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Abstract. In the late nineties, Eli Biham and Adi Shamir published the
first paper on Differential Fault Analysis on symmetric key algorithms.
More specifically they introduced a fault model where a key bit located
in non-volatile memory is forced to 0/1 with a fault injection. In their
scenario the fault was permanent, and could lead the attacker to full key
recovery with low complexity.

In this paper, another fault model is considered: forcing a key bit to 0/1
in the register of a hardware block implementing Data Encryption Stan-
dard. Due to the specific location of the fault, the key modification is not
permanent in the life of the embedded device, and this leads to apply a
powerful safe-error like attack. This paper reports a practical validation
of the fault model on two actual circuits, and discusses limitations and
efficient countermeasures against this threat.
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1 Introduction

Fault attacks against embedded systems exploit the disturbed execution of a
given program to infer sensitive data, or to execute unauthorized parts of this
program. Usually a distinction is made between permanent faults and transient
faults. A permanent fault alters the behavior of the device from the moment it is
injected, and even if the device is powered off [§]. On the other hand, a transient
fault has an effect limited in time, only a few cycles of the process are affected.
This paper deals with static faults which lie in between. A static fault modifies
a value loaded in a volatile storage, until the next power off or sooner if the
effect is erased and repaired by the device itself, or if the value is electrically
re-programmed.

In 1996, Boneh et al. published the first paper on Differential Fault Analy-
sis (DFA) against cryptographic implementations [B]. Targeting the RSA-CRT,
they demonstrated that exploiting a faulted cryptographic result could lead to a
recovery of the private key. This sort of attack has been widely applied to other
cryptographic algorithms during the last two decades. Naturally, a block cipher
such as the famous Data Encryption Standard (DES), standardized in 1977 [13],
quickly became a privileged target for DFA.
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Indeed a few weeks later, Eli Biham and Adi Shamir published a very com-
plete and interesting paper [3] presenting a large coverage of DFA applied to
DES. More particularly, they imagined a strong fault model applicable to any
secret key algorithm. Forcing key bits in non-volatile memory (NVM) to 0 one
by one by fault injections, they were able to recover the key. Their fault model
has been identified as very realistic, because of the NVM memory structure.

In this paper, a fault model slightly different is considered and validated by
the practice on two hardware DES engines. This fault model allows mounting a
”Safe-Error” (SE)-like attack. The ”Safe-Error” naming has been introduced by
Sung-Ming Yen and Marc Joye and then mainly applied to public key algorithms
(RSA, DH, ECC). This attack technique was already used but it has been for-
mally identified and well described in their paper [20]. Indeed their attack mainly
targets the ”square-and-multiply always” algorithm [6]. By disturbing the 7
multiplication in the exponentiation, the attacker is able to recover the i bit
of the secret exponent. If the result is good, it means that the multiplication is
fake (bit = 0) otherwise it is a true one (bit = 1). Each exponent bit can be
disclosed by repeating this process. Even if there is a specific reaction from the
device when the faulty result is detected, the attacker has the information. They
pointed out in their paper that this approach can also be applied to symmetric
key algorithms. Indeed, whatever the algorithm, if an attacker is able to guess
a bit value from an error-free and a faulty result, or even a fault reaction, this
attack remains very powerful. However they admitted that the theoretical work
on the extension and exact cryptanalytic process for specific systems are still
under construction. Only a few concrete scenarios of SE attacks on symmetric
key algorithm have already been published so far [4].

Considering a new fault model, this paper shows another powerful SE attack
scenario on a TDES implementation, even with actual countermeasures.

Organization of the paper: This paper first briefly reminds the context
of hardware DES, related fault attacks and existing countermeasures. In the
next part, after having defined the fault model and the static fault attack on
key registers, experimental results validating our fault model are reported. These
experiments are described from the set-up phase, through the fault injection and
the results observed. Finally in the last section, presenting the required success
conditions in an objective manner, the limitations of the attack in the real world,
as well as efficient countermeasures are discussed.

