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Abstract. We present cryptanalytic results of an exhaustive search of all 16!
bijective 4-bit S-Boxes. Previously affine equivalence classes have been exhaus-
tively analyzed in 2007 work by Leander and Poschmann. We extend on this work
by giving further properties of the optimal S-Box linear equivalence classes. In
our main analysis we consider two S-Boxes to be cryptanalytically equivalent if
they are isomorphic up to the permutation of input and output bits and a XOR of a
constant in the input and output. We have enumerated all such equivalence classes
with respect to their differential and linear properties. These equivalence classes
are equivalent not only in their differential and linear bounds but also have equiv-
alent algebraic properties, branch number and circuit complexity. We describe a
“golden” set of S-boxes that have ideal cryptographic properties. We also present
a comparison table of S-Boxes from a dozen published cryptographic algorithms.

Keywords: S-Box, Differential cryptanalysis, Linear cryptanalysis, Exhaustive
permutation search.

1 Introduction

Horst Feistel introduced the Lucifer cipher, which can be considered to be the
first modern block cipher, some 40 years ago. Feistel followed closely the prin-
ciples outlined by Claude Shannon in 1949 [36] when designing Lucifer. We
quote from Feistel’s 1971 patent text [20]:

Shannon, in his paper, presents further developments in the art of cryp-
tography by introducing the product cipher. That is, the successive ap-
plication of two or more distinctly different kinds of message symbol
transformations. One example of a product cipher consists of symbol
substitution (nonlinear transformation) followed by a symbol transposi-
tion (linear transformation).

Cryptographic algorithms are still designed in 2011 according to these same
principles. A key element of Lucifer’s symbol substitution layer was a pair of
4× 4-bit substitution boxes (S-Boxes).



Much research effort has been dedicated to the analysis of 4-bit S-Boxes in
subsequent encryption algorithms during last the four decades. In this paper we
present an analysis of all bijective 4-bit S-Boxes in the light of modern cryptan-
alytic techniques, together with comparison tables of 4-bit S-Boxes found in a
dozen different published encryption algorithm proposals.

Overview of this paper. In Section 2 we give definitions of differential prob-
ability, linear bias, algebraic degree, and branch number of an S-Box. Section
3 defines more key concepts such as linear (affine) equivalence (LE) and per-
mutation equivalence (PE) classes, together with the concept of an ordering-
based canonical representative identify LE, PE, and other equivalence classes
uniquely. We also make new observations on the sixteen “optimal” LE classes
first identified in [31]. Section 4 describes our exhaustive search of the 16! bijec-
tive 4× 4-bit S-Boxes. We give a description of the search algorithm in Section
4.1 and the distribution of class sizes and Linear and Differential properties in
Section 4.2. Section 5 discusses the “golden” S-Boxes discovered in our search.
We conclude in 4.2. Appendix A tabulates the properties of 4 × 4-bit S-Boxes
found in a dozen different cryptographic algorithms.

2 S-Box Properties

In the context of cryptographic operations, arithmetic is assumed to be per-
formed on variables, vectors, or matrices whose individual elements belong to
the finite field F2. Vectors are indexed from 0. We write wt(x) =

∑
xi to denote

the Hamming weight of the bit vector (word) x.
We will first give definitions related to Differential Cryptanalysis [4, 5], Lin-

ear Cryptanalysis (LC) [32], and various forms of Algebraic / Cube Cryptanal-
ysis (AC) [16, 17].

Definition 1. Let S be an S-Box with |S| input values. Let n be the number of
elements x that satisfy S(x⊕∆i) = S(x)⊕∆o. Then n/|S| is the differential
probability p of the characteristic SD(∆i → ∆o).

For 4× 4 bijective S-Boxes the optimal differential bound (maximum of all
differentials in an individual S-Box) is p = 1/4.

Definition 2. Let S be an S-Box with |S| input values. Let n be the number
of elements x that satisfy wt(βi · x ⊕ βo · S(x)) mod 2 = 1 for two bit-mask
vectors βi and βo. Then abs( n

|S| −
1
2) is the bias ε of the linear approximation

SL(βi → βo).



It is well known that all 22
n

functions f from n bits to a single bit can be
uniquely expressed by a polynomial function with coefficients drawn from the
Algebraic Normal Form f̂ , which has the same domain as f :

f(x) =
∑
y∈Fn

2

f̂(y)xy00 x
y1
1 · · ·x

yn−1

n−1 .

This transformation from f to f̂ can also be seen to be equivalent to the Walsh
transform [35].

Definition 3. The algebraic degree deg(f) of a function f : Fn
2 7→ F2 is the

maximal weight wt(x) that satisfies f̂(x) 6= 0.

In other words, the degree of f is the number of variables in the biggest mono-
mial in the polynomial representation of f . Naturally the maximum degree for
a 4-bit function is 4. This monomial exists in the polynomial representation ex-
actly when f(0) 6= f(15).

We define S-Box branch number similarly to the way it is defined in [39].

Definition 4. The branch number of an n× n-bit S-Box is

BN = min
a,b 6=a

(
wt(a⊕ b) + wt(S(a)⊕ S(b))

)
,

where a, b ∈ Fn
2 .

It is clear that for a bijective S-Box the branch number is at least 2.

