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Abstract

Yao’s garbled circuit (GC) technique is a powerful cryptographic tool which allows to “en-
crypt” a circuit C by another circuit Ĉ in a way that hides all information except for the final
output. Yao’s original construction incurs a constant overhead in both computation and com-
munication per gate of the circuit C (proportional to the complexity of symmetric encryption).
Kolesnikov and Schneider (ICALP 2008) introduced an optimized variant that garbles XOR
gates “for free” in a way that involves no cryptographic operations and no communication. This
variant has become very popular and has lead to notable performance improvements.

The security of the free-XOR optimization was originally proved in the random oracle model.
Despite some partial progress (Choi et al., TCC 2012), the question of replacing the random
oracle with a standard cryptographic assumption has remained open.

We resolve this question by showing that the free-XOR approach can be realized in the
standard model under the learning parity with noise (LPN) assumption. Our result is obtained
in two steps:

1. We show that the random oracle can be replaced with a symmetric encryption which
remains secure under a combined form of related-key (RK) and key-dependent message
(KDM) attacks;

2. We show that such a symmetric encryption can be constructed based on the LPN assump-
tion.

As an additional contribution, we prove that the combination of RK and KDM security is non-
trivial in the following sense: There exists an encryption scheme which achieves RK security and
KDM security separately, but breaks completely at the presence of combined RK-KDM attacks.

1 Introduction

Yao’s garbled circuit (GC) construction is an efficient transformation which maps any boolean
circuit C : {0, 1}n → {0, 1}m together with secret randomness into a “garbled circuit” Ĉ along with
n pairs of short k-bit keys (W 0

i ,W
1
i ) such that, for any (unknown) input x, the garbled circuit Ĉ

together with the n keys Wx = (W x1
1 , . . . ,W xn

n ) reveal C(x) but give no additional information
about x. Yao’s celebrated result shows that such a transformation can be based on the existence
of any pseudorandom generator [13, 44], or equivalently a one-way function [22].

Originally motivated by the problem of secure multiparty computation [44, 21], the GC construc-
tion has found a diverse range of other applications to problems such as computing on encrypted
data, parallel cryptography, verifiable computation, software protection, functional encryption, and
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key-dependent message security (see [5] for references). Despite its theoretical importance, GC was
typically considered to be impractical due to a large computational and communication overhead
which is proportional to the circuit size. This belief was recently challenged by a fruitful line of
works that optimizes the concrete efficiency of GC-based protocols up to a level that suits large-scale
practical applications [38, 35, 32, 31, 40, 39, 23, 24, 42, 25, 30].

Among other improvements, most current implementations of GCs (e.g., [40, 23, 34, 42, 24])
employ the so-called free-XOR optimization of Kolesnikov and Schneider [29]. While in Yao’s
original construction every gate of the circuit C has a computational cost of few cryptographic
operations (e.g., three or four applications of a symmetric primitive) and a communication cost of
few ciphertexts, Kolesnikov and Schneider showed how to completely eliminate the communication
and computational overhead of XOR-gates. This optimization significantly improves the practical
performance, especially for large or medium size circuits as demonstrated in [29, 28, 40].

As in many cases, this gain in efficiency requires stronger cryptographic assumptions. Unlike
Yao’s GC, which can be based on the existence of standard symmetric-key cryptography, the free-
XOR optimization relies on a hash function H which is modeled as a random oracle [9]. Due to
the known limitations of the random oracle model [17], it is natural to ask:

Is it possible to realize the free-XOR optimization in the standard model?

This question was raised in the original work of Kolesnikov and Schneider [29] and was further
studied in [3, 18]. In [29] it was conjectured that the full power of the random oracle is not really
needed, and that the function H can be instantiated with a correlation-robust hash function [26],
a strong (yet seemingly realizable) version of a hash function which remains pseudorandom even
when it is applied to linearly related inputs. Choi et al. [18] showed that the picture is actually
more complex: correlation robustness alone does not suffice for security (as demonstrated by an
explicit counter-example in the random-oracle model). Instead, one has to employ a stronger form
of hash function which, in addition to being correlation-robust, also satisfies some form of circular
security [16, 10]. While the existence of circular correlation-robust hash functions (a new primitive
introduced by Choi et al. [18]) seems to be a reasonable assumption (significantly weaker than the
existence of a random oracle), it is still unknown how to realize it based on a standard cryptographic
assumption. This leaves open the problem of implementing the free-XOR optimization in the
standard model.

1.1 Our Contribution

We resolve the above feasibility question by showing that the free-XOR optimization can be re-
alized in the standard model under the learning parity with noise (LPN) assumption [20, 11].
This assumption, which can also be formulated as the intractability of decoding a random linear
code, is widely studied by the coding and learning communities and was extensively employed in
cryptographic constructions during the last two decades.

Specifically, we make the following contributions:

1. We introduce a new combined form of Related Key (RK) and Key Dependent Message (KDM)
attacks. Roughly speaking, in such an attack the adversary is allowed to see ciphertexts of
the form Encφ(K)(ψ(K)) where K is the secret key and the functions φ and ψ are chosen by
the adversary from some predefined function families. This notion of security, referred to as
RK-KDM security, generalizes the previous definitions of semantic security under related key
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attacks [3] and key-dependent message attacks [16, 10]. In fact, as shown in Section 5, this is
a strict generalization as there exists an encryption scheme which satisfies both RK-security
and KDM-security separately, but fails to achieve the combined form of RK-KDM security.

2. We prove that the free-XOR construction is secure when instantiated with a semantically-
secure symmetric encryption scheme whose security is preserved under binary linear RK-KDM
attacks. (Essentially, φ(K) = K ⊕∆1 and ψ(K) = K ⊕∆2 for any fixed shift vectors ∆1 and
∆2.)

3. We show that the LPN-based symmetric encryption of [19] and its generalization [2] satisfies
RK-KDM security with respect to binary linear functions. In fact, our proof provides a general
template for proving RK-KDM security based on pseudorandomness and joint key/message
homomorphism. This is similar to previous results along these lines [14, 2, 6, 3].

Altogether our proofs turn to be quite simple (which we consider as a virtue), short and modular.
This is due to the following choices:

Encryption vs. Hashing. The key point in which we deviate from [29, 18] is the use of (ran-
domized) symmetric encryption, as opposed to deterministic hash function (or some other pseudo-
random primitive). Indeed, the GC construction essentially employs the hash function only as a
“computational one-time pad”, namely, as a mean to achieve secrecy. Therefore, in terms of func-
tionality it seems best (i.e., more general) to abstract the underlying primitive as an encryption
scheme. While this is true in general for the standard GC (cf. [32, 4] and the recent discussion
in [7]), this distinction becomes even more important in the context of the free-XOR variant. In
this case, the underlying primitive should satisfy stronger notions of security (RKA and KDM),
and this turns to be much easier for randomized encryption than for pseudorandom objects such
as hash functions. (See also [3].) As a secondary gain, the new security definition that arises for
symmetric encryption (RK-KDM semantic security) is natural and compatible with existing well-
studied notions. In contrast, the analog definition of RK-KDM security for hash functions (circular
correlation-robustness) appears less natural as there is no obvious interpretation for the concepts
of message and key.

GC as Randomized Encoding. It is important to distinguish between the garbled circuit
transformation (i.e., the mapping from C to Ĉ) and the secure function evaluation protocol which
is based on it. The distinction between the two, which is sometimes blurred, can be formulated
via the notion of randomized encoding of functions [27] as done in [4]. Our proofs follow this
abstraction, and show that the free-XOR technique yields computationally private randomized
encoding. At this point one can invoke, for example, the general theorem of [4] to derive a secure
MPC protocol. Similarly, all other applications (cf. [1]) of randomized encoding can be obtained
directly by invoking the reduction from RE to the desired task. This is the first modular treatment
of the free XOR variant.

