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Abstract. This paper proposes a new scheme for authenticated encryption (AE) which is typically realized
as a blockcipher mode of operation. The proposed scheme has attractive features for fast and compact
operation. When it is realized with a blockcipher, it requires one blockcipher call to process one input
block (i.e. rate-1), and uses the encryption function of the blockcipher for both encryption and decryption.
Moreover, the scheme enables one-pass, parallel operation under two-block partition. The proposed scheme
thus attains similar characteristics as the seminal OCB mode, without using the inverse blockcipher. The
key idea of our proposal is a novel usage of two-round Feistel permutation, where the round functions
are derived from the theory of tweakable blockcipher. We also provide basic software results, and describe
some ideas on using a non-invertible primitive, such as a keyed hash function.
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1 Introduction

Authenticated encryption. Authenticated encryption, AE for short, is a method to simultaneously provide
message confidentiality and integrity (authentication) using a symmetric-key cryptographic function. Although
a secure AE function can be basically obtained by an adequate composition of secure encryption and message
authentication [14, 32], this requires at least two independent keys, and the composition methods in practice
(say, AES + HMAC in TLS) frequently deviate from what proved to be secure [42]. Considering this situation,
there have been numerous efforts devoted to efficient, one-key constructions. Among many approaches to AE,
blockcipher mode of operation is one of the most popular ones. We have CCM [3], GCM [5], EAX [16], OCB [33,
44,47] and the predecessors [26,31], and CCFB [36], to name a few. We have some standards, such as NIST SP
800-38C (CCM) and 38D (GCM), and ISO/IEC 19772 [6].

This paper presents a new AE mode using a blockcipher, or more generally, a pseudorandom function
(PRF). Our proposal has a number of desirable features for fast and compact operations. Specifically, when the
underlying n-bit blockcipher is EK (where K denotes the key), the properties of our proposal can be summarized
as follows.

– The key is one blockcipher key, K.
– Encryption and decryption can be done by the encryption function of EK .
– For s-bit input, the number of EK calls is ⌈s/n⌉ + 2, i.e., rate-1 processing, for both encryption and

decryption.
– On-line, one-pass, and parallel encryption and decryption, under two-block partition.
– Provable security up to about 2n/2 input blocks, based on the assumption that EK is a pseudorandom

function (PRF) or a pseudorandom permutation (PRP).

These features are realized with a novel usage of two-round Feistel permutation, where internal round
functions are PRFs with input masking. From this we call our proposal OTR, for Offset Two-round. Table
1 provides a summary of properties of popular AE modes and ours, which shows that OTR attains similar
characteristics as the seminal OCB mode, without using the inverse blockcipher. The proposed scheme generates

⋆ A preliminary version appears at Eurocrypt 2014. This is the full version (version 20170602). This paper also contains
additional sections in the appendix to define variants of the scheme presented in the proceeding of Eurocrypt 2014.
These variants are included in the submission to CAESAR competition [38]. Bost and Sanders [21] reported a flaw in
the proof of original specification with respect to masking constants. Reflecting [21], this paper presents the updated
specification. Software implementation results (Section 6) are not updated but still useful as the update has negligible
impact on efficiency.



input masks to EK using GF(2n) constant multiplications. This technique is called GF doubling [44], which is
a quite popular tool for mode design. However, our core idea is rather generic and thus allows other masking
methods. We also remark that Liting et al.’s iFeed mode [51] has similar properties to ours, without introducing
2-block partition. However, its decryption is inherently serial. In return for these attractive features, one potential
drawback of OTR is that it inherently needs two-block partition (though the message itself can be of any length
in bits), which implies more state memories required than that of OCB. The parallelizability of our scheme is
up to the half of the message blocks, while OCB has full parallelizability, up to the number of message blocks.
On-line processing capability is restrictive as it needs buffering of consecutive two input blocks.

We also warn that the security is proved for the standard nonce-respecting adversary [45], i.e. the encryption
never processes duplicate nonces (or initial vectors), see Section 2.2. Some recent proposals have a provable se-
curity under nonce-reusing adversary, or even security without nonce (called on-line encryption) [9,25]. However
we do not claim any security guarantee for such adversaries.