3 Equivalence Classes and Canonical Representation

The classification of Boolean functions dates back to the fifties [22]. Previously
4-bit S-Boxes have been analyzed in relation to linear equivalence [6, 31], de-
fined as follows:

Definition 5. Let Mi and Mo be two invertible matrices and ci and co two vec-
tors. The S-Box S′ defined by two affine transformations

S′(x) =MoS(Mi(x⊕ ci))⊕ co
belongs to the linear equivalence set of S; S′ ∈ LE(S).

We call Mi(x⊕ ci) the inner affine transform and Mox⊕ co the outer affine
transform. There are 20,160 invertible 4×4 matrices defined over F2 and there-
fore 24 × 20, 160 = 322, 560 affine invertible transforms.

To be able to identify members of each equivalence class uniquely, we must
define a canonical representation for it. Each member of the equivalence class
can be reduced to this unique representative, which serves as an identifier for
the entire class.



4× 4 - Bit
S-box S(x)Mi Mox S′(x)

ci co

Fig. 1. Linear Equivalence (LE) and Permutation-XOR equivalence (PE). Mi and Mo boxes de-
note multiplication by an invertible matrix for LE and by a permutation matrix for PE.

Definition 6. The canonical representative of an equivalence class is the mem-
ber that is first in lexicographic ordering.

Table 1 gives the canonical members of all 16 “optimal” S-Box LE classes,
together with references to their equivalents in [31].

It has been shown that the members of each LE class have the same differ-
ential and linear bounds [6, 31]. However, these linear equivalence classes are
not equivalent in many ways that have cryptographic significance.

Multiple differential characteristics and Linear approximations. For cryp-
tographic security, the differential and linear bounds are the most important fac-
tor. However, the methods of multiple differentials [8] and multiple linear ap-
proximations [7, 21, 29] raise the question of how many differentials and linear
approximations there are at the respective boundaries. From Table 1 it can be
observed that these numbers are not equivalent, making some S-Boxes “more
optimal” than others in this respect.

Avalanche. For members of an LE class there is no guarantee that a single-bit
difference in input will not result in single-bit output difference. If this hap-
pens, only a single S-Box is activated in the next round of a simple substitution-
permutation network such as PRESENT [9]. This is equivalent to the case where
the branch number is 2.

It is somewhat surprising that those optimal S-Boxes with most attractive
nd and nl numbers cannot be affinely transformed so that differentials with
wt(∆i) = wt(∆o) = 1 would all have p = 0. Only the seven of the sixteen
optimal S-Box classes, G0, G1, G2, G9, G10, G14, and G15, have members that
do not have such single-bit differentials. This has been verified by exhaustive
search by the authors.

We may illustrate the importance of this property by considering a variant
of PRESENT where the S-Box has been replaced by a linearly equivalent one
from LE(G1) such as (0123468A5BCFED97) that has p = 1/4 for the single-
bit differential SD(∆i = 1→ ∆o = 1). Due to the fact that the bit 0 is mapped



Table 1. The canonical representatives of the 16 “optimal” linear equivalence classes. TheGi and
G−1

i identifier references are to Table 6 of [31]. We also give the DC and LC bounds, together
with the number nd of characteristics at the differential bound and the number nl of approxima-
tions at the linear bound. The branch BN number given is the maximal branch number among all
members of the given LE class.

Canonical representative Members DC LC Max
0123456789ABCDEF & Inverse p nd ε nl BN
0123468A5BCF79DE G2 G

−1
0

1/4 24 1/4 36 3
0123468A5BCF7D9E G15 G

−1
14

1/4 18 1/4 32 3
0123468A5BCF7E9D G0 G

−1
2

1/4 24 1/4 36 3
0123468A5BCFDE79 G8 G

−1
8

1/4 24 1/4 36 2
0123468A5BCFED97 G1 G

−1
1

1/4 24 1/4 36 3
0123468B59CED7AF G9 G

−1
9

1/4 18 1/4 32 3
0123468B59CEDA7F G13 G

−1
13

1/4 15 1/4 30 2
0123468B59CF7DAE G14 G

−1
15

1/4 18 1/4 32 3
0123468B5C9DE7AF G12 G

−1
12

1/4 15 1/4 30 2
0123468B5C9DEA7F G4 G

−1
4

1/4 15 1/4 30 2
0123468B5CD79FAE G6 G

−1
6

1/4 15 1/4 30 2
0123468B5CD7AF9E G5 G

−1
5

1/4 15 1/4 30 2
0123468B5CD7F9EA G3 G

−1
3

1/4 15 1/4 30 2
0123468C59BDE7AF G10 G

−1
10

1/4 18 1/4 32 3
0123468C59BDEA7F G7 G

−1
7

1/4 15 1/4 30 2
0123468C59DFA7BE G11 G

−1
11

1/4 15 1/4 30 2

to bit 0 in the PRESENT pLayer, this variant has an iterative differential in bit
0 that holds through all 31 rounds with probability 2−62. We may utilize the
average branch number in the last rounds to estimate that this variant would be
breakable with less than 256 effort.

This motivates us to define the PE class.

Definition 7. Let Pi and Po be two bit permutation matrices and ci and co two
vectors. The S-Box S′ defined by

S′(x) = PoS(Pi(x⊕ ci))⊕ co

belongs to the permutation-xor equivalence set of S; S′ ∈ PE(S).