1.2 Discussion

The main goal of this work is to provide a solid theoretical justification for the free-XOR heuristic.
This is part of an ongoing effort of the theory community to explain the security of “real world”
protocols. Several such examples arise when trying to import random-oracle based protocols to
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the standard model. In this context, [17] suggested a two-step methodology: (1) “identify useful
special-purpose properties of the random oracle” and (2) show that these properties “can be also
provided by a fully specified function (or function ensemble)”. In the context of the free-XOR
technique, the first step was essentially taken by [18] who identified the extra need of “circular
security”, while the current paper completes the second step which involves, in addition, some
fine-tuning of step 1.

It should be emphasized that we do not suggest to replace the hash function with an LPN-based
scheme in practical implementations (though we do not rule out such a possibility either). Still, we
believe that the results of this work are useful even if one decides, due to efficiency considerations, to
use a heuristic implementation. Specifically, viewing the primitive as an RK-KDM secure encryption
scheme allows to rely on other heuristic solutions such as block ciphers, for which RKA and KDM
security are well studied.

Other related works. The notions of key-dependent message security (aka circular security)
and related-key attacks were introduced by [16, 10] and [8]. Both notions were extensively studied
(separately) during the last decade. Most relevant to this paper is our joint work with Harnik and
Ishai [3]. This work introduces the notion of semantic security under related-key attacks, describes
several constructions, and shows that protocols employing correlation-robust hash functions and
their relatives (e.g., [37, 26]), can be securely instantiated with RKA-secure encryption schemes. In
addition, [3] suggested to apply a similar modification to the free-XOR variant, which was believed
to be secure when instantiated with correlation-robust hash functions [29]. As mentioned, the latter
claim was found to be inaccurate, and therefore the results of [3] cannot be used in the context of
the free-XOR technique. (The other applications mentioned in [3] remain valid.)

Subsequent work. Following our work, Böhl, Davies, and Hofheinz [15] constructed several RK-
KDM public-key encryption schemes based on various intractability assumptions such as the deci-
sional Diffie-Hellman (DDH) assumption, the Learning with Errors (LWE) assumption, Quadratic
Residuosity and decisional Diffie-Hellman (QR+DDH) assumption, and the Decisional Composite
Residuosity (DCR) assumption. The proofs of security follow the general template suggested here
(as abstracted in Remark 3.7). Furthermore, some of the resulting schemes (the one based on DDH,
LWE, and QR+DDH) support binary linear relations and can be therefore used for the free-XOR
optimization. This further demonstrates the wide applicability of our approach.

Organization. Following some preliminaries (Section 2), in Section 3 we define semantic security
under RK-KDM attacks and describe an LPN-based implementation. Section 4 is devoted to the
garbled circuit construction, including definitions (in terms of randomized encoding), a description
of Yao’s original construction and the free-XOR variant, and a proof of security that reduces the
privacy of the free-XOR GC to the RK-KDM security of the underlying encryption. In Section 5,
we describe an encryption scheme which is KDM secure and RKA secure but not RK-KDM secure,
separating the latter notion from the formers. Finally, we end with a short conclusion in Section 6.

2 Preliminaries

We let ◦ denote string concatenation. Strings are often treated as vectors or matrices over the
binary field F2, accordingly string addition is interpreted simply as bit-wise exclusive-or. When
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adding together two matrices An×k and BN×k where n < N we assume that the last N −n missing
rows of A are padded with zeroes. The same convention holds with respect to vectors (i.e., when
k = 1).

2.1 Randomized functions

We extensively use the abstraction of randomized functions which can be seen as a special case of
Maurer’s Random Systems [36]. A randomized function is a two argument function f : X×R→ Y
whose first input x is referred to as the deterministic input and the second input is referred to as
the random input. For every deterministic input x, we think of f(x) as the random variable induced

by sampling r
R← R and computing f(x; r) ∈ Y . When a (randomized) algorithm A gets an oracle

access to a randomized function f , we assume that A has control only on the deterministic input;
namely, if A queries f with x, it gets as a result a fresh sample from f(x). Note that Af itself
defines a randomized function. We say that {fs}s∈{0,1}∗ is a collection of randomized functions if fs
is a randomized function for every key s. By default, all the collections are efficiently computable in
the sense that fs(x) can be sampled in time poly(|s|+ |x|). We note that a sequence of randomized
functions {fn}n∈N can be viewed as a (degenerate) collection of randomized functions {f ′s}s∈{0,1}∗
where f ′s = f|s|. Under this convention, efficiency means that fn(x) should be computable in time
poly(n, |x|). Since the input length of fn will always be polynomial in n, this boils down to standard
poly(n)-time efficiency.

Indistinguishability. A pair of randomized functions f, g is equivalent f ≡ g if for every input
x the random variables f(x) and g(x) are identically distributed. A pair f = {fs} and g = {gs} of

collections of randomized functions is computationally indistinguishable, denoted by f
c≡ g, if for

every efficient adversary A it holds that∣∣∣∣∣ Pr
s
R←{0,1}k

[Afs(1k) = 1]− Pr
s
R←{0,1}k

[Ags(1k) = 1]

∣∣∣∣∣ < ε(k),

for some negligible function ε. We note that the key of the function s is chosen at random and then
fixed across invocations, while the internal randomness of the function is refreshed in each oracle
call.

Let {fs} , {gs} and {hs} be collections of randomized functions. We will need the following
standard facts (cf. [36]).

Fact 2.1. If {fs}
c≡ {gs} and A is an efficient function then the collections of randomized functions{

Afs
}
s

and {Ags}s which are indexed by s, are computationally indistinguishable.

Fact 2.2. If {fs}
c≡ {gs} and {gs}

c≡ {hs} then {fs}
c≡ {hs}.

3 RK-KDM Security

A pair of efficient probabilistic algorithms (Enc,Dec) is a symmetric encryption scheme over the
message-space {0, 1}∗ and key-space {0, 1}k (where k serves as the security parameter) if for every
message M ∈ {0, 1}∗

Pr
s
R←{0,1}k

[Decs(Encs(M)) = M ] = 1.
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We also assume (WLOG) length-regularity, i.e., that messages of equal length M,M ′ are always
encrypted by ciphertexts of equal length |Encs(M)| = |Encs(M ′)|.

Our security definitions are parameterized by a family of key-derivation and key-dependent-
message functions (which are also indexed by the security parameter k)

ΦRKA =
{
φ : {0, 1}k → {0, 1}k

}
, ΨKDM =

{
ψ : {0, 1}k → {0, 1}∗

}
.

By default, we assume that ΦRKA contains (at least) the identity function and that ΨKDM contains
(at least) all constant functions ψM : {0, 1}k → M for every M ∈ {0, 1}k. The families ΦRKA

and ΨKDM determine the legal relations between the related-keys, and the key-related messages.
RK-KDM Security is defined via the following pair of real/fake oracles Reals and Fakes which are
indexed by a key s ∈ {0, 1}k. For a query (φ ∈ ΦRKA, ψ ∈ ΨKDM), the oracle Reals returns a
sample from the distribution Encφ(s)(ψ(s)), whereas, the oracle Fakes returns a sample from the

distribution Encφ(s)(0
|ψ(s)|).

