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Abstract. This article presents a novel pairing algorithm over super-
singular genus-2 binary hyperelliptic curves. Starting from Vercauteren’s
work on optimal pairings, we describe how to exploit the action of the
23m-th power Verschiebung in order to reduce the loop length of Miller’s
algorithm even further than the genus-2 ηT approach.

As a proof of concept, we detail an optimized software implementation
and an FPGA accelerator for computing the proposed optimal Eta pair-
ing on a genus-2 hyperelliptic curve over F2367 , which satisfies the rec-
ommended security level of 128 bits. These designs achieve favourable
performance in comparison with the best known implementations of 128-
bit-security Type-1 pairings from the literature.

Keywords: Optimal Eta pairing, supersingular genus-2 curve, software imple-
mentation, FPGA implementation.

1 Introduction

The Weil and Tate pairings were independently introduced in cryptography by
Frey & Rück [18] and Menezes, Okamoto & Vanstone [34] as tools to attack the
discrete-logarithm problem on some classes of elliptic curves defined over finite
fields. The discovery of constructive properties by Joux [29], Mitsunari, Sakai &
Kasahara [37], and Sakai, Oghishi & Kasahara [41] initiated the proposal of an
ever-increasing number of protocols based on bilinear pairings: identity-based
encryption [10], short signature [12], and efficient broadcast encryption [11], to
mention but a few. However, such protocols rely critically on efficient implemen-
tations of pairing primitives at high security levels on a wide range of targets.
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Miller described the first iterative algorithm to compute the Weil and Tate
pairings back in 1986 [35, 36]. The Tate pairing seems to be more suited to ef-
ficient implementations (see for instance [25, 30]), and has therefore attracted a
lot of interest from the research community. A large number of articles, culmi-
nating in the ηT pairing algorithm [5], focused on shortening the loop of Miller’s
algorithm in the case of supersingular abelian varieties. The Ate pairing, intro-
duced by Hess et al. [28] for elliptic curves and by Granger et al. [24] in the
hyperelliptic case, generalizes the ηT approach to ordinary curves. Eventually,
several variants of the Ate pairing aiming at reducing the loop length of Miller’s
algorithm have been proposed in 2008 [27,31,43].

In this work, we target the AES-128 security level. When dealing with or-
dinary elliptic curves defined over a prime finite field Fp, the family of curves
introduced by Barreto & Naehrig (BN) [6] is a nearly optimal choice for the 128-
bit security level. Their embedding degree k = 12 perfectly balances the security
between the `-torsion and the group of `-th roots of unity, where ` is a prime
number dividing the cardinality of the curve #E(Fp). The latest software im-
plementation results on these curves by Aranha et al. report computation times
below one millisecond on a single core of an Intel Core i7 processor [1].

Supersingular curves over F2m and F3m are better suited to hardware im-
plementation, and offer more efficient point doubling and tripling formulae than
BN-curves. Moreover, supersingularity allows the use of a distortion map and
thus provides Type-1 (or symmetric) pairings [19], which cannot be obtained
with ordinary curves. However, the embedding degree of a supersingular elliptic
curve is always less than or equal to 6 [34]. As a consequence, the security on
the curve is too high with respect to the security of the group of `-th roots of
unity, and one has to consider curves defined over very large finite fields. There-
fore, most of the hardware accelerators are struggling to achieve the AES-128
level of security (see for instance [9] for a comprehensive bibliography). Software
implementations at this security level have for instance been reported in [3, 8].
However, the computation of a pairing is at least 6 times faster on a BN curve [7].

To mitigate the effect of the bounded embedded degree, Estibals proposed
to consider supersingular elliptic curves over field extensions of moderately-
composite degree [17]. Curves are then vulnerable to Weil descent attacks [22],
but a careful analysis allowed him to maintain the security above the 128-bit
threshold. As a proof of concept, he designed a compact Field-Programmable
Gate Array (FPGA) accelerator for computing the Tate pairing on a supersin-
gular elliptic curve defined over F35·97 . Even though he targeted his architecture
to low-resource hardware, his timings are very close to those of software imple-
mentations of BN curves.

Yet another way to reduce the size of the base field of the Tate pairing in
the supersingular case is to consider a genus-2 binary hyperelliptic curve with
embedding degree k = 12 [20, 40], which is the solution investigated in this
work. We indeed show that, thanks to a novel pairing algorithm, these curves
can be actually made very effective in the context of software implementations
and hardware accelerators for embedded systems.
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This paper is organized as follows: after a general reminder on the hyperel-
liptic Tate pairing (Section 2) and on the Eta pairing on in the case of those
particular curves (Section 3), we describe a novel optimal1 Eta pairing algorithm
that further reduces the loop length of Miller’s algorithm compared to the ηT
approach [5] (Section 4). We then present an optimized software implementa-
tion (Section 5) and a low-area FPGA accelerator (Section 6) for the proposed
pairing algorithm. We discuss our results and conclude in Section 7.

2 Background Material and Notations

In this section, we briefly recall a few definitions and results about hyperelliptic
curves, and more precisely the Tate pairing on such curves. For more details, we
refer the interested reader to [16,24].

2.1 Reminder on Hyperelliptic Curves

Let C be an imaginary nonsingular hyperelliptic curve of genus g defined over
the finite field Fq, where q = pm and p is a prime, and whose affine part is given
by the equation y2 + h(x)y = f(x), where f , h ∈ Fq[x], deg f = 2g + 1, and
deg h ≤ g.

For any algebraic extension Fqd of Fq, we define the set of Fqd -rational points
of C as C(Fqd) = {(x, y) ∈ Fqd × Fqd | y2 + h(x)y = f(x)} ∪ {P∞}, where P∞ is

the point at infinity of the curve. For simplicity’s sake, we also write C = C(Fq).
Additionally, denoting by φq the q-th power Frobenius morphism φq : C → C,
(x, y) 7→ (xq, yq), and P∞ 7→ P∞, note that a point P ∈ C is Fqd -rational if and
only if φdq(P ) = P .