Algebraic properties. While the maximal algebraic degree of all output bits
may be preserved in LE [31], some of the output bits may still be almost linear.
It is noteworthy that despite belonging to LE(G1), one of the PRESENT output
bits only has one nonlinear monomial (of degree 2) and therefore this output
bit depends only linearly on 2 of the input bits. This can be crucial when deter-
mining the number of secure rounds; final rounds can be peeled off using such
properties.



Circuit complexity. From an implementation viewpoint, the members of an LE
class may vary very much but the members of a PE class are usually equivalent.
This is important in bit-slicing implementations such as [3].

It can be shown that circuits that use all 2-input Boolean functions [35,
40] can be transformed to equal-size circuits that use only the four commonly
available instructions (AND, OR, XOR, AND NOT) but may require a constant
XOR on input and output bit vectors. These XOR constants may be transferred
to round key addition in most substitution-permutation networks and therefore
there is no additional cost.

Note that the methods described in [39] utilize only five registers and two-
operand instructions AND, OR, XOR, NOT and MOV. Most recent CPUs have
sixteen 256-bit YMM registers, three-operand instructions (making MOV re-
dundant) and the ANDNx instruction for AND NOT [28]. Therefore 2-input
boolean circuit complexity is a more relevant measure for optimality of a circuit.
However, for hardware implementation these gates have uneven implementation-
dependent cost [34].

We may also consider the concept of feeble one-wayness [25–27]. This
property is also shared between the members of a PE class.

Other properties. Some researchers put emphasis on the cycle structure of an
S-Box. Cycle structure properties are not usually shared between members of
LE and PE classes. This may be relevant if the cipher design does not protect
against the effects of fixed points or other similar special cases. However, such
properties are difficult to analyze in the context of a single S-Box removed from
its setting within an encryption algorithm. Care should be taken when choosing
input and output bit ordering so that diffusion layers will achieve maximum
effect.

Historical developments. The original DES S-Box design principles are de-
scribed in [10]. In hindsight it can be seen that the criteria given in that 1976
document already offer significantly better resistance against primitive DC and
LC than what can be achieved with entirely random S-Boxes [11]. For a per-
spective on the development of DES and the evaluation of its S-Boxes between
the years 1975 and 1990 we refer to [13]. We may compare our current view on
the topic of “good” S-Boxes to that given by Adams and Tavares in 1990 [2].
Four evaluation criteria for S-Boxes were given in that work: bijectivity, nonlin-
earity, strict avalanche, and independence of output bits. In current terminology
nonlinearity would map to the algebraic degree, strict avalanche to the branch
number, and independence of output bits roughly to both DC and LC. Note that
modern DC, LC, and AC were (re)discovered after 1990.
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0
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0
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1

0

1
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1

1

0

0
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1

1

0

1

14

1

1

1

0

15

1

1

1

1

Fig. 2. Our internal 4×16-bit representation of the identity permutation (0, 1, . . . , 15). The words
are always stored in increasing order and the highest bit is normalized to zero.

4 An Exhaustive Search Over All PE Classes

We have performed an exhaustive search over all PE classes. Since there are
16! ≈ 244.25 different bijective 4-bit S-Boxes, some shortcuts had to be used.
We are currently unable to extend our methods to 5-bit S-Boxes or beyond.

Internally our program uses another (non-lexicographic) ordering to deter-
mine the unique canonical member of each PE class. The permutations are
stored as four 16-bit words Wi that are always in ascending order.

Theorem 1. Any 4× 4-bit bijective S-Box can be uniquely expressed as

S(x) =
( 3∑

i=0

2P (i)Wi,(15−x)

)
⊕ c

for some bit permutation P of numbers (0, 1, 2, 3), a vector c ∈ F4
2 and words

Wi =
∑15

j=0 2
iWi,j satisfying 0 < W0 < W1 < W2 < W3 < 215.

Proof. Output bits can be permuted in 4! = 24 different ways (as each Wi must
be different from others) and each one of the 24 = 16 masks c creates a different
permutation due to the limit Wi < 215. P and c uniquely define the 4!24 = 384
outer transformations while Wi uniquely defines the rest. ut

This representation offers a natural and quick way to normalize a S-Box
in respect to the outer permutation Po and mask co by sorting the four words
and inverting all bits of a word if the highest bit is set. Figure 2 illustrates this
ordering.

From the fact that S is bijective it follows that wt(Wi) = 8 for all Wi.
There are

(
16
8

)
= 12, 870 16-bit words of weight 8, of which we may remove

half due to the co normalization limit Wi < 215, yielding 6, 535 candidates.



