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Abstract

Secure sketches and fuzzy extractors enable the use of biometric data in cryptographic appli-
cations by correcting errors in noisy biometric readings and producing cryptographic materials
suitable for authentication, encryption, and other purposes. Such constructions work by pro-
ducing a public sketch, which is later used to reproduce the original biometric and all derived
information exactly from a noisy biometric reading. It has been previously shown that release
of multiple sketches associated with a single biometric presents security problems for certain
constructions. We continue the analysis to demonstrate that all other constructions in the liter-
ature are also prone to similar problems and cannot be safely reused. To mitigate the problem,
we propose for each user to store one short secret string for all possible uses of her biometric,
and show that simple constructions in the computational setting have numerous advantageous
security and usability properties under standard hardness assumptions. Our constructions are
generic in that they can be used with any existing secure sketch as a black box.

1 Introduction

The motivation for this work comes from practical use of biometric-derived data. Biometrics and
derivation of cryptographic material from biometric data for authentication, encryption, or other
purposes is an active research area. Secure sketches and fuzzy extractors [11, 10] were introduced
as mechanisms of deriving cryptographic material from noisy biometric data for the purpose of its
use in cryptographic applications. Such constructions allow one to produce a helper string (secure
sketch) – which is viewed as public – from a biometric and later re-produce the cryptographic string
exactly from a close noisy biometric reading using the helper string. The goal of such constructions
is to keep the biometric itself hidden, which means that information leakage due to the release of
the helper string must be minimized.

While this is a powerful concept that enables new applications and can also be attractive to
users who no longer need to maintain secrets to participate in cryptographic protocols, it has been
shown that leakage of information associated with the biometric in such constructions is unavoid-
able [27, 12]. Furthermore, this concept was initially proposed and primarily studied in the context
when the construction is applied to a biometric only once. Consecutive publications [3, 26] explored
the security guarantees of such schemes in terms of their reusability, when a single biometric or its
noisy version is used to produce multiple secure sketches using the same or different algorithms. In-
formation leakage prevents such constructions from meeting standard security requirements sought
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of them in cryptographic applications such as indistinguishability (or inability to link two records
to the same biometric) and irreversibility (inability to reverse the construction and directly recover
information about the biometric). Some of the more popular constructions for secure sketches
(namely, based on the code offset and permutation groups) has been shown to have serious security
weaknesses with respect to their reusability in presence of even very weak adversaries [26]. In this
work, we continue this analysis on a number of other constructions from the literature and show that
they also cannot be safely reused. In particular, we show that they fail to satisfy standard security
expectations with respect to reusability and therefore cannot be used in security applications.

Information leakage is generally difficult to quantify. In constructions that work with biometric
data, theoretical analysis is expressed in terms of entropy loss associated with the release of the
helper string and therefore is only a rough upper bound rather than a precise estimate. Also, for the
current error rates in biometric data and their typical set of parameters, the information theoretic
analysis provides bounds that result in leakage of most or even all entropy contained in a biometric
(see [2] for an example set of parameters for iris codes and entropy loss due to the release of helper
data). This presents problems even in presence of very weak adversaries.

To overcome the issues of information leakage and unsafe reuse of such constructions, we pro-
pose to use the computational setting, where a user stores a single short key (regardless of the
number of applications of secure sketches or fuzzy extractors to her biometric) and the adversary
is computationally bounded. Note that the key is introduced for the purpose of avoiding informa-
tion leakage and improving the security of the schemes and does not change the functionality. We
believe that keeping a single short key for all possible uses of biometric-based material in different
security applications is a small price to pay for achieving significant security improvements (which
otherwise are not possible) and the ability to safely use such constructions. We show that the use of
one key and standard computational assumptions (namely, existences of pseudo-random functions
and hash functions) is sufficient to achieve solutions with very attractive properties using simple
schemes. Our constructions are generic in that they can be applied to any existing secure sketch
scheme in a black box manner for any type of biometric (or distance metric) to produce a secure
sketch or a fuzzy extractor with improved properties.

We would like to emphasize that the use of the secret in our schemes should not be confused
with so-called multi-factor authentication or the use of a shared secret. There are two fundamental
differences between such approaches and our work: (i) in our schemes the secret is not shared,
neither the secret itself nor any function of it need to be known to any party, and (ii) a single secret
is sufficient for all possible uses of fuzzy sketches and extractors including multiple biometric types,
multiple applications, and multiple servers.

The security benefits of our schemes are:

• Leakage of information about a biometric is unavoidable in the information theoretic set-
ting [27, 12], while our solution results in provably no information leakage.

• Previously, only certain restricted types of error-correcting codes could be used to ensure
security of fuzzy sketches and extractors [3]. Our solution lifts such restrictions and can be
used with any type of error-correcting code.

• Prior analysis of secure sketch constructions [26] showed that they fail to achieve standard
security requirements for cryptographic applications. We show that other prior constructions
are also susceptible to that problem, while our solution is secure in a much stronger adversarial
model.

• Previously exposure of a key derived from a biometric was shown to provably reveal no
information about the biometric for a specific construction in the random oracle model [3].
Our construction, on the other hand, achieves this result in the standard model using any
existing secure sketch.
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In our analysis of existing constructions, we use a very weak adversary. The security of our own
schemes, on the other hand, is shown using a very strong adversary (the strongest in the literature
for the same problem setup).

To summarize, our contributions are two-fold: (i) new analysis of fuzzy sketch schemes that
shows that even a weak adversary has a significant advantage in compromising security of existing
constructions, and (ii) simple schemes that use a single secret to achieve strong security under
standard assumptions.

2 Model and Definitions

2.1 Fuzzy sketches and extractors

Secure (or fuzzy) sketches were introduced by Dodis at el. [11, 10] as a mechanism of correcting
errors in noisy secrets (e.g., biometrics) by releasing a helper string S that does not reveal a lot of
information about the secret. Let W denote a random variable and w its value.

Definition 1 A (M,m,m′, t)-secure sketch is a pair of randomized algorithms:

• SS is a function that, on input w from metric space M with distance function dist, outputs a
sketch S.

• Rec is a function that, on input w′ ∈ M and S = SS(w), recovers and outputs the original w
if dist(w,w′) ≤ t.

Secure sketches have been constructed for different types of metric spacesM, for which the distance
function dist(a, b) is defined for all a, b ∈ M. Security of a secure sketch is evaluated in terms of
entropy of W before and after releasing the string S, i.e., the entropy loss associated with making S
public. The min-entropy (or “worst-case” entropy) of W is H∞(W ) = − logmaxw Pr[W = w] and
the average min-entropy of W given S is H̄∞(W |S) = logEs←S[maxw Pr[W = w|S = s]]. Then
for any W with H∞ ≥ m the probability of guessing W after observing S is at most 1/2−m

′

where
m′ ≤ H̄∞(W |S), i.e., the entropy loss due to release of S is m−m′ (and is unavoidable).

Fuzzy extractors allow one to extract randomness from w (to use it as cryptographic material)
and later reproduce it exactly using w′ close to the original w.

Definition 2 A (M,m,m′, t, ǫ)-fuzzy extractor is a pair of algorithms:

• Gen is a function that, on input w ∈ M, outputs extracted random string R and a helper
string P .

• Rep is a function that, on input w′ and P reproduces and outputs R that was generated using
Gen(w) if dist(w,w′) ≤ t.

The security requirement is such that, for any W of min-entropy m, the statistical distance between
the distribution of R and the uniform distribution of strings of the same length is no greater than
ǫ, even after observing the helper data P . Note that the statistical distance between probability
distributions X and Y is defined as SD(X,Y ) = 1

2

∑

a |Pr(X = a)− Pr(Y = a)|.
A fuzzy extractor can be built from a secure sketch using the following generic construction

given in [11]:

Gen(w):

1. Execute S ← SS(w; r1), where r1 explicitly denotes random coins used by SS (if any).
2. Use a strong extractor Ext to extract a random string R from w, i.e., R← Ext(w; r2), where

r2 denotes random coins used by Ext.
3. Output public P = (S, r2) and secret R.
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Rep(w′, P = (S, r2))

1. Execute w ← Rec(w′, S). If Rec fails (i.e., when dist(w,w′) > t such that S = SS(w)), stop.
2. Extract R from w using r2 as R← Ext(w, r2) and output R.

Strong extractors [20, 19] have been well studied and can extract at most m−2 log(1ǫ )+O(1) nearly
random bits (where m is min-entropy of W and ǫ is the security parameter defined above). One
such construction uses universal hash function and extracts m − 2 log(1ǫ ) + 2 random bits. Thus,
entropy loss of 2 log(1ǫ ) + 2 is in addition to the entropy loss due to the release of a sketch S. If a
strong extractor is modeled as a random oracle, there is no additional entropy loss.

Many constructions utilize error-correcting codes. A code C is a subset ofK elements {w0, . . ., wK−1}
ofM. The minimum distance of C is the smallest d such that dist(wi, wj) ≥ d for all i 6= j, which
implies that the code can detect up to d−1 errors; and the error-correcting distance is t = ⌊(d−1)/2⌋.

A linear error-correcting code C over field Fq is a k-dimensional linear subspace of the vector
space F

n
q which uses Hamming distance as the metric, and is denoted as (n, k, t)Fq -code. For any

linear code C, an (n − k) × n parity-check matrix H projects any vector v ∈ Fn
q to the space

orthogonal to C. This projection is called the syndrome and denoted by syn(v) = Hv. Then
v ∈ C iff syn(v) = 0. The syndrome contains all information necessary for decoding. That is, when
codeword c is transmitted and noisy w = c + e is received, syn(w) = syn(c) + syn(e) = 0 + syn(e),
where syn(e) can be used to determine the error pattern e.

Secure sketch constructions for the Hamming distance (e.g., the code-offset construction) have
been most heavily analyzed. Also, the permutation-based construction, which is applicable to
any transitive metric, has been sufficiently analyzed in [26, 3]. For that reason, in this work we
concentrate on constructions specific to other distance metrics, specifically the set difference and
the edit distance. Recall that while the Hamming distance is used for biometric data such as
iris codes, the set difference is employed for fingerprints and the edit distance is relevant to DNA
comparisons.

2.2 Constructions for set difference

Throughout this work, we use notation a
R
← A to denote that the value of a is chosen uniformly at

random from the set A.

Fuzzy vault. The fuzzy vault scheme designed by Juels and Sudan [13] can be used as a fuzzy
sketch when the biometric data is comprised of unordered elements w = {w1, . . ., ws} (e.g., minutiae
points in fingerprints). The main idea is to disguise the points in w by adding a large number of
chaff points. The genuine points then carry information that allows w to be reconstructed from its
noisy version w′. In what follows, we assume that t ∈ [1, s], and r ∈ [s+1, n], where n is the set of
all possible points or the universe, are system-wide parameters. Work is over field Fn, where n is
a prime power.

