
The Collision Security of MDC-4
This is the full version of the paper. An extended abstract appeared at

Africacrypt’12.

Ewan Fleischmann, Christian Forler, and Stefan Lucks

Bauhaus-University Weimar, Germany.
email: {ewan.fleischmann,christian.forler,stefan.lucks}@uni-weimar.de

Abstract. There are four somewhat classical double length block cipher based com-
pression functions known: MDC-2, MDC-4, Abreast-DM, and Tandem-DM. They
all have been developed over 20 years ago. In recent years, cryptographic research
has put a focus on block cipher based hashing and found collision security results for
three of them (MDC-2, Abreast-DM, Tandem-DM). In this paper, we addMDC-4,
which is part of the IBM CLiC cryptographic module1, to that list by showing that –
’instantiated’ using an ideal block cipher with 128 bit key/plaintext/ciphertext size
– no adversary asking less than 274.76 queries can find a collision with probability
greater than 1/2. This is the first result on the collision security of the hash function
MDC-4.
The compression function MDC-4 is created by interconnecting two MDC-2 com-
pression functions but only hashing one message block with them instead of two. The
developers aim for MDC-4 was to offer a higher security margin, when compared to
MDC-2, but still being fast enough for practical purposes.
The MDC-2 collision security proof of Steinberger (EUROCRYPT 2007) cannot be
directly applied to MDC-4 due to the structural differences. Although sharing many
commonalities, our proof for MDC-4 is much shorter and we claim that our presen-
tation is also easier to grasp.
Keywords: MDC-4, cryptographic hash function, block-cipher based, proof of secu-
rity, double length, ideal cipher model.

1 Introduction

A cryptographic hash function is a function which maps an input of arbitrary length
to an output of fixed length. It should satisfy at least collision-, preimage- and
second-preimage resistance and is one of the most important primitives in cryptog-
raphy [24]. In recent years, most of the functions in the widely used MD4-family
(e.g., MD4 [30], MD5 [31], RIPEMD [12], SHA-1 [28], SHA-2 [29]) have been suc-
cessfully attacked in several ways [5, 11, 34, 35] which has stimulated researchers to
look for alternatives. Block cipher based constructions seem promising since they are
very well known – they even predate the MD4-approach [23]. One can easily create a
hash function using, e.g., the Davies-Meyer [36] mode of operation and the Merkle-
Damg̊ard transform [4, 25]. Also, many of the proposed SHA-3 designs like Skein
[7], SHAvite-3 [1], and SIMD [22] use block cipher based instantiations. Another

1 FIPS 140-2 Security Policy for IBM CrytoLite in C, October 2003



reason for the resurgence of interest in block cipher based hash functions is due to
the rise of resource restricted devices such as RFID tags or smart cards. A hardware
designer only needs to implement a block cipher in order to obtain an encryption
function as well as a hash function. However, due to the short output length of most
practical block ciphers, one is mainly interested in sound design principles for double
length (DL) hash functions. Such double length hash functions use a block cipher
with n-bit output as the building block by which it maps possibly long strings to
2n-bit hash values. DL compression functions can be parted by the type of block
cipher they need to operate: The first group, (group-1), uses an internal block cipher
with an n-bit plaintext/ciphertext/key, the second group, (group-2), uses a block
cipher with an n-bit plaintext/ciphertext and a k-bit key, k > n. DL compression
functions in the first group are few. Currently, there are only three known candi-
dates in literature: MDC-2, MDC-4 and a most recent variant of MDC-2: MJH
[19]. Group-2 examples are Abreast-DM Tandem-DM, Cyclic-DM [17, 10], etc.
The security of group-2 functions is relatively well understood.

MDC-4 is a acronym for Modification Detection Code with ratio 1/4, and was
developed at IBM in the late eighties by Meyer and Schilling [26]. The ratio indicates
the number of block cipher calls that are required to process a single message block.
MDC-4 was originally specified for the 64-bit block cipher DES [27].

Our Contribution. In this paper, we give the first collision security bound for the
hash function MDC-4, a block cipher based hash function that has been publicly
known for more than 20 years. In our proof, we use many of the techniques that
have been applied in the MDC-2 collision security proof [33]. Our proof is in the
ideal cipher model, too. However, we consider MDC-4 using an ideal n-bit block
cipher accepting n-bit keys. Furthermore, as in [33], we also ignore an additional
bit-fixing step that was used back than as an additional security measure to avoid
some DES specific key issues.

In this paper we show, assuming a hash output length of 256 bits, that any
adversary asking less than 274.76 queries to the block cipher cannot find a collision
for the hash function MDC-4 with probability greater than 1/2. Note that the
optimal security bound for collisions for 256 bit hash functions is about 2128. For
MDC-2 (ratio 1/2) and MJH (ratio 1/2), the trivial collision resistance bound is
264, since they both internally use a Davies-Meyer compression function. Although
MDC-4 also uses Davies-Meyer type functions inside, even such a trivial bound is
not so easy to see.

Related Work. For group-2 functions, there has been a lot of research in recent years,
e.g. [8, 10, 16, 17, 18, 20, 21]. As a result, there are group-2 compression functions
known that are ’provably optimal’. This is in stark contrast to the known results for
group-1 functions which are summarized in Table 1.
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Function Security (Collision) Attack (Collision) Attack (Preimage)

MDC-2 274.91 [33] 2121 [14] 22n (time · space) [14, 17]

MDC-4 274.76 (this paper) 296 [15] (only CF) 2224 [15]

MJH [19] 278.33 (no results known) (no results known)

Table 1. List of known group-1 hash functions, values evaluated for an internal block cipher with
128 bit plaintext/ciphertext/key [Notation: CF = compression function]

Outline. The paper is organized as follows: Section 2 includes formal notations and
definitions. In Section 3 we prove that an adversary asking less than 274.76 oracle
queries has the threshold probability 1/2 finding a collision for the MDC-4 hash
function.