Definition 3.1 (RK-KDM-secure encryption). A symmetric encryption scheme (Enc,Dec) is
semantically-secure under Related-Key and Key-Dependent Message Attacks (in short, RK-KDM-

secure) with respect to ΦRKA,ΨKDM if Reals
c≡ Fakes where s

R← {0, 1}k.

Remarks:

• Relation to previous definitions. We note that the above definition generalizes semantic
security under related-key attacks [3] and semantic security under key-dependent message at-
tacks [10]. Indeed, the former notion is obtained by restricting ΨKDM to contain only constant
functions, and the latter is obtained by letting ΦRKA contain only the identity function. If
both restrictions are applied simultaneously, the definition becomes identical to standard se-
mantic security under Chosen-Plaintext Attacks. On the other hand, as we show in Section 5,
a scheme may satisfy both RKA security and KDM security (separately) without achieving
the combined form of RK-KDM security.

• Non-Adaptivity. Definition 3.1 allows the adversary to choose its queries in a fully adaptive
way. One may define a seemingly weaker non-adaptive variant in which the adversary has to
specify all its queries at the beginning of the game. We note that this weaker variant suffices
for the free-XOR application.

• LIN RK-KDM security. We will be interested in linear functions over F2. Namely, both
ΦRKA and ΨKDM contain functions of the form s 7→ s+ ∆ for every ∆ ∈ Fk2. To be compatible
with standard semantic security, we require that ΨKDM also contains all fixed functions. Using
a compact notation, we can describe each function in ΨKDM by a message M and a bit σ
and let gM,σ : s 7→ (M + (σ · s)). If the length of M is larger than k, we assume that (σ · s)
is padded with zeroes at the end. Hence, the adversary may ask for an encryption of the
shifted key concatenated with some fixed message. We refer to this notion as LIN RK-KDM
security.1

1A seemingly weaker definition of LIN RK-KDM security restricts the KDM family to functions gM,σ : s 7→
(M + (σ · s)) where M and s are of the same length k. We note that a scheme that satisfies this notion can be
trivially converted into a scheme that satisfies our definition (which supports M longer than s). This can be done
by partitioning the long message M into t blocks M1, . . . ,Mt of length k each, and concatenating the encryptions of
these blocks. A query of the form (f ∈ ΦRKA, gM,σ) can then be emulated by a linear query (f ∈ ΦRKA, gM1,1) and
t− 1 fixed-message query (f ∈ ΦRKA, gMi,0).
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3.1 LPN-based Construction

We recall the learning parity with noise (LPN) problem, due to [20, 11]. For a noise parameter
ε ∈ (0, 1

2), a positive integer k and a vector s ∈ Fk2, define a randomized function LPNε,s which

ignores its input and in each invocation outputs a pair (a, y = as + e) ∈ Fk2 × F2 where a
R← Fk2 is

a fresh random vector and e
R← Berε is a fresh “error” bit which takes the value 1 with probability

ε. We view LPNε,s as an oracle that provides noisy evaluations of the linear function fs : x 7→ s · x
with respect to random inputs. The LPNε assumption asserts that it is hard to learn the function
(i.e., recover s) given polynomially many samples.

Assumption 3.2 (LPNε). For every efficient adversary A the winning probability

Pr
s
R←Fk2

[ALPNε,s(1k) = s] is negligible in k.

It is widely believed that LPNε is hard for any constant ε ∈ (0, 1
2), and the best known algorithm

runs in time 2Θ(n/ logn) [12]. In the following we describe the LPN-based symmetric encryption
scheme of [2] which is a variant of the scheme of [19]. We begin with few definitions.

Error Correcting Codes. A pair of efficient algorithms (Code,Cor) is a linear δ-error correcting
codes with an expansion L : N → N if for every message length ` ∈ N and codeword length
L = L(`) ∈ N the followings hold:

• (Linearity) For every pair of messages x, x′ ∈ F`2, Code(x) + Code(x′) = Code(x + x′) ∈ FL2 .
Note that this means that Code(x) = Gx for some generating matrix G ∈ FL×`2 . Furthermore,
since Code is efficient, one can efficiently find such a generating matrix.

• (δ-error correction) For every message x ∈ F`2 and every error vector e ∈ FL2 of Hamming
weight at most δL we have that Cor(Code(x) + e) = x.

We note that the efficiency requirement implies that the expansion of the code L(`) is polynomially
bounded.

Chopped noise distribution. For constant ε ∈ (0, 1), let Bert×Nε be the distribution over t×N
binary matrices obtained by setting each entry to 1 independently with probability ε. For a constant
ε < δ < 1, we define the δ-“chopped” version of Bert×Nε , denoted by Bert×Nε,δ , to be the distribution

obtained by choosing E
R← Bert×Nε and swapping each column of E whose hamming weight exceeds

δt with the all zero column. By Chernoff bound, when N and t are polynomial in k and ε and δ
are constants, the statistical distance between Bert×Nε and Bert×Nε,δ is negligible in k.

Construction 3.3 (LPN-construction). The scheme is parameterized with constants 0 < ε <
δ < 1

2 , polynomially-bounded functions N = N(k), ` = `(k) and with an efficient linear δ-error
correcting code (Code,Cor). We let t = t(k) denote the length of a codeword which corresponds to
a message of length `(k).

• Key generation: The private key of the scheme is a matrix S which is chosen uniformly at
random from Fk×N2 .
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• Encryption: To encrypt a message M ∈ F`×N2 , choose a random A
R← Ft×k2 and a random

noise matrix E
R← Bert×Nε,δ . Output the ciphertext

(A,A · S + E +GM),

where G ∈ Ft×`2 is the generating matrix of the code.

• Decryption: Given a ciphertext (A,Z) apply the correction algorithm Cor to each of the
columns of the matrix Z −AS and output the result.

Observe that the correction algorithm never errs as E never contains a column whose Hamming
weight is larger than δt. The scheme is also highly efficient. Encryption requires only cheap matrix
operations and decryption requires in addition to decode the code. It is shown in [2] that for
proper choice of parameters both encryption and decryption can be done in quasilinear time in
the message length (for sufficiently long message).2 See [19] for a practical evaluation of similar
LPN-based encryption schemes.

Construction 3.3 was proven to be semantically secure based on the intractability of the LPNε
problem [2]. Security against KDM and RKA attacks with respect to linear functions was further
proven in [2] and [3]. We now generalize these results and show that the scheme is LIN RK-KDM
secure.

Theorem 3.4. Assuming that LPNε is hard, the above construction is LIN RK-KDM secure.

3.2 Proof of Theorem 3.4

Through this section we keep the convention that S ∈ Fk×N2 is a key, ∆ ∈ Fk×N2 is a key-shift
vector, M ∈ F`×N2 is a message, b ∈ {0, 1} is a bit, and the pair (A,Z) ∈ Ft×k2 ×Ft×N2 is a potential
ciphertext. In addition, we let Enc denote the LPN encryption defined in Construction 3.3.

Recall that our goal is to prove that for a random key S
R← Fk×N2 the randomized functions

RealS : (∆,M, b) 7→ EncS+∆(M + bS)

FakeS : (∆,M, b) 7→ EncS+∆(0`×N ),

are indistinguishable. This will be proven via a sequence of hybrids.
Let RS be a randomized function which ignores the key S and the given input, and outputs

a fresh uniformly chosen matrices A
R← Ft×k2 and Z

R← Ft×N2 . (If RS is applied to the same input
more than once it responds with independent answers.)