We then denote by JacC the Jacobian of C, which is an abelian variety
of dimension g defined over Fq, and whose elements are represented by the
divisor class group of degree-0 divisors Pic0

C = Div0
C /PrincC . In other words,

two degree-0 divisors D and D′ belong to the same equivalence class D ∈ JacC
if and only if there exists a non-zero rational function z ∈ Fq(C)∗ such that
D′ = D + div(z). Naturally extending the Frobenius map to divisors as φq :∑
P∈C nP (P ) 7→

∑
P∈C nP (φq(P )), we say that D is Fqd -rational if and only if

φdq(D) = D.

It can also be shown that any divisor class D ∈ JacC(Fqd) can be uniquely

represented by an Fqd -rational reduced divisor ρ(D) =
∑r
i=1(Pi)− r(P∞), with

r ≤ g, Pi 6= P∞, and Pi 6= −Pj for i 6= j, where the negative of a point P = (x, y)
is given via the hyperelliptic involution by −P = (x,−y−h(x)). In the following,
we also denote by ε(D) =

∑r
i=1(Pi) the effective part of ρ(D).

Using the Mumford representation, any non-zero Fqd -rational reduced divisor

D = ρ(D) (and therefore any non-zero element of the Jacobian JacC(Fqd)) can
be associated with a unique pair of polynomials [u(x), v(x)], with u, v ∈ Fqd [x]

1 Here the “optimal” qualifier is to be understood more as a reference to Vercauteren’s
work [43] than an actual claim of optimality.
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and such that u is monic, deg(v) < deg(u) = r ≤ g, and u | v2 + vh − f .
Furthermore, given two reduced divisors D1 and D2 in Mumford representation,
Cantor’s algorithm [13] can be used to compute the Mumford representation of
ρ(D1 +D2), the reduced divisor corresponding to their sum on the Jacobian.

2.2 Hyperelliptic Tate Pairing

Let ` be a prime dividing # JacC(Fq) and coprime to q. Let also k be the cor-
responding embedding degree, i.e., the smallest integer such that ` | qk − 1. We
denote by JacC(Fqk)[`] the Fqk -rational `-torsion subgroup of JacC . The Tate
pairing on C is then the well-defined, non-degenerate, and bilinear map

〈., .〉` : JacC(Fqk)[`]× JacC(Fqk)/` JacC(Fqk)→ F∗qk/(F
∗
qk)`,

defined as 〈D1, D2〉` ≡ f`,D1
(D2), where D1 and D2 represent the divisor classes

D1 and D2, respectively, with disjoint supports: supp(D1) ∩ supp(D2) = ∅.
Moreover, for any integer n and any Fqk -rational divisor D, the notation fn,D
denotes the Miller function in Fqk(C)∗ which is defined (up to a non-zero constant
multiple) by its divisor such that div(fn,D) = nD − [n]D, where [n]D = ρ(nD).
In the case of the Tate pairing, since D1 ∈ JacC [`], we have [`]D1 = 0 and
div(f`,D1

) = `D1.
So as to obtain a unique value for the Tate pairing, we also define the re-

duced Tate pairing as e : (D1, D2) 7→ 〈D1, D2〉(q
k−1)/`

` ∈ µ`, with µ` ⊆ F∗qk the

subgroup of `-th roots of unity. Note that for any L such that ` | L | qk − 1, we

also have e(D1, D2) = 〈D1, D2〉(q
k−1)/L

L .
Ensuring that there are no elements of order `2 in JacC(Fqk), we can also show

that there is a natural isomorphism between the quotient JacC(Fqk)/` JacC(Fqk)
and JacC(Fqk)[`]. We can then identify these two groups, and define the Tate
pairing on the domain JacC(Fqk)[`]× JacC(Fqk)[`].

The actual computation of the (reduced) Tate pairing is achieved thanks
to Miller’s algorithm [35, 36], which is based on the observation that, for any
integer n, n′, and for any Fqk -rational divisor D, one can take the function
fn+n′,D = fn,D · fn′,D · g[n]D,[n′]D, where g[n]D,[n′]D ∈ Fqk(C)∗ is such that
div(g[n]D,[n′]D) = [n]D+[n′]D− [n+n′]D. Note that the function g[n]D,[n′]D can
be explicitly obtained from the computation of [n+ n′]D = ρ([n]D + [n′]D) by
Cantor’s algorithm. See for instance [24, Algorithm 2] for more details. Therefore,
computing f`,D1

(D2) is tantamount to computing [`]D1 on JacC(Fqk) by means
of any suitable scalar multiplication algorithm (e.g., addition chain or double-
and-add) while keeping track of the g[n]D1,[n′]D1

functions given by Cantor’s
algorithm and evaluating them at the divisor D2. Miller’s algorithm, based on
the double-and-add approach, thus has a complexity of blog2(`)c + wg(`) − 1
iterations (i.e., evaluations of such g[n]D1,[n′]D1

functions), where wg(`) denotes
the Hamming weight of `.

Finally, let u∞ be an Fq-rational uniformizer at P∞ (i.e., ordP∞(u∞) = 1).

For any function z ∈ Fq(C)∗, we denote by lc∞(z) = (u
− ordP∞ (z)
∞ · z)(P∞)
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the leading coefficient of z expressed as a Laurent series in u∞. Restricting
the domain of the Tate pairing to D1 ∈ JacC(Fq)[`], one can easily check that
lc∞(f`,D1) ∈ F∗q with D1 = ρ(D1). We can then apply [24, Lemma 1] to show

that we can simply compute the Tate pairing as 〈D1, D2〉` = f`,D1
(ε(D2)), as

long as supp(D1) ∩ supp(ε(D2)) = ∅. This last condition is ensured by taking
D2 ∈ JacC(Fqk)[`] \ JacC(Fq)[`].