Algorithm 1 A bit-combinatorial permutation search algorithm.
1: for i0 = 0 to 6534 do
2: W0 = wt8tab[i0]
3: if mw(W0) =W0 then
4: for i1 = i0 + 1 to 6534 do
5: W1 = wt8tab[i1]
6: if mw(W1) > W0 and

wt(t2 = ¬W0 ∧W1) = 4 and wt(t3 =W0 ∧W1) = 4 and
wt(t1 =W0 ∧ ¬W1) = 4 and wt(t0 = ¬W0 ∧ ¬W1) = 4 then

7: for i2 = i1 + 1 to 6534 do
8: W2 = wt8tab[i2]
9: if mw(W1) > W0 and

wt(u0 = t0 ∧ ¬W2) = 2 and wt(u4 = t0 ∧W2) = 2 and
wt(u1 = t1 ∧ ¬W2) = 2 and wt(u5 = t1 ∧W2) = 2 and
wt(u2 = t2 ∧ ¬W2) = 2 and wt(u6 = t2 ∧W2) = 2 and
wt(u3 = t3 ∧ ¬W2) = 2 and wt(u7 = t3 ∧W2) = 2 then

10: for j = 0 to 8 do
11: vj = lsb(uj)
12: end for
13: for b = 0 to 255 do
14: W3 =

⊕7
j=0

(
uj ⊕ bjvj

)
15: if W3 ≥ 215 then
16: W3 = ¬W3

17: end if
18: if W3 > W2 then
19: test(W0,W1,W2,W3)
20: end if
21: end for
22: end if
23: end for
24: end if
25: end for
26: end if
27: end for

Furthermore, each word has a minimal equivalent up to permutation among all
input permutations Pi and input constants ci. We call this minimal word mw(x).
At program start, a table is initialized that contains mw(x) for each 16-bit word
by trying all 24 permutations of input bits and 16 values of ci on the 4 × 1-
bit Boolean function that the word x represents. If the resulting word is greater
or equal to 215 (indicating that the highest bit is set) all bits of the word are
inverted, normalizing the constant. Each one of the wt(x) = 8 candidates map
to a set of just 58 different mw(x) values.



4.1 The Search Algorithm

We will now describe the bit-combinatorial equivalence class search method
given in Algorithm 1. There are basically four nested loops. Various early exit
strategies are used that are based on properties of the permutation (see Theorem
1 and Figure 2). Lines 1–3 select the smallest word W0 from a table of weight-
eight words and checks that it is indeed minimal w.r.t. permutation of the four
input bits. In lines 4–6 we select W1 such that it is larger than W0 and these
two words have each one of the four bit pairs (0, 0), (0, 1), (1, 0), and (1, 1)
exactly four times at corresponding locations (W0,i,W1,i). This is a necessary
condition for them to be a part of a permutation as described by Theorem 1.
The corresponding masks are stored in four temporary variables ti. In Lines 7–9
we choose W2 such that the three words make up two permutations of numbers
0, 1, . . . , 7. The vector ui containing the two bit positions of i simultaneously
computed. We are now left with exactly 28 = 256 options for the last word W3.
In lines 10–12 we store in vector vi the lesser bit from the two-bit mask ui. In
lines 13–20 we loop through the remaining W3 possibilities. In line 14 we use
the bit i of the loop index b to select which one of the two bits in ui is used as
part ofW3. Note that this part may be implemented a bit faster with a Gray-code
sequence.

The unique permutation is then tested by the subroutine on line 19 to see if
it is the least member of its class (here an early exit strategy will usually exit the
exhaustive loop early). If (W0,W1,W2,W3) is indeed the canonical member in
the special ordering that we’re using, it is stored on on disk together with the
size of the class. The entire process of creating the 1.4 GB file takes about half
an hour with a 2011 consumer laptop.

4.2 Results of the Exhaustive Search

There are 142,090,700 different PE classes of various sizes. Table 2 gives the
size distribution of these PE classes, which sum up to 20, 922, 789, 888, 000 =
16! examined S-Boxes. Each class size is divisible by 4!24 = 384 due to the
fact that the output bits can be permuted 4! = 24 ways and the output constant
co can have 24 = 16 different values. However, it is less obvious how the inner
transform defined by Pi and ci affect the size of the class together with S. For
example, for the identity permutation (0123456789ABCDEF) the bit shuffles
Pi and Po and constant additions ci and co may be presented with a single bit
permutation and addition of constant and hence hence n = 384. It is interesting
to note that that there is one other class with this size, the one with the largest
canonical representative, (07BCDA61E952348F).



Table 2. Distribution of PE classes. The first column gives the number of elements in each class.
The second column |Cn| gives the number of such classes, followed by their product, which sums
to 16! = 20, 922, 789, 888, 000 as expected.

n
4!24 |Cn| n |Cn| Representative

1 2 768 0123456789ABCDEF
4 4 6144 01234567FEDCBA98
6 1 2304 01237654BA98CDEF
8 4 12288 0123456879ABCDEF
12 30 138240 0123456798BADCFE
16 18 110592 0123457689BADCFE
24 192 1769472 0123456789ABFEDC
32 104 1277952 0123456789ABCDFE
48 1736 31997952 0123456789ABCEDF
64 264 6488064 012345678ACD9EBF
96 13422 494788608 0123456789ABDEFC

128 324 15925248 0123456789ADCEBF
192 373192 27514699776 0123456789ABCEFD
384 141701407 20894722670592 0123456789ACBEFD

1–384 142090700 20922789888000

Table 3 gives the distribution of differential and linear properties among the
16! S-Boxes examined. It can be seen that a majority, 54.7155% of all S-Boxes
have a differential bound p ≤ 3/4 and linear bound ε ≤ 3/4. There are no
bijective S-Boxes with differential bound p = 7/8. Appendix A gives results on
some well-known 4-bit S-Boxes.