2 Preliminaries

2.1 General Notations

An n-bit block cipher is a keyed family of permutations consisting of two paired
algorithms E : {0, 1}n×{0, 1}n → {0, 1}n and E−1 : {0, 1}n×{0, 1}n → {0, 1}n both
accepting a key of size n bits and an input block of size n bits for some n > 0. Let
Block(n) be the set of all n-bit block ciphers. For any E ∈ Block(n) and any fixed
key K ∈ {0, 1}n, decryption E−1

K := E−1(K, ·) is the inverse function of encryption
EK := E(K, ·), so that E−1

K (EK(X)) = X holds for any input X ∈ {0, 1}n. In the
ideal cipher model E is modeled as a family of random permutations {EK} whereas
the random permutations are chosen independently for each key K [2, 6, 13], i.e.,
formally E is selected randomly from Block(n). If Y = EK(X) we call the value
Z = X ⊕ Y the XOR-output of a query (K,X, Y ).

We use the convention to write oracles, that are provided to an algorithm, as
superscripts. For example AE is an algorithm A with oracle access to E to which A
can request forward and backward queries. For ease of presentation, we identify the
sets {0, 1}a+b and {0, 1}a × {0, 1}b. Similarly, for A ∈ {0, 1}a and B ∈ {0, 1}b, the
concatenation of these bit strings is denoted by A||B ∈ {0, 1}a+b = {0, 1}a×{0, 1}b.

A compression function is a mapping H : {0, 1}m × {0, 1}r → {0, 1}r for some
m, r > 0. A block cipher-based compression function is a mapping HE : {0, 1}m ×
{0, 1}r → {0, 1}r that, given an r-bit state R and an m-bit message M , computes
HE(M,R) using oracle access to some E ∈ Block(n).

2.2 The MDC-4 Compression Function

The MDC-4 compression function HE (cf. Figure 1) takes an n-bit message M , a
2n-bit state (S, T ) and outputs a new 2n-bit state (U, V ) as follows:
1. Compute O = (OL||OR) = ES(M)⊕M ,
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Figure 1. The double-length compression function HE where E is an n-bit block cipher. The black
bar inside the cipher indicates the key input.

2. compute P = (PL||PR) = ET (M)⊕M ,

3. compute U = EOL||PR(T )⊕ T ,

4. compute V = EPL||OR(S)⊕ S,

5. output (U, V ).

The superscript L denotes the left n/2 bits of an expression, and the superscript
R denotes the right n/2 bits of an expression.

The original MDC-4 specification [26] swaps the right halves of U and V . But,
since we are in the ideal cipher model, this operation does not change the distribution
of the output and neither our collision security analysis. So, for ease of presentation,
we omitted this additional step.

Our analysis is for the MDC-4 hash function HE which is obtained by a simple
iteration of the MDC-4 compression function HE in the obvious manner: Given
some n · ℓ-bit message (M1, . . . ,Mℓ), Mj ∈ {0, 1}

n for j = 1, . . . , ℓ and an initial
value (S0, T0) ∈ {0, 1}

2n it works by computing (Si,Hi) = HE(Mi, Si−1, Ti−1) for
i = 1, . . . , ℓ. The hash value is (Sℓ, Tℓ).
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2.3 Security of the MDC-4 compression function and the MDC-4 hash
function

Generally, insecurity is quantified by the success probability of an optimal resource-
bounded adversary. The resource is the number of backward and forward queries

to the block cipher E. For a set C, let Y
$
← C represent random sampling from C

under the uniform distribution. For a probabilistic algorithm D, let Y
$
← D mean

that Y is an output of D and its distribution is based on the random choices of D.
In our case, an adversary is a computationally unbounded collision-finding algo-

rithm AE with access to E ∈ Block(n). We assume that AE is deterministic. The
adversary may make a forward query (K,X)f to discover the corresponding value
Y = EK(X), or the adversary may make a backward query (K,Y )b, so as to learn
the corresponding value X = E−1

K (Y ) such that EK(X) = Y . Either way, the result
of the query is stored in a triple (Ki,Xi, Yi) := (K,X, Y ) and the query history Q is
the tuple (Q1, . . . , Qq) where Qi = (Ki,Xi, Yi) and q is the total number of queries
made by the adversary.

Without loss of generality, we assume that AE asks at most only once on a
triplet of a key Ki, a plaintext Xi and a ciphertext Yi obtained by a query and the
corresponding reply.

Collision Resistance of the MDC-4 compression function. There is a very simple
attack on the compression function which only requires about 2n/2 invocations of the
E oracle: Let the adversary find values K,K ′,M,M ′ ∈ {0, 1}n such that EK(M) =
EK ′(M ′). This requires about 2n/2 E-oracle queries. Then, by

HE(M,K,K) = HE(M ′,K ′,K ′),

a collision for the full MDC-4 compression function has been found. So our analysis
will be for the MDC-4 compression function in the iteration. This attack is only
possible if the the chaining values are equal.

3 Proof of Collision Resistance

3.1 Proof Model

Our analysis is for the MDC-4 hash function HE assuming that the initial chaining
values are different, i.e., S0 6= T0. The goal of the adversary is to output two messages
M1 ∈ {0, 1}

n·ℓ andM2 ∈ {0, 1}
n·ℓ′ such that H(M1) = H(M2) for some non-zero

integers ℓ, ℓ′.
In our analysis, we dispense the adversary from returning these two messages.