To compute SS(w):

1. Choose a random polynomial p(·) of degree at most s− t− 1 over Fn.
2. For each wi ∈ w, let xi = wi and yi = p(xi).

3. Choose r− s distinct points xs+1, . . ., xr at random from Fn \w and set yi
R
← Fn \ {p(xi)} for

i = s+ 1, . . ., r.
4. Output SS(w) = {(x1, y1), . . ., (xs, ys)} sorted by the value of xi’s.

To compute Rec(w′, S):

1. Create the set D of pairs (xi, yi) such that xi ∈ w′.
2. Run Reed-Solomon decoding on D to recover the polynomial p(·).
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3. Output s points of the form (xi, p(xi)) from S.

Privacy of the biometric depends on the number and distribution of points in S (i.e., the difficulty
of identifying the original points and the number of spurious polynomials created by the chaff
points). The entropy loss due to the release of S is determined in [11] to be upper bounded by
t log n+ log

(n
r

)

− log
(n−s
r−s

)

+ 2.

Improved fuzzy vault. Dodis et al. [10] observed that the polynomial in the above construction
does not need to be random, which allows for a secure sketch with significantly lower entropy loss,
namely t log n.

To compute SS(w):

1. Compute unique monic polynomial p(x) =
∏

wi∈w
(x− wi) of degree s.

2. Output the coefficients of p() of degree s − 1 down to s − t, which will form SS(w) =
(cs−1, . . ., cs−t).

To compute Rec(w′, S = (cs−1, . . ., cs−t)):

1. Create a new polynomial phigh of degree s that shares the top t+ 1 coefficients with p(), i.e.,
phigh(x) = xs +

∑s−1
i=s−t cix

i.
2. Evaluate phigh on points of w′ to obtain pairs (a1, b1), . . . , (as, bs).
3. Use Reed-Solomon decoding to find a polynomial plow of degree s−t−1 such that plow(ai) = bi

for at least s− t/2 values of ai’s. If none can be found, output fail.
4. Output the roots of the polynomial phigh − plow.

Pinsketch. This next construction works when the universe size n is large (or could not be
enumerated) and thus all computation is polynomial in log n. Pinsketch also allows the biometric
w to have a variable number of points, which makes the construction particularly attractive. In
what follows, support supp(w) is used as an alternative representation of small weight w by listing
the positions at which it is non-zero. This allows decoding complexity to be a function of log n
instead of n.

To compute SS(w) = syn(xw):

1. Let sj =
∑

wi∈w
(wi)

j (in F2m where n = 2m − 1).
2. Output SS(w) = s1, s3, . . ., s2t−1.

To compute Rec(w′, S = (s1, s3, . . ., s2t−1)):

1. Compute (s′1, s
′
3, . . ., s

′
2t−1) = SS(w′) = syn(xw′).

2. Let σi = s′i− si and compute supp(v) such that syn(v) = (σ1, σ3, . . ., σ2t−1) and |supp(v)| ≤ t.
3. If dist(w,w′) ≤ t, then supp(v) = w∆w′; therefore, output w = w′∆supp(v).

Here ∆ denotes symmetric difference, i.e., dist(w,w′) = w∆w′. This construction uses BCH codes
(which are linear) and results in entropy loss of t log(n+ 1).

2.3 Constructions for edit distance

To the best of our knowledge, the only known constructions for the edit distance first use an
embedding of the edit distance metric into a transitive metric (e.g., the Hamming distance) of
larger dimension and apply a secure sketch construction to the target metric. A construction for
the edit distance then can proceed as follows:

To compute SS(w):
1. Embed w into v in a transitive metric space (the Hamming distance or set difference) as

v = f(w).
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2. Compute and output SS(v) = syn(v).

To compute Rec(w′, S):
1. Embed w′ into v′ in a transitive metric space.
2. Execute v = Rec(v′, S) and output the reverse embedding of v w = f−1(v).

The entropy loss of this construction depends on the properties of the embedding and the secure
sketch scheme in the target metric. When f−1 is not efficiently computable, the output of an
additional function g(w) can be stored in S which helps in recovering w from v.

2.4 Security notions

The original security definitions of fuzzy sketches and extractors (i.e., quantifying information
leakage about the biometric due to the release of public helper data and ensuring that the output
of fuzzy extractors is indistinguishable from random) were formulated for a single instance of a fuzzy
sketch or extractor in isolation [11]. Consecutive literature [3, 26] considered a stronger (and more
realistic) adversarial model where such constructions can be invoked multiple times and therefore
the security guarantees must hold when the constructions are reused. Furthermore, the power
granted to the adversary can greatly differ. In this work we use weak adversaries while analyzing
existing constructions (to show that they do not provide sufficient security guarantees even in
presence of weak adversaries) and strong adversaries when proving the security of our proposed
solution. In a nutshell, a weak adversary is given two fuzzy sketches and tries to determine whether
they were produced using the same biometric and what that biometric was, while a strong adversary
can adaptively ask for fuzzy sketches and private key that fuzzy extractors output.

Let t be the maximum amount of errors that the biometric system can tolerate. We define ∆t

to be the set of all perturbation functions that represent differences in sampling biometric data;
we then have ∆t = {δ :M→M such that dist(w, δ(w)) ≤ t}. In what follows, we first define a
security game for weak adversaries with access to public sketches and then proceed with security
games for strong adversaries. Two security properties for weak adversaries were defined in [26]:
sketch indistinguishability and irreversibility.

2-Indistinguishability game ([26]):

1. The challenger chooses a random variable W ∈ M and samples it to obtain w ∈ M. The
challenger computes S1 = SS(w) and gives S1 to A.

2. The challenger chooses a bit b at random. If b = 1, the challenger chooses δ
R
← ∆t, and

produces a related biometric w′ = δ(w). Otherwise, if b = 0, the challenger samples W to
obtain a different biometric w′. The challenger than computes S2 = SS(w′) and gives S2 to
A.

3. The adversary eventually produces a bit b′ and wins if b′ = b.

The adversary A’s advantage in the above game is defined as:

AdvindA = 2

∣

∣

∣

∣

Pr[b′ = b]−
1

2

∣

∣

∣

∣

= 2

∣

∣

∣

∣

Pr[b′ 6= b]−
1

2

∣

∣

∣

∣

Definition 3 An (M,m,m′, t)-secure fuzzy sketch (SS, Rec) is ǫ-indistinguishable in ∆t if for any
adversary A it holds that AdvindA ≤ ǫ, and the fuzzy sketch is reusable when ǫ is negligible.

The irreversibility property of fuzzy sketch constructions means that an adversary who obtains
access to multiple sketches which have been generated from the same noisy input possibly using
different sketching functions is unable to recover the original input.
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In the irreversibility game below, the adversary obtains access to multiple sketches which were
generated from the same noisy input, but possibly using different sketching functions. The adver-
sary’s goal is then to recover the original input. For the purposes of this game, we define a family
F = {(SSi,Reci)} of (M,m,m′i, ti)-secure fuzzy sketches.

Irreversibility game ([26]):

1. The challenger chooses a random variable W ∈ M and samples it to obtain w ∈ M. The
challenger chooses (SSi1 ,Reci1) at random from F , computes S1 = SSi1(w) and gives S1 to
A.

2. The challenger chooses δ
R
← ∆t, where t = min{ti}, and (SSi2 ,Reci2) at random from F \

{(SSi1 ,Reci1)}. The challenger produces a related biometric w′ = δ(w), computes S2 = SS(w′)
and gives S2 to A.

3. The adversary eventually produces output ŵ ∈ M and wins if ŵ = w.

Note that requiring the adversary to produce w is equivalent to requiring it to produce w′, since
knowledge of one of them is equivalent to knowledge of both in presence of sketches S1 and S2.

The adversary A’s advantage in the above game is defined as:

AdvirrevA =
2
min(m′

i1
,m′

i2
)

2
min(m′

i1
,m′

i2
)
− 1

∣

∣

∣

∣

Pr[ŵ = w]−
1

2
min(m′

i1
,m′

i2
)

∣

∣

∣

∣

.

Definition 4 A family F of (M,m,m′i, ti)-secure fuzzy sketches {(SSi,Reci)} is ǫ-irreversible in
∆t if for any adversary A it holds that AdvirrevA ≤ ǫ, and the family is just irreversible when ǫ is
negligible.

We now proceed with defining security games for more powerful adversaries. We term the next two
definitions as weak biometric privacy and strong biometric privacy, respectively. In both of them
the adversary will be allowed to query the scheme a large number of times. The difference between
the definitions is that in the first the adversary obtains access only to the public information, while
in the second it also obtains access to the key output by a fuzzy extractor. Thus, we use the first
definition for secure sketches and the second one for fuzzy extractors.

The two security games below are roughly equivalent to outsider and insider chosen perturbation
security, respectively, in [3], but are stronger than the respective definitions in [3]. In particular, in
our definition of weak biometric security we require the adversary to only distinguish between two
sketches, while the adversary was required to recover the biometric w in [3] in the corresponding
definition. Furthermore, instead of allowing the adversary to query fuzzy sketches for a particular
biometric w and then challenging the adversary by asking it to distinguish between a sketch for
w and a sketch for a randomly chosen biometric, we setup two biometrics w0 and w1 and allow
the adversary to query sketches for both. Then during the challenge, the adversary is asked to
determine which biometric was used in producing the challenge sketch. This can potentially give
the adversary advantage over the prior formulation of the game, especially in the computational
setting where different users will possess different key material.

As we are now working in the computational setting, we use κ to denote the security parameter.
All algorithms are assumed to be polynomial time in κ. We say that a ǫ(κ) function is negligible if
for all positive polynomials p(·) and sufficiently large κ it holds that ǫ(κ) < 1/p(κ).

Weak biometric privacy:

1. (Preparation) The adversary chooses a random variable W ∈ M and sends its specification
to the challenger.
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2. (Sampling) The challenger randomly samplesW to obtain w0 ∈ M and w1 ∈ M and initializes
two users U0 and U1, respectively, using that information.

3. (Queries) The adversary makes up to q possibly adaptive sketching queries as follows: to
form query i, the adversary chooses δi ∈ ∆t and sends it and a bit bi to the challenger. The
challenger computes Si ← SS(δi(wbi); ri) using fresh randomness ri and returns Si to A.

4. (Challenge) The challenger chooses a bit b
R
← {0, 1} and δ

R
← ∆t, and produces a biometric

w′ = δ(wb). The challenger then computes S ← SS(w′; r) using fresh randomness r and gives
S to A.

