
Collision Timing Attack when Breaking
42 AES ASIC Cores

Amir Moradi, Oliver Mischke, and Christof Paar

Horst Görtz Institute for IT Security, Ruhr-University Bochum, Germany
{moradi, mischke, cpaar}@crypto.rub.de

Abstract. A collision timing attack which exploits the data-dependent
timing characteristics of combinational circuits is demonstrated. The at-
tack is based on the correlation collision attack presented at CHES 2010,
and the timing attributes of combinational circuits when implementing
complex functions, e.g., S-boxes, in hardware are exploited by the help
of the scheme used in another CHES 2010 paper namely fault sensitivity
analysis. Similarly to other side-channel collision attacks, our approach
avoids the need for a hypothetical model to recover the secret materials.
The results when attacking all 14 AES ASIC cores of the SASEBO LSI
chips in three different process technologies, 130nm, 90nm, and 65nm,
are presented. Successfully breaking the DPA-protected and the fault
attack protected cores indicates the strength of the attack.

1 Introduction

While modern cryptographic algorithms can mostly be assumed secure from
the mathematical point-of-view, their implementation can in general easily be
broken by means of so-called side-channel attacks if no special countermeasures
are applied. Sensitive information about the internal secret of the cryptographic
device, e.g., the used encryption key in a symmetric cipher, leak through side
channels. The yet known side channels include execution time [11], power con-
sumption [12], electromagnetic radiation [18], and even faulty outputs in case of
intentionally injected faults used by e.g., differential fault analysis [4].

In CHES 2010 a new side-channel attack called Fault Sensitivity Analysis
(FSA) [13] was proposed, which uses the fact that the critical path of an AES
S-box implementation is data dependent because of the nature of the underlying
gates. Using clock glitches and a simple hypothetical (timing) model for the S-
box – which can be obtained by simulation knowing the design details or by a
profiling phase – they showed a complete break of an AES ASIC implementation
using only 50 faulty ciphertexts.

Another contribution to CHES 2010 was a collision attack enhanced by means
of correlation [14]. Compared to classical power analysis attacks, its main feature
is that it does not rely on the knowledge of an underlying (hypothetical) power
model. Instead, it directly correlates power traces to each other and – by finding
colliding S-box computations – is able to recover the relation between key parts.

Using such an attack the authors have shown a complete break of a masked
FPGA implementation of AES.

The combination and improvement of these two ideas is the main contribution
of this article. We present an attack that exploits the timing characteristics of
AES S-boxes, but in order to recover the secret does not need to know specifically
how these characteristics are and how they relate to the inputs. Despite the
similar name, the attack presented here is different to [7], where a collision
timing attack on cache misses of an embedded system is presented. The aim
of our proposed attack is to exploit the timing characteristics of combinational
functions, e.g., S-boxes implemented in ASICs, thereby recovering the relation
between key parts and restricting the key search space in a way that the secret
key can be revealed knowing a single plaintext-ciphertext pair.

Similarly to [13], we have chosen the SASEBO-R boards as the evalua-
tion platform. The board can hold different ASICs, and we have analyzed the
SASEBO LSI2, both in 130nm and 90nm technology, as well as the SASEBO
LSI3 in 65nm technology. Each of them contains the same 14 different implemen-
tations of AES, thereby the only difference is the process technology, which has
a big influence on the timing characteristics. The implementations themselves
differ in the style of the S-box realization and in side-channel countermeasures.
One of the AES implementations is also specifically designed to withstand at-
tacks using fault injection, which in theory should make the implementation
resistant against attacks like FSA.

Using the attack presented here we are able to break all 14 AES implemen-
tations of each LSI regardless of the process technology. It is noteworthy that
the effort required to mount the attack on different cores varies because of their
different architecture and mostly their different S-box design. Nevertheless, the
proposed attack can not only extract the desired secret from unprotected im-
plementations, but it is especially able to overcome all DPA- and Fault-based
countermeasures which are applied in these ASIC designs. In other words, ran-
domizing the computation of combinational circuits by means of different mask-
ing schemes does not prevent the relation between its timing characteristics and
the processed data. Preventing faulty ciphertexts by means of one of the most
efficient fault detection schemes, furthermore, cannot prevent an attacker who
injects the faults to measures the timing characteristics of the circuit.

In the later parts of this article the prerequisites, including a review of fault
sensitivity analysis and correlation collision attack, are given in Section 2. Our
proposed attack, namely collision timing attack, is expressed in Section 3, and the
practical evaluation results on all 130nm, 90nm, and 65nm SASEBO LSI2 and
LSI3 cores are presented in Section 4. Finally, Section 5 concludes our research.

2 Preliminaries

This section summarizes the underlying attacks, namely the Fault Sensitivity
Analysis [13] and Correlation Collision Attack [14], which are the basis to the
proposed Collision Timing Attack. We also explain how the timing data, which is

required for the attack, can be captured and finally give some definitions which
are used in the following sections.

2.1 Fault Sensitivity Analysis

The Fault Sensitivity Analysis (FSA) was introduced in [13]. Unlike Differential
Fault Attacks (DFA) [4], no faulty ciphertexts are required. Instead, the attack
works by increasing the fault intensity until a distinguishable characteristic can
be observed, e.g., the first appearance of a faulty output. It was demonstrated
that the attack is able to completely break the AES_PPRM1 implementation
of an SASEBO-R LSI [1] using only 50 encryption operations and can reveal
three key bytes of the AES_WDDL implementation of the same ASIC using
1200 encryptions.

The presented method of increasing the fault sensitivity in [13] is the short-
ening of clock glitches, i.e., two normal clocks get replaced by a short one and
a longer one, whereby the length of the short one can be gradually decreased
until a faulty output occurs or the fault becomes stable. Since the critical path
of some gates, e.g., AND and OR gates, is data dependent, knowing the under-
lying model for this data dependency helps revealing the secret. For example,
by simulation it could be ascertained that the timing delay of the PPRM S-box
correlates to the Hamming weight (HW) of the S-box input.