The following lemma shows that the LPN encryption scheme is not only semantically secure
but also pseudorandom in the following sense:

Lemma 3.5. Assuming that LPNε is hard, {EncS}
c≡ {RS}, where S

R← Fk×N2 .

The proof is implicit in [2], and we include it here for completeness.

2This asymptotically fast implementation is based on efficient noise sampling algorithm, fast error correcting code
(e.g., Spielman’s codes [43]) and fast rectangular matrix multiplication. The latter requires N, ` > k6.
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Proof. Fix some ε ∈ (0, 1
2). For polynomials N, t = poly(k), and S

R← Fk×N2 we define the random-

ized functions LPNt×NS andRt×NS which have no input (or equivalently ignore their input) as follows.

In each call, LPNt×NS samples a random matrix A
R← Ft×k2 , a random noise matrix E

R← Bert×Nε , and
outputs the pair (A,A ·S+E). The function Rt×NS is defined similarly to RS , namely, in each call it

simply outputs a fresh random pair A
R← Ft×k2 and Z

R← Ft×N2 . The well-known search-to-decision
reduction of [11] shows that, under the LPNε assumption,{

LPNt×NS

}
c≡
{
Rt×NS

}
, (1)

for N = 1 and any polynomial t. A standard hybrid argument allows to extend Eq. 1 to the case
of an arbitrary polynomial N (and arbitrary polynomial t), as done in [2]. It remains to show that
Eq. 1 implies the lemma.

Fix t,N to be the parameters from Construction 3.3, and let G ∈ Ft×`2 be the generator matrix
in use. Define an oracle aided function A(·) which given M ∈ F`×N2 calls its oracle O to obtain a
pair (A,R) and outputs (A,R+GM).

For every S we have that

RS ≡ AR
t×N
S and ALPNt×NS

c≡ EncS .

The first part follows immediately from the definition of A. To see the second part, note that the
only difference between the two distributions is due to the fact that EncS uses the chopped noise

distribution Bert×Nε,δ whereas ALPNt×NS uses the non-chopped distribution Bert×Nε . The statistical
distance between the two distributions is negligible in k, and therefore a computationally bounded
adversary (which makes only a polynomial number of calls to these distributions) cannot distinguish

between EncS to ALPNt×NS with more than negligible advantage.
By combining this with Eq. 1 and Fact 2.1, we have that for a random S

RS ≡ AR
t×N
S

c≡ ALPNt×NS
c≡ EncS ,

and the lemma follows by transitivity (Fact 2.2).

We will need the following key observation:

Lemma 3.6. There exists an efficient oracle machine F (·) : (∆,M, b) 7→ (A,Z) such that

RealS ≡ FEncS and FRS ≡ RS ,

for every S ∈ Fk×N2 .

Proof. We define F as follows: Given a query (∆,M, b) the machine F calls the oracle with input
M , gets back the answer (A′, Z ′), and outputs the pair A = A′ +GH and Z = Z ′ + A∆ where G

is the generating matrix used in Construction 3.3 and H ∈ F`×k2 is the matrix
( b·Ik×k

0`−k×k

)
.

Fix a key S and a query (∆,M, b), we will show that FEncS (∆,M, b) is distributed identically
to RealS(∆,M, b). Let (A′, Z ′) be a fresh sample from EncS(M). Clearly, A = A′ +GH is uniform

in Ft×k2 since A′ is uniform. In addition, since Z ′ = A′ · S + E + G ·M where E
R← Bert×Nε,δ , and

since A′ = A+GH we can write Z as

(A+GH) · S + E +G ·M +A∆ = A · (S + ∆) + E +G · (M +HS)

= A · (S + ∆) + E +G · (M + bS),
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where the first equality is due to linearity, and the second equality follows from the definition of
H. It follows that (A,Z) is a fresh sample from EncS+∆(M + bS).

To prove that FRS ≡ RS , it suffices to show that for any fixed query (∆,M, b) the transfor-
mation from (A′, Z ′) to (A,Z) is an affine invertible mapping. This follows immediately from the
definition of F .

We conclude that for S
R← Fk×N2 ,

RealS ≡ FEncS
c≡ FRS ≡ RS . (2)

Indeed, the first and third transitions are due to Lemma 3.6, and the second transition is due to
Lemma 3.5 and Fact 2.1.

To complete the argument we need two additional definitions. First we define an oracle machine
which given an oracle O and an input (∆,M, b) outputs a sample from FO(∆, 0`×N , 0); namely,
it replaces M, b with zeroes and proceeds as FO. By abuse of notation, we refer to this oracle
as F (·, 0`×N , 0). Similarly, we let RealS(·, 0`×N , 0) denote the randomized function which maps
(∆,M, b) to RealS(∆, 0`×N , 0). Note that the latter is just an equivalent formulation of FakeS .
Moreover, we can write:

RS ≡ F (·, 0`×N , 0)RS
c≡ F (·, 0`×N , 0)EncS(0`×N )

≡ RealS(·, 0`×N , 0) ≡ FakeS , (3)

where the first and third transitions are due to Lemma 3.6, and the second transition is due to
Lemma 3.5 and Fact 2.1. By combining Eq. 2 and Eq. 3 with Fact 2.2 we get that RealS

c≡ FakeS ,
and Theorem 3.4 follows.

Remark 3.7 (Abstraction). The proof of Theorem 3.4 provides a general template for proving
RK-KDM security. Specifically, the properties needed are pseudorandomness (in the sense of
Lemma 3.5) and key/message homomorphism (in the sense of Lemma 3.6). Indeed, observe that,
apart from the proofs of Lemmas 3.5 and 3.6, the overall proof can be written in a fully generic
form with no specific references to the LPN construction.

4 Yao’s Garbled Circuit

4.1 Definition

Let f = {fn}n∈N be a polynomial-time computable function. In an abstract level, Yao’s garbled
circuit technique [45] constructs a randomized function f̂ = {f̂n}n∈N which “encodes” f in the sense
that for every x the distribution f̂(x) reveals the value of f(x) but no other additional information.
We formalize this via the notion of computationally private randomized encoding from [4], while
adopting the original definition from a non-uniform adversarial setting to the uniform setting (i.e.,
adversaries are modeled by probabilistic polynomial-time Turing machines).

Definition 4.1 (Computational randomized encoding). Let f = {fn : {0, 1}n → {0, 1}`(n)}n∈N
be an efficiently computable function and let f̂ = {f̂n : {0, 1}n × {0, 1}m(n) → {0, 1}s(n)}n∈N be an
efficiently computable randomized function. We say that f̂ is a computational randomized encod-
ing of f (or encoding for short), if there exist an efficient recovery algorithm Rec and an efficient
probabilistic simulator algorithm Sim that satisfy the following:
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• Perfect correctness. For any n and any input x ∈ {0, 1}n,

Pr[Rec(1n, f̂n(x)) 6= fn(x)] = 0,

where the probability is taken over the internal randomness of f̂n.

• Computational privacy. The randomized function f̂n(·) is computationally indistinguish-
able from the randomized function Sim(1n, fn(·)).

Remark 4.2. The above definition uses n both as an input length parameter and as a cryptographic
“security parameter” quantifying computational privacy. When describing the construction, it will
be convenient to use a separate parameter k for the latter, where computational privacy will be guar-
anteed as long as k = nε for some constant ε > 0. (An alternative definition which is parameterized
by both the input length and the security parameter is discussed in Appendix A.) Furthermore,
while it is convenient to define randomized encoding for a single function f , Yao’s construction
(as well as the free-XOR variant) actually provides an efficient compiler that maps the function
f (represented as a Boolean circuit) into (circuit representations of) the encoding f̂ , the recovery
algorithm Rec and the simulator Sim. (See [5] for formal definition.) In this sense the encoding is
fully constructive.