5. (More queries) The adversary A can run more queries up to the bound q as specified in step
3.

6. (Response) The adversary eventually produces a bit b′ and wins if b′ = b.

We define the adversary A’s advantage in this game as:

Adv
wbp
A (κ) = 2

∣

∣

∣

∣

Pr[b′ = b]−
1

2

∣

∣

∣

∣

= 2

∣

∣

∣

∣

Pr[b′ 6= b]−
1

2

∣

∣

∣

∣

Definition 5 We say that an (M,m,m′, t)-secure fuzzy sketch (SS, Rec) has weak biometric pri-

vacy if for any probabilistic polynomial-time (PPT) adversary A it holds that AdvwbpA (κ) ≤ ǫ(κ) for
a negligibly small ǫ(κ).

Note that unlike previous definitions, we explicitly specify the security parameter κ and define
the adversary’s advantage as a function of this parameter. As mentioned earlier, our construction
considers the computational setting (and thus computationally limited adversaries), where the
complexity of all algorithms will be specified as a function of κ.

In what follows, let ∆ denote all perturbation functions over metric space M, i.e., ∆ = {δ :
M→M} where dist(w, δ(w)) can be greater than threshold t.

The next definition corresponds to the strongest version of the insider chosen perturbation
security definition in [3]. The adversary can query the challenger to obtain sketches on both
related and unrelated biometrics and private key corresponding to unrelated biometrics. Note that
this time we ask the adversary to distinguish between the secret key output by a fuzzy extractor on
the related biometric and a randomly chosen string. The reason why we do not ask the adversary
to distinguish between secret keys of two users is because the adversary has the choice of the
sketch that it can use in the challenge. This means that the adversary will trivially know for which
user the secret key will be produced. We, however, note that in order to distinguish secret keys
corresponding to two users, the adversary need to be able to distinguish at least one of them from a
random string. Thus, our definition of security will imply the security in the game with two users.

Strong biometric privacy:

1. (Preparation) The adversary chooses W ∈ M and gives its specification to the challenger.
2. (Sampling) The challenger randomly samples W to obtain w ∈M.
3. (Public queries) The adversary makes up to q possibly adaptive generation queries as follows:

to form query i, the adversary chooses δi ∈ ∆ and sends it to the challenger. The challenger
computes (Pi, Ri) ← Gen(δi(w); ri) using fresh randomness ri and returns public Pi only to
A.

4. (Private queries) The adversary makes up to q′ possibly adaptive reproduction queries that
can be intersperse with public queries as follows: to form query i, the adversary chooses
δ′i ∈ ∆ and a public data P ′i and sends them to the challenger. The challenger computes
R′i ← Rep(δ′i(w);P

′
i ) and returns R′i to A.
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5. (Challenge) The adversary chooses string P ∗ ∈ {P1, . . ., Pq} from one of the strings returned
by the challenger in a public query such that P ∗ was produced using a public query δi with
dist(w, δi(w)) ≤ t and in any private query (δ′i, P

∗) the distance dist(w, δ′i(w)) > t. A sends P ∗

to the challenger. The challenger chooses a bit b
R
← {0, 1}. If b = 1, the challenger computes

the corresponding private string R← Rep(w,P ∗) and gives it to the adversary. Otherwise, if
b = 0, it chooses a random string of the same length and gives it to A instead.

6. (More queries) The adversary A can run additional queries as specified in steps 3 and 4
(up to q and q′ queries, respectively) with the exception that any query (δ, P ∗) such that
dist(w, δ(w)) ≤ t is not allowed.

7. (Response) The adversary eventually produces a bit b′ and wins if b′ = b.

We define the adversary A’s advantage in this game as:

Adv
sbp
A (κ) = 2

∣

∣

∣

∣

Pr[b′ = b]−
1

2

∣

∣

∣

∣

= 2

∣

∣

∣

∣

Pr[b′ 6= b]−
1

2

∣

∣

∣

∣

Definition 6 We say that an (M,m,m′, t, ǫ)-secure fuzzy extractor (Gen, Rep) has strong bio-

metric privacy if for any PPT adversary A it holds that Adv
sbp
A (κ) ≤ ǫ(κ) for a negligibly small

ǫ(κ).

2.5 Known Privacy Weaknesses

Simoens et al. [26] show that two popular secure sketch constructions – namely, the code offset
construction with a linear error-correcting code (i.e., the syndrome construction) and the construc-
tion based on permutation groups – do not withstand the requirements of indistinguishability and
irreversibility, i.e., the adversary can win such experiments with overwhelming probability. The
former construction is applicable to the Hamming distance metric (and is among the most popular
and widely studied schemes) and the latter can be used for any transitive distance metric. For that
reason, in this work we concentrate on the analysis of schemes for other distance metrics (namely,
set difference and edit distance), some of which are related to the previously analyzed constructions.

3 Analysis of Existing Schemes

3.1 Constructions for set difference

3.1.1 Fuzzy vault

Attacking indistinguishability. Before proceeding with the analysis, we note that the basic
idea for the strategy in attacking the fuzzy vault scheme when two or more sketches are available –
computing the intersection of the points – is straightforward and is not new. This attack appeared
in [23, 15, 22]. Our analysis is different from what has been done before because all previous
publications assume that given sketches are related and proceed with identifying original points.
Our work, however, assumes a significantly weaker (and perhaps more realistic) adversary that
would like to determine if two given sketches are related or not, which is a much more difficult
task. Therefore, we present a rigorous new analysis that shows weaknesses of the scheme even in
the presence of the weakest adversary.

The adversary receives two secure sketches S1 = {(x1, y1), . . ., (xr, yr)} and S2 = {(x′1, y
′
1), . . .,

(x′r, y
′
r)}, and the adversary’s goal is to determine the coin flip, i.e., whether the biometrics w and

w′ are related or not. Let πx(Si) denote projection of Si onto the x-coordinate, i.e., πx(S1) =
{x1, . . ., xr} and πx(S2) = {x′1, . . ., x

′
r}. The idea behind the attack strategy here is to compute
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the intersection of πx(S1) and πx(S2) and use its size to make a distinction between related and
unrelated biometrics. Related sketches will overlap in at least s− t original biometric points, while
unrelated sketches will have fewer original biometric points overlap. In addition, a number of chaff
points in πx(S1) can collide with chaff points in πx(S2) or points in w′ \ (w ∩w′) (similarly, points
from w \ (w ∩w′) can collide with chaff points in πx(S2)). Thus, the size of πx(S1)∩πx(S2) follows
a certain distribution, but the expected overlap size is larger for related sketches. Before presenting
the exact attack strategy, we analyze the properties of such a distribution.

Let α = |w ∩w′| denote the number of biometric points in the intersection, i.e., α ≥ s− t/2 for
related biometric samples and α ≤ s− t/2− 1 otherwise. Let a = r−α and b = n−α, i.e., a is the
number of sketch points that do not correspond to the overlapping biometric points and b is the
overall space for such points. As customary in the literature, we assume that the biometric points
of w are distributed uniformly at random in the space; the chaff points are also drawn uniformly at
random from the remaining space. Then to determine how many points from S′1 = πx(S1)\(w∩w

′)
will collide with points from S′2 = πx(S2) \ (w ∩ w′), suppose there are b = n − α bins and points
from S′1 occupy a = r−α of them, i.e., there are a random bins with a ball in them. Then we throw
another a balls (i.e., points from S′2) into the bins without replacement and count the number of
bins with two balls in them (i.e., if a bin has two balls, it is removed, so that no bin has more than
two balls; this is dictated by the requirement that all r points in a sketch are different). The above
can be modeled as hypergeometric experiment.1 Let X be a random variable that corresponds to
the number of collisions in πx(S1) and πx(S2) (i.e, its size is |(πx(S1) ∩ πx(S2)) \ (w ∩ w′)|). We
obtain:

Pr[X = k] =

(a
k

)(b−a
a−k

)

(b
a

) =

(

a

k

)∏k−1
i=0 (a− i)

∏a−k−1
i=0 (b− a− i)

∏a−1
i=0 (b− i)

(1)

where X can take values between 0 and a. The mean value of this distribution is E[X] = a · ab .
This analysis leads to the following attack strategy: given sketches S1 and S2, A computes

πx(S1), πx(S2), and c = |πx(S1) ∩ πx(S2)|. Let β denote the value (r − s + t/2)2/(n − s + t/2)
rounded to the nearest integer. If c ≥ (s− t/2 + β), output 1, otherwise, output 0.

Let αauth denote a random variable corresponding to the distribution of |w ∩ w′| when w and
w′ are related (authentic), and αimp denote a random variable corresponding to the size of such
overlap when w and w′ are unrelated (impostor). The adversary has the smallest probability of
distinguishing between authentic and impostor sketches when the values of αauth and αimp are as
close as possible, i.e, αauth = s− t/2 and αimp = s− t/2− 1. According to the indistinguishability
definition, we have AdvindA = 2

∣

∣Pr[b′ = b]− 1
2

∣

∣. If we let X1 denote the random variable distributed
according to the hypergeometric distribution above with α1 = s − t/2 and X2 denote a similar
random variable with α2 = s− t/2− 1, we obtain that the adversary is successful with at least the

1When a ≪ b, the requirement that we sample without replacement can be dropped and the result modeled as a

simpler binomial experiment. In this applications, however, a in general is not guaranteed to be much smaller than

b.
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following probability:

Pr[b′ = b] = Pr[b′ = 1 | b = 1]Pr[b = 1] + Pr[b′ = 0 | b = 0]Pr[b = 0] ≥ (2)

≥
1

2

(

Pr[X1 ≥ c− α1] + Pr[X2 < c− α2]
)

=
1

2

(

Pr[X1 ≥ β] + Pr[X2 < β + 1]
)

=

=
1

2

( r−s+t/2
∑

i=β

(r−s+t/2
i

)(n−s+t/2−(r−s+t/2)
r−s+t/2−i

)

(n−s+t/2
r−s+t/2

)
+

β
∑

i=0

(r−s+t/2+1
i

)(n−s+t/2+1−(r−s+t/2+1)
r−s+t/2+1−i

)

(n−s+t/2+1
r−s+t/2+1

)

)

=

=
1

2

( r−s+t/2
∑

i=β

(r−s+t/2
i

)( n−r
r−s+t/2−i

)

(n−s+t/2
r−s+t/2

)
+

β
∑

i=0

(r−s+t/2+1
i

)( n−r
r−s+t/2+1−i

)

(n−s+t/2+1
r−s+t/2+1

)

)

.