Instead we upper bound his success probability by giving the attack to him if

(i) he has found an ’internal’ collision, i.e., (M,S, T ) such that (U, V ) = HE(M,S, T )
with U = V for some U, V ∈ {0, 1}n or
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(ii) case (i) is not true but he has either found a collision in the compression func-
tionHE, i.e., (M,S, T ) and (M ′, S′, T ′), such thatHE(M,S, T ) = HE(M ′, S′, T ′)
or

(iii) cases (i), (ii) are not true but he has found values (M,S, T ) such that (S0, T0) =
HE(M,S, T ). Note that this requirement essentially models the preimage resis-
tance of the MDC-4 compression function.

The proof is simple and straightforward. Assume a collision for HE has been
found using two not necessarily equal-length messages M andM′, i.e., HE(M) =
HE(M′). Also assume that the collision is the earliest possible. Then the adversary
has either found (i) or (ii). For case (iii), we also give the attack to the adversary,
particularly for reasons already discussed in Section 2.3.

For our analysis, we impose the reasonable condition that the adversary must
have made all queries necessary to compute the results. We determine whether the
adversary has been successful or not by examining the query history Q. Formally,
we say that Coll(Q) holds if there is such a collision and Q contains all the queries
necessary to compute it.

We now define what we formally mean by a collision of the MDC-4 compression
function.

Definition 1. (Collision resistance of the MDC-4 compression function)
Let HE be a MDC-4 compression function. Fix an adversary A. Then the advantage
of A in finding collisions for HE is the real number

AdvColl

HE (A) = Pr[E
$
← Block(n); ((M,S, T ), (M ′, S′, T ′))

$
← AE,E−1

:

((M,S, T ) 6= (M ′, S′, T ′)) ∧HE(M,S, T ) = HE(M ′, S′, T ′)].

For q ≥ 1 we write

AdvColl

HE (q) = max
A
{AdvColl

HE (A)},

where the maximum is taken over all adversaries that ask at most q oracle queries,
i.e., forward and backward queries to E.

Since our analysis in the next sections is for HE, we informally say that the
probability of a collision of HE is upper bounded by using a union bound for the
cases (i), (ii) and (iii). This is part of the formalization in Theorem 1.

3.2 Our Results

We now give our main result. Although having a substantial complexity on the first
sight in its general form, we can easily evaluate it to numerical terms (cf. Corollary
1).
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q AdvColl

HE (q) ≤ α β γ

264 7.18 · 10−7 42 4.0 2 · 106

268.26 10−4 126 4.0 6 · 106

272.19 1/100 900 4.0 1.3 · 107

273.84 1/10 2600 4.0 1.4 · 107

274.40 1/4 3780 4.0 1.5 · 107

274.76 1/2 4900 4.0 1.5 · 107

Table 2. Upper bounds on AdvColl

HE (q) as given by Theorem 1

Theorem 1. Fix some initial values S0, T0 ∈ {0, 1}
n with S0 6= T0 and let HE be

the MDC-4 hash function as given in Section 2.2. Let α, β, γ be constants such that
eq2n/2/(2n − q) ≤ α, eq/(2n − q) ≤ β and let Pr[Lucky(Q)] as in Proposition 8.
Then

AdvColl

HE (q) ≤q

(

α2 + γ

2n − q
+

αβ

(2n − q)(2n/2 − α)
+

α

2n − 2n/2α
+

β2 + 4

2n − q
+

β

2n − q

)

+2q

(

α4 + α2 + 3αγ + 2γ

N − q
+ 6

α2 + 1

N1/2 − α

)

+q

(

γα2 + γ2

2n − q
+

2α

(2n/2 − α)2

)

+ Pr[Lucky(Q)]. (1)

Proof. The proof follows from the following discussion together with Proposition 1
by adding up the individual results from Propositions 2 - 8. ⊓⊔

As mentioned before, our bound is rather non-transparent, so we discuss it for
n = 128. We evaluate the equation above such that the adversary’s advantage is
upper bounded by 1/2 – thereby maximizing the value of q by numerically optimizing
the values of α, β and γ. Our result is the following corollary.

Corollary 1. No adversary asking less than 274.76 queries can find a collision for
the MDC-4 hash function with probability greater than 1/2.

An overview of the behavior of our upper bound is given in Table 2. Note that for
other values of (α, β, γ) the bound stays correct but worsens numerically (as long
as the conditions given in Theorem 1 hold).

3.3 Proof Preliminaries

Overview. Our discussion starts with case (ii). We analyze whether the list of oracle
queries to E made by the adversary can be used for a collision of the MDC-4
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Figure 2. The double-length MDC-4 compression function HE, where E is a (n, n)-block cipher.
If (S,M, T ) 6= (S′,M ′, T ′) but (U, V ) = (U ′, V ′) then the adversary has found a collision for HE.
The black beam inside the cipher indicates the key input. For later reference, the different positions
a query can be used in are denoted by 1TL, 1TR, . . . , 2BR.

compression function HE . For a collision, there are eight – not necessarily distinct
– block cipher queries necessary (cf. Figure 2).

To upper bound the probability of the adversary obtaining queries that can be
used for a collision, we upper bound the probability of the adversary making a final
query that can be used as the last query to complete such a collision. Let Qi denote
the set of the first i queries (K1,X1, Y1), ..., (Ki,Xi, Yi) (either forward or backward)
made by the adversary. Furthermore we denote by the term last query the latest
query made by the adversary. This query has always index i. Therefore, for each i
with 1 ≤ i ≤ q, we upper bound the success probability of an adversary to use the
i-th query to complete the collision.

As the probability depends on the first i − 1 queries, we have to put some
restrictions on these and also upper bound the probability that these restrictions
are not met by an adversary. One example of such a restriction is to assume that,
e.g., the adversary has to find too many collisions for the underlying component
function EK(X)⊕X.

