAKE
4 Luffa Skein
5 Grøstl Grøstl
6 Keccak Luffa
7 Skein Keccak

512 bit output
Rank 8051 ATmega1281 [7]

1 Shabal Shabal
2 BMW Skein
3 BLAKE BMW
4 Luffa Grøstl
5 Grøstl BLAKE
6 Skein Luffa
7 Keccak Keccak

Figure 5: Rankings comparison on 8-bit architectures.

256 bit output
Rank ARM7TDMI ARM920T [12] AT91RM9200 [7]

1 BMW Shabal
Shabal/BMW

2 Shabal BMW
3 Luffa BLAKE BLAKE
4 BLAKE Luffa Luffa
5 Skein Skein Skein
6 Keccak Grøstl Keccak
7 Grøstl Keccak Grøstl

512 bit output
Rank ARM7TDMI ARM920T [12] AT91RM9200 [7]

1 BMW Shabal Shabal
2 Shabal BMW BMW
3 Luffa BLAKE BLAKE
4 BLAKE Skein Skein
5 Skein Luffa Luffa
6 Keccak Keccak Grøstl
7 Grøstl Grøstl Keccak

Figure 6: Rankings comparison on 32-bit architectures.

Now, let’s compare more deeply our results to those of the two other studies. On both
Figures 7 and 8, the coefficient is the division of our implementation speed by the minimum
of sphlib’s [12] and XBX’s [7]. The study of this coefficient allows us to see if we equally
optimized each candidate or not.

6



256 bit output
Algorithm 8051 ATmega1281 [7] coefficient
BLAKE 642.7 884 0.7
BMW 566.2 485 1.2
Grøstl 1326.8 1309 1.0
Keccak 1745.2 4572 0.4
Luffa 875.9 2722 0.3

Shabal 391.9 210 1.9
Skein 1944.4 1204 1.6

512 bit output
Algorithm 8051 ATmega1281 [7] coefficient
BLAKE 635.9 3795 0.2
BMW 590.8 2969 0.2
Grøstl 1787.4 3365 0.5
Keccak 3296.6 7945 0.4
Luffa 1630.2 4688 0.3

Shabal 391.9 210 1.9
Skein 2046 1443 1.4

Figure 7: Results comparison on 8-bit architectures.

On 8-bit, the performance coefficients are around 0.5 for each candidate except for Shabal
and Skein. XBX’s Shabal implementation is the avrcryptolib-asm one, and Skein implemen-
tation is the Fhreefish one. The only explanation we can give is that Shabal and Skein benefit
a lot of the AVR’s 32 registers. For Skein, the Threefish implementation makes use of macro
to unroll eight Threefish rounds, and manipulate the state in the registers in order to avoid
permutations. In 8051, we can’t avoid these permutations, as the state (in both versions)
does not fit in registers.

On 32-bit, the performance coefficients are around 2 except for Grøstl, Shabal and Skein
implementations, which look less optimized compared to the other functions. The implemen-
tations benched by XBX are sphlibs’. Thus, they share a big code size. This big code size
is due to an intensive use of macros. As our time/space tradeoff limits us to a code size
of 10Kb, we were not able to do such optimizations. This element explains the performance
drop between sphlib implementations and ours. For Skein, we think the drop comes especially
from our choice to not unroll the eight rounds of Threefish as the 512-bits version state does
not fit in registers.

A surprising fact is that we have the same coefficients for Skein and Grøstl. This means
the time/space tradeoff we made impacts the two functions equally.

We can also notice that, for each candidate, passing from 256- to 512-bits output decreases
the coefficient on both architectures, except for Luffa on 32-bit architecture. It may be the
result of the code pooling between all the versions of each function. Contrary to sphlib and
XBX implementation, we make an intensive use of functions and not macros. As we have less
function calls on 512 bit version per byte, the coefficient decreases.

7



256 bit output
Algorithm ARM7TDMI ARM920T [12] AT91RM9200 [7] coefficient
BLAKE 128.4 42.6 47 3.0
BMW 34.8 30.5 25 1.4
Grøstl 884.7 288.5 234 3.8
Keccak 373.8 300 150 2.5
Luffa 73.8 73.5 86 1.0

Shabal 66.9 23.3 25 2.9
Skein 315.0 83.3 122 3.8

512 bit output
Algorithm ARM7TDMI ARM920T [12] AT91RM9200 [7] coefficient
BLAKE 149.7 98.7 119 1.5
BMW 57.2 69.4 81 0.8
Grøstl 1215.2 681.8 562 2.2
Keccak 706.0 576.9 571 1.2
Luffa 148.7 133.9 178 1.1

Shabal 66.9 23.3 25 2.9
Skein 285.3 129.3 156 2.2

Figure 8: Results comparison on 32-bit architectures.