This probability and therefore AdvindA can be easily computed for a given set of parameters n, r,
s, and t. In reality, each parameter n, s, t, and r has limitations placed on it by the behavior
of the actual biometric data. In particular, Clancy et al. [6] studies applicability of the fuzzy
vault construction to fingerprint data and determines optimal parameters to use in order to achieve
adequate resistance of the construction against brute force search (when an adversary is given
a sketch and tries to determine sensitive information by searching through polynomials). While
the fuzzy vault construction was not used exactly as a secure sketch in [6] and was generalized,
we nevertheless obtain information about the parameters that would be used for fingerprint data.
The field Fp2 , for prime p, is used for representing fingerprint features in 2-D and the value of
p is set to 251 giving us n = 2512 = 63001 (this value of p also provides many choices for the
decoding algorithm). The number of biometric points in a fingerprint is often in the range 20–50
(this value can greatly vary based on the equipment used and quality of data) Using the analysis
and empirical data from [6, 21] as guidelines for achieving good distinguishing capability, low error
rate, and difficulty of brute force attack on the fuzzy vault scheme, we set s = 30 and t = 16.
Finally, the value of r is constrained in that the complexity of decoding for legitimate users can
grow as r increases (this is caused by spurious polynomials introduced by the chaff points). In
particular, at the decoding time, when a legitimate user computes w′ ∩ πx(S), where S = SS(w),
the decoding complexity can grow when points from w′ \ (w′ ∩ w) coincide with chaff points in S.
Since |w′ \ (w′ ∩w)| ≤ t/2 for legitimate users, the experiment now consists of throwing t/2 points
in b = n− s+ t/2 bins, where a = r− s+ t/2 bins already have a ball in them. We then want r to
be such that the expected (integer-valued) number of collisions t

2 ·
a
b to be zero.

Figure 1 plots the adversary’s advantage AdvindA for the above parameters as a function of r near
the suggested in [6] value of r of about 300. As evident from the figure, the advantage is significant
even in the worst (for the adversary) case when only one extra overlapping point separates authentic
data from impostor. The jumps in the plot correspond to the places where the (integer-valued)
mean of the distribution, E[X], increases by 1.

In practice, the above model is more complex due to the need of quantizing the data and the
ability to handle white noise (small differences in the positions of the feature points). As a result,
this imposes a maximum packing density of points in the vault. In particular, points normally
cannot be placed very close to other points, but given the acceptable distance d, they can lie
anywhere in the space as long as they are at least distance d from other points. This means that

the total number of elements r in a sketch cannot exceed 4ρp2

d2π
with packing density ρ (i.e., packing

non-overlapping circles of radius d/2). The optimal density for packing circles is unachievable and
instead [6] gives ρ ≈ 0.45 in which case the packing is guaranteed to be random. When, for instance,
p = 251, d = 10, and ρ = 0.45, r ≤ 361.

Relating this point placement constraint to our problem of estimating the adversary’s advantage
in distinguishing related and unrelated sketches, we as before assume that α genuine points overlap.
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Figure 1: Adversary advantage AdvindA with parameters n = 2512, s = 30, t = 16, and varying r.

While a point can overlap with more than one other points, it is considered a match only with one
of them (often the closest), and the remaining points can still overlap (and be considered a match)
with other points. When packing non-overlapping balls in the area, the radius of each ball is d/2.
When, however, computing the useful area, where points can be placed given a number of points
already in the area, we have that a point cannot land within the distance d of another point and
for that reason we model existing points as balls of radius d′ = d− δ for some negligibly small δ.

The above means that two points within (Euclidean) distance of less than d from each other
will be considered a match even if their positions differ. We can then take this modification into
account and recompute the adversary’s advantage assuming that each point occupies an area of
radius d′ = d− δ < d. Then to determine the number of collisions caused by the chaff points (as in
equation 1), we need to compute the space in which such points land. Given α = |w∩w′| overlapping
biometric points, they occupy an area between α · CA(d′) and α · 2CA(d′), where CA(r) = πr2

represents the circle area of radius r. Fortunately, we can estimate such an area more precisely as
follows. Because the points are always placed at discrete locations, for any particular value of d,
it is not difficult to compute the average area occupied by two overlapping balls of radius d′. Let
Dd = {(i, j) | i = 0, . . ., d − 1, j = 1, . . ., d − 1 and

√

i2 + j2 < d}. This set represents relative
coordinates of a quarter of all points (excluding the perfect overlap) that would cause two points
to overlap. Then the average area occupied by two overlapping balls of radius d′ is:

AA(d) =
(

4
∑

(i,j)∈Dd

(2CA(d′)− IA(d′,
√

i2 + j2)) + CA(d′)
)

/ (4|Dd|+ 1)

where IA(a, b) denotes the area of the intersection of two circles of radius a placed at distance b (the
formula for which is well known). The average is computed using the distances for all overlapping
points in four quarters and the perfect overlap with 0 distance.

Figure 2 plots the ratio of the average overlapping points area AA(d) to the area 2CA(d′) occupied
by two circles of radius d′ for different values of d. It is clear that the ratio remains constant, despite
discretization of point locations, which could introduce an error in the computation. This means
that we can approximate the area occupied by two overlapping points in our analysis by scaling
2CA(r) by a constant factor.

Going back to modeling the distribution that would allow us to determine the adversary’s
advantage in distinguishing related and unrelated sketches, as before we assume that α = |w ∩ w′|
points from the original biometrics overlap. Let wo denote the α points from w that are in the
intersection, and similarly w′o denote the corresponding α points from w′. The area occupied by
the overlapping 2α points wo ∪ w′o on average is αAA(d), while the α points from wo and w′o
occupy αCA(d′) space each. This means that when we throw the remaining r − α points of w′
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Figure 2: The ratio of the average area covered by two overlapping points to the area of two circles
of diameter d′ ≈ d.

uniformly at random, the space at which they are to land is slightly different from the space
where points in πx(S1) \ wo can reside. Let c be a constant such that AA(d) = c · 2CA(d′) (i.e.,
0.5 < c < 1). Also let space(X) denote the space occupied by setX and space(all) denote the overall
space of size p × p. We obtain that |space(wo)| = |space(w

′
o)| = αCA(d′) and |space(wo ∪ w′o)| =

2cαCA(d′). Then when we throw the first point from πx(S2) \ w
′
o into space(all) \ space(wo), it

has a regular probability of overlapping with a (random) point from πx(S1) \ wo if it lands in
the space space(all) \ (space(wo ∪ w′o)), and that probability is lowered if it lands in the space
space(wo \w

′
o). In the latter case, the landing point has fewer options for intersection (as a number

of points in close proximity of it cannot contribute to an overlap) and the probability is lowered
by a factor 2c− 1 on average from the former case (the factor 2c− 1 is the fraction of the thrown
ball’s area that can overlap with another point in w). Similar logic applies to other points that
we throw with the difference that the areas occupied by existing points increase. Note that this
model is still an approximation, as each ball can overlap with several balls near it. Since taking into
account all possible overlaps will result in a significantly more complex model, we instead use this
approximation as the lower bound on the attacker’s advantage. That is, because we underestimate
the remaining space at which we throw points, this results in greater probability of overlap of two
balls, and the adversary’s distinguishing probability is better when the number of spurious overlaps
is small. Also note that the probability that a ball of radius d′ overlaps with more than a single
ball near it grows as the number of chaff points in a sketch increases.

To determine the number of overlapping points between πx(S1) and πx(S2), we might wish to
rewrite equation 1 in a similar form. First observe that when we throw the first point after the α
overlapping points from the original biometrics have been determined, the probability of overlap
with the remaining a = r − α points from S1 is

n− 2cαCA(d′)

n− αCA(d′)
·

aCA(d′)

n− αCA(d′)
+

(2c− 1)αCA(d′)

n− αCA(d′)
·
(2c− 1)aCA(d′)

n− αCA(d′)
(3)

Here the factors n−2cαCA(d′)
n−αCA(d′) and (2c−1)αCA(d′)

n−αCA(d′) correspond to the probabilities that the ball falls

within the space space(all) \ (space(wo ∪ w′o)) and space(wo \ w
′
o), respectively, from the total

available space n− αCA(d′) (corresponding to space(all) \ space(wo)). Then for the first case, the

probability of overlap is aCA(d′)
n−αCA(d′) , and it is lowered by a factor 2c−1 in the second case as described

above. Then when we throw the second point, the probability of overlap with the remaining points

in S1 (which do not already overlap with points from S2) becomes n−2c(α+1)CA(d′)
n−(α+1)CA(d′) ·

(a−1)CA(d′)
n−(α+1)CA(d′) +

(2c−1)(α+1)CA(d′)
n−(α+1)CA(d′) ·

(2c−1)(a−1)CA(d′)
n−(α+1)CA(d′) or n−2cαCA(d′)−CA(d′)

n−(α+1)CA(d′) · aCA(d′)
n−(α+1)CA(d′) +

(2c−1)αCA(d′)
n−(α+1)CA(d′) ·

(2c−1)aCA(d′)
n−(α+1)CA(d′) ,

depending on whether the previous point resulted in a fit or miss, respectively.
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As it can be seen from the formulas, there are non-trivial changes to the probabilities after
throwing a point depending on whether it resulted in a hit or a miss. That is, the probability of k
hits after throwing a (> k) balls in this model is determined not only by the values of k, a, and the
available space for the points, but also by the order of the hits among the a thrown points. While
given a complete specification of the problem (namely, the parameters p, d, s, r, and α), we can
compute the probability of the quantity c = |πx(S1) ∩ πx(S2)| taking on any given value, a lack
of complete characterization of this distribution prevents us from determining its mean value and
therefore clearly defining a strategy for the distinguishing attack.

To mitigate the issue, we propose to determine the necessary mean value by additionally sim-
plifying the model. We proceed with the hypergeometric distribution analyzed in equation 1 for
exact (rather than approximate) point overlaps. Note that when matching is approximate and
each point occupies an area of size CA(d/2) = π(d/2)2, we need to use bins of size CA(d/2) instead
of previous size 1. This means that b becomes b = n − αCA(d/2) and each hit removes the area

CA(d/2) from the available space. We obtain the mean value of E[X] = a2CA(d/2)
b , where a = r−α,

b = n − αCA(d/2), and α ≥ s − t/2 for related biometric samples and α ≤ s − t/2 − 1 otherwise.
Then based on this estimate of E[X], the adversary’s success probability can be computed using
the modified equation 1 similar to equation 2 or using equation 3. We obtain that the number
of spurious overlaps between chaff and other biometric points without a match would increase by
approximately a multiplicative factor of CA(d/2) compared to the case when the points had to
be matched exactly. While this lowers the adversary’s distinguishing probability (compared, for
instance, to the probabilities in Figure 1), it also substantially increases the cost of Rec(w′, S) that
reconstructs w from its sketch S and a legitimate related biometric w′. Therefore, to maintain
usability of the secure sketch scheme, when approximate point matching is used, either the granu-
larity of the available space n needs to be increased or the number of chaff points r− s needs to be
decreased. This will allow us to keep the number of spurious overlaps low, as desired. This means
that we go back to the range of adversary’s success probabilities depicted in Figure 1, which are
clearly unacceptably high for a security construction.