Thus, our upper bound breaks down into two parts: an upper bound for the
probability of an adversary not meeting our restrictions and the probability of an
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adversary ever making a successful i-th query, conditioned on the fact that the
adversary does meet our restrictions and has not been successful by its (i − 1)-
th query. We use some notations that are given in Figure 2, e.g., the statement
1BL 6= 2BL means that the query used in the bottom left of the ’left’ side is not
the same as the query used in the bottom left of the ’right’ side.

3.4 Details.

We say Coll(Q) if the adversary wins. Note that winning does not necessarily
imply, that the adversary has found a collision. It might be that the adversary got
lucky and does not meet our restrictions any more. But in the case of a collision
Coll(Q) always holds.

Proposition 1.

Coll(Q) =⇒
Lucky(Q)∨ InternalColl(Q)∨CollTopRows(Q)∨CollLeftColumns(Q)∨

CollRightColumns(Q) ∨CollBothColumns(Q) ∨ Preimage(Q).

We now define the involved predicates of Proposition 1 and then give a proof. The
predicates on the ’right’ side are made mutually exclusive meaning that if the left
side is true it follows that exactly one of the predicates on the right side is true. By
upper bounding separately the probabilities of these predicates on the right side it
is easy to see that the union bound can be used to upper bound the probability of
Coll(Q) as follows:

Pr[Coll(Q)] ≤Pr[Lucky(Q)] + Pr[InternalColl(Q)] + Pr[CollTopRows(Q)]

+ Pr[CollLeftColumns(Q)] + Pr[CollRightColumns(Q)]

+ Pr[CollBothColumns(Q)] + Pr[Preimage(Q)].

To state the predicate Lucky(Q), we give some helper definitions that are also used
as restrictions for the other predicates. Let NumEqual(Q) be a function defined on
the query set Q, |Q| = q as follows:

NumEqual(Q) = max
Z∈{0,1}n

|{i : EKi(Xi)⊕Xi = Z}|.

It is the maximum size of a set of queries in Q whose XOR-outputs are all the same.
Similarly, we define NumEqualHalf(Q) as the maximum size of a set of queries whose
XOR-outputs either share the same left half or the same right half. Let

NEH-L(Q) = max
Z∈{0,1}n/2

|{i : (EKi(Xi)⊕Xi)
L = Z}|,

NEH-R(Q) = max
Z∈{0,1}n/2

|{i : (EKi(Xi)⊕Xi)
R = Z}|,
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then NumEqualHalf(Q) = max(NEH-L(Q), NEH-R(Q)). Let NumColl(Q) be also de-
fined on a query set Q, |Q| = q, as

NumColl(Q) = |{(i, j) ∈ {1, . . . , q}2 : i 6= j, EKi(Xi)⊕Xi = EKj(Xj)⊕Xj}|.

It outputs the number of ordered pairs of distinct queries in Q which have the same
XOR-outputs.

We now define the event Lucky(Q) as

Lucky(Q) =(NumEqualHalf(Q) > α) ∨ (NumEqual(Q) > β) ∨ (NumColl(Q) > γ),

where α, β and γ are the constants from Theorem 1. These constants are chosen
depending on n and q by a simple numerical optimization process such that the
upper bound of the advantage of an adversary is minimized for given values of n, q.

We now give the definitions of the other predicates.

FitInternalColl(Q). The adversary has found four – not necessarily distinct –
queries such that HE(M,S, T ) can be computed and HE(M,S, T ) = (U,U)
holds for some arbitrary U with S 6= T .

FitCollLeftColumns(Q). The adversary has found eight – not necessarily distinct
– queries such that (U, V ) = HE(M,S, T ) and (U ′, V ′) = HE(M ′, S′, T ′) can be
computed with U = U ′, 1BL 6= 2BL and 1BR = 2BR.

FitCollRightColumns(Q). The adversary has found eight – not necessarily dis-
tinct – queries such that (U, V ) = HE(M,S, T ) and (U ′, V ′) = HE(M ′, S′, T ′)
can be computed with V = V ′, 1BR 6= 2BR and 1BL = 2BL.

FitCollTopRows(Q). The adversary has found four – not necessarily distinct –
queries such that

(ES(M)⊕M,ET (M)⊕M) = (ES′(M ′)⊕M ′, ET ′(M ′)⊕M ′)

for S 6= T , S′ 6= T ′, 1BL = 2BL and 1BR = 2BR.

FitCollBothColumns(Q). In this case we assume ¬FitCollLeftColumns(Q)
and ¬FitCollRightColumns(Q). The adversary has found eight – not nec-
essarily distinct – queries such that (U, V ) = HE(M,S, T ) and (U ′, V ′) =
HE(M ′, S′, T ′) can be computed with U = U ′, V = V ′, 1BL 6= 2BL and
1BR 6= 2BR.

FitPreimage(Q). This formalizes case (iii). The adversary has found four – not
necessarily distinct – queries used in HE in positions 1TL, 1TR, 1BL, 1BR

such that the output of HE is equal to (S0, T0), i.e., the initial chaining values
of the MDC-4 hash function.
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For practical purposes we derive our predicates as follows.