Table 1. A comparison of AE modes. Calls denotes the number of
calls for m-block message and a-block header and one-block nonce,
without constants.

Mode Calls On-line Parallel Primitive

CCM [3] a+ 2m no no E

GCM [5] m [E] and a+m [Mul] yes yes E,Mul†

EAX [16] a+ 2m yes no E
OCB [33,44,47] a+m yes yes E,E−1

CCFB [36] a+ cm for some 1 < c‡ yes no E

OTR a+m yes¶ yes¶ E
† GF(2n) multiplication
‡ Security degrades as c approaches 1
¶ two-block partition

Benefits of inverse-freeness. The use of blockcipher inversion, as in OCB, has mainly two drawbacks, as
discussed by Iwata and Yasuda [30]. The first is efficiency. The integration of encryption and decryption functions
increases size, e.g. footprint of hardware, or memory of software (See Section 6). Moreover, some ciphers have
unequal speed for enc/dec. For AES, decryption is slower than encryption on some, typically constrained,
platforms. For example, an AES implementation on Atmel AVR by Osvik et al. [41] has about 45% slower
decryption than encryption. This property is the initial design choice [23], in preference of encryption-only mode,
e.g., CTR, OFB, and CFB. IDEA is another example, where decryption is exceptionally slower than encryption
on microcontrollers [43]. The uneven performance figures of blockcipher enc/dec functions is undesirable in
practice, when the mode uses both functions.

The second is security. Usually the security of a mode using both enc/dec functions of a blockcipher, denoted
by E and E−1, needs (E,E−1) to be a strong pseudorandom permutation (Strong PRP or SPRP). This holds
true for the original security proofs of all versions of OCB [33, 44, 47], though a recent work of Aoki and
Yasuda [11] showed a relaxation on the security condition for OCB. In contrast, when the mode uses only E,
the security assumption is relaxed to PRP or PRF.

In addition, the inverse-freeness allows instantiations using non-blockcipher primitives, such as a hash func-
tion. Some basic ideas on this direction are explained in Section 7.4.

Hardware assistance. We remark that some software platforms have hardware-assisted blockcipher, most
notably AES instructions called AESNI in Intel CPUs. AMD CPUs also have an equivalent set. AESNI enables
the same performance for AES encryption and decryption. Therefore, when our proposal uses AESNI, the
performance would be roughly similar to that of OCB-AES with AESNI, though the increased number of states
may degrade the result. We have other SW platforms where hardware AES is available but decryption is slower
(e.g., [27]). Basically, the value of our proposal is not to provide the fastest operation on modern CPUs, instead,
to increase the availability of OCB-like performance for various platforms, using single algorithm.

Related works. Our scheme has a similar structure as OCB [33, 44, 47], which seems essential to integrate
encryption and authentication keeping parallelizability. The idea of using Feistel rounds with pseudorandom
round functions for building AE seems to go back to the proposal of ManTiCore [7], and they also described
the idea of using two-round Feistel with hash function in [8], while this paper is an independent work.
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2 Preliminaries

2.1 Basic Notations

Let N = {1, 2, . . . , }, and let {0, 1}∗ be the set of all finite-length binary strings, including the empty string ε.

The bit length of a binary string X is denoted by |X|, and let |X|a
def
= max{⌈|X|/a⌉, 1}. Here, if X = ε we

have |X|a = 1 for any a ≥ 1 and |X| = 0. A concatenation of X,Y ∈ {0, 1}∗ is written as X∥Y or simply XY .

A sequence of a zeros is denoted by 0a. For k ≥ 1, we denote
∪k

i=1{0, 1}i by {0, 1}≤k. For X ∈ {0, 1}∗, let
(X[1], . . . , X[x])

n← X denote the n-bit block partitioning of X, i.e., X[1]∥X[2]∥ . . . ∥X[x] = X where x = |X|n,
and |X[i]| = n for i < x and |X[x]| ≤ n. If X = ε the parsing with any n ≥ 1 makes x = 1, X[1] = ε. The
sequence of first c bits of X ∈ {0, 1}∗ is denoted by msbc(X). We have msb0(X) = ε for any X.