Attacking irreversibility. Now the adversary is given two sketches S1 and S2 for related bio-
metrics w and w′ and its goal is to recover information about w beyond what can be learned due
to the release of the sketch. We analyze the case when both S1 and S2 are produced using the
fuzzy vault scheme. The attack strategy in this case consists of first computing the x-coordinates
common to both S1 and S2, i.e., πx(S1) ∩ πx(S2). Recall that the resulting set contains at least
s − t/2 genuine points from w ∩ w′ as well as spurious points (i.e., other than points in w ∩ w′),
the expected number of which is (r− s+ t/2)2/(n− s+ t/2) for related biometrics with distance t.
Let c = |πx(S1) ∩ πx(S2)| − (s − t/2). Then to attempt to recover the biometric w, the adversary
will consider every subset of size s − t/2 from the intersection πx(S1) ∩ πx(S2), reconstruct the
polynomials that those points form in S1 and S2, and use the remaining points of S1 and S2 to test
whether the recovered polynomials could be the original polynomials that determine w and w′. In
more detail, any s − t points from S1 uniquely define a polynomial of degree s − t − 1, which can
be reconstructed from the x and y-coordinates included in the sketch. Then if this polynomial was
the original polynomial chosen at the time of S1 creation, there will be exactly t other points in S1

lying on this polynomial, at least t/2 of which must be in the intersection πx(S1) ∩ πx(S2). The
attack strategy then consists of choosing s − t/2 points from πx(S1) ∩ πx(S2), reconstructing the
polynomial using the first s− t points and their coordinates in S1, and checking whether the rest of
the selected points (t/2 of them) lie on that polynomial and exactly t/2 points from the remaining
r − s + t/2 points of S1 lie on that polynomial as well. The same steps are then repeated for the
second sketch S2. More formally, the attack steps are as follows:
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1. Compute πx(S1) ∩ πx(S2).

2. For each subset C of πx(S1) ∩ πx(S2) of size s− t/2:

(a) Reconstruct the two unique polynomials p1(·) and p2(·) of degree s− t−1 using the first
s− t points and their y-coordinates in S1 and S2, respectively.

(b) Test whether all remaining t/2 points lie on p1 and p2 as well. If not, proceed with the
next set; otherwise, continue.

(c) Use S1 to compute the number of points from πx(S1) \ C lying on p1. Similarly, use S2

to compute the number of points from πx(S2) \C lying on p2. If both numbers equal to
t/2, store C as a potential set that represents the original polynomials.

3. Choose one of the stored sets C at random and output the s points of S1 that lie on the
corresponding polynomial p1(·) as the guess for w.

To quantify the success of this attack, let for the sake of the current description assume that
dist(w,w′) = t. First note that there are s − t/2 + c points common to S1 and S2 and therefore

there are
(s−t/2+c

s−t/2

)

=
(s−t/2+c

c

)

subsets C of size s− t/2 that an attacker needs to try. Because the

given sketches are related, there is at least one set C that passes verification in step 2 above. The
attacker can only fail if there are more than one pair of candidate polynomials and the attacker
chooses a wrong pair. In fact, if the number of such polynomial pairs is k ≥ 1, then the attacker
can fully recover the biometric with the probability 1/k. This gives us:

AdvirrevA =
2m

′

2m′ − 1

(

1

k
−

1

2m′

)

. (4)

We know that k is always at least 1, and we next argue that k is small. To show this, suppose that
a set C is not from w ∩ w′ (i.e., some points of C are not genuine biometric points), but passes
verification in step 2 above. Both p1 and p2 generated by the points in C have to pass through all
remaining t/2 points of C and exactly t/2 points of the remaining r− s+ t/2 points of S1 and S2,
respectively. The probability that each of these t points falls on a given polynomial is at most 1

n−1 .
This is because the chaff points are chosen at random from n − 1 options, and if the polynomial
happens to fall on the remaining field value, the probability of success is 0, and it is 1

n−1 otherwise.

Then the probability that t/2 points of C happen to lie on the polynomial is at most ( 1
n−1)

t/2 and
the probability that any t/2 points from r − s + t/2 happen to lie on the polynomial is at most
(r−s+t/2

t/2

)

( 1
n−1)

t/2. To pass the verification in step 2, it must also be the case that the rest of the

points from the sketch (i.e., r − s of them) do not fall on the reconstructed polynomials. Because
the latter probability might not be significantly smaller than 1, we bound it by 1 from the above.
This allows us to compute the expected value of k as follows:

E[k] < 1 +

(

(

s− t/2 + c

c

)(

r − s+ t/2

t/2

)(

1

n− 1

)t
)2

< 1 +

(

(s− t/2 + c)c(r − s+ t/2)t/2

c! · (t/2)! · (n− 1)t

)2

(5)

where the last inequality uses the approximation
(n
k

)

< nk

k! . Because s≪ r≪ n, the expected value
of k is small. For example, using the parameters n = 63001, s = 30, t = 16, and r = 300 suggested
in [6] with dist(w,w′) = t and therefore E[c] = 1, we obtain E[k] < 1 + 8.9 · 10−122 = 1.

When, dist(w,w′) < t, there will be multiple sets C of size s − t/2 that pass verification in
step 2 of the attack. These sets correspond to the same original polynomials p1(·) and p2(·) of S1
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and S2, respectively. The number of such sets is
( s−dist(w1,w2)/2
t/2−dist(w1,w2)/2

)

, while the number of spurious

sets and the corresponding polynomials that pass the verification can be characterized using the
generalization of the quantity in equation 5. We obtain:

E[k] <

(

s− dist(w1, w2)/2

t/2− dist(w1, w2)/2

)

+

(

((

s− t/2 + c

c

)

−

(

s− dist(w1, w2)/2

t/2− dist(w1, w2)/2

))(

r − s+ t/2

t/2

)(

1

n− 1

)t
)2

This analysis suggests a slight modification to the attack above: if multiple sets C that correspond
to the same polynomials p1 and p2 pass the verification in step 2, instead of choosing one of the
sets at random, choose a set corresponding to the repeated polynomials p1 and p2. In this case, the
attacker’s success probability approaches 1 regardless of the number of spurious sets C that pass
the verification. In general, we then have that AdvirrevA is greater or equal to the quantity given in
equation 4.

The complexity of our attack is bounded from the above by
(

s−t/2+c
c

)

(r − s + t/2) operations.
Because c must be low for the fuzzy vault scheme to be practical, this amount of work is not
expected to result in a large computational burden.

3.1.2 Improved fuzzy vault

Attacking indistinguishability. An important observation in designing an attack strategy for
this construction is that it is deterministic. This immediately implies that the same biometric will
always produce the same secure sketch, giving the adversary the ability to distinguish between
the sketches. Thus, as an important special case we first consider the adversary’s ability to win
the indistinguishability game when no noise affects multiple sketches of the same w (this arises
in several applications, where multiple keys are issued using the same copy of w). Thus, when A
obtains challenge S2, it outputs 1 if S2 = S1 and 0 otherwise. This means that when b = 1, A will
always guess the bit correctly, but when b = 0 it might still sometimes output 1 if the two sketches
happened to be the same. The probability of the latter, however, is small and we next provide a
bound on its value.

Recall that sketch S consists of t coefficients of a polynomial p(x) = xs+cs−1x
s−1+. . .+c1x+c0,

where for biometric w = {w1, . . ., ws} the coefficients are cs−1 =
∑

i
wi, cs−2 =

∑

i 6=j

wiwj, . . . , cs−t =

∑

C⊂[1,s],|C|=t

(
∏

i∈C
wi). First, for an unrelated random biometric ŵ, the probability that

∑

i ŵi = cs−1

is 1
n . That is, without any restrictions, there are

∏s−1
i=0 (n − i) choices for s elements without

repetitions from the set of n elements, and when the sum of the elements is fixed (in Fn), the
number reduces to

∏s−1
i=1 (n− i).

Now let us consider cs−2. We start with a simpler function x1x2 = b in Fn for a fixed value of b.
Recall that n = p2 for a prime p. We enumerate all possible solutions x1 and x2 for this function
such that x1 6= x2 (since all points in a biometric are different). When b is the zero element, there
are n−1 unordered pairs (x1, x2) with x1 6= x2 whose product equals to b (one value is zero and the
other can take n − 1 remaining values). All elements other than zero form a cyclic multiplicative
group, and when b 6= 0 there are either n−1

2 or n−1
2 − 1 pairs (x1, x2) with distinct x1 and x2,

when b is a quadratic non-residue or quadratic residue, respectively. Therefore, the number of pairs
(x1, x2) satisfying the congruence for any value of b is at most n−1 from the overall space of n(n−1)

2
such pairs, giving us the fraction 2

n .
Now recall that cs−2 is composed of a summation of products wiwj for each i 6= j. Then when

there is only one product w1w2 (i.e., s = 2), we obtain that it is equal to 0 more frequently than
to other values. When, however, s > 2 the distribution of product values drastically changes.
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Figure 3: The ratio of the fraction of most frequent value of the sum cs−2 to 1
n for different values

of n and s.

Because all wi have to be unique and each wi appears in a number of products wiwj , the value
of the sum tends to be distributed more evenly as s increases. This means that the frequency of
the most common value of cs−2 approaches 1

n when s grows. To illustrate this phenomenon, we
plot empirical data for small values of n = p2. In particular, for s = 2, 4, and 6 and all possible
w = (w1, . . ., ws) ∈ F

s
n we find a value of the sum which occurs the highest number of times. Let

that value be denoted by countmax and the fraction of all biometrics w that results in such value by
fmax = countmax/

(n
s

)

. To evaluate how the value of fmax compares to 1
n , we plot their ratio fmax/

1
n

in Figure 3. For s = 2, fmax = 2
n is constant; for s > 2 it is clear that fmax rapidly approaches 1

n
from the above even for very small values of s. This means that 2

n is a generous upper bound on the
probability that cs−2 of a randomly chosen ŵ will coincide with a specific value of that coefficient
for an unrelated biometric w.

Extending this analysis to cs−3 =
∑

wiwjwk, where i, j, and k are pairwise distinct, we obtain
that the most frequently occurring value of cs−3 is 0 and when s = 3 (i.e., there is only one product).

In that case, the number of possibilities that result in that product is (n−1)(n−2)
2 out of n(n−1)(n−2)

2·3
total choices (and the number of possibilities when the product is non-zero is at most n−3

2 ·
n−1
2 ).