InternalColl(Q) =
¬Lucky(Q) ∧ FitInternalColl(Q)

CollLeftColumns(Q) =
¬(Lucky(Q) ∨ FitInternalColl(Q)) ∧ FitCollLeftColumns(Q)

CollRightColumns(Q) =
¬(Lucky(Q) ∨ FitInternalColl(Q) ∨ FitCollLeftColumns(Q))
∧FitCollRightColumns(Q)

CollTopRows(Q) =
¬(Lucky(Q) ∨ FitInternalColl(Q) ∨ FitCollLeftColumns(Q)
∨FitCollRightColumns(Q)) ∧ FitCollTopRows(Q)

CollBothColumns(Q) =
¬(Lucky(Q) ∨ FitInternalColl(Q) ∨ FitCollLeftColumns(Q)
∨FitCollRightColumns(Q) ∨ FitCollTopRows(Q))
∧FitCollBothColumns(Q)

Preimage(Q) =
¬(Lucky(Q) ∨ FitInternalColl(Q) ∨ FitCollLeftColumns(Q)
∨FitCollRightColumns(Q) ∨ FitCollTopRows(Q)
∨FitCollBothColumns(Q)) ∧ FitPreimage(Q)

Proof of Proposition 1. Assume that the adversary is not lucky, i.e., ¬Lucky(Q).
Then it is easy to see that

FitInternalColl(Q) ∨ FitCollLeftColumns(Q) ∨
FitCollRightColumns(Q) ∨ FitCollTopRows(Q) ∨

FitCollBothColumns(Q) ∨ FitPreimage(Q)
=⇒

InternalColl(Q) ∨CollLeftColumns(Q) ∨CollRightColumns(Q) ∨
CollTopRows(Q) ∨CollBothColumns(Q) ∨Preimage(Q)

holds. Therefore it is sufficient to show that

Coll(Q) =⇒ FitInternalColl(Q) ∨ FitCollLeftColumns(Q)

∨ FitCollRightColumns(Q) ∨ FitCollTopRows(Q)

∨ FitCollBothColumns(Q) ∨ FitPreimage(Q).

To ensure that the chaining values are always different, we give the attack to the
adversary if these values collide, i.e., U = V or U ′ = V ′. Note that this is usu-
ally not a real collision, but we can exclude this case in our analysis. We call this
InternalColl(Q). This corresponds to case (i) in Section 3.1.

For the case (ii), we assume that a collision for the MDC-4 compression func-
tion HE can be constructed from the queries in Q. Then there are inputsM,M′ ∈
({0, 1}n)+, M 6=M′ such that H(M) = H(M′). In particular, there are M,M ′ ∈

11



{0, 1}n and (S, T ), (S′, T ′) ∈ {0, 1}2n, (S, T,M) 6= (S′, T ′,M ′), such thatHE(S, T,M) =
HE(S′, T ′,M ′).

For the following analysis we have ¬InternalColl(Q), i.e., S 6= T , S′ 6= T ′.
Our case differentiation is based on the disposal of queries in the bottom row. First
assume that 1BL = 2BL and 1BR = 2BR. Then CollTopRows(Q). Now assume
that 1BL = 2BL and 1BR 6= 2BR. Then CollRightColumns(Q). Conversely, if
1BL 6= 2BL and 1BR = 2BR, we say CollLeftColumns(Q). The only missing
case, 1BL 6= 2BL and 1BR 6= 2BR, is denoted by
CollBothColumns(Q). Preimage(Q) formalizes case (iii) of Section 3.1 and cor-
responds to FitPreimage(Q). ⊓⊔

General Remarks. The strategy for the other predicates is to upper bound the
probability of the last query being successful conditioned on the fact that the ad-
versary has not yet been successful in previous queries. We say that the last query
is successful if the output is such that NumEqualHalf(Q) < α, NumEqual(Q) < β,
NumColl(Q) < γ and that one of the predicates is true.

Proposition 2 (InternalColl(Q)).

Pr[InternalColl(Q)] ≤ q

(

α2 + γ

2n − q
+

αβ

(2n − q)(2n/2 − α)
+

α

2n − 2n/2α

)

Proof. The adversary can use the last query Qi either once or twice. When Qi is
used three times or more then it must occur twice either in the top- or bottom row.
But this would imply S = T .

In the case that the query is used once it can either be used in the top or bottom
row. Due to the symmetric structure of MDC-4, we can assume WLOG that the last
query Qi is either used in position TL or BL2. The success probability is analyzed
in Lemma 1.

In the case that Qi is used twice, it must be used once in the top and once in
the bottom row. We again assume that the last query is WLOG used in TL and
BL or TL and BR. The success probability is analyzed in Lemma 2. ⊓⊔

Lemma 1. Let S 6= T and Qi−1 the query list not containing the last query Qi.
Assume that Qi is used once in the MDC-4 compression function HE. Then

Pr[(U,U) = HE(S, T,M)] ≤ q

(

α2 + γ

2n − q

)

.

Proof.

2 In this case we only consider the ’left’ side of Figure 2 and denote 1TL by TL, 1TR by TR,
1BL by BL and 1BR by BR.
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Case 1: Assume first that Qi = (KL
i ||K

R
i ,Xi, Yi) is used in position BL. It follows

that KL
i must be equal to the XOR-output ZL

TL of the query in TL. It follows
that there are at most α different candidates for the query in TL in the query
history Qi−i. Similarly, because KR

i must be equal to the right half of the XOR-
output of TR, ZR

TR, there are at most α candidates for that can be used in TR.
For the query in BR, there are at most α2 possible key inputs, the ciphertext
input of BR is determined by the query used in TL. So the probability that
there is a query in Qi such that U = V is upper bounded by α2/(2n − q). For q
queries, the total chance of success is ≤ qα2/(2n − q).

Case 2: Now assume that Qi is used in position TL. Since S 6= T it follows that
BL 6= BR. So there are at most γ ordered pairs of queries that can be used in
BL and BR such that their XOR-output collides. Fixing one of these, it fully
determines the XOR-output TL. So, for q queries, Qi has at most a chance of
qγ/(2n − q). ⊓⊔

Lemma 2. Let S 6= T and Qi−1 the query list not containing the last query Qi.
Assume that Qi is used twice in the MDC-4 compression function HE. Then

Pr[(U,U) = HE(S, T,M)] ≤ q

(

αβ

(2n − q)(2n/2 − α)
+

α

2n − 2n/2α

)

.