3 Eta Pairing on Supersingular Genus-2 Binary Curves

3.1 Curve Definition and Basic Properties

In this work, we consider the family of supersingular genus-2 hyperelliptic curves
defined over F2 by the equation Cd : y2+y = x5+x3+d, where d ∈ F2. Because of
their supersingularity, which provides them with a very efficient arithmetic, along
with their embedding degree of 12, which is the highest among all supersingular
genus-2 curves, these curves are a target of choice for implementing pairing-
based cryptography. They have therefore already been studied in this context in
several articles [5, 14,20,32,39,40].

For m a positive integer coprime to 6, the cardinality L of the Jacobian of
Cd over F2m is L = # JacCd

(F2m) = 22m + δ2(3m+1)/2 + 2m + δ2(m+1)/2 + 1,
where the value of δ is

δ =

{
(−1)d when m ≡ 1, 7, 17, or 23 (mod 24), and
−(−1)d when m ≡ 5, 11, 13, or 19 (mod 24).

The embedding degree of Cd is k = 12, and # JacCd
(F2m) | 212m − 1. The

Tate pairing and its variants will then map into the degree-12 extension F212m ,
which we represent as the tower field F212m ∼= F2m [τ, sτ,0] where τ ∈ F26 is such
that τ6 +τ5 +τ3 +τ2 +1 = 0, and sτ,0 ∈ F212 is such that s2

τ,0 +sτ,0 +τ5 +τ3 = 0.

3.2 Distortion Maps

Since Cd is supersingular, it has non-trivial distortion maps [21, 44] embedding
JacCd

(F2m) into distinct subgroups of JacCd
(F212m). Such a distortion map will

then allow us to construct Type-1 pairings [19], such as the modified Tate pairing
described in the next section. An exhaustive study of the distortion maps of
JacCd

is given by Galbraith et al. in [21], of which we now recall the key results.
From [21, Sec. 8], the automorphisms of Cd are of the form

σω : (x, y) 7→ (x+ ω, y + sω,2x
2 + sω,1x+ sω,0),

where ω is a root of the polynomial x16 + x8 + x2 + x, sω,2 = ω8 + ω4 + ω,
sω,1 = ω4 + ω2, and sω,0 is a root of y2 + y + ω5 + ω3.

Considering τ as above, we also define θ = τ4 + τ2 + τ and ξ = τ4 + τ2. One
easily checks that τ , θ, and ξ are all roots of x16 + x8 + x2 + x. Let us now take
sτ,0 as above, along with sθ,0 = sτ,0 +τ5 +τ2 +τ+1 and sξ,0 = τ4 +τ2. Verifying
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that s2
ω,0 + sω,0 + ω5 + ω3 = 0 holds for all ω ∈ {τ, θ, ξ}, we can now define the

three corresponding automorphisms of Cd, namely στ , σθ, and σξ, along with
their natural extension to its Jacobian JacCd

.
From [21, Prop. 8.1], all possible distortion maps can be found in Z[φ2m , στ , σθ],

where φ2m is the 2m-th power Frobenius map. Furthermore, Q[φ2m , στ , σθ] is a
16-dimensional vector space with the direct sum decomposition

Q[φ2m , στ , σθ] = Q(φ2m)⊕ στQ(φ2m)⊕ σθQ(φ2m)⊕ σξQ(φ2m).

In other words, the four endomorphisms of JacCd
1, στ , σθ, and σξ are linearly

independent over Q(φ2m), and any distortion map can be expressed as a Q(φ2m)-
linear combination of these endomorphisms.

Finally, a tedious computation—which, fortunately, can easily be checked
using any computer algebra system—gives the three following equalities over
End(JacCd

):

φ2mστφ
−1
2m = [2m]στφ

−2
2m + [ε22m]σθφ

−4
2m ,

φ2mσθφ
−1
2m = [−23m]σθφ

−6
2m , and

φ2mσξφ
−1
2m = [24m]σξφ

−8
2m + [ε25m]φ−10

2m ,

where ε = (−1)e and e = 0 when m ≡ 1 or 11 (mod 12), and 1 otherwise.

3.3 Modified Tate Pairing on Cd

Let ` be a large (odd) prime dividing L = # JacCd
(F2m). After ensuring that

there are no points of order `2 in JacCd
(F212m), we can restrict the domain of

the Tate pairing to JacCd
(F2m)[`] × JacCd

(F212m)[`], as detailed in Section 2.2.
Using a non-trivial distortion map ψ which maps JacCd

(F2m)[`] to a subgroup
ψ(JacCd

(F2m)[`]) ⊂ JacCd
(F212m)[`] such that JacCd

(F2m)[`]∩ψ(JacCd
(F2m)[`]) =

{0}, we can then define the reduced modified Tate pairing as the non-degenerate,
bilinear map

ê : JacCd
(F2m)[`] × JacCd

(F2m)[`] −→ µ` ⊆ F∗212m

( D1 , D2 ) 7−→ 〈D1, ψ(D2)〉(2
12m−1)/`

`

= 〈D1, ψ(D2)〉(2
12m−1)/L

L ,

where 〈D1, ψ(D2)〉L = fL,D1(ε(ψ(D2))), the divisor classes D1 and D2 being
represented by the F2m -rational reduced divisors D1 = ρ(D1) and D2 = ρ(D2).
As long as D1 and D2 are not both trivial, the distortion map ψ ensures that
the affine supports of D1 and ψ(D2) are disjoint.

At this stage, we have to point out that, in this case, the g[n]D1,[n′]D1
func-

tions required by Miller’s algorithm in the computation of the Tate pairing can
be simplified. Indeed, from Cantor’s algorithm, most of these functions involve
vertical lines, which all pass through multiples of the F2m-rational reduced di-
visor D1, meaning that their equations will also be F2m-rational. Furthermore,
noticing that the x-coordinate of ψ(P ) is always in F26m when P is F2m - or F22m-
rational, we can conclude that the evaluation of those vertical lines at ε(ψ(D2))
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for any F2m -rational reduced divisor D2 will also be in F∗26m and therefore anni-
hilated by the final exponentiation to the (212m − 1)/L-th power. We can then
safely ignore the computation of those vertical lines.