4.2 Yao’s Construction and the Free XOR Variant

Let f = {fn : {0, 1}n → {0, 1}`(n)}n∈N be a polynomial-time computable function computed by the
uniform circuit family {Cn}n∈N. In the following we describe Yao’s construction and its free-XOR
variant. Our notation and terminology borrow from previous presentations of Yao’s construction
in [41, 38, 33, 4].

Double-keyed Encryption. Let k = k(n) be a security parameter (by default, k = nε for
some constant ε > 0). We will employ a symmetric encryption scheme (E2, D2) which is keyed
by a pair of k-bit keys K1,K2. Intuitively, this corresponds to a double-locked chest in the sense
that decryption is possible only if one knows both keys. There are several ways to implement
such an encryption scheme based on standard single-key symmetric encryption (Enc,Dec) and, for
simplicity, we choose to use

E2
K1,K2

(M) := (EncK1(R),EncK2(R+M)),

D2
K1,K2(C1, C2) := DecK1(C1) + DecK2(C2) (4)

where R is a random string of length |M |. Other choices are also applicable under the LPN
assumption.

The original construction. For each wire i of the circuit Cn we assign a pair of keys: a 0-key
W 0
i ∈ {0, 1}k that represents the value 0, and a 1-key W 1

i ∈ {0, 1}k that represents the value 1.
For each of these pairs we randomly “color” one key black and the other key white. This is done

by choosing ri
R← {0, 1} and by letting ci = ri + b be the color of W b

i . Fix some input x for fn, and

let bi = bi(x) be the value of the i-th wire induced by x. We refer to the key W bi
i as the active key

of the i-th wire.
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The encoding f̂n(x) consists of three parts: (1) The active keys W bi
i of the input wires together

with their colors ci; (2) For each gate a propagation mechanism which allows to translate the colored
active keys of the incoming wires into the colored active keys of the outgoing wires. This mechanism
is implemented via an encryption table (or “gate label”) in which the keys of the outgoing wire are
encrypted under the keys of the incoming wires. (3) For each output wire i, we also append the
semantics of the coloring, i.e., the bit ri. Altogether, one can propagate the values of the colored
active keys (W bi

i , ci) from the inputs to the outputs, and at the end reveal the values of the output
wires by unmasking the colors ci with ri. Intuitively, privacy holds as for non-output wires the
values of the colored active keys reveal nothing on their semantics bi.

Free XOR-gates. Consider a XOR gate with incoming wires i and j and outgoing wire `. The
“free-XOR” optimization modifies the above construction by making sure that the colored active
key of the outgoing wire is simply the sum of the colored active keys of the incoming wires; namely,(

W
b`(x)
` , c`(x)

)
=
(
W

bi(x)
i , ci(x)

)
+
(
W

bj(x)
j , cj(x)

)
, for every input x. (5)

As a result, gate labels are not needed and XOR gates have no effect on the communication
complexity of the encoding, and only a minor effect on the computational complexity.

To satisfy Eq. 5, we apply the following modifications. First, we set the zero-key W 0
` and

coloring r` of a wire which outgoes a XOR gate to be the sum of the zero-keys and coloring of the
incoming wires i and j, namely,

W 0
` = W 0

i +W 0
j , r` = ri + rj .

Second, instead of choosing the one-keys at random, we will choose them based on the zero-keys.
That is, for every wire t we let W 1

t = W 0
t + s where s is a global (secret) shift vector. As a result,

for every pair of values (α, β) ∈ {0, 1}2 for the input wires of a XOR gate, we have that

Wα+β
` = Wα

i +W β
j .

Hence, one can derive the colored active key (W
b`(x)
` , r` + b`(x)) of the output wire by XOR-ing

the colored active keys (W
bi(x)
i , ri + bi(x)), (W

bj(x)
j , rj + bj(x)) of the input wires, as required. A

formal description of the encoding is given in Figure 1.
Our main result shows that, assuming LIN RK-KDM security, the free XOR variant gives rise

to a valid computational encoding:

Theorem 4.3 (Main). If the underlying symmetric encryption scheme (Enc,Dec) is LIN RK-KDM
secure, then the randomized function f̂ , as defined in Figure 1, is a randomized encoding of the
function f .

The proof of the theorem is deferred to Section 4.3 (correctness) and 4.4 (privacy).

4.3 Correctness

The following lemma shows that the encoding is correct.
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The Encoding f̂n

Input: x ∈ {0, 1}n.

Randomness: Choose a random global shift vector s
R← {0, 1}k.

For a wire ` that is not an output of a XOR gate let

r`
R← {0, 1}, W 0

`
R← {0, 1}k, W 1

` := W 0
` + s.

For a wire ` that is an output of a XOR gate with inputs i, j let

r` := ri + rj , W 0
` := W 0

i +W 0
j , W 1

` := W 0
` + s.

Outputs: The encoding consists of the following outputs:

1. For an input wire i, labeled by a literal χ (either some variable xu or its negation)

output W
χ(x)
i ◦ (χ(x) + ri). If i is an output wire, output the mask of this wire ri.

2. For a non-XOR gate t that computes some binary function g : {0, 1}2 → {0, 1} with
input wires i, j and output wirea y. We associate with this gate 4 ordered outputs
(“gate labels”). For every (ai, aj) ∈ {0, 1}2 we output:

Q
ai,aj
t := E2

W
ai+ri
i ,W

aj+rj
j

(
W

g(ai+ri,aj+rj)
y ◦ (g(ai + ri, aj + rj) + ry)

)
, (6)

where ◦ denotes concatenation, and E2 is a double-encryption algorithm whose ran-
domness is omitted for simplicity.

aIf the fan-out is larger than 1, all outgoing wires are treated as a single wire, i.e., with the same key and
the same color.

Figure 1: The encoding f̂n(x; (W, r, s)) of the function fn(x). We assume that wires and gates of the
circuit that computes fn are numbered according to some topological order. The double-encryption
algorithm E2

K1,K2
(M) is defined based on a standard encryption (Enc,Dec) as in Eq. 4.
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Lemma 4.4 (Correctness). There exists an efficient recovery algorithm Rec such that for every
x ∈ {0, 1}n it holds that

Pr[Rec(1n, f̂n(x)) 6= fn(x)] = 0,

where the probability is taken over the internal randomness of f̂n.

Proof. Let α = f̂n(x; (r,W, s)) for some input x ∈ {0, 1}n and coins (r,W, s) ∈ {0, 1}m(n). The
recovery algorithm traverses the circuit in topological order from inputs to outputs, and for each

wire y it recovers the active key W
by
y together with its color cy = (by(x) + ry) as follows.

If y is an input wire then the value W
by
y ◦ cy is given as part of α. Otherwise, assume that

the wire y outgoes a gate t whose incoming wires are i and j (for which we already computed the
desired values). If t is a XOR gate then we let

W
by
y = W

bi+bj
y = W bi

i +W
bj
i , and cy = (bi + bj) + ry = (bi + bj) + (ri + rj) = ci + cj .