Proof. By symmetry arguments, we assume WLOG that the last query Qi is used in
position TL. Since S 6= T , the last query can only appear a second time in position
BL, or BR but not in TR.

Case 1: Assume Qi is used in position TL and BL. This query can be used in these
positions if the randomly determined left-side XOR-output ZL

i is equal to the
left-side of the key KL

i . This event is called PK and its probability of success
can be upper bounded for Qi by Pr[PK ] ≤ α/(2n/2 − α). We now upper bound
the number of queries that can be used in BR conditioned on the fact that PK

is successful. There are at most α queries that can be used in TR, since now
the key input of BL is fixed. As the ciphertext input of BR is now also fixed by
TL, there are at most β possibilities for BR. So the chance of success for the
i-th query in this case is ≤ β

2n−q · Pr[PK ]. So for q queries the bound becomes
qαβ

(2n−q)(2n/2−α)
.

Case 2: Assume Qi is used in position TL and BR. Then, Ki = Xi. The query Qi

can be used in these two positions at the same time if the randomly determined
right-half XOR-output ZR

i is equal to the right-half of the key, KR
i = XR

i . This
event is called OK and its probability of success can be upper bounded for Qi

by Pr[OK ] ≤ 1
2n/2 .

We now upper bound the number of queries that can be used in TR conditioned
on the fact the OK is successful. There are at most α queries that can be used
in TR such that ZL

TR = KL
i holds. Hence, there are at most α queries that can

be used in BL. We denote the chance that ZL
BL = ZL

i for the i-the query as

13



Pr[ZL
i ]. This event can thus be upper bounded by α

2n/2−α
· Pr[OK ] ≤ α

2n−2n/2α
.

For q queries we can upper bound this case by qα
2n−2n/2α

. ⊓⊔

Proposition 3 (CollTopRows(Q)).

Pr[CollTopRows(Q)] ≤
qβ

2n − q

Proof. In this case we consider a collision in the top row, with 1BL = 2BL and
1BR = 2BR. This implies S = S′ and T ′ = T . Furthermore it implies M 6= M ′,
because otherwise we would have 1TL = 2TL and 1TR = 2TR. Regarding to this
constraints we have to upper bound the probability that the i-th query can be used
such that

(ES(M)⊕M,ET (M)⊕M) = (ES′(M ′)⊕M ′, ET ′(M ′)⊕M ′).

Note, that no internal collision has happened before, i.e., ¬InternalColl(Q), and
therefore the chaining values are always different. First assume that the last query
is used twice or more. In order to find a collision in the top-row, the last query must
be used in the top-row or otherwise the success probability is zero. The last query
cannot be used in 1TL and 2TL or else 1TL = 2TR and M = M ′ would follow.
The last query also cannot be used in 1TL and 2TR or else S = T ′ = S′ = T would
follow.

Now assume that Qi is used once, WLOG in 1TL. Then there are at most β
pairs of queries for 1TR,2TR that form a collision. So there are at most β queries
that can be used in 2TL that may form a collision with the XOR-output of the
last query used in 1TL. The success probability for q queries can therefore be upper
bounded by qβ/(2n − q). ⊓⊔

Proposition 4 (CollLeftColumns(Q)).

Pr[CollLeftColumns(Q)] ≤ q

(

α2(α2 + 2γ + 1) + αγ + α

2n − q
+

α3 + 2α2 + α

(2n/2 − α)2

)

The proof can be found in Appendix B.

Proposition 5 (CollRightColumns(Q)).

Pr[CollRightColumns(Q)] ≤ q

(

α2(α2 + 2γ + 1) + αγ + α

2n − q
+

α3 + 2α2 + 1

(2n/2 − α)2

)

Proof. Due to the symmetric structure of MDC-4 this proof is essentially the same
as for proposition 4. ⊓⊔

Proposition 6 (CollBothColumns(Q)).

Pr[CollBothColumns(Q)] ≤ q

(

γα2 + γ2

2n − q
+

2α

(2n/2 − α)2

)
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The proof of Proposition 6 is given in Appendix A.

Proposition 7 (Preimage(Q)).

Pr[Preimage(Q)] ≤
q(4 + β2)

2n − q

Proof. The adversary can use the last query either once or twice. If it is used twice,
it is used at least once in the bottom row.

Case 1: Assume first, that the last query is used once and that it is used in the
top row. Assume WLOG that it is used in 1TL. Since there are at most β
queries that can be used in 1BL and also at most β queries for 1BR, the success
probability is upper bounded for q queries by qβ2/(2n − q).
Now assume that the last query is used once and that it is used in the bottom
row. Whether it is used in 1BL or 1BR, the success probability in each case for
one query is ≤ 1/(2n − q).
So the total success probability for q queries for this case is upper bounded by
q(2 + β2)/(2n − q).

Case 2: Now, assume that the last query is used twice. So it is used exactly once in
the bottom row and the analysis of Case 1 (bottom row) gives an upper bound
of 2q/(2n − q).

⊓⊔

Proposition 8 (Lucky(Q)). Let n, q ∈ N, n ≥ q. Let α, β, and γ be as in Theorem

1 with eq2n/2/(2n − q) ≤ α and eq/(2n − q) ≤ β. Set τ = α(2n−q)

q2n/2 and ν = β(2n−q)
q .