Since no faulty ciphertexts are required, the attack might also be applicable to
implementations which apply DFA countermeasures. While WDDL-AES should
be in theory immune against set-up time violation attacks, by creating templates
with a known key it was shown that at least some bits correlate to the timing
delay which lead to the aforementioned recovery of three key bytes.

Besides the fact that no faulty ciphertexts are required, another difference
to DFA attacks is that the fault does not need to be restricted to a small sub-
space. In contrary, by for example attacking the last round of the PPRM1-AES
implementation, each faulty output byte can be independently observed and
therefore the same complete faulty output can be used to attack all key bytes
simultaneously. On the other hand, as stated in [13], while countermeasures like
masking are only of limited use against DFA attacks , it may have a great impact
on FSA attacks since the critical path is affected by the random mask bits.

2.2 Correlation Collision Attack

The correlation collision attack was firstly introduced as Correlation-Enhanced
Power Analysis Collision Attack in [14]. While remaining a certain noise sensi-
tivity, its major advantage compared to classical power analysis attacks is that
it neither relies on a hypothetical power model nor a distinguisher nor requires
a profiling phase. By enhancing linear collision attacks [6] by the methods of
correlation-based DPAs, it is able to overcome SCA countermeasures as long as
a minimal first order leakage remains.

Linear collisions in the power consumption occur if two instances of com-
binational circuits, in case of AES the S-boxes, or one instance at two differ-
ent points in time process(es) the same value, i.e., for AES the 8-bit output
and thereby the input of the S-box must be the same. In this case, it is pos-
sible to deduce the key relation of the attacked bytes since the rearranging of
Sbox(i1 ⊕ k1) = Sbox(i2 ⊕ k2) leads to ∆ = i1 ⊕ i2 = k1 ⊕ k2, where both i1 and
i2 are known.

The correlation collision attack on AES works similarly, but starts by creating
sets of mean traces for each possible input byte if performing the attack on the
first round. To do this for two input bytes, namely i1 and i2, all traces are sorted
based on the corresponding input byte value, and traces with the same value are
averaged, thereby creating 256 different mean traces M1(α) and M2(α) for each
of the two input bytes. Computing the variances for each set of mean traces will
not only reveal the point in time where the corresponding bytes are processed
by the S-box, which is necessary to align the traces for the attack, a peak in the
variance trace is also the necessary requirement for the attack to be successful
since this indicates an however slightly first order leakage.

If the previous assumption holds true, i.e., the power consumption of two
S-box computations are highly similar, comparing pairs of mean sets also shows
a high similarity between certain mean traces. Therefore, when attacking the
input bytes i1 and i2 and ∆ = k1⊕k2, then M1(α) ≈M2(α⊕∆). The correct ∆
can be found by computing the correlation between the two sets of mean traces
for each of the 256 candidates of ∆, which will yield a very high correlation
coefficient since no hypothetical model is applied but instead a direct collision
between the averaged real power consumptions will occur. Knowing enough ∆s
between different pairs ofMi shrinks the key space to 28, after which the correct
key can be revealed by knowing a single plaintext-ciphertext pair or by extending
the attack on the second round as explained in [14].

2.3 How to Measure the Timing

The focus of this work is to analyze the timing characteristics of combinational
circuits like S-boxes. As explained in [13], when the input of a combinational
circuit changes, its output stops toggling after a certain time (so-called ∆t).
The maximum value of ∆t for different inputs is known as the longest critical
path of the circuit, and defines the maximum frequency of the clock signal which
triggers the flip-flops providing the input and storing the output of the considered
combinational circuit. Timing characteristics of a circuit are therefore defined as
a set of ∆t’s (

{
∆t1, ∆t2, . . . ,∆tn

}
), where ∆ti is the minimum ∆t for the given

input i.
Let us suppose that the target combinational circuit is a part of a bigger

circuit, e.g., a co-processor, which provides some I/O signals for communication.
If the output signals of the target combinational circuit are accessible from the
outside — which is quite unlikely —, one can easily probe the output signals
for the given input i and measure the time when the output signals get stable.
Otherwise, if the output of the target combinational circuit is stored into registers

which are triggered by a clock signal that can be controlled from the outside,
as shown in [13], one can steadily shorten the time interval between the input
transition and the output storage (known as setup time) till an incorrect value is
stored into the registers while input i is given to the combinational circuit. The
minimum time interval when the considered register stores the correct value can
be concluded to ∆ti.

Note that this procedure is similar to clock glitches, which are mostly used
in differential fault attacks (DFA) to intentionally inject faults or to skip the
execution of an instruction and analyze the faulty outputs based on the target
algorithm [4, 5, 10, 16]. However, measuring ∆t in this case does not deal with
the faulty outputs; once a faulty output is detected, ∆ti can be concluded.

It should be noted that, because of the environmental noise, it might be
required to repeat the same procedure and shorten the clock glitch period until
the probability of detecting faulty output gets higher than a threshold. Also,
if the target combinational circuit is not a single-bit function and it is possible
to detect which output bit is faulty, one can measure ∆t for each output bit
independently.

Therefore, we define the adversary model and define his capabilities in order
to be able to measure∆ti of the target combinational circuit for the given input i:

– The adversary has access to and can control the clock signal which trig-
gers the registers providing the input and saving the output of the target
combinational circuit.

– He knows in which clock cycle the target combinational circuit processes the
desired data, e.g., known or guessed input/output.

– He can control the target device in a way that the same input value i is
repeatedly processed by the target combinational circuit during shortening
the time interval of the clock glitch.

– He is equipped with appropriate instruments to shorten the duration of the
clock glitch with suitable accuracy.

2.4 Definitions

Bitwise Capture: BitCapib,∆t is the result of a Bernoulli trial whether the
output of the target combinational circuit at bit b is faulty while processing
the input i and when ∆t is the time interval of the clock glitch. Correspond-
ingly, ρib,∆t is defined as the probability of “success” in independently repeated
BitCapib,∆t trials.