Table 3. Distribution of the 16! permutations in relation to Differential Cryptanalysis (rows) and
Linear Cryptanalysis (columns).

LC→ ε ≤ 1/4 ε ≤ 3/8 ε ≤ 1/2

DC ↓ n % n % n %
p ≤ 1/4 749123665920 3.5804 326998425600 1.5629 0 0.0000
p ≤ 3/8 1040449536000 4.9728 11448247910400 54.7166 118908518400 0.5683
p ≤ 1/2 52022476800 0.2486 5812644741120 27.7814 330249830400 1.5784
p ≤ 5/8 0 0.0000 728314675200 3.4810 193458585600 0.9246
p ≤ 3/4 0 0.0000 52022476800 0.2486 68098867200 0.3255
p ≤ 1 0 0.0000 309657600 0.0015 1940520960 0.0093



Table 4. Golden S-Boxes with ideal properties are all members of these four PE classes. Both
the S-Boxes and their inverses satisfy the bounds p ≤ 1/4, ε ≤ 1/4, have branch number 3, all
output bits have algebraic degree 3 and are dependent on all input bits in nonlinear fashion. n
gives the total size of the class and n′ the number of members which additionally have a perfect
cycle structure.

PE Representative LE n n’
035869C7DAE41FB2 G9 147456 19584
03586CB79EADF214 G9 147456 19584
03586AF4ED9217CB G10 147456 22656
03586CB7A49EF12D G10 147456 22656

5 Golden S-Boxes

Based on our exhaustive search, we may describe golden S-Boxes that have
ideal properties. From Table 1 we see that the most tempting candidates be-
long to the LE sets of G9, G10, G14, and G15 as they have the smallest nd
and nl numbers among those S-Boxes that have branch number 3. Note that
LE(G14) = LE(G−115 ) and vice versa.

The only problem with G14 and G15 in comparison to G9 and G10 is that if
we want the branch number to be larger than 2, there are no S-Boxes in these
classes that have the desired property that all output bits are nonlinearly depen-
dent on all input bits and have degree 3. Either the permutation or its inverse
will not satisfy this condition. This has been verified with exhaustive search. All
golden S-Boxes belong to the four PE classes given in Table 4.

The Serpent [1] S-Box S3, Hummingbird-1 [18] S-Boxes S1, S2, and S3
and Hummingbird-2 [19] S-Boxes 1 S0 and S1 are the only known examples of
“golden” S-Boxes in literature. Note that cipher designers may want to avoid re-
using the same LE class in multiple S-Boxes and hence not all can be “golden”.
Please see Appendix A for a more detailed comparison.

6 Conclusions

We have analyzed all 16! bijective 4 × 4-bit S-Boxes and classified them into
linear equivalence (LE) and permutation equivalence (PE) classes. Members
of a LE class have equivalent differential and linear bounds but not necessar-
ily branch number, algebraic properties and circuit complexity. Members of PE
classes share these properties. Each equivalence class can be uniquely identified

1 Hummingbird-2 was tweaked in May 2011 to use these S-Boxes, and they are also contained
in [19]. Some early prototypes used S-Boxes from Serpent.



with the use of a canonical representative, which we define to be the member
which is first in lexicographic ordering of the class members.

There are 142,090,700 different PE classes, the vast majority (99.7260%)
of which have (4!24)2 = 147456 elements. We classify the S-Boxes accord-
ing to their differential and linear properties. It turns out that that a majority
(54.7155%) of S-Boxes have differential bound p ≤ 3/4 and linear bound
ε ≤ 3/4.

Furthermore, we have discovered that not all of the “optimal” S-Boxes de-
scribed in [31] are equal if we take the branch number and multiple differential
and linear cryptanalysis into account.

In an appendix we give comparison tables of the S-Boxes from Lucifer [37],
Present [9], JH [41], ICEBERG [38], LUFFA [15] NOEKEON [12], HAMSI
[30], Serpent [1], Hummingbird-1 [18], Hummingbird-2 [19], GOST [14, 23,
24] and DES [33].
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A Cryptographic Analysis of Some Well-Known 4 × 4 - Bit S-Boxes

Algorithm & Source: A normative identifier for the S-Box in question, together with a literary reference.
S-Box: The S-Box permutation S(x) in Hex.
Canonical PE: The lexicographically smallest member of the Permutation-XOR equivalence class PE(S).
Lin Eqv.: The linear equivalence class LE(s).
One ∆: number of instances where flipping a single input bit will cause single output bit to change (out of 64).
BN #: Branch number.
DC: Differential bound p and the number nd of characteristics at that bound.
LC: Linear bias ε and the number nl of linear approximations at that bound.
Bit n: The linear set LS of input bits that only have linear effect on this output bit, together with its degree.