2 Hardware DES, DFA and Existing Countermeasures

2.1 Hardware DES

After its standardization in 1977, DES has been widely deployed. It has been
revoked and replaced by the Advanced Encryption Standard (AES) in 2001 [15].
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However, under its Triple DES (TDES) version using 3 56-bit keys [14], the
Data Encryption Standard is still approved by NIST until 2030 [I6]. As the
main block cipher algorithm in the late nineties, it has been the objects of many
hardware implementations. Today, most smart cards host a hardware DES engine
by default because it is intensively used in many cryptographic applications.
Today’s hardware DES engines usually implement the whole algorithm and an
interface between software and hardware which consists of:

— A key register dedicated to the key value. This register is write-only

— A data register dedicated to the input data block. This register is write-only

— A configuration register dedicated to configure the performed calculation
(encryption, decryption, 3DES key length, DES start engine, DES comple-
tion notification)

Implementing TDES using a dedicated hardware engine is user-friendly, and
it significantly improves timing performances.

2.2 DFA on DES and Existing Countermeasures

Many vulnerabilities against fault attacks have been identified in DES, as for
example the DFA in the 14" round [3], or in other rounds [I7/I1]. As a con-
sequence, protections have also been developed to counter DFA. Several of the
most popular ones (software or hardware) are described below:

DES hiding: One may hide the DES signal on the power trace. If the at-
tacker faces difficulty to recognize with side-channels means where the DES is
performed, it should be more difficult to inject a fault.

Random timing jitter: One may add random timing jitter during DES
phases to make synchronization (hence fault injection) more complex.

Rounds redundancy: One also may perform several times some of or all the
rounds, and compare the intermediate results. This may impact performances.

Reverse computation: The ciphertext block may be decrypted just after
an encryption, and the result compared with the original plain text.

Code tracing: Automatic increment of flag bits in the code can be useful
to trace the DES execution flow and guarantee that all critical steps of the code
have been executed.

Logic gates modification: Multiple rails logic (custom cells) with forbid-
den states may be used to detect perturbations. Even if the resistance needs to
be improved [I9], the main drawbacks of these technologies is the effective cost
of hardwired macro blocks compared to a standard implementation of cells in
advanced semiconductor technologies.
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3 The Attack: Description and Experiments

3.1 The Attack Description

Fault Model A strong fault model is considered for our attack. We assume that
a fault injection is able to force the key bit value stored in the DES hardware
key register described in until the next update, the next reset, or the next
start up of the device.

These registers are the basic elements of a microcontroller’s circuit. They
are used to store volatile data that are manipulated by the device close to the
processing unit. At start up, the register can be fixed to a default value, or can
remain uninitialized. Each bit structure is made of a basic combination of a few
gates to build a storage element. Most frequently, latches or flip-flops are used
to store the bit value. This value is changed on a master signal depending on
the input value. The latch is sensitive to a level applied on the master signal,
the flip-flop reacts on the edge of the master signal. The number of gates used
in a latch or a flip-flop can vary from 4 to 8 in simple designs.

A huge work has been undertaken for years to evaluate the resistance of
latches and flip-flops against perturbations [I2]. Single event upset or single
event transient can be prevented with hardware redundancy techniques. But,
for cost reasons, it is a real constraint to duplicate or triplicate all the registers
of a secure chip used in commercial devices (e.g. smart card).

Attack Scenario The fault is induced after the key loading and before the
DES/3DES computation. Let us consider that the i*" key bit can be forced to a
specific value 0 (resp. 1) in the DES hardware key register. The attacker runs an
encryption of an unknown block, without injecting any perturbation, and gets
the result. Then, the encryption of the same block is rerun, but by forcing the
i'" key bit value to 0 (resp. 1). Comparing the two results, the attacker is able
to retrieve the value of the i*" key bit. Indeed, if the original value is 0 (resp. 1),
then both results must be equal. Otherwise, the two results should be different.
Note that the attacker must be able to run the encryption of the same block
several times (once without error, n times with an error on a different bit posi-
tion every time, to recover n bits of the key). Otherwise, running twice the same
block, one with an error and the other without, this being repeated n times,
could also be sufficient to recover n bits.

3.2 The Fault Model in Practice

Setting up the Experiment Most of hardware DES modules currently avail-
able on the market have been studied with the following set-up. However, for
demonstration purpose and simplification, only tests performed on two 0.13um
or 0.18um integrated circuits are presented in this paper. Open samples are used
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so that full control of the executed code is enabled. Besides all possible config-
urations of the chip can be set-up. During the experiments, all hardware and
software protections against fault injection are disabled to greatly simplify the
exploitation of the results. Due to the important number of metal layers on the
top of the chip - 5 metal layers with dense metal lines and large power routing
grid - the samples are mechanically prepared for laser enlightment [I8] from the
backside.