Capture: Capi∆t =
∨
b

BitCapib,∆t. In other words, Capi∆t is the same as the

above defined trial regardless of a certain output bit, and is meaningful when
differentiating between different faulty output bits is not possible, e.g., if a cir-
cuit is equipped with a fault detection scheme and prevents the propagation of
faulty results. ρi∆t is also the probability of “success” in independently repeated
Capi∆t trials.

Time: To represent the timing characteristics of the target combinational cir-
cuit, we define T ib = ∆t; ρib,∆t ≈ ρTH as the time required to compute the
corresponding output bit b to input i, where ρTH is a threshold for the proba-
bility and is defined based on physical characteristics of the target circuit and is
also based on the maximum probability achieved by shortening ∆t. Accordingly,
the time required to complete the computation of all bits when processing input
i is defined as T i = ∆t; ρi∆t ≈ ρTH .

Remark: Depending on the target device, its architecture, and the role of the
target combinational circuit inside the target device, it might not be possible
to know the input i processed. However, if the output of the target combina-
tional circuit is accessible, one can make all the above defined terms based on
the fault-free output o, i.e., BitCapob,∆t, ρob,∆t, Cap

o
∆t, ρo∆t, T

o
b , and T

o.

3 Collision Timing Attack

For simplicity let us suppose that the target combinational circuit is an S-box
of the first round of an AES encryption, i.e., Sbox(i⊕ k), where i is the corre-
sponding input plaintext byte and k the target key byte.

If (bitwise) timing characteristics of an S-box i.e., T i (T ib), show a diversity
of ∆t depending on input i, one can perform an attack and recover the secret
knowing how the secret k contributes in T i (T ib). In other words, if the timing
characteristics of an S-box itself regardless of k and prior key addition (⊕) are
known as an extra information or are obtained by profiling using a circuit similar
to the target, one can make a hypothetical leakage function and examine its
similarity to T i (T ib) for each key guess. A similar approach has been presented
in [13], where the timing characteristics of an AES S-box implementation were
profiled and an attack similar to a correlation power analysis using a HW model
was successfully performed. In fact, a set of Capo∆t for a specific ∆t is used in [13]
to mount the attack at the last round of the AES encryption.

One may also try using information theoretic tools, e.g., mutual informa-
tion analysis [9], to overcome the uncertainty of the leakage model. However,
it is necessary to use a suitable leakage model that cannot be selected without
extra knowledge about the (timing) characteristics of the target combinational
function, or several different models must be examined to find a suitable one.
It is noteworthy that the leakages (Capi∆t) consist of only two values (“fail” and
“success”). This causes probability distributions (used in e.g., mutual informa-
tion analysis) to be represented by only two bins in a histogram, and using other
schemes to estimate the probability distributions, e.g., kernel density estimation,
in this case leads to increasing the noise. Here, when using histograms, mutual
information will also be identical to the variance of means.

In contrary to a correlation attack with a leakage model or a mutual informa-
tion analysis using a distinguisher, we apply a correlation collision attack [14] to
avoid the necessity of considering any leakage model or distinguisher. Here the

Algorithm 1 Correlation timing attack algorithm (at the last round of an AES
encryption)
Input: T1o :

(
∆to=0,∆to=1, . . . ,∆to=255

)
; o = Sbox(i)⊕ k1

Input: T2o :
(
∆to=0,∆to=1, . . . ,∆to=255

)
; o = Sbox(i)⊕ k2

1: for 0 ≤ ∆ ≤ 255 do
2: C∆ = Correlation(T1o, T1o⊕∆)
3: end for
4: return argmax

∆
C∆

correlation collision attack compares the timing characteristics T i (T ib) of two
S-box instances running on two input sets, each of which is previously XORed
by a secret key byte. Suppose that T1i and T2i (or their corresponding bitwise
versions) are the timing characteristics of the S-box when processing Sbox(i⊕k1)
and Sbox(i⊕k2) respectively. As stated in [14], the aim of a correlation collision
attack is to find the linear difference between k1 and k2, i.e., ∆ = k1⊕ k2.

This can be extended when attacking the last round of the AES encryption,
thanks to the absence of the MixColumns in the last round. Means, supposing
T1o and T2o as the timing characteristics of the S-box followed by the key
addition when calculating o = Sbox(i)⊕k1 and o = Sbox(i)⊕k2, the correlation
collision attack can – exactly similar to the previous case – recover ∆ = k1⊕ k2
comparing T1o and T2o for all possible guesses of ∆. For clarification of the
attack scheme see Algorithm 1.

4 Practical Evaluation

We are attacking the AES implementations of three ASIC chips built for the
SASEBO-R board, namely the SASEBO LSI2 (130nm), LSI2 (90nm), and LSI3
(65nm). Each chip consists in the same 14 different cores, which we group in
i) unprotected (mainly varying in the style of the S-box implementation), ii)
DPA protected (from masked-AND gates [22] and threshold implementation [15]
to MDPL [17], WDDL [21], and Pseudo-RSL [19]), and iii) fault attack pro-
tected [20].

As stated previously, we are using a similar approach for fault injection as
in [13]. An additional external clock, generated by an programmable digital func-
tion generator, is fed into the SASEBO-R control FPGA where it is multiplied
by a factor of 32 using a Digital Clock Management (DCM) unit. This fast clock
signal is then used together with some logic to shape the glitchy clock signal.
An internal circuit controls the clock signal of the LSI to infer the glitchy clock
at the preferred instance of time synchronized to the AES computation of the
target core.