3.4 Choosing an Efficient Pairing

Action of the Frobenius φ2m . Following the papers on hyperelliptic Ate and
optimal Ate pairings [24, 43], a natural choice is to study the action of φ2m ,
the 2m-th power Frobenius map, over JacCd

[`] in order to reduce the number of
iterations in Miller’s algorithm.

To that intent, let us first consider a non-zero element D1 ∈ JacCd
(F2m)[`].

Since the four endomorphisms 1, στ , σθ, and σξ are Q(φ2m)-linearly independent
as per [21, Prop. 8.1], this is also the case for the four elements D1, Dτ = στ (D1),
Dθ = σθ(D1), and Dξ = σξ(D1), which then form a basis B = (D1, Dτ , Dθ, Dξ)
of the 4-dimensional `-torsion JacCd

[`].
From the three equalities presented in Section 3.2, and noting that φ2m(D1) =

D1 since D1 is F2m-rational, one then obtains the following matrix describing
the action of φ2m on the `-torsion in the basis B:

φ2m ≡


1 0 0 ε25m

0 2m 0 0
0 ε22m −23m 0
0 0 0 24m

 (mod `).

From this matrix, one can remark that it is not completely diagonal. In
particular, the eigenspace of eigenvalue 2m, which would allow one to construct
the optimal Ate pairing described by Vercauteren in [43, Sec. IV-G], is not
directly attainable using the distortion map στ . This is not a problem in general,
but since we want to construct a Type-1 pairing, we cannot avoid the use of
distortion maps.

Diagonalizing the matrix shows that a way to map JacCd
(F2m)[`] to this

eigenspace would be to use the distortion map ψ = (23m + φ2m)στ , as one can
rapidly check that φ2m(ψ(D1)) = [2m]ψ(D1). However, contrary to the distortion
maps στ , σθ, and σξ which are simple automorphisms of Cd, ψ only acts on
its Jacobian. As this might have a negative impact on the performance of the
corresponding hyperelliptic Ate pairing, we decide not to follow this option in
this paper, even though we plan to investigate it in the near future.

Sticking now to the diagonal parts of the matrix, one might alternatively
consider using the distortion map σθ, as it maps the F2m -rational `-torsion to
the eigenspace of eigenvalue −23m. However, since ` | L | 26m + 1, the lattice in
which to look for an optimal pairing over this eigenspace is only of dimension
2, which is no better that the Eta pairing that we propose at the end of this
section.

Action of the Verschiebung φ̂2m . An alternative to relying on the action
of the Frobenius map φ2m would be to use its dual φ̂2m , the 2m-th power Ver-
schiebung. However, the curve Cd is not superspecial, which means that φ̂2m ,
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albeit purely inseparable, is not a map of Cd but only of JacCd
: the conditions

of [24, Lemma 5] are not met, and we are therefore unable to construct a non-
degenerate pairing from such a map.

Action of the Verschiebung φ̂23m . Nevertheless, as already noted by Barreto
et al. in [5], the 23m-th power Verschiebung φ̂23m can be used instead of φ̂2m .
We detail this construction in the following paragraphs.

First, let P = (xP , yP ) be a point of Cd distinct from P∞, andD = (P )−(P∞)
be the corresponding degenerate divisor. Its Mumford representation is then
D = [x+ xP , yP ]. Doubling and reducing D three times via Cantor’s algorithm,
we obtain [8]D = ρ(8D) = [x + x64

P + 1, x128
P + y64

P + 1]. Note that the divisor
[8]D is also degenerate, as [8]D = ([8]P ) − (P∞), and corresponds to the point
[8]P = (x64

P + 1, x128
P + y64

P + 1) ∈ Cd.
Octupling therefore acts not only on JacCd

but also on the curve Cd itself,
and in fact restricts to a morphism of curves from Cd to itself, defined over F2

as [8] = σ1φ
2
8 with σ1 the automorphism (x, y) 7→ (x+ 1, x2 + y + 1) and φ8 the

8th power Frobenius map (x, y) 7→ (x8, y8).

Iterating this octupling m times, we obtain the F2-rational map [23m] on
Cd defined as [23m] = γφ2

23m , with γ = σm1 : (x, y) 7→ (x + 1, x2 + y + ν) and
ν = (m + 1)/2 mod 2. Note that γ, φ23m , and [23m] can be naturally extended
to JacCd

, where the latter corresponds to the multiplication by 23m.

Furthermore, since φ23m is a degree-23m isogeny of JacCd
, we know that

φ̂23mφ23m = [23m]. Since [23m] = γφ2
23m , we then have φ̂23m = γφ23m and can

thus verify that φ̂23m is also a degree-23m purely inseparable endomorphism of
the curve Cd. We are therefore in the conditions of [24, Lemma 5], from which

we get that, for any reduced divisor D, φ̂23m(D) is also reduced and we have the
equality of Miller functions (up to a non-zero constant multiple)

fn,φ̂23m (D) ◦ φ̂23m = f23m

n,D . (1)

Let us now consider the action of φ̂23m on the `-torsion JacCd
[`]. Noting that

φ4
23m is the identity over the ` torsion since JacCd

[`] ⊆ JacCd
(F212m), we obtain

the following diagonal matrix in the basis B:

φ̂23m = [23m]φ−1
23m ≡ [23m]φ3

23m ≡


23m 0 0 0

0 1 0 0
0 0 1 0
0 0 0 23m

 (mod `).