3.2 32-bit to 8-bit tolerance comparison

Another point we want to corroborate is the tolerance to the passage from a 32-bit to an 8-bit
architecture for each candidate.

For this purpose, we observed the ratios relative to the passage from AT91RM9200 to
ATmega1281 in XBX benchmark [7]. These results are recorded in Figure 9.

Algorithm ATmega1281 [7] AT91RM9200 [7] ratio
BLAKE 224/256 884 47 18.8
BLAKE 384/512 3795 119 31.9
BMW 224/256 485 25 19.4
BMW 384/512 2969 81 36.7
Grøstl 224/256 1309 234 5.6
Grøstl 384/512 3365 562 6.0

Keccak 256 4572 150 30.5
Keccak 512 7945 571 13.9

Luffa 224/256 2722 86 31.7
Luffa 512 4688 178 26.3
Shabal 210 25 8.4

Skein 224/256 1204 122 9.9
Skein 384/512 1443 156 9.3

Figure 9: Ratios between ATmega1281 and AT91RM9200 XBX implementations[7].

If we compare these ratios with those of our implementations (cf Figure 10), we have the
same tendency. BMW is the most impacted function, followed by Luffa, Keccak and BLAKE,
Skein, Shabal, and finally, Grøstl.

8



Figure 10: Ratios comparison.

We noted only two major differences:

• In our implementations, for each function, the ratio of the 224/256 version is always
higher than the one of 512 version (except for Skein). It is the opposite on XBX
implementations (even for Skein !).

• There is a huge difference between Keccak 256 and Keccak 512 XBX’s ratios. The only
explanation is that the implementation benched by XBX on ATmega1281 (sphlib) and
on AT91RM9200 (opt32u6) are different.

4 Conclusion

In this paper, we implemented seven candidates of the SHA-3 second-round competition,
according to common industrial production methods. From these implementations, we ex-
tracted a trend on candidates performances on embedded systems (particularly on smart
cards). Thus, Blue Midnight Wish and Shabal are always on top of our rankings, followed by
BLAKE, Luffa and Skein. Finally, Grøstl and Keccak are behind.

We also studied the tolerance to the passage from 32-bit to 8-bit of each candidates.
Performance-wise, BMW is the most impacted function, followed by Luffa, Keccak and
BLAKE, Skein, Shabal, and finally, Grøstl.

An interesting continuation to this work would be to extend it to other candidates, to
identify more elements influencing the 8-bit port tolerance ratio and to quantify the usage of
these elements within each function.

9



References

[1] avr-crypto-lib. http://avrcryptolib.das-labor.org/trac.

[2] ebash: Ecrypt benchmarking of all submitted hashes. http://bench.cr.yp.to/ebash.
html.

[3] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W. Phan. Sha-3
proposal blake. Submission to NIST, 2008.

[4] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak sponge
function family main document. Submission to NIST (Round 2), 2009.

[5] Emmanuel Bresson, Anne Canteaut, Benôıt Chevallier-Mames, Christophe Clavier,
Thomas Fuhr, Aline Gouget, Thomas Icart, Jean-François Misarsky, Mar̀ıa Naya-
Plasencia, Pascal Paillier, Thomas Pornin, Jean-René Reinhard, Céline Thuillet, and
Marion Videau. Shabal, a submission to nist’s cryptographic hash algorithm competi-
tion. Submission to NIST, 2008.

[6] Christophe De Canniere, Hisayoshi Sato, and Dai Watanabe. Hash function luffa: Spec-
ification. Submission to NIST (Round 2), 2009.

[7] Marcus Himmel Christian Wenzel-Benner, Jens Greaf. Xbx benchmarking results august
2010. https://xbx.das-labor.org/trac/wiki.

[8] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Tadayoshi
Kohno, Jon Callas, and Jesse Walker. The skein hash function family. Submission to
NIST (Round 2), 2009.

[9] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Chris-
tian Rechberger, Martin Schläffer, and Søren S. Thomsen. Grøstl – a sha-3 candidate.
Submission to NIST, 2008.

[10] Danilo Gligoroski, Vlastimil Klima, Svein Johan Knapskog, Mohamed El-Hadedy, Jorn
Amundsen, and Stig Frode Mjolsnes. Cryptographic hash function blue midnight wish.
Submission to NIST (Round 2), 2009.

[11] NIST. Ansi C cryptographic API profile for SHA-3 candidate algorithm submissions.

[12] Thomas Pornin. Comparative performance review of the sha-3 second round candidates.
http://www.saphir2.com/sphlib.

10