We have first tried to generate the glitchy clock inside the control FPGA
without using an external function generator, but the width of the glitchy clock
could only be adjusted in large steps (e.g., of around 170 ps [8]), which were not
small enough to reach the desired results. Therefore, we had to use a function

generator to externally provide the precise clock frequencies. As it is represented
in the following, we change the width of the glitchy clock in steps of 25 ps to
1 ps. Also, the multiplication of the clock frequency is necessary because of the
limitation (maximum frequency of 15MHz) of the function generator we have
used, while the frequencies necessary to inject a fault in the combinational cir-
cuit are up to 300MHz. Also, the DCMs inside the Virtex2 control FPGA of
the SASEBO-R can, when fed with a low frequency input signal, only gener-
ate output frequency up to 210MHz. Since some of the cores, especially of the
65nm LSI3, require a higher frequency for fault injection, for these cores it was
necessary to daisy chain two DCMs, one for generating a high frequency signal
out of the function generator output and another one to reach the maximum
supported output frequency which can only be generated by the DCM using a
high frequency input [23].

In all cores of the LSIs 16 instances of the S-box are implemented to perform
the complete SubBytes operation in each clock cycle. According to [2, 3], all
cores – except the one supporting a counter mode and the fault-protected one –
realize a round-base architecture, i.e., S-boxes and MixColumns are performed
simultaneously in each clock cycle except for the last round where MixColumns
is absent. Therefore, extracting the timing characteristics of the S-boxes in the
first 9 rounds is not easily possible, and one needs to inject and play with the
width of the clock glitches in the last round, when the target cores only compute
the SubBytes operation followed by the final key addition and the result is stored
in registers (similar scheme as used in [13]). In addition, one can see from the
design architecture of the cores (see Fig. 5.1 of [2] and Fig. 13.1 of [3]) that the
round key of the last round is already computed in the previous round and is
stored into a register. The glitchy clock at the last round, hence, does not affect
the key scheduling computations.

In the following the results of the attacks on the different cores and different
LSIs are presented. Because of the high number of broken cores, only a subset
of the performed attacks are presented in detail, giving additional information
about the differences to the not mentioned cores as required.

From the 14 AES cores of each LSI, all cores have been successfully broken.
These 14 cores could be broken on each of the 3 LSIs regardless of the process
technology, giving a total of 42 successfully broken ASIC implementations using
our proposes collision timing attack.

4.1 Attacking the Unprotected Cores

We start showing the results of the attack on the first AES core of the 130nm
chip, namely AES_Comp, whose S-boxes have been made using a composite field
approach. As stated before, 16 separate S-box instances have been implemented
which are active at the same time. Therefore, it is not possible to compare the
timing characteristics of one S-box instance when processing e.g., two values
with different key bytes, that would be an ideal case for a timing collision at-
tack. In contrast, the timing characteristics of different S-box instances must be

6300 5100

0.1

0.7

Δt [ps]

P
ro

ba
bi

lit
y

6300 5100

0.1

0.7

Δt [ps]

P
ro

ba
bi

lit
y

Fig. 1. First 10 ρob=0,∆t curves for S-box
instances no. (left) 0 and (right) 4 of
AES_Comp (130nm)

0 255
5000

6400

Output value

Δt
 [p

s]

0 255
5000

6400

Output value

Δt
 [p

s]

Fig. 2. Bitwise timing characteristics T ob=0

of S-box instances no. (left) 0 and
(right) 4 of AES_Comp (130nm)

0 255
−0.3

0.9
k: 2
Corr: 0.8966

Δk

C
or

re
la

tio
n

(a)
0 255

−0.3

0.9
k: 14
Corr: 0.8967

Δk

C
or

re
la

tio
n

(b)
0 255

−0.3

0.9
k: 108
Corr: 0.8891

Δk
C

or
re

la
tio

n

(c)
0 255

−0.3

0.9 k: 240
Corr: 0.9355

Δk

C
or

re
la

tio
n

(d)

Fig. 3. Result of the attack on the last round of AES_Comp (130nm) recovering ∆k
between key bytes (a) (0,1), (b) (0,2), (c) (0,3), (d) (0,4)

compared, which may slightly vary because of different placement and routing
even when using the same netlist.

Since changing the glitchy clock width in our setup requires reseting the
DCM(s), we have collected BitCapob,∆t for a specific ∆t while random plaintexts
are given to the core. This was repeated shortening ∆t by a step of 12ps and
finally exploiting the bitwise timing characteristics T ob . Figure 1 shows ρob,∆t
of the LSB (i.e., b = 0) for some output byte values of two S-box instances1
extracted from their corresponding bitwise captures (10 000 captures for each
∆t). Also, Fig. 2 presents the bitwise timing characteristics T ob=0 of these two
S-box instances obtained by defining ρTH = 0.1 (as can be seen in Fig. 1). The
diversity of ∆t for these two S-boxes shows the dependency between the timing
characteristics and the output values. Performing the attack Algorithm 1 on
T ob=0 of S-box instance number 0 and all other instances led to recovering all
15 independent relations betweenthe 16 bytes of the last round key; part of the
result is shown in Fig. 3. The attack works the same considering other output
bits to derive T ob as well as on other LSI chips.

In order to perform the attack on the cores AES_PPRM1, AES_PPRM3,
AES_Comp_ENC_top, and AES_PKG the same procedures as explained above
have been repeated. As a reference for the timing characteristics and the number
of captures collected to mount the attack on different cores in different LSIs, we
1 S-box instance numbers start from 0 and are corresponding to ciphertext byte in-
dexes.

have provided a list shown in Table 1. Attacking the AES_TBL core, where
S-boxes have been realized by look-up tables (case statements), is different to
the aforementioned cores. We illustrate this case when explaining how to mount
the attack on the WDDL and MDPL cores.

The AES_CTR core, which enables the counter mode, employs a 4-stage
pipeline architecture to speed up the computations (see Fig. 5.6 of [2] and
Fig. 13.6 of [3]). The S-box is divided into three parts, where the longest part
is the inversion; therefore, we have selected this part when computing the last
round to exploit the timing characteristics and mount the attacks. As stated in
Section 2.3, we required to repeat the encryptions with the same IV – knowing
both plaintexts and ciphertexts – to exploit the timing characteristics. Means,
the adversary must have control over the IV; otherwise, he cannot determine
whether the output is faulty. According to Table 4.7 and Table 4.15 of [2],
the AES_CTR core has a longer critical path and is slower compared to the
AES_Comp core. Indeed, it comes from the integer addition module used to
increment the IV. However, the encryption core itself is quite fast, and because
of its pipeline architecture we expected a shorter critical path for the inversion
unit. Our practical experiments confirmed our assumption, and 4200ps was the
minimum ∆t for fault-free operation of 130nm chip showing the operation fre-
quency of around 240MHz. Although we faced several problems making faulty
results in the AES_CTR core of the 90nm and 65nm chips because of the very
short critical path, the mounted attacks could successfully reveal the secrets.