Algorithm S-Box Canonical PE Lin. One BN DC LC Bit 0 Bit 1 Bit 2 Bit 3
& Source 0123456789ABCDEF 0123456789ABCDEF Eqv. ∆ # p nd ε nl LS deg LS deg LS deg LS deg

Lucifer S0 [37] CF7AEDB026319458 01254F9C6AB78D3E 12 2 3/8 5 3/8 3 {} 3 {} 3 {} 3 {} 3
Lucifer S1 [37] 72E93B04CD1A6F85 01245F3BC7DAE896 10 2 3/8 1 1/4 30 {} 3 {} 3 {} 3 {} 3

Present [9] C56B90AD3EF84712 03567ABCD4E9812F G1 0 3 1/4 24 1/4 36 {0,3} 2 {} 3 {} 3 {} 3
Present−1 [9] 5EF8C12DB463079A 0358BC6FE9274AD1 G1 0 3 1/4 24 1/4 36 {0,2} 2 {} 3 {} 3 {} 3

JH S0 [41] 904BDC3F1A26758E 01256BD79CF384AE G13 12 2 1/4 15 1/4 30 {} 3 {} 3 {} 3 {} 3
JH S1 [41] 3C6D5719F204BAE8 012485EADF3B697C G13 20 2 1/4 15 1/4 30 {} 3 {} 3 {} 3 {} 3

ICEBERG0 [38] D7329AC1F45E60B8 012758E46DFA93BC G4 8 2 1/4 15 1/4 30 {} 3 {} 3 {} 3 {} 3
ICEBERG1 [38] 4AFC0D9BE6173582 0127568CA49EDB3F G4 8 2 1/4 15 1/4 30 {} 3 {} 3 {} 3 {} 3

LUFFA [15] DE015A76B39CF824 012476AFC3E98B5D G1 18 2 1/4 24 1/4 36 {} 3 {} 3 {} 3 {} 3
NOEKEON [12] 7A2C48F0591E3DB6 01245EF3C786BAD9 G8 12 2 1/4 24 1/4 36 {} 3 {} 3 {0} 2 {0,3} 2

HAMSI [30] 86793CAFD1E40B52 035869A7BCE21FD4 G1 0 3 1/4 24 1/4 36 {1,3} 2 {} 3 {} 3 {} 3



Algorithm S-Box Canonical PE Lin. One BN DC LC Bit 0 Bit 1 Bit 2 Bit 3
& Source 0123456789ABCDEF 0123456789ABCDEF Eqv. ∆ # p nd ε nl LS deg LS deg LS deg LS deg

HB1 S0 [18] 865F1CA9EB2470D3 03586CF1A49EDB27 G15 0 3 1/4 18 1/4 32 {} 3 {} 3 {} 3 {} 3
HB1 S1 [18] 07E15B823AD6FC49 035869C7DAE41FB2 G9 0 3 1/4 18 1/4 32 {} 3 {} 3 {} 3 {} 3
HB1 S2 [18] 2EF5C19AB468073D 03586CB7A49EF12D G10 0 3 1/4 18 1/4 32 {} 3 {} 3 {} 3 {} 3
HB1 S3 [18] 0734C1AFDE6B2895 03586CB79EADF214 G9 0 3 1/4 18 1/4 32 {} 3 {} 3 {} 3 {} 3

HB1−1 S0 [18] D4AFB21C07695E83 035879BEADF4C261 G14 0 3 1/4 18 1/4 32 {0} 2 {} 3 {} 3 {} 3
HB1−1 S1 [18] 0378E4B16F95DA2C 03586CB79EADF214 G9 0 3 1/4 18 1/4 32 {} 3 {} 3 {} 3 {} 3
HB1−1 S2 [18] C50E93ADB6784F12 03586AF4ED9217CB G10 0 3 1/4 18 1/4 32 {} 3 {} 3 {} 3 {} 3
HB1−1 S3 [18] 05C23FA1DE6B4897 035869C7DAE41FB2 G9 0 3 1/4 18 1/4 32 {} 3 {} 3 {} 3 {} 3

HB2 S0 [19] 7CE9215FB6D048A3 035869C7DAE41FB2 G9 0 3 1/4 18 1/4 32 {} 3 {} 3 {} 3 {} 3
HB2 S1 [19] 4A168F7C30ED59B2 03586AF4ED9217CB G10 0 3 1/4 18 1/4 32 {} 3 {} 3 {} 3 {} 3
HB2 S2 [19] 2FC156ADE8340B97 035879BEADF4C261 G14 0 3 1/4 18 1/4 32 {} 3 {} 3 {} 3 {1} 2
HB2 S3 [19] F4589721A30E6CDB 03586CF1A49EDB27 G15 0 3 1/4 18 1/4 32 {} 3 {} 3 {} 3 {} 3