The light source is a NIR YAG (1064um) [2] laser cutter generating powerful
6ns pulses. The laser beam is focused through an optical microscope and the
spot can be tuned thanks to several objectives from x2 up to x100 and a XY
laser shutter that makes rectangle illumination beam. The laser characteristics
and set up are of higher importance to get significant experimental test results.
Several trials are necessary before choosing an efficient laser spot size which is
very close to the standard cells size of the considered circuit.

Assuming that the DES execution is a straightforward non-secure implemen-
tation, the experimental test code performs the following sequence of operations:

load key in HW DES key register
load data in HW DES data register
laser shot

execute the DES encryption

get DES result

b W

Key and data registers are write only, therefore they cannot be read back
after the shot. This limitation is present on most of hardware DES engines. The
get DES result is used to recover the encrypted data. The laser shot is applied
between the load data and the execute DES in order to modify the key or the
data register. Disturbing internal working registers of the HW DES is not in the
test scope.

Methodology for Register Location Locating the registers is time consum-
ing, even if relatively the HW DES macrocell is a large part of the logic area. The
entire logic can be first roughly scanned with a 100um step. This first mapping
gives sufficient data to localize an area where faulty outputs can be observed.
In a second phase, deeper investigations through this area are conducted with a
fine step (10um) to find a more accurate matrix of register bit locations.

Experimental Results DES registers being not readable, ciphertexts must
be analyzed. When the output differs from the normal result, an explanation is
searched for by exhausting ”separately” all internal variables of the algorithm. If
all internal variables are considered as coded within a single byte it is possible,
under this limitation, to build up a data base of candidate faulty outputs. Then
experimental faulty outputs are searched within this list of candidates. This
approach is not exhaustive since it does not consider combinations of several



6 Static Fault Attacks on Hardware DES Registers

altered byte, but it covers single bit modifications of the input data (plain text
and key). In case of hardware coprocessor the notion of machine word or byte
does not make sense since the internal state is hard coded with bit field registers
which size fits the algorithm requirements (32, 48, 56, 64 bits depending on the
DES steps). Besides, some faulty results remain mysterious. But many of them
can find an explanation which is sufficient to feed further discussions.

1%t experiment: The test vector used in the 1°¢ experiment is the following:

Input : 0000000000000000
Key : 000000OOFFFFFFFF
Output :  T7EC4125DD3118B2D

Experiment observations are reported in figure[I} Faulty ciphertexts are listed
in the first column, and the associated fault on key or/and Permutation Choice 1
(PC1) bytes are detailed in the second and third columns. I[i], K[i], PC1[i], I P]i]
zx means that the byte ¢ of the Input or the Key or the value of the PC1 or the
Initial bit Permutation have been modified with the value xx.

A6B2BA441A3B3C79 I[0] = CO

6B821715FBEAC91E Key[0] = 04 PCi[5] = 1F
4C2912268670B997 Key[0] = 18 PCi1[6] = 11
056BB9D9COF01F4A Key[0] = 80 PC1[0] = F1
738E7D3A3CE3CC7F Key[0] = EO

148F55FE1AE8C6BO Key[1] = 02 PC1[4] = 2F
D22523C61D4C23E8 Key[1] = 80 PC1[0] = F2
3CBD46B51B136AF8 Key[2] = 08 PC1[6] = 40
6DB62FFO95ESC24E  Key[3] = 08 PC1[6] = 80
510F4013B51D9EA1 Key[3] = EO

EBSE126EGFO5CBC2 Key[4] = EE PC1[3] = EF
6976903C543159B4 PC1[6] = 2D

Fig. 1. Faulty results for the 1% experiment

These results motivate the following observations:

— The alteration can concern the input message (I) as well as the key.

— Key alterations can also occur due to PC1 alterations. However the relation-
ship is not bijective in the sense that some key bytes modifications cannot
also be explained by a single byte alteration in PC1. Conversely, the last
example shows that a PC1 modification may occur without single byte al-
teration of the key. This may be due to combinations of several bytes.

— The fault can set or clear bits as well.
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— The fault can affect several bits.

When proceeding with such experimentation, an important point regards
the possibility of reproducing it. This has been done by keeping every set-up pa-
rameters unchanged (key, scanning, laser), except the value of the input message.