From this matrix, it appears that JacCd
(F2m)[`] is in the eigenspace of eigen-

value 23m, while ψ(JacCd
(F2m)[`]) is in the eigenspace of eigenvalue 1, where

the distortion map ψ is either στ or σθ. In other words, for any F2m -rational
`-torsion element D, φ̂23m(D) = [23m]D and φ̂23m(ψ(D)) = ψ(D).
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3.5 Eta Pairing on Cd

We now follow the construction of Barreto et al. [5] in order to obtain the ηT
pairing with T = 23m. Remarking indeed that ` | L | N for N = 212m − 1 =
T 4 − 1, and taking M = N/L, we can write

ê(D1, D2)M = fL,D1
(ε(ψ(D2)))M(212m−1)/L = fN,D1

(ε(ψ(D2)))(212m−1)/L.

As ` | N , we can then take the Miller function

fN,D1
= fN+1,D1

= fT 4,D1
=

3∏
i=0

fT
3−i

T,[T i]D1
=

3∏
i=0

f2(3−i)·3m

23m,[2i·3m]D1
.

Furthermore, since D1 and D2 are F2m-rational reduced divisors, we also have
that [2i·3m]D1 = φ̂i23m(D1) and ε(ψ(D2)) = φ̂i23m(ε(ψ(D2))) for all i. Iterating
(1) then yields

f23m,[2i·3m]D1
(ε(ψ(D2))) =

(
f23m,φ̂i

23m
(D1) ◦ φ̂

i
23m

)
(ε(ψ(D2)))

= f23m,D1
(ε(ψ(D2)))2i·3m

.

Putting it all together, we finally obtain

ê(D1, D2)M = f23m,D1
(ε(ψ(D2)))4·23·3m·(212m−1)/L,

and, as ` - 4 · 23·3m,

f23m,D1
(ε(ψ(D2)))(212m−1)/L = ê(D1, D2)M ·(4·2

3·3m)−1 mod L.

From the bilinearity and the non-degeneracy of the Tate pairing, we can then con-
clude that the ηT pairing defined as follows is also bilinear and non-degenerate [5]:

ηT : JacCd
(F2m)[`] × JacCd

(F2m)[`] −→ µ` ⊆ F∗212m

( D1 , D2 ) 7−→ f23m,D1
(ε(ψ(D2)))(212m−1)/L.

4 Optimal Eta Pairing on Cd

4.1 Construction and Definition

In order to further decrease the loop length in Miller’s algorithm, we adapt in
this work the optimal pairing technique as introduced by Vercauteren [43] to the

case of the action of the 23m-th power Verschiebung φ̂23m and the Eta pairing
detailed in the previous section.

To that intent, let us consider the 2-dimensional lattice spanned by the rows
of the matrix

L =

(
L 0
−23m 1

)
.
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Note that since ` | L | 26m + 1, we know that 26m ≡ −1 (mod `), meaning that
there is no need to look for 23m-ary expansions of multiples of L having more
than two digits.

A shortest vector of L is [c0, c1] = [δ2(m−1)/2 + 1, 2m + δ2(m−1)/2], which
corresponds to taking the multiple N ′ = c123m + c0 = M ′L with M ′ = 22m −
δ2(3m−1)/2 − δ2(m−1)/2 + 1.

We then have the M ′-th power of the reduced modified Tate pairing

ê(D1, D2)M
′

= fN ′,D1
(ε(ψ(D2)))(212m−1)/L,

for which we can take the Miller function

fN ′,D1 = fc123m,D1
· fc0,D1 · g[c0]D1,[c123m]D1

= f c123m,D1
· fc1,[23m]D1

· fc0,D1 · g[c0]D1,[c123m]D1
.

Remarking that c123m ≡ −c0 (mod `), g[c0]D1,[c123m]D1
actually corresponds

to the vertical lines passing through [c0]D1 and [−c0]D1, which can simply

be ignored. Furthermore, exploiting the action of the Verschiebung φ̂23m , we
can rewrite fc1,[23m]D1

(ε(ψ(D2))) as f23m

c1,D1
(ε(ψ(D2))). Finally, also note that

f23m,D1
(ε(ψ(D2)))c1·(2

12m−1)/L is actually a power of the Eta pairing ηT (D1, D2)
defined in the previous section.

Consequently, let η[c0,c1] : JacCd
(F2m)[`]×JacCd

(F2m)[`]→ µ` be the optimal
Eta pairing defined as

η[c0,c1] : (D1, D2) 7−→
(
f23m

c1,D1
· fc0,D1

)
(ε(ψ(D2)))(212m−1)/L.

From the previous considerations, we thus have that

ê(D1, D2)M
′

= η[c0,c1](D1, D2) · ηT (D1, D2)c1 ,

whence η[c0,c1](D1, D2) = ê(D1, D2)W with

W = M ′ − c1M · (4 · 23·3m)−1 mod L
= 22m + δ2(3m−1)/2 + 2m + δ2(m−1)/2 + 1.

Finally, as ` - W , we show that the optimal Eta pairing η[c0,c1] is also bilinear
and non-degenerate.

Note that the ηT pairing introduced in [5] with T = −δ2(3m+1)/2 − 1 corre-
sponds to the lattice vector [−δ2(3m+1)/2 − 1,−1] ∈ L.

4.2 Computing η[c0,c1]

The computation of the optimal Eta pairing η[c0,c1] defined in the previous sec-
tion relies on the evaluation of the two Miller functions fc0,D1

and fc1,D1
at

ε(ψ(D2)). With [c0, c1] = [δ2(m−1)/2 + 1, 2m + δ2(m−1)/2], we can take the fol-
lowing functions{

fc0,D1
= fδ2(m−1)/2,D1

· g[δ2(m−1)/2]D1,D1
and

fc1,D1
= f2m,D1

· fδ2(m−1)/2,D1
· g[2m]D1,[δ2(m−1)/2]D1

.
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Since we are ignoring the vertical lines, we can further rewrite

fδ2(m−1)/2,D1
= f2(m−1)/2,[δ]D1

and

f2m,D1
= fδ2(m−1)/2·δ2(m+1)/2,D1

= fδ2
(m+1)/2

2(m−1)/2,[δ]D1
· f2(m+1)/2,[2(m−1)/2]D1

,

which finally gives{
fc0,D1 = f2(m−1)/2,[δ]D1

· g[δ2(m−1)/2]D1,D1
and

fc1,D1 = fδ2
(m+1)/2+1

2(m−1)/2,[δ]D1
· f2(m+1)/2,[2(m−1)/2]D1

· g[2m]D1,[δ2(m−1)/2]D1
.