It t is not a XOR gate then we use the colors ci, cj of the active keys of the input wires to select
the active label Q

ci,cj
t of the gate t (and ignore the other 3 inactive labels of this gate). Consider

this label as in Eq. (6); recall that this cipher was “double-encrypted” under the key W ci−ri
i = W bi

i

and the key W
cj−rj
j = W

bj
j . Since we have already computed the values ci, cj ,W

bi
i and W

bj
j , we

can decrypt the label Q
ci,cj
t (by applying the decryption algorithm D2) and recover the value

W
g(bi,bj)
y ◦ (g(bi, bj) + ry) = W

by
y ◦ (cy),

where g is the function that the gate t computes, and therefore by = g(bi, bj).
Finally, once we have the colors of an output wire y we can recover its value by by XOR-ing cy

with the mask ry which is given explicitly as part of α.

4.4 Privacy

Computational privacy is slightly more subtle. The free-XOR optimization correlates the key pairs
via the global shift s. This introduces two form of dependencies: (1) The four ciphertexts of every
gate are encrypted under related keys; and (2) The keys (of the incoming wires) which are used to
encrypt the gate-labels are correlated with the content of the labels (i.e., the keys of the outgoing
wires). We show that if the underlying encryption (Enc,Dec) is RK-KDM secure with respect to
linear functions, then the encoding is indeed private.

Lemma 4.5 (Privacy). There exists an efficient simulator Sim such that

f̂n(·) c≡ Sim(1n, fn(·)).

To prove the lemma we define an oracle-aided algorithm HO(x) such that (1) when the oracle
O is the real RK-KDM oracle (with respect to linear queries) the distribution of HO(x) is identical
to the distribution f̂n(x), and (2) when the oracle O is the fake RK-KDM oracle, the distribution
HO(x) can be efficiently sampled based on the output fn(x), and therefore can be used as a
simulator Sim(1n, fn(x)). The indistinguishability of the two oracles implies that the simulator’s
output is computationally indistinguishable from the encoding’s distribution f̂n(x).
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The algorithm H(·)(x). Let k = k(n), x ∈ {0, 1}n be the input. We assume that H is given an

oracle access to a randomized function Os where s
R← {0, 1}k will play the role of the secret global

shifts. We will assume that Os has the same interface as Reals and Fakes, namely, given a pair
of linear functions (φ, ψ) the oracle outputs a ciphertext of Enc. For every wire ` we define the
following values:

1. If ` is not an output of a XOR gate, choose a random active key W b`
`

R← {0, 1}k and a random

color bit c`
R← {0, 1}.

2. If the wire ` is an output of a XOR gate, set the active key to be W b`
` := W bi

i +W
bj
j and set

its color to c` = ci + cj where i and j are the incoming wires.

3. If ` is an input wire, output the colored active key W b`
` ◦ c`;

If it is an output wire output r` = c` − b`(x).

4. The inactive key W b`+1
` is unknown, but it can be written as a linear function of the master-

key s, i.e., φ` : s 7→ s+W b`
` .

For every (non-XOR) gate t with input wires i, j and output wire y we do the following:

5. Output the active label

Q
ci,cj
t := E2

W
bi
i ,W

bj
j

(W
by
y ◦ cy) (7)

6. Compute the inactive labels as follows. For every (α, β) 6= (0, 0) choose Rα,β
R← {0, 1}k+1 and

define the linear function ψα,β which maps s to the value(
(W

by
y + s · g(bi + α, bj + β) + by) ◦ (g(ci + α+ ri, cj + β + rj) + ry)

)
+Rα,β,

where g is the function that the gate computes, and bi = bi(x), ri = bi + ci, bj = bj(x),
rj = bj + cj and by = by(x), ry = by + cy. Now, output

Q
ci+1,cj
t :=

(
O(φi, ψ1,0),Enc

W
bj
j

(R1,0)
)

Q
ci+1,cj+1
t :=

(
O(φi, ψ1,1),O(φj , R1,1)

)
(8)

Q
ci,cj+1
t :=

(
Enc

W
bi
i

(R0,1),O(φj , ψ0,1)
)
,

where in the second equation, we let the string R1,1 represent the constant function s 7→ R1,1.

Claim 4.6. The randomized functions f̂n and HReals for s
R← {0, 1}k are identically distributed.

Proof. We prove a stronger claim: for every x ∈ {0, 1}n even if the encoding and the hybrid
HReals(x) output their internal coins (including the ones used by the oracle Reals), the two ex-
periments are identically distributed. First, it is not hard to verify that the values s,W 0

` , r` and
W 1
` = W 0

` + s are identically distributed in both experiments. When these values are fixed, the
active labels are also identically distributed. Finally, by substituting φi, ψα,β in Eq. 8 it follows

that the inactive labels are also distributed exactly as in f̂(x).
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Let us move to the case where the oracle O is instantiated with the oracle Fakes for s
R← {0, 1}k.

By the RK-KDM security of the scheme (Enc,Dec) and Fact 2.1, we get that

Claim 4.7. The randomized functions
{
HReals

}
s

and
{
HFakes

}
s

are computationally indistinguish-
able.

Finally, we define the simulator which is just an equivalent description of HFakes(x):

The simulator Sim. Given z = fn(x), for some x ∈ {0, 1}n, the simulator mimics the first three
steps of H which can be computed based on the value of the output wires fn(x) (without knowing
x itself). However, instead of virtually setting inactive keys in the forth step, the simulator chooses

a random shift vector s
R← {0, 1}k and sets W 1+b`

` = W b`
` + s for every wire `. Then, the simulator

computes the active labels exactly as in Eq. 7. Note that all these computations can be done
without knowing x (or bi(x)). To compute the inactive labels the simulator mimics the distribution

of HFakes(x): It chooses R1,0, R1,1, R0,1
R← {0, 1}k+1 and computes

Q
ci+1,cj
t :=

(
Enc

W
bi+1
i

(0k+1),Enc
W
bj
j

(R1,0)
)

Q
ci+1,cj+1
t :=

(
Enc

W
bi+1
i

(0k+1),Enc
W
bj+1

j

(0k+1)
)

(9)

Q
ci,cj+1
t :=

(
Enc

W
bi
i

(R0,1),Enc
W
bj+1

j

(0k+1)
)
.

Indeed, all these ciphertexts can be computed directly since the inactive keys (and the global shift
s) are known.

Claim 4.8. The randomized functions Sim(fn(·)) and HFakes(·) for s
R← {0, 1}k are identically

distributed.

Proof. Again, a stronger claim holds: for every x ∈ {0, 1}n even if the simulator and the algorithm
HFakes(·)(x) output their internal coins, the two experiments are identically distributed. First, it is
not hard to verify that the values s,W 0

` , r` and W 1
` = W 0

` + s are identically distributed in both
experiments. When these values are fixed, the active labels are also identically distributed. Finally,
the inactive labels as defined by the simulator (Eq. 9) are computed exactly as they are computed
by HFakes(·)(x) (i.e., as defined in Eq. 8 when the oracle Fakes(·) is being used).

The proof of Lemma 4.5 follows from Claims 4.6–4.8 and Fact 2.2.

5 Separating RK-KDM from RKA & KDM

Recall that LIN RKA security corresponds to (ΦRKA,ΨKDM) RK-KDM security where ΦRKA con-
tains all linear functions (over the binary field) and ΨKDM contains the identity function. Similarly,
LIN KDM security corresponds to the complementary case where ΨKDM contains all linear (and
fixed) functions, and ΦRKA contains the identity function.

We describe a symmetric encryption scheme (Enc,Dec) which is semantically secure under linear
related-key attacks and semantically-secure under linear key-dependent message attacks but does
not achieve linear RK-KDM security. In fact, one can fully recover the secret key via a combined
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LIN RK-KDM attack. Our counter-example is based on a pair of symmetric encryption schemes.
The first scheme (RE,RD) is LIN RKA secure but can be completely broken via LIN KDM attacks,
and the second scheme (KE,KD) is LIN KDM secure but can be broken via LIN RK attacks. Both
schemes are based on the LPN-based encryption of Construction 3.3 instantiated with N = 1.
Through this section we denote the LPN encryption scheme by (PE,PD) (“P” stands for parity).