2nd experiment: Here input has been replaced by a more balanced one.
Below are the new data used:

Input :  ABABAGAS5A5A5A5A

Key : 00000000FFFFFFFF

Output : BD2C9DA36BD38AD1
1977ES5A462570475 1I[0] = A7 IP[7] =F1
FEDB3FD2B2C86811 1I[0] = AD IP[6] = F1
138AB840885CFC67 I[1] = A7 IP[7] = F2
324ADEACA89COEA8 1I[1] = Fb
056B38442A84A25E I[2] = Eb IP[0] = F4
91DD763823C6EE94 I[3] = Bb IP[1] = F8
2D4ATF714481F2A8 1I[7] = 1A IP[0] =70
BE974DF14DC25F99 I[7] = b8 IP[7] =70

CBAFD304C88A8D74 Key[0] = CO

DE3C3CAC1844CA35 Key[1] = 80 PC1[0] = F2
TFDB38A839E5057A Key[2] = 08 PCi[6] = 40
289113B0972DDF2B Key[2] = 80 PC1[0] = F4
EF03D42414B841C0 Key[3] = 02 PC1[4] = 8F
FOC85F7EO3A77799 Key[3] = 04 PC1[5] = 8F
C778FCEAC6A8C333 Key[3] = 08 PC1[6] = 80
66CDBF7C7T1A8FE81 Key[3] = A0

5467B5C532D3B009 Key[6] = BE PC1[1] = BO
039684CIDC6C62FE Key[6] = FA PCi[4] = OB
95F5354B84F59BF6  Key[7] = 5E

OD1E71BCDD933108 Key[7] = F6 PCi[5] = 07

Fig. 2. Faulty results for the 2" experiment

Erroneous outputs are listed in figure[2} Results lead to the following remarks:

Scanning exhaustively the chip did not affect all the key bits.

— When considering the first half of the key (Key[0-3] initially set with zeros)
there are some points where single bit setting is observable.

— On the second half (Key[4-7] initially set with ones) some single bit clearing

are observable too.

These remarks lead to think that there are some points where single bit

alteration is possible.
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— There are also some other points where the resulting key byte does not seem
to depend on the initial value, as if fully reprogrammed by the perturbation.

One may incriminate the experimental set-up instability as a reason for the
variety of results from one experiment to the other. But the reproducibility is
attested by the sensitivity mapping resulting from the chip scanning. It appears
that the sensitive points are not so many and possibly spread over several uncon-
nected regions. Experimentally they are easy to retrieve. From what is known of
the chip design, these points do not necessarily belong to the DES engine area.
The perturbation may have propagated from the enlightened point through the
location of the registers.

Fig. 3. fault mapping example

Sensitive regions are identified on this picture:

— Effects observed in the rightmost and upper areas remain unexplained.
— More interesting is the scattered lower left region where modifications occur
on the key (upper points) and data bytes (lower points).

3" experiment: In order to validate that previous observations may be
transposed on circuits with a different technology, a chip in 0.18um (instead of
0.13um) is used in the following experiments. Registers modification are targeted
and the attack must be reproducible, so the attack is repeated 10 times for the
same physical location. The following data are used:

Input : AAS5AAB5AA55AA55
Key . FFFFFFFFFFFFFFEF
Output :  COBE513D923789CC

Resulting faulty ciphertexts, input bytes modified and the direction of the bit
modification can be respectively seen in the two latest columns of the figure
This third result slightly differs from those obtained on previous chip, indeed:
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E25BA12ACEC346F2 I[4] = AB  0>1

B5181C6E3C982121 I[3] = 15 1>0

1836DFD7DAF34AB9 I[4] =EA 0O>1

OF6686100071DA1D I[5] = 5D 0>1

48688788ED15C8BE I[5] = 45 1I[6] = BE 0>1(x2) 1>0(x1)
997ESFOE1AAFAC3D I[7] = 5D 0>1

D99BBDF6521A78CA I[5] = 7D  0>1(x3)

FB4D1ESA48COC3A1 I[5] = D5 0>1

394F9FAFC535671E I[4] = E8 I[5] = D5 0>1(x2) 1>0(x1)
BA5038A5193CDB43 I[4] = 9E I[5] = 57 0>1(x2) 1>0(x2)
01DDEA4DF50A4A64 I[4] = BE 0>1(x2)

DB024C5C31B5COE6 I[3] = 54 1>0

CC1F3E2DE62FD64C I[3] = 5D O>1

36457C9572A9AA0B I[6] = AB  0>1

7876B26C4B5C91C1 I[7] =57 0>1

Fig. 4. Faulty results for the 3"¢ experiment

— Only bits located in the data register are modified.