Then

Pr[Lucky(Q)] ≤
q2

γ(2n − q)
+ 2q2n/2eq2

n/2τ(1−ln τ)/(2n−q) + q2neq2
nν(1−ln ν)/(2n−q).

A proof can be found in [32, Appendix B].

4 Conclusion

We have derived the first collision security bound for MDC-4, a double length
block cipher based compression function which takes 4 calls to hashing a message
block using a (n, n) block-cipher. Although MDC-4 is structurally quite different
from MDC-2, it is somewhat surprising that the result given by Steinberger for
MDC-2 (274.91) and our result for MDC-4 (274.76) are numerically quite similar –
although we have applied much more economical proof techniques. This leads to
open questions we have not been able to find satisfying answers for as, e.g., why
are these results so similar? One possible answer is, that MDC-2 and MDC-4 are
security-wise very similar. This would lead to the conclusion that MDC-4 is totally
dominated by MDC-2. Another answer might be that the limitations are due to
the applied techniques in the proofs. Then it would be interesting and important to
find new proof methods that help overcome these.
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A Proof of Proposition 6

In case 1, we discuss the implication if the last query is only used once, the cases
2-4 give bounds if the last query is used at least twice.

Case 1: The last query is used exactly once. We can WLOG assume the it is either
used in 1TL or 1BL.

Subcase 1.1: The last query is used in position 1BL. Since 1BR = 2BR,
there are at most γ pairs of queries in the query history that can be used
for position 1BR,2BR. Now, for any one query 2BR, there are at most α
matching queries in position 2TL and at most α matching queries in 2TR.
Since the queries in 2TL and 2TR uniquely determine the query 2BL, there
are at most γα2 queries that can be used for 2BL. Therefore the last query
has a chance of being successful of ≤ γα2/(2n − q). For q queries, the total
chance of success in this case is ≤ qγα2/(2n − q).
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Subcase 1.2: The last query is used in position 1TL. There are at most γ
possible pairs of queries that can be used for 1BL and 2BL and there are at
most γ possible queries that can be used for 1BR and 2BR. We now upper
bound the probability that the last query can be used in 1TL assuming a
collision. There are at most γ2 pairs of queries that can be used for 1BL

and 1BR. Therefore the success probability of the last query can be upper
bounded by ≤ γ2/(2n − q) and for q queries by qγ2/(2n − q).

Case 2: The last query is only used in the bottom row. Then it is used exactly
twice, WLOG in positions 1BL and 2BR. This would imply U = V ′ which then
– in the case of success – implies InternalColl(Q).

Case 3: The last query is only used in the top row. We can WLOG assume it is
used in 1TL. We can use the same reasoning as in Subcase 1.2 and therefore
extend Subcase 1.2 to also handle this slightly more general situation here.

Case 4: The last query is used at least once in the bottom row and at least once in
the top row. We can WLOG assume that it is used in position 1TL. Using the
same argument as for Case 2, the last query must then appear exactly once in
the bottom row. The following four subcases discuss the implications of the last
query being also used in 1BL, 1BR, 2BL and 2BR. Note that the adversary
may use it also a second time – apart from 1TL– in the top row but this does
not change our bounds.

Subcase 4.1: The last query is also used in 1BL. The left half of the XOR-
output of 1TL has a chance of being equal to its key input (i.e., the key
input of 1BL) of ≤ 1/(2n/2 −α). The following analysis is now based on the
fact the the left half of the XOR-output has matched the left half of the key
input. Since we now also know the left half of the XOR-output of 2BL, there
are at most α queries that can be used in 2BL. The chance that the right
half of the XOR-output of 2BL matches the right half of the XOR-output of
1BL is therefore ≤ α/(2n/2 −α). So for q queries the total chance of success
is ≤ qα/(2n/2 − α)2.

Subcase 4.2: The last query is also used in 1BR. The same arguing as for
Subcase 4.1 can be used (apart from exchanging ’left’ and ’right’) and the
bound for q queries is again ≤ α/(2n/2 − α)2.

Subcase 4.3 The last query is also used in position 2BL. There are at most
γ possible pairs of query in the query history that can be used for the pair
1BR, 2BR that form a collision. The probability that the right half of the
XOR-output of 1TL matches the right half of its key input (i.e., for the
last query being also used in 1BR) is ≤ 1/(2n/2 − α). Conditioned on the
fact that the right half of the XOR-output is now fixed there are at most
α queries that can be used in 1BL such that the XOR-outputs of 1BL and
2BL collides. The probability that the left half of the XOR-output of 1TL

is equal to the left half of the key of 1BL is therefore ≤ α/(2n/2 − α) and
the total chance of success for q queries is ≤ qα/(2n/2 − α)2.
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Subcase 4.4 The last query is also used in 2BR. The same arguing as for
Subcase 4.3 can be used (apart from exchanging ’left’ and ’right’) and the
bound for q queries is again ≤ qα/(2n/2 − α)2. ⊓⊔

B Proof of Proposition 4

Proof. Since 1TL 6= 1TR and 2TL 6= 2TR always, a query can never be used more
than twice in the top row. First assume that a query is used twice in the top row.
Then, either 1TL = 2TL or 1TR = 2TR. If 1TR = 2TR and – by precondition –
1BR = 2BR, it follows that 1TL = 2TL, i.e. the success probability of this case is
zero since this would not lead to a collision (or we would have given the collision to
the adversary before). The case 1TL = 2TL is upper bounded by Lemma 3. The
remaining case, i.e. all queries used in the top row are pairwise different, is upper
bounded by Lemma 4. Since no cases are left, a union bound gives our claim.