For a finite set X , if X is uniformly chosen from X we write X
$← X . We assume X ⊕ Y is ε if X or Y is ε.

For a binary string X with 0 ≤ |X| ≤ n, X denotes the padding written as X∥1∥0n−|X|−1. When |X| = n, X
denotes X.

For keyed function F : K × X → Y with key K ∈ K, we may simply write FK : X → Y if key space is
obvious, or even write as F if being keyed with K is obvious. If EK : X → X is a keyed permutation, or a
blockcipher, EK is a permutation over X for every K ∈ K. Its inverse is denoted by E−1

K . A keyed function
may have an additional parameter called tweak, in the sense of Liskov, Rivest and Wagner [34]. It is called

a tweakable keyed function and written as F̃ : K × T × X → Y or F̃K : T × X → Y, where T denotes the

space of tweaks. Instead of writing F̃K(T,X), we may write as F̃
⟨T ⟩
K (X). A tweakable keyed permutation, or a

tweakable blockcipher (TBC), is defined analogously by requiring that every combination of (T,K) produces a
permutation over X .
Galois field. An n-bit string X may be viewed as an element of GF(2n) by taking X as a coefficient vector
of a polynomial in GF(2n). Following Rogaway [44], we write 2X to denote the multiplication of 2 and X over
GF(2n), where 2 denotes the generator of the field GF(2n), by seeing 2 as x in the polynomial representation.
This operation is called doubling. Similarly we write 3X (where the corresponding polynomial is x+1) and 22X
to denote 2X ⊕ X and 2(2X), and 7X to denote 2(2X) ⊕ 2X ⊕ X. We may write 4X to denote 22X. The
doubling can be efficiently computed by one-bit shift with conditional XOR of a constant, and other constant
multiplications can be done by combining doubling and XOR, as shown above. There operations are frequently
used as a tool to build efficient blockcipher modes, e.g. [16, 28,44].

Throughout the paper we assume n = 128 and the corresponding field GF(2n) is defined over the polynomial
x128+x7+x2+x1+1, which is lexicographically-first primitive (thus irreducible) polynomial and is quite popular
for doubling-based tweaks. The scheme itself is general and is easily extended to other block sizes, however care
must be taken since masking coefficients are specific to the choice of n and the polynomial defining the field.

2.2 Random Function and Pseudorandom Function

Let Func(n,m) be the set of all functions {0, 1}n → {0, 1}m. In addition, let Perm(n) be the set of all per-
mutations over {0, 1}n. A uniform random function (URF) having n-bit input and m-bit output is uniformly

distributed over Func(n,m). It is denoted by R
$← Func(n,m). An n-bit uniform random permutation (URP),

denoted by P, is similarly defined as P
$← Perm(n).

We also define tweakable URF and URP. Let T be a set of tweak and FuncT (n,m) be a set of functions
T × {0, 1}n → {0, 1}m. A tweakable URF with tweak T ∈ T , and n-bit input, m-bit output is written as

R̃
$← FuncT (n,m). Note that if T = {0, 1}t, FuncT (n,m) has the same cardinality as Func(n+ t,m), hence R̃ is

simply realized with URF of (n+t)-bit input. In addition, let PermT (n) be a set of functions T ×{0, 1}n → {0, 1}n
such that, for any f ∈ PermT (n) and t ∈ T , f(t, ∗) is a permutation. A tweakable n-bit URP with tweak

T ∈ T is defined as P̃
$← PermT (n). We also define a URF having variable input length (VIL), denoted by