The computation of η[c0,c1] therefore chiefly involves the evaluation of the two
Miller functions f2(m−1)/2,[δ]D1

and f2(m+1)/2,[2(m−1)/2]D1
of loop length (m− 1)/2

and (m+ 1)/2, respectively. This represents a saving of 33% with respect to the
ηT pairing presented in [5] whose Miller’s loop length is (3m+ 1)/2.

Note that in order to exploit the octupling formula, we have to consider two
cases, depending on the value of m mod 6, as described in Algorithm 1.

– When m ≡ 1 (mod 6), then (m− 1)/2 is a multiple of 3, and f2(m−1)/2,[δ]D1

can be computed via (m − 1)/6 octuplings, whereas f2(m+1)/2,[2(m−1)/2]D1

can be computed by means of another (m − 1)/6 octuplings and one extra
doubling.

– When m ≡ 5 (mod 6), (m − 1)/2 is not a multiple of 3, but (m + 1)/2 is.
We then compute η2

[c0,c1] = η[2c0,2c1] instead, with the Miller functions{
f2c0,D1

= f2(m+1)/2,[δ]D1
· f2,D1

· g[δ2(m+1)/2]D1,[2]D1
and

f2c1,D1
= fδ2

(m+1)/2+1
2(m+1)/2,[δ]D1

· f2(m+1)/2,[2(m+1)/2]D1
· g[2m+1]D1,[δ2(m+1)/2]D1

.

The two f2(m+1)/2,D functions are then evaluated using (m+ 1)/6 octuplings
each, whereas f2,D1 only require one doubling.

Finally, one should note that, in our case, since the curve Cd is supersingular,
the final exponentiation step is much simpler than for ordinary curves such as
BN curves. Indeed, the exponent is

(212m − 1)/L = (26m − 1)(22m + 1)(22m − δ2(3m+1)/2 + 2m − δ2(m+1)/2 + 1),

whose regular form can be exploited to devise an efficient ad-hoc exponentiation
algorithm, of negligible complexity when compared to Miller’s loop.

4.3 Evaluation of the Complexity

From the above description of the optimal Eta pairing η[c0,c1], we can see that
most of its computational cost lies in the iterated octuplings of D1 and the evalu-
ation of the corresponding Miller functions of the form f8,[±8i]D1

at the effective
divisor ε(ψ(D2)). Here, we denote by [±8i]D1 a reduced divisor representing one
of the iterated octuples of D1 or of [δ]D1 as required in the evaluation of η[c0,c1].
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Algorithm 1 Computation of the optimal Eta pairing.

Input: D1 and D2 ∈ JacCd(F2m)[`] represented by the reduced divisors D1 and D2.
Output: η[c0,c1](D1, D2) or η[c0,c1](D1, D2)2 ∈ µ` ⊆ F∗212m , depending upon whether

m ≡ 1 or 5 (mod 6), respectively.
1. if m ≡ 1 (mod 6) then m′ ← m− 1 else m′ ← m+ 1 end if
2. G1 ← 1 ; R1 ← [δ]D1 ; E2 ← ε(ψ(D2))
3. for i← 1 to m′/6 do
4. G1 ← G8

1 · f8,R1(E2)
5. R1 ← [8]R1

6. end for // G1 = f
2m
′/2,[δ]D1

(E2) and R1 = [δ2m
′/2]D1.

7. G2 ← Gδ1 ; R2 ← [δ]R1

8. for i← 1 to m′/6 do
9. G2 ← G8

2 · f8,R2(E2)
10. R2 ← [8]R2

11. end for // G2 = f2m′ ,D1
(E2) and R2 = [2m

′
]D1.

12. if m ≡ 1 (mod 6) then
13. G2 ← G2

2 · f2,R2(E2) // G2 = f2m,D1(E2).
14. F0 ← G1 · gR1,D1(E2) // F0 = fc0,D1(E2).
15. F1 ← G1 ·G2 · g[2]R2,R1

(E2) // F1 = fc1,D1(E2).
16. else
17. F0 ← G1 · f2,D1(E2) · gR1,[2]D1

(E2) // F0 = f2c0,D1(E2).
18. F1 ← G1 ·G2 · gR2,R1(E2) // F1 = f2c1,D1(E2).
19. end if

20. return
(
F 23m

1 · F0

)(212m−1)/L

In that sense, since D1 is defined over F2m , then [±8i]D1 is also F2m-rational.
Moreover, as octupling directly acts on the curve Cd, if D1 is degenerate (i.e.,
of the form D1 = (P ) − (P∞)), then so is [±8i]D1. Finally, note that if D2 is
degenerate, then so is ψ(D2), meaning that ε(ψ(D2)) is of degree 1 and has only
one point in its support.

Considering the Miller function for octupling, we rewrite f8,D = f2
4,D ·f2,[4]D.

Each iteration of Miller’s algorithm is then just a matter of evaluating f4,[±8i]D1

and f2,[±4·8i]D1
at ε(ψ(D2)), squaring the former, and accumulating both into the

running product via two successive multiplications2 over F212m . The respective
costs of these operations are given in terms of basic operations over the base
field F2m in Table 1.