This gives us that the fraction of triples that can result in any given product from the overall space
is ≤ 3

n . For cs−4, the maximum fraction is ≤ 4
n ; for cs−5, it is ≤

5
n , etc. Therefore, the adversarial

error is at most t!
nt , and in practice will be close to 1

nt because s > t. Both of these quantities
are very low even for small values of t (e.g., 2). This gives us that the probability with which
the adversary can mistakenly consider two unrelated biometrics to be related is very small. The
adversary’s advantage in the 2-indistinguishability game then is:

AdvindA = 2
∣

∣

∣
Pr[b′ = b]−

1

2

∣

∣

∣
= 2
∣

∣Pr[b′ = 1|b = 1]Pr[b = 1] + Pr[b′ = 0|b = 0]Pr[b = 0]−
1

2

∣

∣

∣
=

=
∣

∣

∣
2Pr[b′ = 1|b = 1]

1

2
+ 2Pr[b′ = 0|b = 0]

1

2
− 1
∣

∣

∣
=
∣

∣Pr[b′ = 1|b = 1] +

+ 1− Pr[b′ = 1|b = 0]− 1
∣

∣ =
∣

∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]
∣

∣ > 1−
t!

nt
.

To address the problem of distinguishability in the general case, assume we are given two sketches,
S1 = (cs−1, cs−2, ..., cs−t) and S2 = (c′s−1, c

′
s−2, ..., c

′
s−t). From Vieta’s formulas, we know the

relation between the roots of a normalized polynomial (i.e., when the leading coefficient is 1) and
its coefficients. For example, the summation of the roots is equal to the negative of the second
leading coefficient. Suppose that the two biometrics w and w′ corresponding to the sketches S1 and
S2, respectively, have s−k elements in common, where k can take any integer value from 0 up to s.
That is, k elements of w are different from some other k elements of w′. In our case, k is unknown,
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and our goal is to determine its value, which will allow us decide whether these two biometrics are
related or not. We can easily derive equations of uncommon elements of the biometrics and the
coefficients for the elements not common to the biometrics and the coefficients in the given sketches
by subtracting coefficients of the sketches. The first two equations are:

cs−1 − c′s−1 =
i=k
∑

i=1

wi −
i=k
∑

i=1

w′i

cs−2 − c′s−2 = (cs−1 −
i=k
∑

i=1

wi)
i=k
∑

i=1

wi +

i,j=k
∑

i,j=1,i 6=j

wiwj − (c′s−1 −
i=k
∑

i=1

w′i)
i=k
∑

i=1

w′i −

i,j=k
∑

i,j=1,i 6=j

w′iw
′
j

where wi’s and w′i’s are the elements that do not appear in w′ and w, respectively, and are therefore
the roots not common to the polynomials of S1 and S2. Similar to the above equations, we can
construct all t equations generated by the first known t coefficients of the two sketches. To be able
to do so, however, we will have to guess the value of k. Here, the adversary’s strategy is to set the
value of k to t/2. Then if these two sketches are in fact related with dist(w,w′) = t, the equations
can be solved for wi’s and w′i’s. If the sketches are related and the distance between them is less than
t, the adversary is overestimating their difference (i.e., k < t/2), yet the equations will lead to an
acceptable solution. That is, in case of dist(w,w′) < t, some roots in the equations corresponding
to the elements of w will be equal to roots corresponding to the elements of w′. Therefore, if
the biometrics are indeed related, the adversary will find acceptable and valid solutions for the
equations and with probability 1 will output a correct guess that the biometrics are related. If the
sketches, however, are not related, the adversary will do her best to solve the equations. There are
two possible cases: (i) the adversary does not find any valid solution in the field for this equation set
and thus outputs that the biometrics are not related or (ii) the adversary in fact finds a valid and
acceptable solution set to these equations and outputs that the biometrics are related. Because
in the latter case the adversary makes a wrong guess, we need to find the probability that two
non-related sketches lead to a set of equations that will result in a valid solution in the field.

To do so, we re-write the adversary’s advantage in the 2-indistinguishability game as:

AdvindA = 2
∣

∣Pr[b′ 6= b]− 1/2
∣

∣ = 2
∣

∣Pr[b′ 6= b|b = 1]Pr[b = 1] + Pr[b′ 6= b|b = 0]Pr[b = 0]− 1/2
∣

∣

We also know that Pr[b′ 6= b|b = 1] = 0 and let Pr[b′ 6= b|b = 0] = q. Then we obtain AdvindA =
2 |(1/2)q − 1/2| = 1 − q. To find a bound for probability q, we use the fact that each sketch is a
set of coefficients of an s-degree polynomial. This means that the total number of biometrics in

this representation is
(n
s

)

and the total number of related biometrics is R =
∑t/2

i=0

(s
i

)(n−s
i

)

, where
i represents the number of elements in a biometric that are different from the original one. This
give us the total number of non-related biometrics NR =

(n
s

)

−R. We can see that R is dominated
mainly by the last factor, i.e.,

( s
t/2

)(n−s
t/2

)

.

When we reveal t coefficients, we are looking at a space of size nt since each coefficient can take
any value from the field. In total, we could have nt possibilities for sketches. On the other hand,
we can have up to R related sketches for any given biometric. To determine how closely the above
observations correspond to the numbers observed in practice, we performed experiments for different
values of s and t with fixed p and counted the number of unique sketches that related and non-
related biometrics generate. In our experiments, we observed that each related biometric generates
a different set of coefficients and thus produces a unique sketch among the sketches corresponding
to related biometrics. Therefore, from the overall possible space (of size nt), sketches for biometrics
related to any given biometric w occupy a subset of size R. The next step is to determine the
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Biometric size
t = 2 t = 4 t = 6

computed observed computed observed computed observed

s = 6 32, 565 32, 221 1, 196 1, 080 N/A N/A

s = 7 97, 652 97, 429 4, 081 4, 392 58 0

s = 8 237, 050 236, 972 10, 883 11, 577 179 34

Table 1: The total number of collisions between related and unrelated sketches (error count) based
on theoretical analysis (denoted “computed”) and experimental validation (denoted “observed”).

distribution of non-related sketches over the entire possible set of sketches, which will allows us find
the probability of error. That is, the distribution of the non-related sketches of a given biometric
will allow us to determine the number of them colliding with the related sketches. Our experiments
(detailed below) suggest that this distribution is uniform over the entire range of possibilities that
non-related sketches can take. This information tells us that the expected number of non-related
biometrics which generate sketches that are same as one of the related sketches will be approximately
(R/(nt) · NR); we call this number “the error count.” The error count allows us to compute the
probability that the adversary fails to determine the answer correctly, that is, given a pair of non-
related sketches, it declares them as related when a related sketch with respect to one of the given
sketches is the same as the other given sketch. This probability is the ratio of the error count and
the total number of sketches produced in this setting,

(

n
s

)

, which gives us (R/(nt) · (NR/
(

n
s

)

). We
can see that NR is fairly close to

(

n
s

)

when t is not large, giving us an approximation of the failure
probability q ≈ R/(nt).

To confirm this analysis, we show our experimental results. In the experiments, we counted
the total number of collisions between related and non-related sketches to produce the value of the
error count and compared it to the value computed according to the formula. The experiments
were run for s = 6, 7, 8 when p was set to 5. We provide the error count values both computed
according to the formula and empirically counted (observed) in Table 1. It is clear that there is a
small difference between the two types of values.

To simplify the expression for q and find a lower bound on the adversary’s advantage, we use
an approximation of the formula q ≈

( s
t/2

)(n−s
t/2

)

/(nt) by replacing
(n
k

)

with ≤ nk/(k!) and obtain

q . (s(n − s))t/2/((t/2)!2nt). The maximum of this function happens when s = n/2 and t = 2
which leads to q taking the value 1/4. We obtain that AdvindA & 3/4 regardless of the values of n,
s, or t.

Note that the adversary’s computation is mainly dominated by methods for solving the equa-
tions. The first equation has degree 1 and each consecutive equation’s degree increases by one
from the one before. Overall, we have t variables and the last equation has degree t. Solving this
equation set of multivariate polynomials is generally an NP-complete problem [8]. However, in our
case we know that the variables wi are different from each others and so are w′i. The total number

of possibilities for assigning values to these variables from a field of n = p2 elements is
( n
t/2

)2
, which

is roughly ( 1
πt)(

2en
t )t. Therefore, for small values of n and t this attack is quite feasible for a com-

putationally bounded adversary. On the other hand, when n and t increase, existing publications
such as [8] show how to approach the general problem of solving multivariate polynomial equations
over a finite field. One can apply these methods to reduce the complexity of the proposed attack.
We can therefore conclude that the improved fuzzy vault scheme is computationally resistant to
our attack for very large values of n and t. However, in reality, the more common case is when
the difference between biometrics is fairly small. We have seen when t = 0 this attack becomes
relatively simple to be performed. Also when t is a small number, the computation complexity of
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O(nt) can be affordable.

Attacking irreversibility. Now the goal is to extract the original biometric w, given its secure
sketch S1 and a sketch S2 of a related biometric w′. Note that the strategy above recovers biometric
points in order to determine whether w and w′ are related or not. It is important to notice, however,
that the points that the adversary recovers are those by which w and w′ differ from each other.
Therefore, even though the adversary can learn t/2 points of w and t/2 points of w′ (including
some points common to them if dist(w,w′) < t), this strategy does not lead to the recovery of
sufficient information to gain a non-negligible advantage in the irreversibility game. In particular,
the entropy loss of this type of secure sketch is t log n, which is the same as recovering t biometric
points. We thus obtain that if the adversary uses t recovered points and guesses the remaining
s− t points it cannot win the irreversibility game with a sufficiently large probability. The success
probability, however, can substantially grow when the adversary is able to obtain more than two
sketches that correspond to related biometrics. After recovering t points from each pair of sketches,
the adversary will likely be able to obtain a larger number of points of w and thus gain a non-
negligible advantage in recovering information about w which is not available from its single sketch
S1.

3.1.3 Pinsketch

Attacking indistinguishability. The adversary receives two secure sketches S1 = syn(w1) =
(s1, s3, . . ., s2t−1) and S2 = syn(w2) = (s′1, s

′
3, . . ., s

′
2t−1), and its goal is to determine the coin flip, i.e.,

whether the biometrics w and w′ are related or not. Because the reconstruction procedure requires
computation of the syndrome of the (noisy) biometric, the adversary’s strategy in this case is simple:
compute σi = s′i − si for each i, and compute |supp(v)| such that syn(v) = (σ1, σ3, . . ., σ2t−1). If
|supp(v)| ≤ t, output 1 (related), otherwise, output 0.