HB2−1 S0 [19] B54FC690D3E81A27 03586CB79EADF214 G9 0 3 1/4 18 1/4 32 {} 3 {} 3 {} 3 {} 3
HB2−1 S1 [19] 92F80C364D1E7BA5 03586CB7A49EF12D G10 0 3 1/4 18 1/4 32 {} 3 {} 3 {} 3 {} 3
HB2−1 S2 [19] C30AB45F9E6D2781 03586CF1A49EDB27 G15 0 3 1/4 18 1/4 32 {} 3 {} 3 {} 3 {} 3
HB2−1 S3 [19] A76912C5348FDEB0 035879BEADF4C261 G14 0 3 1/4 18 1/4 32 {0} 2 {} 3 {} 3 {} 3
DES S0-0 [33] E4D12FB83A6C5907 035679CAED2B84F1 0 3 1/2 1 3/8 4 {} 3 {} 3 {} 3 {} 3
DES S0-1 [33] 0F74E2D1A6CB9538 035869B7CFA412DE 0 3 1/2 1 3/8 4 {} 3 {} 3 {} 3 {} 3
DES S0-2 [33] 41E8D62BFC973A50 035678BDCAF1942E 0 3 1/2 1 3/8 4 {} 3 {} 3 {} 3 {} 3
DES S0-3 [33] FC8249175B3EA06D 035879AFBEC2D461 0 3 1/2 1 3/8 2 {2} 2 {} 3 {1} 2 {} 3
DES S1-0 [33] F18E6B34972DC05A 035874BEF6ADC912 0 3 3/8 3 3/8 2 {} 3 {3} 3 {0} 2 {} 3
DES S1-1 [33] 3D47F28EC01A69B5 03586CF2ED971BA4 0 3 1/2 1 3/8 2 {3} 2 {} 3 {} 3 {2} 3
DES S1-2 [33] 0E7BA4D158C6932F 03567CEBADF84192 0 3 1/2 1 3/8 2 {} 3 {} 3 {} 3 {0,2} 2
DES S1-3 [33] D8A13F42B67C05E9 0358BDC6E92F741A 0 3 3/8 6 3/8 4 {} 3 {} 3 {} 3 {} 3



Algorithm S-Box Canonical PE Lin. One BN DC LC Bit 0 Bit 1 Bit 2 Bit 3
& Source 0123456789ABCDEF 0123456789ABCDEF Eqv. ∆ # p nd ε nl LS deg LS deg LS deg LS deg

DES S2-0 [33] A09E63F51DC7B428 03586DF47E92A1CB 0 3 1/2 1 3/8 3 {3} 2 {} 3 {} 3 {} 3
DES S2-1 [33] D709346A285ECBF1 03586CB79EF2A14D 0 3 1/2 1 3/8 4 {3} 2 {2} 3 {} 3 {} 3
DES S2-2 [33] D6498F30B12C5AE7 035879BED62FAC41 0 3 1/2 1 3/8 2 {1} 3 {} 3 {3} 2 {1} 3
DES S2-3 [33] 1AD069874FE3B52C 03589CF6DEA72B41 0 3 1/2 3 3/8 4 {} 3 {} 3 {} 3 {0,1} 2
DES S3-0 [33] 7DE3069A1285BC4F 035869BECFA412D7 0 3 3/8 6 3/8 4 {} 3 {} 3 {} 3 {} 3
DES S3-1 [33] D8B56F03472C1AE9 035869BECFA412D7 0 3 3/8 6 3/8 4 {} 3 {} 3 {} 3 {} 3
DES S3-2 [33] A690CB7DF13E5284 035869BECFA412D7 0 3 3/8 6 3/8 4 {} 3 {} 3 {} 3 {} 3
DES S3-3 [33] 3F06A1D8945BC72E 035869BECFA412D7 0 3 3/8 6 3/8 4 {} 3 {} 3 {} 3 {} 3
DES S4-0 [33] 2C417AB6853FD0E9 03586DF47EA1CB92 0 3 1/2 1 3/8 3 {} 3 {} 3 {0,2} 2 {} 3
DES S4-1 [33] EB2C47D150FA3986 035869BECF241AD7 0 3 3/8 5 3/8 3 {} 3 {} 3 {} 3 {} 3
DES S4-2 [33] 421BAD78F9C5630E 03586DF2A49E1BC7 0 3 3/8 2 3/8 2 {} 3 {} 3 {} 3 {} 3
DES S4-3 [33] B8C71E2D6F09A453 03586AB79CE2F14D 0 3 3/8 5 3/8 3 {} 3 {1} 3 {} 3 {} 3
DES S5-0 [33] C1AF92680D34E75B 03586DF29EA4CB17 0 3 1/4 24 3/8 1 {} 3 {} 3 {} 3 {} 3
DES S5-1 [33] AF427C9561DE0B38 0358749FDAB6E12C 0 3 1/2 1 3/8 3 {} 3 {} 3 {} 3 {} 3
DES S5-2 [33] 9EF528C3704A1DB6 035869BEA4CFD721 0 3 3/8 6 3/8 4 {} 3 {1} 3 {} 3 {} 3
DES S5-3 [33] 432C95FABE17608D 035874BEF6ADC912 0 3 3/8 3 3/8 2 {3} 2 {} 3 {0} 3 {} 3
DES S6-0 [33] 4B2EF08D3C975A61 03586CB79EF2A14D 0 3 1/2 1 3/8 4 {} 3 {2} 3 {0} 2 {} 3
DES S6-1 [33] D0B7491AE35C2F86 03586DF47ECBA192 0 3 1/2 1 3/8 2 {} 3 {} 3 {} 3 {0,2} 2
DES S6-2 [33] 14BDC37EAF680592 035869BECFA412D7 0 3 3/8 6 3/8 4 {} 3 {} 3 {} 3 {} 3
DES S6-3 [33] 6BD814A7950FE23C 035869B7F4AD1EC2 0 3 1/2 2 3/8 5 {2} 3 {2} 3 {0} 3 {} 3
DES S7-0 [33] D2846FB1A93E50C7 03589CE2F6AD4B71 0 3 3/8 4 3/8 1 {2} 3 {3} 2 {} 3 {} 3
DES S7-1 [33] 1FD8A374C56B0E92 03587ACF96EB4D21 0 3 5/8 1 3/8 5 {} 3 {} 3 {} 3 {2} 3
DES S7-2 [33] 7B419CE206ADF358 035869BEF4ADC217 0 3 3/8 5 3/8 3 {} 3 {1} 3 {0} 3 {} 3
DES S7-3 [33] 21E74A8DFC90356B 035678EB9F2CA4D1 0 3 1/2 1 3/8 4 {} 3 {} 3 {1,3} 2 {} 3