— Some bits of the data register are not modified.

— Several locations are identified where the attack has a good yield - close to
100%. So a strong relationship can be established between the laser scanning
fail map and the bit modified within the register.

Several additional scans are performed to find out the remaining bits of the data.
After a significant number of iterations and small optimizations of the laser set
up, only a few bits of the data register are retrieved, and some of them were still
missing. The key bits were not disturbed at all. Thus only a limited amount of
data bits can be mapped but with a very high repetition rate. The effect of the
perturbation on the bit value has also been analyzed. A quick statistic of the
faulty results shows an asymmetric behavior of the flipping bits: 0, 75% of the
bits had switch from 0 to 1 and 0,25% had switch from 1 to 0. The difficulty to
flip one key bit cannot be explained entirely by the initial F'F' value .

Physical Analysis of the Circuit The previous results show a strong rela-
tionship between the registers modification and the laser shot location. So it
seems interesting to go further and to analyze the circuit used for the third ex-
periment at the silicon -gate- level. Usually in smart cards or secure devices, the
physical layout of the circuit is not public. A basic chemical sample preparation
with hydrofluorhydric acid (HF) is then useful to reach the silicon surface where
transistors implants are visible (bulk level). Performing a deep reverse engineer-
ing of each gate is very costly and demands a careful sample preparation: this is
beyond the scope of the present study. But it is possible to distinguish the shape
of the gates in their bulk implantation without any indication of their function.
An optical microscope with high magnification (x500) provides with pictures of
the die logic.
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A focused is put on the limited area where the fail map presents several bit
errors. For crosschecking the bit fail map (on the picture below, the red squares
represent faulty register bits and black squares the non exploitable faults) is
superposed and aligned with specific patterns on the picture. For that purpose,
each standard cell is manually highlighted with different colors and overlaid with
the mapping resulting from the laser scan. According to the figure[B] this method
shows that the latches or flip-flops do not match easily with the map of the bits
errors on the analyzed chip. It is impossible to confirm a direct correspondence
between the fault injection location and the physical implantation of the regis-
ters.

i
=
= a1l

Corresponding fail map

Picturc with gatc patterns outlined Ovecrlayed pictures

Fig. 5. Microscope picture, fail map, gate patterns and their superimposing

Trial Summary Practical results given by this couple of experiments allows
discussing the basic assumptions made by E. Biham and A. Shamir in their
original paper, but applied to hardware DES registers. Trying to implement the
methodology they suggested, experimental conditions reveal themselves as less
clear than what an attacker might expect. Fine calibration is mandatory. But
it remains a difficult and risky task. The effects are not easy to control for the
following reasons:

— The obtained values look sometimes random.
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— The impacted bits can be sometimes cleared and sometimes set.

— The key bits can be impacted sometimes individually and sometimes by
groups.

— The results are seldom complete since a full scanning does not necessarily
affect all the key bits, one by one.

— The relation between the physical location of the register and the fail map
is not systematic.

— The effects are different between two chips from different semiconductor
technology nodes

— The design register used by the chip maker could have an impact on the
results

— It may be argued that the experiment may be improved with smaller scan-
ning steps and beam width.

As a consequence it might be possible to infer not all, but a piece of key infor-
mation using Biham and Shamir’s ideas, especially bit to bit inference. On the
one hand the experimental set-up can be improved and thus the cryptanalysis
made more effective; but on the other hand additional cryptanalysis like comple-
mentary brute force seems still necessary. However these experiments show that
specific protections against this type of safe-error attacks shall be implemented.