⊓⊔

Lemma 3. Let S 6= T , S′ 6= T ′, 1BL 6= 2BL and 1BR = 2BR. Assume that
1TL = 2TL. Then,

Pr[HMDC-4(M,S, T ) = HMDC-4(M ′, S′, T ′)] ≤ q ·

(

γα+ α2

N − q
+ 2

α2 + 1

N1/2 − α

)

Proof. Since 1TL = 2TL, it follows that 1TR 6= 2TR. It suffices to analyze the
disposition of the last query in in 1TR, 1BL, 2TR, and 2BL since a usage of the
last query in 1TL and 2TL reverts to this case. The same is true for the usage of
the last query in 1BR and 2BR.

Case 1: The last query is used exactly once in either 1TR, 1BL, 2TR, or 2BL;
we WLOG assume that it is used in 1TR or 1BL.
Subcase 1.1 The last query is used in position 1TR. There are at most γ queries

that can be used in 1BL, 2BL that form a collision. So there are at most γα
queries for the pair (1BL, 2TR). The output of the last query is completely
determined by that pair so the last query has a chance of success of ≤ γα/N ′

and for q queries ≤ qγα/(N − q).
Subcase 1.2 The last query is used in position 1BL. The key input of the last

query admits at most α possible queries for 1TR. Since the left half of the
XORoutput of 1TR is equal to the left half of the XORoutput of 2TR,
there are at most α2 queries that can be used for 2TR. Since the last query
together with 2TR uniquely determines the number of possible queries in
2BL, the probability of success of the last query is upper bounded, for q
queries, by ≤ qα2/(N − q).

Case 2: The last query is used twice or more. By symmetry we can assume that the
last query is used exactly twice, either in positions 1TR and 1BL or in positions
1TR, 2BL.
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Subcase 2.1 The last query is used in positions 1TR and 1BL. The left output
of the query has chance of ≤ 1/(N1/2 − α) of succeeding since it must match
the left half of the key. Conditioned on the success, there are at most α possible
queries in 2BL that share the same left XORoutput. Now, for any query in
2BL, there are at most α queries that can be used in 2TR. Since the left half
of the XORoutput of 2TR must match the left half of the XORoutput of the
last query in 1TR, the left half as a chance ≤ α2/(N1/2 −α) of succeeding. The
total success probability for q queries is ≤ (α2 + 1)/(N1/2 − α).

Subcase 2.2 The last query is used in position 1TR and 2BL. There are at most
α possible choices for 2TR given the key input of the last query. Since the left
halves of the XORoutputs of 1TR and 2TR must be equal, the right half of the
last query has a chance of success of ≤ q/(N1/2−α). If the left half is successful,
there are at most α possible queries for 1BL (with that right half XORoutput),
so the left half has a chance of success of ≤ α/(N1/2 − α). For q queries, the
total probability of success is ≤ q(α2 + 1)/(N1/2 − α).

Adding up Case 1 and Case 2, the overall chance of success is

≤ q ·
(

γα/(N − q) + α2/(N − q) + 2(α2 + 1)/(N1/2 − α)
)

⊓⊔

Lemma 4. Let S 6= T , S′ 6= T ′, 1BL 6= 2BL and 1BR = 2BR. Assume that
1TL 6= 2TL and 1TR 6= 2TR. Then,

Pr[HMDC-4(M,S, T ) = HMDC-4(M ′, S′, T ′)] ≤ q ·

(

α4 + 2αγ + 2γ

N − q
+ 4

α2 + 1

N1/2 − q

)

.

Proof. Case 1: The last query is only used once, WLOG in either 1BL, 1TL, or
1TR.

Subcase 1.1 The last query is used in position 1BL. There are at most α possible
choices for query in 1TL, and at most α possible queries for 1TR. Then, since
1BR = 2BR, there are at most α2 possible queries for 2TL and at most α2

possible queries for 2TR. So there are at most α4 possible choices for 2BL.
So the probability of success for q queries is ≤ qα4/(N − q).

Subcase 1.2 The last query is used in position 1TL. There are at most γ possible
pairs for queries for 1BL and 2BL. For any query in 2BL, there are at
most α queries in 2TL. Since the output of the last query is completely
determined by the queries (1BL,2TL) the probability of success for q queries
is ≤ qαγ/(N − q).

Subcase 1.3 The last query is used in position 1TR. The analysis is the same
as for 1TL giving the same bound of ≤ qαγ/(N − q).

Case 2: The last query is used twice or more. Then it is used at least once in the
top-row, WLOG at least in 1TL or 1TR. Our analysis assumes that the last
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query is used in 1TL, since the case where it is used in 1TR is essentially the
same (we adjust for this second case by doubling our probabilities of success for
the 1TL case).
Subcase 2.1 The last query is also used in 1BL. The left half of theXORoutput

of the last query has chance ≤ 1/(N1/2 − α) of being successful. If the left
output half is successful, there are at most α different queries 2BL with that
left XORoutput and for each of them there are at most α possible choices
for 2TL. So the right output half has a chance of success of ≤ α2/(N1/2−q).
For q queries, the chance of success is ≤ (α2 + 1)/(N1/2 − q).

Subcase 2.2 The last query is also used in 2BL. Given the key input of the
last query in 2BL, the right half of the XORoutput has a chance of success
of ≤ 1/(N1/2 − α). If the right half is successful, then there are at most α
queries for 1BL so the left half of the XORoutput has a chance of success of
≤ α/(N1/2−α) of being successful. The total chance for q queries is therefore
≤ (α2 + 1)/(N1/2 − q).

Subcase 2.3 The last query is also used in 2TR. It does not appear in 1BL or
2BL (or our analysis of the prior subcases would hold). There are at most
γ pairs for 1BL and 2BL, so the last query has a chance ≤ γ/(N − q) of
success and for q queries ≤ qγ/(N − q).

⊓⊔
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