R∞ : {0, 1}∗ → {0, 1}n. This can be realized by stateful lazy sampling.
PRF. For c oracles, O1, O2, . . . , Oc, we write AO1,O2,...,Oc to represent the adversary A accessing these c oracles
in an arbitrarily order. If O and O′ are oracles having the same input and output domains, we say they are
compatible. Let FK : {0, 1}n → {0, 1}m and GK′ : {0, 1}n → {0, 1}m be two compatible keyed functions, with
K ∈ K and K ′ ∈ K′ (key spaces are not necessarily the same). Let A be an adversary trying distinguish them
using chosen-plaintext queries. Then the advantage of A is defined as

Adv
cpa
FK ,GK′ (A)

def
= Pr[K

$← K : AFK ⇒ 1]− Pr[K ′ $← K′ : AGK′ ⇒ 1].
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The above definition can be naturally extended to the case when GK′ is a URF, R
$← Func(n,m). We have

Adv
prf
FK

(A) def
= Adv

cpa
FK ,R(A).

If FK is a VIL function we define Adv
prf
FK

(A) as Adv
cpa
FK ,R∞(A). Similarly, for tweakable keyed function F̃K :

T × {0, 1}n → {0, 1}m and R̃
$← FuncT (n,m), we have

Adv
prf

F̃K
(A) def

= Adv
cpa

F̃K ,R̃
(A).

We stress that A in the above is allowed to choose tweaks, arbitrarily and adaptively. By convention we say
FK is a pseudorandom function (PRF) if Adv

prf
FK

(A) is small (though the formal definition requires FK to be
a function family). Similarly we say FK is a pseudorandom permutation (PRP) if Adv

prp
FK

(A) = Adv
cpa
FK ,P(A) is

small and FK is invertible. A VIL-PRF is defined in a similar way.

2.3 Definition of Authenticated Encryption

Following [16, 45], we define nonce-based AE, or more formally, AE with associated data, called AEAD. We
then introduce two security notions, privacy and authenticity, to model AE security.
Definition. Let AE[τ ] be an AE having τ -bit tag, where the encryption and decryption algorithms are AE-Eτ
and AE-Dτ . They are keyed functions. Besides the key, the input to AE-Eτ consists of a nonce N ∈ Nae, an
associated data (AD, or a header) A ∈ Aae, and a plaintext M ∈ Mae. The output consists of C ∈ Mae and
T ∈ {0, 1}τ , where |C| = |M |. The tuple (N,A,C, T ) will be sent to the receiver. The decryption function is
denoted by AE-Dτ . It takes (N,A,C, T ) ∈ Nae×Aae×Mae×{0, 1}τ , and outputs a plaintext M with |M | = |C|
if input is determined as valid, or error symbol ⊥ if determined as invalid.
Security. A PRIV-adversary A against AE[τ ] accesses AE-Eτ , where the i-th query consists of nonce Ni, header
Ai, and plaintext Mi. We define A’s parameter list to be (q, σA, σM ), where q denotes the number of queries,

and σA
def
=

∑q
i=1 |Ai|n and σM

def
=

∑q
i=1 |Mi|n. We assume A is nonce-respecting, i.e., all Nis are distinct. We also

define random-bit oracle, $, which takes (N,A,M) ∈ Nae×Aae×Mae and returns (C, T )
$← {0, 1}|M |×{0, 1}τ .

The privacy notion for A is defined as

Adv
priv

AE[τ ](A)
def
= Pr[K

$← K : AAE-Eτ ⇒ 1]− Pr[A$ ⇒ 1]. (1)

An AUTH-adversary A against AE[τ ] accesses AE-Eτ and AE-Dτ , using q encryption queries and qv decryption
queries. Let (N1, A1,M1), . . . , (Nq, Aq,Mq) and (N ′

1, A
′
1, C

′
1, T

′
1), . . . , (N

′
qv , A

′
qv , C

′
qv , T

′
qv ) be all the encryption

and decryption queries made by A. We define A’s parameter list to be (q, qv, σA, σM , σA′ , σC′), where σA′
def
=∑qv

i=1 |A′
i|n and σC′

def
=

∑qv
i=1 |C ′

i|n, in addition to σA and σM . The authenticity notion for the AUTH-adversary
A is defined as