4.2 Attacking the DPA-Protected Cores

Most of the DPA-protected cores can be attacked in the same way as the unpro-
tected ones. In Fig. 4 one can see that even when using the masked AND-gates
of the AES_MAO (65nm) core, the timing characteristics for different outputs
still differ. Consequently, it is possible to extract the relation between the key
bytes, which is depicted in Fig. 5. Interestingly the randomness provided by the
masked gates does not have much impact on the timing characteristics, as shown
in Fig. 5, where the results after obtaining 10 000 captures (the same technique
as used to attack the unprotected cores), when shortening ∆t with a step of 25ps
are presented.

Attacking the other DPA-protected cores is the same except on those realiz-
ing WDDL and MDPL logic styles. The result of the attack on the AES_WO
core, which is implemented using an pseudo-RSL [19] logic style, is shown in
Fig. 6 and Fig. 7. Although we have used 10 000 captures for each ∆t in steps of
10ps to attack the AES_WO core, attacking the AES_PR core (which is another
realization of pseudo RSL) and the AES_TI (which is a threshold implementa-
tion using 4 shares) required considerably more captures. As stated in Table 1
we have used 1 000 000 captures for each of these cores to successfully mount
the attack. To the best of our knowledge it is due to the amount of randomness
provided by the DPA countermeasures.

The AES_WDDL and AES_MDPL cores require an slightly adjusted ap-
proach, since they need two clock cycles per round because of the used master-

0 255

4300

4500

Output value

Δt
 [p

s]

(a)
0 255

4300

4500

Output value

Δt
 [p

s]

(b)

Fig. 4. Bitwise timing characteristics T ob=0

of S-box instances no. (a) 5 and (b) 6 of
AES_MAO (65nm)

0 255
−0.2

0.6 k: 222
Corr: 0.5751

Δk

C
or

re
la

tio
n

(a)
0 255

−0.2

0.6
k: 131
Corr: 0.3995

Δk

C
or

re
la

tio
n

(b)

Fig. 5. Result of the attack on the last
round of AES_MAO (65nm) recovering
∆k between key bytes (a) (5,6), (b) (5,7)

0 255
5400

5900

Output value

Δt
 [p

s]

(a)
0 255

5400

5900

Output value

Δt
 [p

s]

(b)

Fig. 6. Bitwise timing characteristics T ob=1

of S-box instances no. (a) 7 and (b) 8 of
AES_WO (90nm)

0 255
−0.3

0.9 k: 228
Corr: 0.8217

Δk

C
or

re
la

tio
n

(a)
0 255

−0.3

0.9 k: 16
Corr: 0.8218

Δk

C
or

re
la

tio
n

(b)

Fig. 7. Result of the attack on the last
round of AES_WO (90nm) recovering ∆k
between key bytes (a) (7,8), (b) (7,9)

slave flip-flops. Also, an injected fault by a clock glitch at the evaluation phase
can only lead to a bit flip from 1 to 0, not vice versa, because of the pre-discharge
phase of both WDDL and MDPL styles. Interestingly, we have seen – for rea-
sons unknown to us – the same behavior when attacking the AES_TBL core.
Therefore, bitwise timing characteristics T ob does not provide any information
for those output values o in which bit b is zero. Our solution is to avoid using
bitwise characteristics, and apply the attack on timing characteristics T o, e.g.,
those shown in Fig. 8, which are of the AES_MDPL (65nm) core. Two attack re-
sults are also shown in Fig. 9. It should be noted that, to attack the AES_MDPL
and AES_WDDL cores, we only used 10 000 captures for each ∆t with steps of
5ps. On the other hand, a successful attack on the AES_TBL required around
1 000 000 captures, which might be because of marginal differences between the
critical paths of the circuit realizing the look-up table.

4.3 Attacking the Fault-Protected Core

The scheme presented in [20] has been used to implement the fault-protected
core where the round function is split into two parts. The first part consists of
the ShiftRows and SubBytes transformation and their inverse, while the second

0 255

5700

5780

Output value

Δt
 [p

s]

(a)
0 255

5700

5790

Output value

Δt
 [p

s]

(b)

Fig. 8. Timing characteristics T o of S-
box instances no. (a) 2 and (b) 3 of
AES_MDPL (65nm)

0 255
−0.3

0.9
k: 98
Corr: 0.8506

Δk

C
or

re
la

tio
n

(a)
0 255

−0.3

0.9
k: 87
Corr: 0.8463

Δk

C
or

re
la

tio
n

(b)

Fig. 9. Result of the attack on the last
round of AES_MDPL (65nm) recovering
∆k between key bytes (a) (2,3), (b) (2,6)

part consists of the MixColumns transformation and AddRoundKey, also both
for encryption and decryption.

While one of the parts is used for computing the next internal state, the other
one is used to check the validity of the previous computation by applying the
inverse operation and comparing the result to the original state. As an example,
during the first clock cycle of the first round only the ShiftRows and SubBytes
operations are performed. Then, during the second clock cycle, the result is
sent through the MixColumns and AddRoundkey circuit while simultaneously
performing InverseShiftRows and InverseSubBytes on the same data thereby
recomputing the original round input to be checked with the stored one. The
second half of the first round computation is checked in the same way during the
first clock cycle of the second round by applying the InverseMixColumns and
InverseAddRoundkey. In sum, a complete encryption needs 21 clock cylces (for
detailed information about this architecture see Fig. 5 of [20]).