Note that in order to obtain these costs, we have constructed F212m as the
tower field F2m [i, τ, sτ,0], where i ∈ F22 is such that i2 + i+1 = 0, τ ∈ F26 is such
that τ3 + iτ2 + iτ + i = 0 (one can then check that we still have τ6 + τ5 + τ3 +
τ2 + 1 = 0), and sτ,0 is defined as before. Using Karatsuba for the two quadratic
extensions and Toom–Cook for the cubic one, we obtain the expected complexity
of 45 multiplications over F2m for computing one product over F212m [30].

2 Note that these multiplications are sparser than a regular multiplication over F212m

if at least one of the two divisors D1 or D2 is degenerate.
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Where relevant, several costs are given in Table 1, depending on whether D1

and D2 are general (Gen.) or degenerate (Deg.) divisors. Making this disctinction
is particularly relevant, as some protocols might be able to constrain the domain
of their pairing computations in order to benefit from a possible speedup of 2
when one argument is degenerate, or even 4 in the case of two. For instance,
Chatterjee et al. [14] have proposed a variant of the BLS signature scheme [12]
in which one argument of each pairing function is a degenerate divisor.

Table 1. Costs of various operations involved in the computation of the optimal Eta
pairing in terms of basic operations (multiplication, addition, squaring, and inversion)
over the base field F2m .

Operation D1 D2
Operations over F2m

Mult. Add. Sq. Inv.

Addition over F212m — — 0 12 0 0
Squaring over F212m — — 0 21 12 0

Multiplication over F212m — — 45 199 0 0

[±8i]D1 7→ [±8i+1]D1
Deg. — 0 2 13 0
Gen. — 0 5 24 0

Deg. Deg. 3 11 1 0
f4,[±8i]D1

(ε(ψ(D2))) Gen. Deg. 19 40 2 0

Gen. Gen. 83 247 17 0

Deg. Deg. 2 9 1 0
f2,[±4·8i]D1

(ε(ψ(D2))) Gen. Deg. 16 34 2 0

Gen. Gen. 81 236 17 0

Miller iteration Deg. Deg. 61 315 68 0{
Gi ← G8

i · f8,Ri
(E2)

Ri ← [8]Ri

Gen. Deg. 121 512 130 0
Gen. Gen. 254 949 160 0

Final exp. over F2367 — — 303 1 386 2 234 1

Optimal Eta pairing Deg. Deg. 7 894 40 356 11 571 1

η[c0,c1](D1, D2) Gen. Deg. 15 293 64 644 15 472 1
over C0(F2367 ) Gen. Gen. 31 644 118 382 19 161 1

In the two following sections, as a proof of concept, we detail the software
and hardware implementation results of the proposed optimal Eta pairing η[c0,c1].
The selected curve is C0 (i.e., d = 0) over the field F2367 . One can check that
# JacC0(F2367) = 13 · 7170258097 · `, where ` is a 698-bit prime, while the fi-
nite field F212·367 ensures a security of 128 bits for the computation of discrete
logarithms via the function field sieve. The costs of the optimal Eta pairing on
C0(F2367) are also given in Table 1.

For comparison purposes, one might compare this with the costs for the ηT
pairing over Cd presented in [14] and [32]. In the former, Chatterjee et al. report
a cost of 15 111 F2m-multiplications for an ηT pairing on two degenerate divisors
over C0(F2459). Since the number of these multiplications scales linearly with the
size of the field, their approach would entail roughly 12 000 multiplications over
our curve. In [32], Lee and Lee require 11 488 multiplications for an ηT pairing
on two general divisors over Cd(F279), which would scale to approximately 53 000
multiplications on our curve C0(F2367). When compared to the figures in Table 1,
these costs reflect the 33% improvement achieved thanks to our proposed optimal
Eta approach.
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5 Software Implementation

A software implementation was realized to illustrate the performance of the pro-
posed pairing. The C programming language was used in conjunction with com-
piler intrinsics for accessing vector instructions. The chosen compiler was GCC
version 4.6.2 with compiler flags including optimization level -O3, loop unrolling
and platform-dependent tuning with -march=native. For evaluation, we consid-
ered as target platforms the Core 2 Duo 45 nm (Penryn microarchitecture) and
Core i5 32 nm (Nehalem microarchitecture), represented by an Intel Xeon X3320
2.5 GHz and a mobile Intel Core i5 540 2.53 GHz with Turbo Boost disabled, re-
spectively. Field arithmetic was implemented following the vectorization-friendly
formulation presented in [2], with the exception of the Core i5 platform, where
multiplication in F2367 was implemented with the help of the native binary field
multiplier [26] following the guidelines suggested in [42], that is, a 128-bit granu-
lar organization consisting of 3-way and 2-way Karatsuba formulas. We obtained
timings of 7, 41, 464 and 11162 cycles for addition, squaring, multiplication and
inversion in the Core 2, respectively; and efficiency gains of 47% and 27% for
multiplication and inversion in the Core i5, respectively.

Table 2 presents our timings in millions of cycles for the pairing computation
at the 128-bit security level. Timings from several related works are also collected
for direct comparison with our software implementation. Our implementation
considers all the three possible choices of divisors: general × general (GG), gen-
eral × degenerate (GD) and degenerate × degenerate (DD); and presents the
proposed genus-2 optimal Eta pairing as a very efficient candidate among the
Type-1 pairings defined on supersingular curves over small-characteristic fields.
In particular, the proposed pairing is more efficient than all other Type-1 pair-
ings when at least one of the arguments is degenerate. Considering the Nehalem
microarchitecture as a trend for future 64-bit computing platforms, the pro-
posed pairing computed with degenerate divisors is also the closest in terms of
performance to the current speed record for Type-3 pairing computation [1].

Table 2. Software implementations of pairing at the 128-bit security level. Timings
were obtained with the Turbo Boost feature turned off, and therefore are compatible
with the timings in Table 4 of the extended version of [1].