AdvauthAE[τ ](A)
def
= Pr[K

$← K : AAE-Eτ ,AE-Dτ forges ], (2)

where A forges if AE-Dτ returns a bit string (other than ⊥) for a decryption query (N ′
i , A

′
i, C

′
i, T

′
i ) for some

1 ≤ i ≤ qv such that (N ′
i , A

′
i, C

′
i, T

′
i ) ̸= (Nj , Aj , Cj , Tj) for all 1 ≤ j ≤ q. We assume AUTH-adversary A is

always nonce-respecting with respect to encryption queries; using the same N for encryption and decryption
queries is allowed, and the same N can be repeated within decryption queries, i.e. Ni is different from Nj for
any j ̸= i but N ′

i may be equal to Nj or N ′
i′ for some j and i′ ̸= i.

Moreover, when FK and GK′ are compatible with AE-Eτ , let Advcpa-nrF,G (A) be the same function as AdvcpaF,G(A)
but A is restricted to be nonce-respecting. Note that Adv

priv

AE[τ ](A) = Adv
cpa-nr

AE-Eτ ,$
(A) holds for any nonce-respecting

A. In addition when FK and GK′ are the pairs of encryption and decryption functions written as FK = (F e
K , F d

K)
and GK′ = (Ge

K′ , Gd
K′) and they are compatible with (AE-Eτ ,AE-Dτ ), we define

Advcca-nrF,G (A) def
= Pr[K

$← K : AF e
K ,Fd

K ⇒ 1]− Pr[K ′ $← K′ : AGe
K′ ,G

d
K′ ⇒ 1], (3)

where A is assumed to be nonce-respecting for encryption queries. Then we have

AdvauthAE[τ ](A) ≤ Advcca-nrAE[τ ],AE′[τ ](A) + AdvauthAE′[τ ](A) (4)

for any AE scheme AE′[τ ] and any AUTH-adversary A.
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3 Specification of OTR

We present an AE scheme based on an EK : {0, 1}n → {0, 1}n, which is denoted by OTR[E, τ ], where τ ∈
{1, . . . , n} denotes the length of tag. The encryption function and decryption function of OTR[E, τ ] are denoted
by OTR-EE,τ and OTR-DE,τ . Here OTR-EE,τ (OTR-DE,τ ) has the same interface as AE-Eτ (AE-Dτ ) of Section
2.3, with nonce space Nae = {0, 1}≤n−1 (which excludes ε by definition), header space Aae = {0, 1}∗, message
space Mae = {0, 1}∗, and tag space {0, 1}τ . The functions OTR-EE,τ and OTR-DE,τ are further decomposed
into the encryption and decryption cores, EFE , DFE , and the authentication core, AFE . Figs. 1 and 2 show
the scheme. As shown by Fig. 2, OTR consists of two-round Feistel permutations using a blockcipher taking a
distinct input mask in each round. To authenticate the plaintext a check sum is computed for the right part of
two-round Feistel (namely the even plaintext blocks), and the tag is derived from encrypting the check sum with
an input mask. The overall structure has a similarity to OCB, and the function AFE is a variant of PMAC [44].
We also show Fig. 6 as an alternative representation of Fig. 1 to make explicit the used constants over GF(2n)
for masking.

4 Security Bounds

We provide the security bounds of OTR. Here we assume the underlying blockcipher is an n-bit URP, P.
The bounds when the underlying blockcipher is a PRP are easily derived from our bounds, using a standard
technique, thus omitted.

Theorem 1. Fix τ ∈ {1, . . . , n}. For any PRIV-adversary A with parameter (q, σA, σM ),

Adv
priv

OTR[P,τ ](A) ≤
6σ2

priv

2n

holds for σpriv = q + σA + σM .

Theorem 2. Fix τ ∈ {1, . . . , n}. For any AUTH-adversary A with parameter (q, qv, σA, σM , σA′ , σC′),

AdvauthOTR[P,τ ](A) ≤
6σ2

auth

2n
+

qv
2τ

holds for σauth = q + qv + σA + σM + σA′ + σC′ .