To analyze the success probability of A, we first note that the adversary will always guess
correctly when w and w′ are related. When w and w′ are not related, the resulting syn(v) can
either be decodable or not decodable. Because a linear code (i.e., BCH) is used, the success
probability of the adversary is exactly the success probability in distinguishing sketches in the
syndrome construction with linear codes analyzed in [26]. The analysis of [26] shows that the
probability of decoding syn(v) when w and w′ are unrelated is small, and the adversary wins the
game with overwhelming probability. We refer the reader to [26] for additional definitions regarding
linear codes and their analysis.

Attacking irreversibility. Given two biometrics w and w′ produced using a (n, k1, t1) linear
code C1 and a (n, k2, t2) linear code C2, respectively, [26] shows that when w = w′, the adversary’s
advantage in recovering w for the syndrome construction is

AdvirrevA =
1

2min(m′

1,m
′

2) − 1

(

2min(m′

1,m
′

2)

2k1+k2 − Rank(G1,2)
− 1

)

where G1,2 denotes the (k1 + k2) × n matrix

[

G1

G2

]

and G1 (resp., G2) is the generator matrix of

C1 (resp., C2). When, however, w 6= w′, the adversary will need to iterate over all possible error
patterns and verify its guess, which becomes large when t is large. We refer the reader to [26] for
additional details.
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3.2 Construction for edit distance

Dodis et al. [10] describe two alternative ways of realizing the secure sketch construction for the edit
distance given in Section 2.3. The first consists of applying an existing low-distortion embedding
(that does not significantly change the distance between two biometrics after the mapping) of the
edit distance into the Hamming distance and then using a syndrome construction for the Hamming
distance to produce the public data. The second includes the application of a specially designed
embedding of the edit distance into the set difference metric using so-called c-shinglings. After
the embedding of a biometric is performed, the Pinsketch construction is applied to the resulting
representation to compute the sketch. Note that in both of the above cases linear error-correcting
codes are used, which means that the strategy and the analysis of [26] is applicable to both cases.
We conclude that constructions for the edit distance metric do not achieve the indistinguishability
and irreversibility properties.

4 Our Schemes

In this section we describe our simple schemes secure against strong adversaries with provably no
information leakage in the computational model. In what follows, let (SS′,Rec′) denote any existing
fuzzy sketch scheme (for any metric). The key k denotes the long-term user’s key of size κ, where
κ is the security parameter. The key is not shared with any parties. Before proceeding with the
description of the schemes, we provide additional definitions.

Definition 7 Let F : {0, 1}κ × {0, 1}ℓ1(κ) → {0, 1}ℓ1(κ) be a family of functions. For k ∈ {0, 1}κ,
the function Fk : {0, 1}ℓ1(κ) → {0, 1}ℓ1(κ) is defined as Fk(x) = F (k, x). F is said to be a family of
pseudo-random functions (PRF) if for every PPT adversary A with oracle access to a function and

all sufficiently large κ |Pr[AFk(1κ) − Pr[Af (1κ)]| is negligible in κ, where k
R
← {0, 1}κ and f is a

function chosen at random from all possible functions mapping ℓ1(κ)-bit inputs to ℓ1(κ)-bit outputs.

Definition 8 A family of functions h : {0, 1}κ × {0, 1}n → {0, 1}ℓ2(κ) is pairwise independent
universal hash function if for all x, x′ ∈ {0, 1}n, where x 6= x, Pr[hy(x) = hy(x

′)] = 1/2ℓ2(κ) for
y ∈ {0, 1}κ.

In the following secure sketch construction, it is required that ℓ1(κ) ≥ |SS
′(w)|, where |a| denotes

the length of string a. We discuss the choice of parameters in more detail later in this section.

To compute SS(w, k):

1. Choose r1 ∈ {0, 1}
ℓ1(κ) at random.

2. Output S = (S1, S2) = (r1, Fk(r1)⊕ SS′(w)).

To compute Rec(w′, k, S = (S1, S2)):

1. Compute u← Fk(S1).
2. Output what Rec′(w′, S2 ⊕ u) outputs.

Theorem 1 Assuming that F is a family of PRFs, the above fuzzy sketch scheme achieves weak
biometric privacy.

Proof Let the adversary attacking the scheme be denoted by A. We relate A’s advantage to the
advantage of adversary AF attacking the security of PRF family and show that A’s advantage in
the weak biometric privacy game is negligible. In the description below, q = poly(κ) is the number
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of sketching queries that A makes, and ǫPRF(κ) denotes AF ’s advantage in breaking the security of
PRF family.

Let us define games G0, G1, and G2. The game G0 is the same as the weak biometric privacy
game. To form the game G1, the challenger ensures that the values r1 chosen in step 1 of SS

algorithm when forming a sketch to answer a query or create the challenge are unique. Let r
(i)
1

denote the string chosen in the first step of SS during query i. To form the response to the first

query, A chooses r
(i)
1 and stores it in the database. To form the response to query i, the challenger

chooses r
(i)
1 and searches its database of i− 1 entries. If r

(i)
1 is found, it chooses a new value until

it does not appear in the database. The new r
(i)
1 is used to answer the query and is added to the

database. Thus, in game G1 all q+1 values r
(i)
1 used to answer the queries and form the challenge

are different.
The only difference between games G0 and G1 is that no collisions happen in G1. Because

the adversary is likely to learn some information about SS′(w) if a collision occurs, we obtain:

Adv
wbp1
A (κ) ≥ Adv

wbp
A (κ) −

(q+1
2

)

/2ℓ1(κ), where Adv
wbp1
A (κ) denotes A’s advantage in winning game

G1 and
(q+1

2

)

/2ℓ1(κ) is the upper bound on the probability that at least any two r
(i)
1 values from

the challenger’s q + 1 responses coincide.
To construct game G2, we use a series of sub-games G0, . . ., Gq+1, where G0 is the same as G1

and Gq+1 is the same as G2. To form game G1, the challenger changes its response to the first

sketching query by replacing Fk(r
(1)
1 ) with a string r

(1)
2 chosen uniformly at random from {0, 1}ℓ1(κ)

and returns the sketch S1 = (r
(1)
1 , r

(1)
2 ⊕ SS′

′(δ1(wb1))) instead. The rest of the game proceeds
unmodified as in G1. To form game Gi, the challenger similarly modifies its response to the first
i queries: instead of using F ’s pseudorandom output in forming the response to an A’s sketching

query, the challenger replaces it with a random string r
(j)
2 . Finally, in the game Gq+1 = G2 all

instances of F ’s output in the q queries and the challenge are replaced with uniformly random
strings.

Now observe that the adversary A cannot learn any information about sketches in game G2

because all biometric-related information is perfectly protected. This implies that the only way
for A to obtain any advantage in breaking game G1 is by using AF ’s advantage. In other words,
Adv

wbp1
A (κ) ≤ ǫPRF(κ). Putting everything together, we obtain Adv

wbp
A (κ) ≤ ǫPRF(κ) +

(

q+1
2

)

/2ℓ1(κ).
This means that the only way for A to have a non-negligible advantage in breaking the security of
the scheme is by having non-negligible advantage ǫPRF(κ), which violates the assumption that the
PRF family is secure. �

Note that in our fuzzy sketch construction deterministic constructions for the underlying sketch
SS′ are preferred because they normally produce most concise sketches. This means that the
pseudorandom output does not have to be needlessly increased to hide the entire underlying sketch.
In the above description, we assumed that the output length of F ℓ1(κ) is at least as large as the
output length of the given secure sketch |SS′(w)|. While this will hold for many types of biometrics
and a reasonable choice of security parameter κ, in some cases the representation of SS′(w) can
be longer. Instead of increasing the security parameter (which will increase the complexity of the
scheme), we suggest modifying the algorithm to use more than one application of F to produce
a longer pseudo-random sequence. For instance, if ℓ1(κ) < |SS′(w)| ≤ 2ℓ1(κ), the sketch will be
produced as (r1, (Fk(r1)||Fk((r1 + 1) mod 2κ)) ⊕ SS′(w)), where || denotes string concatenation.
This increases the number of random values on which F is evaluated and thus the probability of
their collision. However, as long as the quantity |SS′(w)|/ℓ1(κ) is constant or polynomial in κ, the
security guarantees still hold.
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In the fuzzy extractor construction below we split the key k into two keys k1 and k2. This is
done to simplify the analysis. In practice, the sub-keys k1 and k2 can be computed by applying a
PRF keyed with k to two different inputs.

To compute Gen(w, k1, k2):

1. Compute S = SS(w, k1) using the fuzzy sketch scheme above.
2. Choose r2 ∈ {0, 1}

κ at random and compute s← hr2(w).
3. Output P = (S, r2) and R← Fk2(s).

To compute Rep(w′, k1, k2, P = (P1, P2))
1. Run Rec(w′, k2, P1) to recover w. If it fails, output ⊥.
2. Otherwise, reproduce the key R as Fk2(s

′), where s′ ← hP2(w), and output R.

The above algorithm reports an error if the private string R cannot be reproduced. When it is
desirable that failures are not reported explicitly, the Rep procedure can output a (wrong) private
string, e.g., computed as R = Fk2(hP2(w

′)).
Before proceeding with showing the security of the scheme, we explain the design choices made

in this construction. Because a pseudo-random function is a powerful primitive, it by itself is
sufficient to produce the private string R which is indistinguishable from random. For example,
setting R← Fk2(w||r), where r is a randomly chosen string, would satisfy the requirements of the
security game. The reason for including the hash function h in the construction is to compress the
biometric w without loosing the amount of its unpredictability. That is, the n-bit representation of
biometric is normally substantially longer than the m bits of entropy it contains. For example, for
iris the standard values of these parameters are n = 2048 and m = 256. Because m ∼ κ, we can
use a hash function h : {0, 1}κ×{0, 1}n → {0, 1}m to reduce the size of w from n to m bits without
loosing its entropy. In cases when the value of m exceeds the desired length to be used as the input
to a PRF, the hash function output length can be further reduced, i.e., in general ℓ2(κ) ≤ m.

We note that the existing generic conversion of a secure sketch to a fuzzy extractor (given in
Section 2.1) uses a strong extractor, which can be built using a universal hash function alone. The
use of the hash function in a strong extractor is, however, constrained in that the output length of
the extractor must necessarily be smaller than m to be able to meet the requirement of the output
being close to the uniform distribution. In particular, at least 2 log(1ǫ )− 2 bits of entropy are lost,
where the parameter ǫ determines the statistical distance between the distribution of the output
and the uniform distribution. In our case, no requirements on the uniformity of the output must
be met, and therefore no reduction of the output length or entropy loss has to take place.

Theorem 2 Assuming that F is a family of PRFs and h is a universal hash function, the above
fuzzy extractor scheme achieves strong biometric privacy.