4 The Attack in the Real World

4.1 Limitations

Limitations of the set up: The feasibility of this attack on a real product with-
out dedicated countermeasures depends strongly on the reliability of the test set
up. Compared to transient fault injections -i.e. during a HW DES computation
- the timing synchronization of the laser shot is not such critical. Nevertheless,
others items must be taken into consideration to evaluate the capabilities or
limitations of a laser bench to implement such an attack. Indeed the laser beam
positioning is of major importance. A reliable and accurate set-up is mandatory
not only to perform fine scans but to come back to the desired position as well.
Without such an equipment, static faults on registers are impossible. Moreover,
due to dense metal layer routing in the top surface of the chip, the attack must
be conducted from the backside, so that sensitive layers are directly reached.
The same position between the device used for calibration and the real target
must be found. This can be achieved by:

— performing a new scan with the risk to be caught by countermeasures on the
real product
— using a dedicated infrared camera with high magnification

Finally, the laser itself should be able to reach only the expected bit. The small
spot size used in the reported experiments for 0.13um or 0.18um technologies
should be not suitable for advanced semiconductors technologies.



12 Static Fault Attacks on Hardware DES Registers

Laser positioning and effect propagation: This first result gives some indi-
cations about the mechanism of fault injection at silicon level. Moreover it shows
that effects of the laser on a real circuit are not easily predictable. Firing with
the laser just above the flip-flop or the latch is not the only way to induce faults
in a register. Several hypotheses can explain this phenomenon. The real surface
exposed by the laser beam after propagation within the silicon substrate may be
different from the spot observed upon the die surface. The dense metal routing
on the chip reflects the beam that can hit sensitive areas in the neighborhood of
the initial spot. As the real electrical effect is unknown, the flip of the bit value
in the register can also be generated by a glitch that appears on the control
signal of the flip-flop or the latch.

Another hypothesis is a cell reset caused by a trigger of the reset signal, if
such a signal is implemented on that register. A better understanding of the real
effect produced by the laser source would require deeper investigations on specific
test circuits, with dedicated test structures. Such results would help finding the
optimum laser position to change one single bit.

Operating system and chip security features: According to the described
experiments, injecting a fault in a HW DES register seems feasible and realistic
on chip samples. However, attacking a real smart card product becomes more
tricky. The calibration phase needs open samples allowing test code loading for
key and message setting. Performing a precise characterization of the behavior
and the location of the HW DES registers must be done before any final product
attack. Otherwise, the probability to be detected by software or hardware coun-
termeasures during the laser scanning is huge and the attacker has no chance to
succeed. And even if open samples are managed carefully by chip manufactur-
ers, criticality of such materials should be of high interest. The supply of such
samples must remain restricted, as well as their traceability must be perfectly
controlled.

Highlights on products: Real smart cards show very stringent limitations that
make a full calibration practically impossible. The attack with a very accurate
calibration (chip layout, fail map) phase may even remain unfruitful. Indeed,
beyond the experimental difficulties and related risks of killing the product, the
presence of anti replay schemes in most of designed cryptographic protocols in
the field can represent a major obstacle. Below are famous examples of anti
replay seeds:

— The application transaction counter in standard EMV banking applications
[7]: the so-called ATC is upgraded in non volatile memory at each new trans-
action and contaminates every generated cryptogram either through session
key derivation or data to be signed.

— Similarly, the sequence number used in 3GPP [I] authentication and key
agreement (AKA).
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— The internally generated random challenge, which is involved in Global Plat-
form [I0] secure channel protocols (SCP01/02) for mutual authentication.

In such a context, detecting a key register modification through the changing of
an expected cryptogram does not make sense anymore since every cryptogram
is updated at each iteration. The card is responsible of the anti replay seed
management, hence its implementation must be done securely. Obviously this
protocol feature is efficient only if malicious perturbations that may intend to
freeze it are thwarted.

4.2 Efficient Countermeasures

Attack versus existing countermeasures None of the countermeasures cited
in the previous section are inherently efficient. Indeed regarding the DES hiding
for instance, a hardware engine uses a significant number of additional gates
which increase the power consumption and should be more visible in power
traces. Moreover the random delays in the execution make synchronization more
difficult but not impossible because the delay between the key loading and the
beginning of the DES computation takes a significant numbers of clock cycles.
If the key is not reloaded, even before the inverse operation, the comparison
will not reveal the fault injection. If the key is reloaded or if the computation is
replayed, it is not much more difficult to reinject the same fault at each time.

Efficient HW countermeasures: Hardware countermeasures against single
bit modification are already known in aerospace or aeronautics industries. Du-
plication and triplication are used in high reliable systems in space products.
In the smart card world, the cost is prohibitive. Chip manufacturers need to
implement cheaper solutions to prevent or detect potential safe-error attacks on
HW DES registers modifications.