5 Proofs of Theorems 1 and 2

Overview. The proofs of Theorems 1 and 2 consist of two steps, where in the first step we interpret OTR as
a mode of TBC and in the second step we prove the indistinguishability between the tweakable URF and the
TBC used in OTR. This structure is essentially the same as original OCB proofs, say by Rogaway [44], as well
as many other schemes based on TBC.
First step: TBC-based design. In the first step, we define an AEAD scheme denoted by OTR[τ ], which
we may abbreviate OTR if τ is obvious. It is compatible with OTR[E, τ ] and uses a tweakable n-bit URF,

R̃ : T ×{0, 1}n → {0, 1}n. Here, tweak T ∈ T is written as T = (x, i, ω) ∈ N ′
ae×N×Ω, where N ′

ae = Nae∪{0n}
and Ω

def
= {f, s, a1, a2, b1, b2, h, g1, g2}. The encryption and decryption functions of OTR[τ ] are OTR-Eτ and

OTR-Dτ , and they consist of encryption core EFR̃, decryption core DFR̃, and authentication core AFR̃, as shown
by Fig. 4. For reference OTR is also illustrated in Fig. 5. They can be seen as counterparts of EFE , DFE , and
AFE of OTR[E, τ ]. Fig. 4 also defines OTR′[τ ], which uses an independent VIL-URF, R∞ : {0, 1}∗ → {0, 1}n,
instead of AFR̃. We first derive the security bounds of OTR′[τ ] in the following theorem. The proof of Theorem
3 is given in Appendix A.

Theorem 3. Fix τ ∈ {1, . . . , n}. For any PRIV-adversary A,

Adv
priv

OTR′[τ ](A) = 0.

Moreover, for any AUTH-adversary A using q encryption queries and qv decryption queries,

AdvauthOTR′[τ ](A) ≤
2qv
2n

+
qv
2τ

.
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Algorithm OTR-EE,τ (N,A,M)

1. (C, TE)← EFE(N,M)
2. if A ̸= ε then TA← AFE(A)
3. else TA← 0n

4. T ← msbτ (TE ⊕ TA)
5. return (C, T )

Algorithm OTR-DE,τ (N,A,C, T )

1. (M,TE)← DFE(N,C)
2. if A ̸= ε then TA← AFE(A)
3. else TA← 0n

4. T̂ ← msbτ (TE ⊕ TA)

5. if T̂ = T return M
6. else return ⊥

Algorithm EFE(N,M)

1. Σ ← 0n

2. U ← E(N), L← U , L♯ ← 3U
3. (M [1], . . . ,M [m])

n←M
4. for i = 1 to ⌈m/2⌉ − 1 do
5. C[2i− 1]← E(L⊕M [2i− 1])⊕M [2i]
6. C[2i]← E(L♯ ⊕ C[2i− 1])⊕M [2i− 1]
7. Σ ← Σ ⊕M [2i]
8. L← L⊕ L♯, L♯ ← 2L♯ // L = 2iU , L♯ = 2i3U
9. if m is even

10. Z ← E(L⊕M [m− 1])
11. C[m]← msb|M [m]|(Z)⊕M [m]
12. C[m− 1]← E(L♯ ⊕ C[m])⊕M [m− 1]
13. Σ ← Σ ⊕ Z ⊕ C[m]

14. L∗ ← L♯

15. if m is odd
16. C[m]← msb|M [m]|(E(L))⊕M [m]
17. Σ ← Σ ⊕M [m]
18. L∗ ← L
19. if |M [m]| ̸= n then TE ← E(32L∗ ⊕Σ)
20. else TE ← E(7L∗ ⊕Σ)
21. C ← (C[1], . . . , C[m])
22. return (C, TE)

Algorithm DFE(N,C)