Algorithm S-Box Canonical PE Lin. One BN DC LC Bit 0 Bit 1 Bit 2 Bit 3
& Source 0123456789ABCDEF 0123456789ABCDEF Eqv. ∆ # p nd ε nl LS deg LS deg LS deg LS deg

Serpent S0 [1] 38F1A65BED42709C 0358749EF62BADC1 G2 0 3 1/4 24 1/4 36 {} 3 {} 3 {} 3 {1,2} 2
Serpent S1 [1] FC27905A1BE86D34 035A7CB6D429E18F G0 0 3 1/4 24 1/4 36 {} 3 {} 3 {2,3} 2 {} 3
Serpent S2 [1] 86793CAFD1E40B52 035869A7BCE21FD4 G1 0 3 1/4 24 1/4 36 {1,3} 2 {} 3 {} 3 {} 3
Serpent S3 [1] 0FB8C963D124A75E 03586CB79EADF214 G9 0 3 1/4 18 1/4 32 {} 3 {} 3 {} 3 {} 3
Serpent S4 [1] 1F83C0B6254A9E7D 035879BEADF4C261 G14 0 3 1/4 18 1/4 32 {2} 2 {} 3 {} 3 {} 3
Serpent S5 [1] F52B4A9C03E8D671 035879BEADF4C261 G14 0 3 1/4 18 1/4 32 {2} 2 {} 3 {} 3 {} 3
Serpent S6 [1] 72C5846BE91FD3A0 0358BC6FE9274AD1 G1 0 3 1/4 24 1/4 36 {} 3 {1,2} 2 {} 3 {} 3
Serpent S7 [1] 1DF0E82B74CA9356 035869C7DAE41FB2 G9 0 3 1/4 18 1/4 32 {} 3 {} 3 {} 3 {} 3

Serpent−1 S0 [1] D3B0A65C1E47F982 035A7CB6D429E18F G0 0 3 1/4 24 1/4 36 {} 3 {} 3 {2,3} 2 {} 3
Serpent−1 S1 [1] 582EF6C3B4791DA0 0358749EF62BADC1 G2 0 3 1/4 24 1/4 36 {} 3 {} 3 {} 3 {0,2} 2
Serpent−1 S2 [1] C9F4BE12036D58A7 03586CB7AD9EF124 G1 0 3 1/4 24 1/4 36 {0} 2 {} 3 {} 3 {} 3
Serpent−1 S3 [1] 09A7BE6D35C248F1 035869C7DAE41FB2 G9 0 3 1/4 18 1/4 32 {} 3 {} 3 {} 3 {} 3
Serpent−1 S4 [1] 5083A97E2CB64FD1 03586CF1A49EDB27 G15 0 3 1/4 18 1/4 32 {} 3 {} 3 {} 3 {} 3
Serpent−1 S5 [1] 8F2941DEB6537CA0 03586CF1A49EDB27 G15 0 3 1/4 18 1/4 32 {} 3 {} 3 {} 3 {} 3
Serpent−1 S6 [1] FA1D536049E72C8B 03567ABCD4E9812F G1 0 3 1/4 24 1/4 36 {} 3 {1,3} 2 {} 3 {} 3
Serpent−1 S7 [1] 306D9EF85CB7A142 03586CB79EADF214 G9 0 3 1/4 18 1/4 32 {} 3 {} 3 {} 3 {} 3
GOST K1 [14] 4A92D80E6B1C7F53 01243DFA856B97EC 14 2 3/8 2 1/4 36 {} 3 {} 3 {} 3 {} 3
GOST K2 [14] EB4C6DFA23810759 01254DC68BE3F79A 14 2 3/8 3 3/8 2 {} 3 {} 3 {} 3 {} 3
GOST K3 [14] 581DA342EFC7609B 01254EB97AF38D6C 14 2 3/8 5 3/8 3 {} 3 {} 3 {} 3 {} 3
GOST K4 [14] 7DA1089FE46CB253 0132586FC79DBEA4 8 2 3/8 5 3/8 3 {} 3 {} 3 {} 3 {3} 3
GOST K5 [14] 6C715FD84A9E03B2 0124B78EDF6CA359 12 2 1/4 21 3/8 1 {} 3 {} 3 {} 3 {} 3
GOST K6 [14] 4BA0721D36859CFE 01273CFAB85ED649 4 2 3/8 2 3/8 2 {} 3 {1} 3 {} 3 {} 3
GOST K7 [14] DB413F590AE7682C 01256D8BCA47F3E9 12 2 1/2 1 3/8 2 {} 3 {} 3 {} 3 {} 3
GOST K8 [14] 1FD057A4923E6B8C 012546F8EB7A39CD 12 2 1/2 1 3/8 4 {} 3 {} 3 {} 3 {} 3