Proof To show strong biometric security, we consider two games G0 and G1. The game G0 is as
in the security definition, and there is a series of games G0, . . ., G2q′+q that lead from G0 to G1.
Instead of modifying the game to first avoid collisions between randomly chosen values, this time
we first replace all pseudo-random strings with truly random and then take collisions into account
during the analysis of the modified game. Because of the possibility of collisions, we need to ensure
that all queries that happen to use the same randomness are answered consistently. In particular,

in game G1, the challenger chooses r
(1)
1 to answer the first public query and replaces the output

of Fk1(r
(1)
1 ) with a truly random string r̂(1). The challenger stores the pair (r

(1)
1 , r̂(1)). Before any

other public query is answered, the challenger checks whether the string r
(i)
1 equals to r

(1)
1 . If it

does, it uses r̂(1) to create the sketch, otherwise, it proceeds as specified by using Fk1(r
(i)
1 ). In
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game G2, the use of Fk1(r
(2)
1 ) in the second query is also replaced with a random string. The pairs

(r
(j)
1 , r̂(j)) for j = 1, 2 are stored in a database, and the rest of the queries are answered by first

checking the database to ensure that all queries are answered consistently. Similarly, in game Gq′ ,

invocations of Fk1(r
(i)
1 ) in all public queries are replaced with truly random strings.

Now to form game Gq′+1, the challenger chooses a hash function in the first sketching query

by selecting r
(1)
2 , but replaces the invocation of Fk2(hr(1)2

(δi(w))) with a random string r̃(1). The

challenger stores the pair (h
r
(1)
2
(δ1(w), r̃

(1)) in the second database. Then in all consecutive public

or private queries, if the evaluation of h
r
(i)
2

on δi(w) equals to the first element stored in the

database, the output of the PRF Fk2 on that input is replaced with r̃(1). In the consecutive games
Gq′+2, . . ., G2q′+q invocations of the PRF Fk2(·) are replaced with truly random string one at a time
in all public and private queries. The databases are maintained to answer all queries consistently.

Let Adv
wbp1
A (κ) denote A’s advantage in winning game G1. We obtain that Adv

wbp
A (κ) ≤

Adv
wbp1
A (κ) + ǫPRF(κ). We next analyze the success probability of A winning game G1.
First of all, the adversary may have non-negligible advantage in recovering biometric informa-

tion when collisions in r
(i)
1 ’s used by the challenger occur. The probability of such collisions in public

queries is bounded by
(q′

2

)

/2ℓ1(κ) from the above. Collisions in private queries, where the adversary

can create public P ′i ’s with the same r
(i)
1 ’s, however, do not provide any advantage to A. Further-

more, if two values h
r
(i)
2
(δi(w)) collide, the adversary might also obtain non-trivial advantage in

winning the game. The probability that in public queries h
r
(i)
2
(δi(w)) and h

r
(j)
2
(δj(w)) collide when

δi(w) = δj(w) is 1/2
κ, i.e., r

(i)
2 must equal to r

(j)
2 . When δi(w) 6= δj(w), the probability of collision

of the hash function outputs h
r
(i)
2

(δi(w)) and h
r
(j)
2

(δj(w)) is at most 1/2ℓ2(κ). As before, collisions

in private queries do not give the adversary additional advantage because only Pi’s returned from
the public queries can be used in the challenge. Such collisions can give the adversary advantage if
it first obtains Pi’s from the challenger and then uses at most q′ − 1 of them in private queries to
obtain the corresponding private keys. If the key associated with the remaining Pi collides with one
of the previously queried keys, the adversary will be able to recognize it. Assuming that ℓ2(κ) ≥ κ,
we obtain that the probability of a collision of the output of the hash function in one of the queried
values and the challenge is bounded by min(q′ − 1, q)/2κ from the above.

The adversary might attempt to use the private queries to guess the target biometric directly.
In particular, A can try to guess w (or a sufficiently close function of it), compute SS′(w), and
replace it in Pi from one of the public queries with SS′(w′) for sufficiently close w′. If the private
query executed on such modified query comes back as not failed, the adversary’s guess was correct.
The success of such trials is limited by the number private queries and is at most q/2m.

Putting everything together, we have Adv
wbp1
A (κ) ≤

(q′

2

)

/2ℓ1(κ) +min(q′− 1, q)/2κ + q/2m. This

gives us Adv
wbp
A (κ) ≤ ǫPRF(κ) +

(q′

2

)

/2ℓ1(κ) + min(q′ − 1, q)/2κ + q/2m. Because each term in this
summation is negligible, we conclude that the adversary has only negligible advantage in winning
the strong biometric privacy game. �

We would like to note that certain constructions of pseudo-random functions are known to produce
uniformly distributed sequences. For example, Shparlinski [24] shows that Naor-Reingold PRF [18]
has this property for almost all values of parameters. For our schemes this means that the adversary
does not obtain advantage in distinguishing pseudo-random strings from random.

We also note that results similar to ours can be achieved by using encryption instead of PRF,
and such schemes might be known or used in industry.
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5 Related Work

The overall literature on fuzzy sketches and extractors is very extensive, especially in biometric-
related venues, and its overview is beyond the scope of this work. We therefore highlight the most
fundamental results and the analysis related to this work. Davida et al. [7] first proposed an off-
line biometric authentication scheme, where a user authenticates by presenting a signed output of
a hash function over her biometric and other attributes tied to her. Error-correcting codes are used
to reconstruct the original biometric from its noisy consecutive readings. Juels and Wattenberg [14]
developed a so-called fuzzy commitment scheme, which became the basis of the code-offset secure
sketch construction for the Hamming distance. Juels and Sudan proposed a fuzzy vault scheme
in [13], which is a secure sketch construction for the set difference metric. Dodis et al. formalized the
notion of secure sketches and fuzzy extractors in their seminal work [11, 10]. That work proposed
a generic conversion from a secure sketch to a fuzzy extractor, and developed a number of new
or improved schemes for three distance metrics (the Hamming distance, set difference, and edit
distance), most of which are outlined earlier in this work.

Boyen et al. [4] introduced the notion of robust fuzzy extractors secure against active adversaries.
In that work, the reconstruction process detects tampering with the helper data and fails if the
sketch has been modified; the approach relies on random oracles. Dodis et al. [9] continue that line
of research and design solutions for certain distance metrics in the standard model. In addition,
the keyed setting in the bounded storage model (BSM) is investigated. The use of the key in that
work is fundamentally different from our keyed setting: in [9] two parties share a long-term secret
key and use it to generate a secret session key with the help of close, but different strings w and w′,
and the key is used for data authentication. We note that the constructions presented in our work
can potentially be applied to a robust fuzzy extractor to improve their properties with respect to
reusability.

There are also publications that combine fuzzy extractors with passwords to improve their secu-
rity properties. One such work [1] develops a biometric key generation algorithm where biometric
information is combined with feature selection, after which the derived sketch is secured by using
a password and random oracles. This work offers a simpler and more flexible construction.

Security requirements for adequate use of fuzzy sketches and extractors in cryptographic applica-
tions have been developing over time. Boyen [3] showed that a number of the original constructions
cannot be safely applied multiple times to the same biometric, significantly limiting their usability
in practice. That work developed improved constructions using a certain type of error-correcting
codes and permutation groups that satisfy the reusability requirements. Our security definitions
for the strong adversary were influenced by that work. Later Scheirer and Boult [23] proposed
three classes of attacks on secure sketches and fuzzy vault in particular: (1) the record multiplic-
ity attack which takes advantage of a link between related helper data (similar to multiple uses
above), (2) the surreptitious key-inversion attack, where the adversary tries to recover the biomet-
ric based on any revealed key and corresponding helper data, and (3) the blended substitution
attack which considers the problem of injecting false data into the stored records of helper data.
The above record multiplicity (or correlation) attack has been empirically evaluated by Kholmatov
and Yanikoglu [15] on the fuzzy vault scheme using a database of 400 fuzzy vault sketches (200
matching pairs). The authors were able to unlock (i.e., reconstruct the polynomial) 118 out of 200
pairs within a short period of time using two related vaults. The fuzzy vaults were constructed
using polynomials of degree 8 and 200 chaff points. We note that this evaluation was performed on
a specific set of parameters already knowing that two stored sketches are related. Our analysis, on
the other hand, is more general and can be applied to a wide variety of parameters. Furthermore,
it does not assume prior knowledge of related sketches, but rather helps to identify those records.
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Poon and Miri [22] also describe collusion attacks on the fuzzy vault scheme assuming that the
sketches are related. Finally, Simoens et al. [26] introduced the notions of indistinguishability and
irreversibility for reusable sketches and showed weaknesses of code-offset and permutation groups
constructions. Here we analyze other existing constructions with respect to the indistinguishability
and irreversibility properties. The follow-up work [5] investigates similar issues in the continuous
domain.

More recently, Simoens et al. [25] provide three different attack strategies for an internal adver-
sary. The approach is general, although it require a considerable number of queries and thus can
be prevented by limiting such queries. In addition, our use of key in the proposed scheme makes
such attacks irrelevant. In a two-part series of papers [16, 17] for any key-binding or key-generating
biometric cryptosystems, Lai et al. study the fundamental trade-offs among security (the length of
the generated key), privacy (conditional entropy of the biometric measurements given the helper
data), and key protection (conditional entropy of the key given the helper data) in two different
cases. The first case [16] is when the biometric sample is used in only one system and the second
study [17] considers the case when the same biometric information is used in multiple systems and
the attacker will try to combine the data stored in different databases to gain information about
either the biometric measurements or the generated keys. In both studies, the authors propose
schemes that achieve any point on the chosen trade-off curve. Lastly, Wang et al. provide in [28]
an information-theoretic analysis of information leakage and revocability for error-correcting code
based implementation of fuzzy commitments and secure sketches. They, too, show that if the
stored data is padded with a one-time key, then the system is resistant against linkage attacks
across multiple enrollments.

6 Conclusions

This work investigates the security properties of a number of constructions for secure sketches
and corresponding fuzzy extractors. We show that, in addition to the constructions that have been
previously shown to have security weaknesses, other existing constructions do not meet our security
expectations when they are reused on related biometrics. In particular, we analyze a number of
secure sketch constructions from the literature for the set difference and edit distance metrics with
respect to their indistinguishability and irreversibility in presence of very weak adversaries. Our
analysis indicates that none of the schemes can be safely reused.

To mitigate the problem, we propose to use the computational setting, where a user stores a
short key for all possible uses in such schemes. This change results in simple solutions with re-
markable security and usability improvements which work with any existing secure sketch, mitigate
information leakage associated with biometrics, and rely on generic hardness assumptions.
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