1. Σ ← 0n

2. U ← E(N), L← U , L♯ ← 3U
3. (C[1], . . . , C[m])

n← C
4. for i = 1 to ⌈m/2⌉ − 1 do
5. M [2i− 1]← E(L♯ ⊕ C[2i− 1])⊕ C[2i]
6. M [2i]← E(L⊕M [2i− 1])⊕ C[2i− 1]
7. Σ ← Σ ⊕M [2i]
8. L← L⊕ L♯, L♯ ← 2L♯ // L = 2iU , L♯ = 2i3U
9. if m is even

10. M [m− 1]← E(L♯ ⊕ C[m])⊕ C[m− 1]
11. Z ← E(L⊕M [m− 1])
12. M [m]← msb|C[m]|(Z)⊕ C[m]
13. Σ ← Σ ⊕ Z ⊕ C[m]

14. L∗ ← L♯

15. if m is odd
16. M [m]← msb|C[m]|(E(L))⊕ C[m]
17. Σ ← Σ ⊕M [m]
18. L∗ ← L
19. if |C[m]| ̸= n then TE ← E(32L∗ ⊕Σ)
20. else TE ← E(7L∗ ⊕Σ)
21. M ← (M [1], . . . ,M [m])
22. return (M,TE)

Algorithm AFE(A)

1. Ξ ← 0n

2. Q← E(0n)
3. (A[1], . . . , A[a])

n← A
4. for i = 1 to a− 1 do
5. Ξ ← Ξ ⊕ E(Q⊕A[i])
6. Q← 2Q
7. Ξ ← Ξ ⊕A[a]
8. if |A[a]| ̸= n then TA← E(3Q⊕ Ξ)
9. else TA← E(32Q⊕ Ξ)

10. return TA

Fig. 1. Algorithms of OTR. Tag bit size is 0 < τ ≤ n, and X denotes the 10∗ padding of X, see Section 2.1.
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Fig. 2. Encryption of OTR. Box with underline and X denote the 10∗ padding of input X.

Proof intuition of Theorem 3. To understand Theorem 3, there are two important properties of a two-
round Feistel permutation, denoted by ϕf1,f2 : {0, 1}2n → {0, 1}2n. Here ϕf1,f2(X[1], X[2]) = (Y [1], Y [2]) where
Y [1] = f1(X[1])⊕X[2] and Y [2] = f2(Y [1])⊕X[1] and f1 and f2 are independent n-bit URFs. Then we have
the followings.

Property 1. For any (X[1], X[2]) ∈ {0, 1}2n, ϕf1,f2(X[1], X[2]) is uniformly random.
Property 2. Let (Y [1], Y [2]) = ϕf1,f2(X[1], X[2]), and let (Y ′[1], Y ′[2]) be a function of (X[1], X[2], Y [1], Y [2])

satisfying (Y ′[1], Y ′[2]) ̸= (Y [1], Y [2]). Then X ′[2], where (X ′[1], X ′[2]) = ϕ−1
f1,f2

(Y ′[1], Y ′[2]), is uniform
unless the event Bad1 : X[1] = X ′[1] occurs, which has the probability at most 1/2n.

Property 1 is simple because f1 and f2 are independent and the output of ϕ consists of those of f1 and f2. Prop-
erty 2 needs some cares. It holds because if X[1] ̸= X ′[1] = f2(Y

′[1])⊕ Y ′[2], f1(X
′[1]) is distributed uniformly

random, independent of all other variables, and this makes X ′[2] = f1(X
′[1]) ⊕ Y ′[1] completely random. The

Bad1 event has probability 1/2n when Y ′[1] ̸= Y ′[1], and otherwise 0. Note that (X[1], X[2], Y [1], Y [2]) reveals
corresponding I/O pairs of f1 and f2, however this does not help gain the probability of Bad1.