The detection of faults injection can be done by adding partial redundancy
like additional bit for parity check or multiple bits with error correction code.
Depending on the size of the register - 8 bits or 32 bits - the efficiency versus
cost of the ECC is not the same.

A different approach can be to tackle the safe-error attack itself. The attacker
should made hypothesis about the value of the bit regarding the output or the
behavior of the device. By randomly changing the value of the physical storage
of the bit the possibility to perform the attack disappear. A simple XOR with
a random mask changed at each reset of the HW DES engine might be sufficient.

A similar and complementary approach would consist of changing the scram-
bling - position of the bit within the register - for each loading of the key or data
in the HW DES module.



14 Static Fault Attacks on Hardware DES Registers

Efficient SW countermeasures: Although the actual hardware DES on smart
cards offer user-friendly interface for programmers, low-cost implementations can
benefit software protections against fault attacks. But detecting the error is not
sufficient. Indeed if a key register fault detection stops the process and branches
it into an infinite loop, the attacker has retrieved the information: the key bit
value is different from the forced value. The safe-error is still feasible, and para-
doxically less costly, since the error-free computation is not needed anymore for
the attack. Thus existing countermeasures need to be improved. But finding
generic countermeasures against bit forcing on key register is not trivial. Below
are two examples of improved software countermeasures defeating the safe-error
attack on hardware register.

One possible idea is the ”Predictable Pattern Technique”. It consists in hid-
ing the true DES amongst fake ones, where fake calculations are made with fixed
patterns, that is totally known parameters and predictable results. All DES are
performed in a random order, and it must be impossible for the attacker to
distinguish the true DES, amongst fake predictable DES. Finally, all results of
predictable DES are verified. When the attacker sees that the fault injected has
been detected (or not), it gives no information about the secret key. Indeed, the
attacker just knows that the i*" bit of one of key disturbed has (or does not have)
value b, the forced value. But the attacker does not know whether it concerns
the true key, so the bit value of real key cannot be guessed.

Input:
true key K, if i =0
Keys: K; =1 fake keys, if 0 <i < 2n
Ki o, if 2n>i < 4n
Blocs: M; = {%’ i0zi<2n
M, if 2n > i < 4n

Output: Cipher Bloc R

for i = 0 to 4n — 1 In Random Order do
R; = DES(M;, K;)

end for

if Ry # ®5]"R; then
"FAULT DETECTED”

else
return Ry

end if

Fig. 6. Example of DES implementation defeating safe-error
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Another idea is the " Complementation Property Test”. It is the combination
of the well known DES hiding techniques, with verification of the complemen-
tation property of the DES: DES(M,K) = DES(M,K), M and K represent-
ing respectively the input block and the key, and where M represents the bit
complementation of M. Let us suppose that several fake keys are stored in
non-volatile memory or randomly generated before the DES computation. The
software counter-measure consists in performing all the DES (fake and true) and
their complement, all in a random order. Obviously, the attacker must not be
able either to distinguish a DES from a complement DES, or the true one from
fake ones. Thanks to the complementation property of the DES, there are many
ways to verify that all results are consistent.

This method [J] defeats entirely the attack. The figure [6] represents an ex-
ample of implementation of this counter-measure for the DES cipher. This pro-
tection detects fault injections on fake and complemented keys. Here if a fault is
detected, the attacker is unable to deduce something from a fault reaction of the
program. Indeed, it is impossible to guess whether the injected fault modified
either the true DES key, either a complemented one, or a fake one. Obviously,
the final comparison must be implemented such that it is not possible for an
attacker to disturb the branch instruction. Thus, the safe-error described in pre-
vious chapters is defeated.

5 Conclusion

This paper has presented a strong fault model, consisting in forcing key bits
in the register of DES hardware engine. This fault model leads to a powerful
safe-error attack scenario that we have described. Our fault model has been
practically validated and results on two actual circuits have been given here.

This paper also shows that the attack is not so easy in practice, by discussing
the requirements, the limitations of the set-up, the limitations imposed by cryp-
tographic protocols (anti-replay). However, these experiments show that only
dedicated software countermeasures may bring a sufficient confidence regarding
the resistance against this attack. Some of these countermeasures have been pro-
posed in this paper.

Acknowledgments. The authors would like to thank Pascal Paillier and all
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