Implementation Curve Pairing
Intel Core 2 Intel Core Nehalem

(×106 cycles) (×106 cycles)

Beuchat et al. [8]
E(F21223 )

ηT
23.03 —

E(F3359 ) 15.13 —

Aranha et al. [3], [4] E(F21223 ) ηT 18.76 8.28

Chatterjee et al. [14]
E(F21223 )

ηT
19.0 —

E(F3359 ) 15.8 —

C0(F2439 ) ηT (DD) 16.4 —

Naehrig et al. [38] E(Fp) Opt. Ate 4.38 —

Beuchat et al. [7] E(Fp) Opt. Ate 2.95 2.82∗

Aranha et al. [1] E(Fp) Opt. Ate 2.19 2.04∗

This work C0(F2367)
Opt. Eta (DD) 4.44 2.75

Opt. Eta (GD) 8.37 5.04

Opt. Eta (GG) 16.95 9.90
∗Results adjusted by the maximum overclocking rate to eliminate the effect of Turbo Boost.
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6 FPGA Implementation

We detail here an FPGA accelerator for our optimal Eta pairing on the curve
C0(F2367) when both inputs are general divisors (GG). In [9], Beuchat et al. have
presented a coprocessor architecture for computing the final exponentiation of
the ηT pairing over supersingular curves. The core of their arithmetic and logic
unit is a parallel–serial multiplier processing D coefficients of the multiplicand at
each clock cycle, along with a unified operator supporting addition, Frobenius
map, and n-fold Frobenius map. Intermediate results are stored in a register
file implemented by means of dual-ported RAM. We decided to adapt such a
finite field coprocessor for implementing our optimal Eta pairing. In the case
of the finite field F2367 , we selected the parameters D = 16 and n = 3 for this
coprocessor (cf. Appendix A for the details of the architecture). We prototyped
our architecture on several Xilinx FPGAs with average speedgrade (Table 3).
Place-and-route results show for instance that our pairing accelerator uses 4518
slices and 20 RAM blocks of a Virtex-4 device clocked at 220 MHz. For com-
parison purposes, we also included recent hardware implementation results from
the literature in Table 3. It appears that our design is very compact and that
its computation time remains comparable to other 128-bit-security implemen-
tations. This is even more so when noting that our performance estimates are
given for the pairing of two general divisors, and that a speedup of 2 or 4 might
be expected from the use of one or two degenerate divisors, respectively.

Table 3. FPGA implementations of pairings at medium- and high-security levels.

Implementation Curve
Sec.

FPGA
Area Freq. Time Area×time

(bits) (slices) (MHz) (µs) (slices·s)

Ronan et al. [39]
C0(F2103 )

75 xc2vp100-6 30464 41 132 4.02
(DD)

Beuchat et al. [9]
E(F2691 ) 105 xc4vlx200-11 78874 130 19 1.48

E(F3313 ) 109 xc4vlx200-11 97105 159 17 1.64

Cheung et al. [15] E(Fp254
) 126 xc6vlx240t-2 7032∗ 250 573 4.03

Ghosh et al. [23] E(F21223 ) 128
xc4vlx200-11 35458 168 286 10.14

xc6vlx130t-3 15167 250 190 2.88

Estibals [17] E(F35·97 ) 128
xc4vlx25-11 4755 192 2227 10.59

xc3s1000-5 4713 104 4113 19.38

This work
C0(F2367)

128
xc2vp30-6 4646 176 4405 20.5

(GG)
xc4vlx25-11 4518 220 3518 15.9

xc3s1500-5 4713 114 6800 32.0
∗Number of Virtex-6 slices; this design also uses 32 embedded DSP blocks.

7 Conclusion and Perspectives

We presented a novel optimal Eta pairing algorithm on supersingular genus-2
binary hyperelliptic curves. Starting from Vercauteren’s work on optimal pair-
ings [43], we described how to exploit the action of the 23m-th power Ver-
schiebung in order to further reduce the loop length of Miller’s algorithm with
respect to the genus-2 ηT approach [5], thus resulting in a 33% improvement.

In order to demonstrate the efficiency of our approach, we implemented the
optimal Eta pairing at the 128-bit security level in software and hardware. As
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far as Type-1 pairings are concerned, our results show that genus-2 curves are a
very effective alternative to supersingular elliptic curves and can even compete
with the Type-3 pairings provided by ordinary curves such as BN curves.

We have designed as well an FPGA coprocessor for computing the proposed
pairing, which also compares very well against other hardware pairing implemen-
tations. Additionally, this is the first known hardware pairing implementation
over a genus-2 hyperelliptic curve reaching 128 bits of security.

Building upon this work, we now plan to study more precisely the action of
other purely inseparable maps on Cd along with the corresponding pairing algo-
rithms, so as to identify which one is the most efficient from an implementation
point of view. Indeed, apart from the presented optimal Eta pairing based on the
action of φ̂23m , one can also construct optimal Ate pairings using the action of
φ23m , or that of φ2m under the distortion map σθ, the most promising candidate
being the optimal Ate pairing for the action of φ2m under the distortion map
ψ = (23m + φ2m)στ .

Furthermore, Lubicz & Robert have recently presented a novel technique for
computing the Weil and Tate pairings over abelian varieties based on an efficient
representation of their elements by means of theta functions [33]. We are planning
to investigate the application of this method to the case of our proposed genus-
2 optimal Eta pairing, as both software and hardware implementations might
benefit from the faster arithmetic of theta functions.
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A Architecture of the hardware accelerator

We present in this section the design of the coprocessor by Beuchat et al. that
we used for the computation of our optimal Eta pairing [9]. In order to best fit
the arithmetic of F2367 , we parametrised their architecture as follows:

– The multiplier processes D = 16 coefficients and thus performs a multipli-
cation over F2367 in 23 clock cycles.

– We chose to support the 3-fold Frobenius map (i.e. raising to the eighth
power) in the unified operator.

– The register file can store up to 127 intermediate variables belonging to F2367

(46 kbit of RAM), along with the constant 1.
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Fig. 1. A finite field coprocessor for F2367 .
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