5.1 Achieving RKA Security & KDM Insecurity

We define the scheme (RE,RD) identically to the LPN construction (Construction 3.3) except that
if the prefix of a plaintext M is equal to the key S, then the corresponding ciphertext will be M
itself (unencrypted). Formally3,

RES(M) :=

{
M if M[1:k] = S

PES(M) otherwise.
, RDS(C) :=

{
C if C[1:k] = S

PDS(M) otherwise.

It is not hard to prove that (RE,RD) is secure under linear related-key attacks, but is completely
insecure at the presence of linear key-dependent message attacks.

Lemma 5.1. Under the LPN assumption, the scheme (RE,RD) is secure against linear related-key
attacks.

Proof. Recall that in a LIN RK attack on an encryption algorithm E, the adversary makes queries
of the form (∆,M) and attempts to distinguish between the real oracle ERealS which returns
ES+∆(M) and the fake oracle EFakeS which returns ES+∆(0|M |). The view of an adversary A that
breaks the LIN RKA security of (RE,RD) is identical to the view of an adversary who breaks the
LIN RKA security of the LPN-based scheme (PE,PD), as long as the adversary does not make a
revealing query of the form (∆,M) where S + ∆ equals to the k-bit prefix of M . Hence, it suffices
to show that the probability of asking a revealing query is negligible. Indeed, this must be the case
as a revealing query (∆,M) can be used to recover the key by XOR-ing ∆ with the k-bit prefix of
the message M[1:k].

We proceed with a formal argument. Our goal is to prove that RERealS
c≡ REFakeS . First we

show that RERealS and PERealS are indistinguishable. Assume, towards a contradiction, that there
exists some adversary A which distinguishes RERealS from PERealS with noticeable advantage ε.
We construct an adversary BPERealS which outputs S with noticeable probability ε/t where t is the
number of queries that A makes. Clearly, such an adversary contradicts the LIN-RKA security of
the LPN scheme. The adversary B simply chooses a random i ∈ [t] and halts before making the
i-th query (∆,M) with the output ∆+M[1:k]. To analyze the success probability of B we note that:
(a) conditioned on not asking a revealing query the oracles RERealS and PERealS are identically
distributed; (b) Hence, under our assumption, A makes a revealing query with probability at least
ε; (c) Therefore, with probability ε/t, the adversary B halts just before the first revealing query
and, in this case, it outputs the key S.

A similar argument shows that REFakeS is indistinguishable from PEFakeS , and, since PERealS
c≡

PEFakeS we conclude, by Fact 2.2, that RERealS
c≡ REFakeS and the scheme is LIN RKA secure.

3The decryption RD may err with negligible probability due to the possibility that some message M , whose prefix
does not equal to the key S, will be mapped to a ciphertext PES(M) whose prefix equals to the key. This can be
handled in several ways, e.g., by modifying the encryption algorithm so that such event never happens. We prefer
the current version (with negligible error probability) for simplicity.
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5.2 Achieving KDM Security & RKA Insecurity

The second scheme (KE,KD) is obtained by modifying the LPN construction (PE,PD) as follows.
The key S ∈ {0, 1}k is augmented with an index i ∈ {1, . . . , k}. A plaintext M will be encrypted
by the triple (PES(M), i, Si), i.e., in addition to the ciphertext PES(M), we leak a single bit of the
key Si whose location i is determined by another (public) part of the key. Formally,

KES,i(M) := (PES(M), i, Si), KDS(C1, C2, C3) := PDS(C1)

Below we show that the scheme is LIN KDM secure. In fact, it will be useful to prove KDM security
with respect to a slightly richer family of “extended linear functions” which contains functions of
the form ψM,T : S →M + TS for every M ∈ F`2 and matrix T ∈ F`×k2 .

Lemma 5.2. Under the LPN assumption, the scheme (KE,KD) is secure against extended linear
key-dependent message attacks.

Proof. Recall that in an extended LIN KDM attack on an encryption algorithm E, the adversary
makes queries of the form (M,T ) and attempts to distinguish between the real oracle ERealS
which returns ES(M + TS) and the fake oracle EFakeS which returns ES(0|M |). Our goal is to
show that the scheme KES,i is LIN KDM secure. Formally, we should support functions which map
the combined key (S ◦ i) ∈ {0, 1}k+dlog(k)e (viewed as a single long vector) into messages of the form

M + T · (S ◦ i), where M ∈ F`2 and T ∈ F`×k+dlog(k)e
2 , and (by abuse of notation) we identify the

index i ∈ [k] with its canonical representation as a string of length dlog(k)e. Observe that since i
is public, any linear function in (S ◦ i) can be efficiently translated into a linear function in S of
the form M ′ + T ′S where M ′ ∈ F`2 and T ′ ∈ F`×k2 , and so it suffices to focus on such functions.

We will essentially reduce the extended LIN KDM security of KES,i with S
R← {0, 1}k, i R← [k]

to the security of PES′ with 1-bit shorter key S′
R← {0, 1}k−1. The extended LIN KDM security of

the latter is proven in [2, Thm. 8]. The reduction uses a sequence of hybrids.

For an index i ∈ [k] and a bit σ ∈ {0, 1}, we define an oracle aided randomized function A(·)
i,σ

as follows. Given a KDM query (M,T ) ∈ F`2 × F`×k2 , the algorithm Ai,σ does the following: (1)
defines the matrix T−i ∈ F`×k−1

2 by removing the i-th column Ti of T ; (2) queries its oracle with
(M,T−i) and obtains a ciphertext (A′ ∈ Ft×k−1

2 , Z ′ ∈ Ft2); (3) samples a random column ai ∈ Ft2
and outputs the matrix A = (A′[1:i−1]|ai|A

′
[i:k−1]), the vector Z = Z ′ + ai · σ + G · Ti · σ and the

pair (i, σ). (Recall that G is the generating matrix of the error correcting code used in the LPN
construction.) We claim that

KERealS,i ≡ A
PERealS′
i,σ whenever S = (S′[1:i−1], σ, S

′
[i:k−1]). (10)

Indeed, assume that Ai,σ has an oracle access to PERealS′ . Then, on a query (M,T−i) the oracle
responds with a fresh ciphertext

(A′
R← Ft×k−1

2 , Z ′ = AS′ + E +G(M + Ti−1S
′)),

where E
R← Bertε,δ is a fresh noise vector. By linearity, it follows that the modified ciphertext

(A,Z, (i, σ)) computed by Ai,σ satisfies

Z = A′S′ + E +G(M + T−iS
′) + ai · σ +G · Ti · σ = AS + E +G(M + TS).
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Since ai is chosen at random, (A,Z, (i, σ)) is a fresh sample from PES(M + TS) as required.

We now claim that, for randomly chosen S′
R← {0, 1}k−1 and every i ∈ [k], σ ∈ {0, 1},

APERealS′
i,σ

c≡ APEFakeS′
i,σ

c≡ ARS′i,σ ≡ (RS , i, σ), (11)

where RS is a randomized function which ignores the key S and the given input, and outputs a

fresh uniformly chosen matrices A
R← Ft×|S|2 and Z

R← Ft2 and the notation (RS , i, σ) refers to the

oracle which ignores its query and returns (A,Z, i, σ) where (A,Z)
R← RS . The first transition of

Eq. 11 follows from the security of the parity-based encryption PE against (extended) LIN KDM
attacks ([2, Thm. 8]), the second transition follows from the pseudorandomness of PE (Lemma 3.5)
and the last transition follows by noting that if the oracle answers (A′, Z ′) are uniform, then so are
the converter outputs (A,Z).