Since each computation is checked by its inverse counterpart, static faults
can also be detected. In theory the performance penalty of this countermeasure
is low, since, as stated in [20], while the double amount of clock cycles are
necessary for a complete AES computation, at the same time the critical path
is shortened by splitting up the round function. However, as it is explained later
we have found that because of the comparison function, which compares two
128-bit values, the critical path of the circuit gets quite long and makes the
circuit considerably slower compared to the other cores (as can also be seen in
Table 4.7 and Table 4.15 of [2]).

In addition, since MixColumns does not immediately follow SubBytes and
they are separated by a register, in contrary to the other cores one can exploit
the timing characteristics of the S-boxes at the first round and also extend the
attack on the later rounds. In order to mount the attack on the first round there
are two options:

– If the glitchy clock appears in the first clock cycle of the first round (see
Fig. 5(a) of [20]), the faulty result is saved into the D0 register, which is
detected in the next clock cycle by the comparison circuit. When we have
tried this on different LSIs, 6600ps, 5500ps, and 4800ps were the minimum

0 255
6720

6800

Output value

Δt
 [p

s]

(a)
0 255

6720

6800

Output value

Δt
 [p

s]

(b)

Fig. 10. Timing characteristics T i of S-
box instances no. (a) 0 and (b) 2 of
AES_FA (65nm)

0 255

−0.1

0.5 k: 3
Corr: 0.5157

Δk

C
or

re
la

tio
n

(a)
0 255

−0.1

0.5
k: 5
Corr: 0.4691

Δk

C
or

re
la

tio
n

(b)

Fig. 11. Result of the attack on the first
round of AES_FA (65nm) recovering ∆k
between key bytes (a) (0,2), (b) (0,4)

width of the clock glitch with which respectively the 130nm, 90nm, and
65nm chips still worked fault free.

– If the glitchy clock is injected in the second clock cycle (Fig. 5(b) of [20]),
where the critical path of InverseShiftRows and InverseSubBytes followed
by the comparator unit is longer than MixColumns and AddRoundkey, the
fault detection bit (output of the comparator circuit) is monitored while
the computation of the InverseSubBytes or the comparison has not finished
yet. Examining this in practice showed that the faults get detected when
the width of the clock glitch is less than 10 700ps, 6700ps, and 6800ps for
the 130nm, 90nm, and 65nm chips respectively. In fact, it shows that the
increase of the critical path caused by the comparison circuit strongly affects
the performance (throughput) of the design, as stated previously.

It is noteworthy that the faults in the key schedule unit are not detected except
in the last round by comparing the last round key with a pre-computed one. The
glitchy clocks may affect the round key computations, but since it is performed
only once per two clock cycles, inferring clock glitches in the second clock cycle
does not affect the key scheduling. Therefore, we have selected the second clock
cycle to shorten the width of the glitchy clock and mount the attack.

In contrary to the other cores, here the fault detection unit provides only
one bit indicating the appearance of a fault, but from the adversary point of
view it is not possible to distinguish where (in which S-box instances) the fault
occurred. Therefore, not only the bitwise capturing is infeasible, but also the
fault detection unit makes the capturing a very imprecise estimation process.
Two timing characteristics of two S-box instances of the AES_FA (65nm) core
obtained by ρTH = 0.5 and two attack results are shown in Fig. 10 and in
Fig. 11 respectively. We have used 500 000 captures for each clock glitch width
when shortening ∆t by a step of 10ps.

As stated before, the capturing process here is very inaccurate because of
the effect of the fault occurrence on other S-box instances when considering a
specific S-box instance. In other words, when at a specific ∆t an S-box instance
is always faulty, it prevents extracting any information about the behavior of the
other S-box instances at that ∆t. Therefore, we could only recover the relation

(a) first column (b) second column (c) third column (d) fourth column

Fig. 12. Results of the variance check approach on the captures collected using the
glitchy clock at the second round of AES_FA (65nm)

between some key bytes, e.g., between bytes (0,2), (0,4), (0,6), (0,7), and (0,10).
We should emphasize that this behavior is not the same for all LSIs; different
relations between key bytes are recovered when attacking the first round. Our
solution, to completely break the core and recover all the key bytes, is to extend
the attack on the second round. When the glitchy clock is injected in the second
clock cycle of the second round, we have collected the result of 50 000 trials with
random plaintext for a specific ∆t when the probability of the fault occurrence
is about 0.5. The attack process is divided into 4 parts, targeting each 4-byte
MixColumns output independently. We start with the first column when the
key bytes (0,5,10,15) of the first round key are required to compute the first
MixColumns output. Since the relation between key bytes e.g., (0,10) has been
revealed by the last attack shown, the search space for the key bytes (0,5,10,15)
is reduced to 224. Therefore, for each key guess the output of the MixColumns
is computed, and based on each MixColumns output byte the 4 captures and
4 probabilities using the collected 50 000 trails are generated. Interestingly, it is
not required to mount the collision attack. Instead, a variance check approach
as stated in [14] can find the correct key guess. The idea behind it is that the
probabilities ρi are different for different input values. For a wrong key guess
the trials will be randomly distributed into the captures, and the probabilities
have a small variance compared to the case that the captures have been made
by the correct key guess. The result of this approach is shown in Fig. 12(a),
where the correct key guess is obviously distinguishable. Using a 16-core PC
to compute all variance values for the 224 key space lasted roughly one hour.
Since there are 4 captures and 4 probabilities ρi each of which corresponds
to one MixColumns output byte, the variance check can be done on each of
these 4 probabilities independently. So, if the variances of probabilities of one
output byte did not show any distinguishable guess, other output bytes can be
examined. This process is repeated on the other columns using the recovered
key bytes and the recovered relations so that the search space sometimes gets
smaller than 224. Although different relations between key bytes are recovered
when attacking different LSIs, the variance check approach at the second round
could completely reveal the secret in all LSIs searching in a space up to 224.