Next, we define another converter Bi,σ which acts similarly to A, except that it computes the

vector Z by Z ′ + ai · σ. We claim that, for randomly chosen S′
R← {0, 1}k−1 and every i ∈ [k], σ ∈

{0, 1},
(RS , i, σ) ≡ BRS′i,σ

c≡ BPEFakeS′i,σ ≡ KEFakeS,i, (12)

where S = (S′[1:i−1], σ, S
′
[i:k−1]). Indeed, the first transition follows by noting that B maps the

uniform samples to uniform samples, the second transition is due to the pseudrandomness of PE and

the last transition follows by noting that B maps an encryption of zero (A′
R← Ft×k−1

2 , Z ′ = AS′+E)
under PE′S into a fresh encryption of zero (A,Z = AS+E) under KES . The lemma now follows by
combining Eq. 10, 11 and 12 with Fact 2.2.

On the other hand, one can fully recover the key S via an RKA by shifting the index i through
all possible indices in {1, . . . , k}. Note that this attack is oblivious to the messages encrypted;
In particular, all the attacker needs is the ability to obtain, for any choice of ∆, a ciphertext
KE(S,i)+∆(M) where the message M may be arbitrary and possibly unknown (e.g., chosen by the
oracle).

5.3 Counter Example: RKA+KDM ; RK-KDM

Our counter-example is defined via the following double-encryption:

EncS1,S2(M) := KES2(RES1(M)), DecS1,S2(C) := RDS1(KDS2(C)),

where S1 ∈ {0, 1}k and S2 is the concatenation of a vector S′2 ∈ {0, 1}k and an index i ∈ {1, . . . , k}.

Lemma 5.3. Under the LPN assumption, the scheme (Enc,Dec) satisfies the followings:

1. Security under linear related-key attacks.

2. Security under linear key-dependent message attacks.

3. The secret key can be fully recovered via a LIN RK-KDM attack.

Proof. (1) We show that any double encryption Enc, whose inner encryption RE is LIN RKA secure,
is also LIN RKA secure. For an encryption E let ERealS and EFakeS be the real/fake RKA oracles
as defined in Lemma 5.1. We define an oracle aided randomized function AOS2

as follows: Given
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a LIN RKA query with shift vector ∆ = (∆1,∆2) and message M , the function AOS2
outputs a

sample from KES2+∆2(O(∆1,M)). It follows that, for random S1 and every S2,

EncRealS1,S2 ≡ A
RERealS1
S2

c≡ AREFakeS1
S2

≡ EncFakeS1,S2 ,

where the first and third transitions follow from the definition of A and the second transition is
due to the LIN RKA security of RE.

(2) We will need the following observation which follows from the linear structure of the LPN
based encryption PE. For every key S1 and internal randomness r the inner encryption RES1(X; r)
can be written as an (extended) linear mapping ψM,T : X → M + TX where M and T can be
computed based on S1 and r via some efficiently computable mapping ρ. Using this observation,
we show that the double encryption Enc inherits (extended) LIN KDM security from the outer
encryption KE.

Formally, let ERealS and EFakeS be the real/fake KDM oracles for an encryption E defined in
Lemma 5.2. Let AOS1

be an oracle-aided randomized function which, given an extended LIN KDM
query ψM,T , samples randomness r for the inner encryption RE, computes (M ′, T ′) = ρ(S1, r), and
queries the oracle O with the composed linear function ψ : S2 → ψM ′,T ′(ψM,T (S1, S2)). It is not
hard to see that ψ is indeed an extended linear function, and for random (S1, S2)

EncRealS1,S2 ≡ A
KERealS2
S1

c≡ AKEFakeS2
S1

,

where the first transition is due to the definition of A (and holds for every (S1, S2)) and the second
transition follows from the security of KE.

To complete the proof, define an oracle-aided randomized function BOS2
which given a LIN KDM

query ψM,T outputs O(EncS2(0|M |)). For random (S1, S2) we have that

AKEFakeS2
S1

≡ BKEFakeS2S1

c≡ BKERealS2S1
≡ EncFakeS1,S2 ,

and item (2) follows.
(3) We show that, given an access to the real LIN RK-KDM oracle EncRealS1,S2 , it is possible

to fully recover the key (S1, S2). First use RKA queries to fully recover the key S2 via the attack
described in Section 5.2. Second, in order to recover S1, apply a KDM query to obtain an encryption
C of (S1, S2), and use the decryption algorithm KDS2 to decrypt the ciphertext C. We claim that
the resulting value is simply (S1, S2). Indeed, by the definition of RE we have that

C = EncS1,S2(S1, S2) = KES2(RES1(S1, S2)) = KES2(S1, S2)

and therefore KDS2(C) = (S1, S2) and the lemma follows.

6 Conclusion

We defined a new combined form of RK-KDM security, proved that such an encryption scheme can
be realized based on the LPN assumption, and showed that the free-XOR technique can be securely
instantiated with it. Altogether, our results enable a realization of the free-XOR optimization in
the standard model under a well-studied cryptographic assumption.

The new definition of RK-KDM security further motivates the study of security under related-
key and key-dependent attacks. Specifically, in light of our counter-example, it is is natural to ask
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whether LIN RK-KDM security can be constructed based on some combination of an RKA-secure
scheme and a KDM-secure scheme, or better yet, based on more general assumptions (e.g., CPA-
secure encryption scheme). It will also be interesting to find additional applications of RKA/KDM
secure primitives.

Acknowledgement. We thank the anonymous referees for valuable comments.
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A Alternative Definition to Computationally Private Randomized
Encodings

It might be natural to define the computational encoding of a function family f = {fn : {0, 1}n →
{0, 1}`(n)}n∈N to be a function family indexed with two parameters n and k where k is a security
parameter. In this definition, every function fn is represented by a function family f̂n,k. Compu-

tational privacy requires that for every n the randomized functions Sim(1n, 1k, fn(·)) and f̂n,k(·)
(indexed by k) are computationally indistinguishable. In this case, the parameters m, s, as well as
the running time of the simulator, the recovery algorithm, and the time it takes to compute f̂n,k
are all functions of the input length n and the security parameter k. This definition looks more
appealing than Definition 4.1, since it allows to tune the privacy of a specific function with fixed
input length, and enables a closer security analysis. However, this definition is meaningless, since
we can set a null encoding for small k’s, and use a perfectly private, perfectly correct encoding for
k = exp(n). Such an encoding satisfies computational privacy (the distribution ensembles are com-
putationally indistinguishable for large enough k’s) and is also uniform since it can be computed in
time poly(n, k). This paradox can be prevented by demanding that n, k are polynomially related.
Since in this paper we focus on high-level security and do not care about security in concrete terms
(i.e., the specific running time vs. success probability rate), we avoid such complications and use
the simple single parameter definition given above. However, Definition 4.1 also enables to tune the
privacy of a specific function fn by arbitrarily augmenting fn into an infinite family of functions
(this can be done by simply padding the input). We also stress that our construction uses a security
parameter (which we set to nO(1) to satisfy the single parameter definition) and thus allows a closer
analysis and a more natural way to tune the privacy of a specific function (see Section 4).

Bibliographic Note: The above remark was written originally for [4] and was eventually omitted.

24