4.4 Difficulties

During the practical experiences, which have partially been shown above, we
faced several problems which required a couple of engineering hours to be solved.
In sum it took around 6 months to successfully mount the attacks on all cores
of all LSIs. Some of the problems which we dealt with are listed below:

– As stated in [2] and [3], each core has its own clock tree which had a strong
impact on glitchy clocks. The capacitive and resistive features of the clock
line of the LSIs which is supplied by the control FPGA changed the glitchy
clock shape and modified the situation whether the registers are triggered
two times, or if one of the positive edges is filtered by the clock tree elements.
Therefore, we had to put different capacitors and resistors in the SASEBO-R
board to change the rising and falling slopes of the clock signal to reach the
desired situation.

– When injecting the clock glitch at the last round we saw that some output
bytes – and even some output bits – get faulty very rapidly compared to the
slow slope of ρo. For instance, see Fig. 13, where some probability curves arise
very sharply and make their corresponding attacks impossible.The reason for
such a behavior is that some registers do not respond to both rising edges
of the glitchy clock but are triggered only once. Consequently, the timing
characteristics of those related S-boxes could not be extracted. Again playing
with the capacitance and resistance of the clock line was our solution.

– Since the temperature has an effect on the critical path and the speed of the
ASICs, some values are given in Table 4.7 of [2], we had to not only keep
the room temperature constant during capturing, but also keep the board
and the LSIs in different temperatures while playing with capacitances and
resistances to solve the problem mentioned above.

– Since DCMs outputs have an increased jitter when they are used to multiply
the clock inputs, the glitchy clock width also had significant jitter that made
the capturing process noisy. The situation got worse when we had to cascade
two DCMs for some cores, especially in 65nm, to reach the desired ∆t. In
this case, the second DCM often could not get locked because of the high
jitter of the first DCM. So, we had to provide another circuit controlled by
the PC to automatically reset the control FPGA (in fact the DCMs) until
the DCMs get locked and provide the requested high frequencies.

– Since we have required high amounts of captures, e.g., 1 000 000, for different
∆t values to successfully mount the attacks, we have developed a special
design for the control FPGA to speed up the capturing process. Our control
FPGA communicates with the target LSI, makes the glitchy clock on the
desired clock cycle, and finally after performing a couple of capturing process
sends the result back to the PC. In this way we could efficiently increase the
speed of the capturing up to couple of thousands per second.

– According to [2] and [3], the clock signal of the interface circuit of the LSIs is
separated from the core clocks. So, the glitchy clock does not appear on the
interface circuit which makes the attacks easier. It might be a challenging

5800 52605670 5390
0

0.5

0.25

Δt [ps]
P

ro
ba

bi
lit

y

normal
rapid

Fig. 13. Average of ρob=1 for all 16 S-boxes of AES_MDPL (65nm)

case when the interface circuit sees the glitches, and the control flow of the
target core gets infected.

5 Conclusions

We have presented a collision attack which efficiently utilizes the data dependent
timing characteristics of combinational circuits to reveal the secrets. While the
attack is based on the idea of [13], it is significantly more powerful since it does
not require any knowledge about the characteristics of the target combinational
circuit.

We demonstrated the power of the attack by successfully breaking all 14 AES
implementations of the SASEBO LSI2 and LSI3 in all currently available process
technologies. It is indicated in [13] that while masking does not prevent DFA
attacks, it may actually provide security against FSA-based attacks because of
the randomized inputs of the combinatorial functions. However, breaking all
DPA-protected cores of the mentioned ASICs we have shown that randomizing
countermeasures itself cannot prevent data-dependent timing characteristics of
the combinational circuit, and they therefore remain vulnerable against the at-
tack introduced here. Finally, our introduced attack is even capable of extracting
the secret key out of an implementation applying a fault detection scheme by
extending the attack on the second round of the cipher and a few hours of com-
putation. In short, the results shown in this work imply the need for a special
unit in the – specially side-channel protected – designs in order to detect the
clock glitches to thwart such a kind of attacks.

Acknowledgment

The authors would like to thank Akashi Satoh and Research Center for Infor-
mation Security (RCIS) of Japan for the prompt and kind help in obtaining
SASEBOs and crypto LSIs.

References

1. Side-channel Attack Standard Evaluation Board (SASEBO-R). Further infor-
mation are available via http://staff.aist.go.jp/akashi.satoh/SASEBO/en/
board/sasebo-r.html.

2. ISO/IEC 18033-3 Standard Cryptographic LSI – with Side Channel Attack Coun-
termeasures – Specification, ver 1.0. http://staff.aist.go.jp/akashi.satoh/
SASEBO/resources/crypto_lsi/CryptoLSI2_Spec_Ver1.0_English.pdf, 2009.

3. Standard Cryptographic LSI Specification – Countermeasures against Side Chan-
nel Attacks (65nm) – Specification, ver 0.9. http://staff.aist.go.jp/akashi.
satoh/SASEBO/resources/crypto_lsi/CryptoLSI3_Spec_Ver0.9_English.pdf,
2010.

4. E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosystems.
In CRYPTO 1997, volume 1294 of LNCS, pages 513–525. Springer, 1997.

5. J. Blömer and J.-P. Seifert. Fault Based Cryptanalysis of the Advanced Encryption
Standard (AES). In FC 2003, volume 2742 of LNCS, pages 162–181. Springer, 2003.

6. A. Bogdanov. Multiple-Differential Side-Channel Collision Attacks on AES. In
CHES 2008, volume 5154 of LNCS, pages 30–44. Springer, 2008.

7. A. Bogdanov, T. Eisenbarth, C. Paar, and M. Wienecke. Differential Cache-
Collision Timing Attacks on AES with Applications to Embedded CPUs. In CT-
RSA 2010, volume 5985 of LNCS, pages 235–251. Springer, 2010.

8. S. Endo, T. Sugawara, N. Homma, T. Aoki, and A. Satoh. An on-chip glitchy-
clock generator and its application to safe-error attack. In COSADE 2011, pages
175–182, 2011.

9. B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel. Mutual Information Analysis.
In CHES 2008, volume 5154 of LNCS, pages 426–442. Springer, 2008.

10. C. Giraud. DFA on AES. In AES Conference 2004, volume 3373 of LNCS, pages
27–41. Springer, 2004.

11. P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In CRYPTO 1996, volume 1109 of LNCS, pages 104–113.
Springer, 1996.

12. P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In CRYPTO 1999,
volume 1666 of LNCS, pages 388–397. Springer, 1999.

13. Y. Li, K. Sakiyama, S. Gomisawa, T. Fukunaga, J. Takahashi, and K. Ohta.
Fault Sensitivity Analysis. In CHES 2010, volume 6225 of LNCS, pages 320–334.
Springer, 2010.

14. A. Moradi, O. Mischke, and T. Eisenbarth. Correlation-Enhanced Power Analysis
Collision Attack. In CHES 2010, volume 6225 of LNCS, pages 125–139. Springer,
2010. The extended version is available on ePrint http://eprint.iacr.org/2010/
297.

15. S. Nikova, C. Rechberger, and V. Rijmen. Threshold Implementations Against
Side-Channel Attacks and Glitches. In ICICS 2006, volume 4307 of LNCS, pages
529–545. Springer, 2006.

16. G. Piret and J.-J. Quisquater. A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and KHAZAD. In CHES 2003, volume
2779 of LNCS, pages 77–88. Springer, 2003.

17. T. Popp and S. Mangard. Masked Dual-Rail Pre-charge Logic: DPA-Resistance
Without Routing Constraints. In CHES 2005, volume 3659 of LNCS, pages 172–
186. Springer, 2005.

18. J.-J. Quisquater and D. Samyde. ElectroMagnetic Analysis (EMA): Measures and
Counter-Measures for Smart Cards. In E-smart 2001, volume 2140 of LNCS, pages
200–210. Springer, 2001.

19. M. Saeki, D. Suzuki, K. Shimizu, and A. Satoh. A Design Methodology for a DPA-
Resistant Cryptographic LSI with RSL Techniques. In CHES 2009, volume 5747
of LNCS, pages 189–204. Springer, 2009.

20. A. Satoh, T. Sugawara, N. Homma, and T. Aoki. High-Performance Concurrent
Error Detection Scheme for AES Hardware. In CHES 2008, volume 5154 of LNCS,
pages 100–112. Springer, 2008.

21. K. Tiri and I. Verbauwhede. A Logic Level Design Methodology for a Secure DPA
Resistant ASIC or FPGA Implementation. In DATE 2004, pages 246–251. IEEE
Computer Society, 2004.

22. E. Trichina. Combinational Logic Design for AES SubByte Transformation on
Masked Data. Cryptology ePrint Archive, Report 2003/236, 2003. http://eprint.
iacr.org/.

23. XILINX. Virtex-II Pro and Virtex-II Pro X FPGA User Guide. Technical re-
port, version 4.2, 2007. http://www.xilinx.com/support/documentation/user_
guides/ug012.pdf.

Appendix

Table 1. Specification of all 14 AES cores of 3 LSIs including the ∆t ranges and the
number of captures used to mount the attacks

IP core Description
LSI2 130nm LSI2 90nm LSI3 65nm

∆t range No. of ∆t range No. of ∆t range No. of
[ps] Captures [ps] Captures [ps] Captures

AES_Comp
composite field 6450 5320 3650
S-box ∆ : 12 10 000 ∆ : 10 10 000 ∆ : 10 10 000

5000 5130 3370

AES_TBL
table look-up 5475 3960 3570
S-box by ∆ : 25 1 000 000 ∆ : 20 1 000 000 ∆ : 10 1 000 000
case statement 4900 3550 3420

AES_PPRM1
S-box by 11350 6135 5325
1-stage ∆ : 25 10 000 ∆ : 20 10 000 ∆ : 25 10 000
AND-XOR 7775 5555 5000

AES_PPRM3
S-box by 6425 5230 3650
3-stage ∆ : 25 10 000 ∆ : 10 10 000 ∆ : 10 10 000
AND-XOR 5150 5130 3420

AES_Comp
ENC_top

composite field 6325 5200 3700
S-box, only ∆ : 25 10 000 ∆ : 10 10 000 ∆ : 10 10 000
encryption 5100 5130 3410

AES_CTR
composite field 4120 3310 3280
S-box, ∆ : 20 10 000 ∆ : 5 10 000 ∆ : 5 10 000
counter mode 3660 3260 3210

AES_FA composite field
S-box, fault
detection

10600 6560 6800
∆ : 10 50 000 ∆ : 5 1 000 000 ∆ : 10 500 000

Round 1 10440 6510 6670
Round 2 10700 50 000 7050 50 000 6980 50 000

AES_PKG
composite field 6325 5360 3850
S-box, precomp. ∆ : 25 10 000 ∆ : 10 10 000 ∆ : 10 10 000
roundkeys 5100 5130 3370

AES_MAO
DPA count. 8475 5900 4500
by Masked ∆ : 25 10 000 ∆ : 5 10 000 ∆ : 25 10 000
And Operation 6250 5850 4300

AES_MDPL
DPA count. 12825 9350 5800
by MDPL ∆ : 25 10 000 ∆ : 25 10 000 ∆ : 5 10 000
logic style 10850 8050 5260

AES_TI
DPA count. 10860 5900 6340
by Threshold ∆ : 20 1 000 000 ∆ : 5 1 000 000 ∆ : 20 1 000 000
Implementation 9800 5850 5940

AES_WDDL
DPA count. 6750 5250 3835
by WDDL ∆ : 10 10 000 ∆ : 5 50 000 ∆ : 5 10 000
logic style 5730 5150 3675

AES_PR
DPA count. 31685 14400 6650
by pseudo RSL ∆ : 10 100 000 ∆ : 20 100 000 ∆ : 25 100 000
logic style 31055 13840 6150

AES_WO
DPA count. 7575 5910 3900
by pseudo RSL ∆ : 25 10 000 ∆ : 10 10 000 ∆ : 25 10 000
(evaluation) 6475 5430 3600