Intuitively, the privacy bound of Theorem 3 is simply obtained by the fact that all TBC calls in the game
has distinct tweaks and all output blocks contain at least one TBC output with unique tweak. Combined with
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Property 1, this makes all output blocks perfectly random, hence the privacy bound is 0. For the authenticity
bound, suppose adversary A performs an encryption query (N,A,M) and obtains (C, T ), and then performs a
decryption query (N ′, A′, C ′, T ′) for some C ̸= C ′ with |C| = |C ′|, with (N ′, A′) = (N,A). This implies that there
exists at least one chunk (2n-bit block) of C ′ different from the corresponding chunk in C, and from Property 2,
the right half of the corresponding decrypted plaintext chunk is completely random, unless Bad1 occurs. There
is another chance for the adversary to win, i.e. the checksum collision Bad2 : Σ′ = Σ, which has probability
1/2n provided Bad1 did not happen. Hence we have Pr[Bad1 ∪ Bad2] ≤ Pr[Bad1] + Pr[Bad2|Bad1] ≤ 2/2n. When
both events did not happen (i.e. given Bad1 ∪ Bad2), the final chance is to successfully guess the tag, where
the probability is clearly bounded by 1/2τ because different checksums yield independent tags. Hence the
authenticity bound is 2/2n + 1/2τ for any A using qv = 1 decryption query (of course we need to consider
the existence of other encryption queries and many other cases for (N ′, A′, C ′, T ′) as well, however the above
bound holds for all cases). Finally we use a well-known result of Bellare, Goldreich and Mityagin [13] to obtain
2qv/2

n + qv/2
τ for any qv ≥ 1.

Algorithm G̃[P]⟨N,i,ω⟩(X)

1. Preprocessing: Q← P(0n)
2. if N ̸= 0n then L← P(N)
3. switch ω
4. Case f : ∆← 2i−1L
5. Case s : ∆← 2i−13L
6. Case a1 : ∆← 2i−133L
7. Case a2 : ∆← 2i−1317L
8. Case b1 : ∆← 2i−132L
9. Case b2 : ∆← 2i−17L

10. else switch ω
11. Case h : ∆← 2i−1Q
12. Case g1 : ∆← 2i−13Q
13. Case g2 : ∆← 2i−132Q
14. Y ← P(∆⊕X)
15. return Y

Fig. 3. Tweakable permutation of OTR[P, τ ], denoted by G̃[P].

Second step: analysis of TBC. In Fig. 3 we define a TBC, G̃[P]⟨N,i,ω⟩(X), where (N, i, ω) is a tweak. It uses

an n-bit URP, P. We remark that G̃[P] slightly abuse N as it allows N = 0n, making N to be an element of

N ′
ae. For tweaks that do not appear in Fig. 3, we let them as undefined. We observe that G̃[P] is compatible

with R̃, the tweakable URF used by (components of) OTR[τ ] and OTR′[τ ], and in addition G̃[P] is implicitly

used by OTR[P, τ ], where the usage is the same as the way OTR[τ ] uses R̃. More formally, we have the following
proposition.

Proposition 1. If EFR̃ and DFR̃ use G̃[P] instead of R̃, we obtain EFP and DFP. Similarly if AFR̃ uses G̃[P]

instead of R̃ we obtain AFP.

Note that G̃[P] does not perform GF doublings in a sequential manner, instead a full multiplications for every
input. This is inefficient in practice, however does not cause a problem for simulation purpose. We then prove
that G̃[P] is a secure tweakable URF, shown by the following lemma.

Lemma 1. For any adversary A accessing G̃[P] with q queries, we have Adv
cpa

G̃[P],R̃
(A) ≤ 5q2/2n.

We also provide the indistinguishability bound between AFR̃ and R∞, which is as follows.

Lemma 2. For any A with σ input blocks, we have Adv
prf
AFR̃

(A) ≤ σ2/2n+1.

The proof of Lemma 1 is given in Appendix B. The proof of Lemma 2 is the same as a part of PMAC proof,
more specifically the last equation of Appendix E of [46].
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Third step: deriving bounds. For privacy notion, there exist adversaries B against AFR̃ with σA input blocks,

and C against G̃[P] with σpriv queries, satisfying

Adv
priv

OTR[P,τ ](A) ≤ Adv
cpa-nr

OTR[P,τ ],OTR[τ ](A) + Adv
cpa-nr

OTR[τ ],OTR′[τ ](A) + Adv
cpa-nr

OTR′[τ ],$(A) (5)

≤ Adv
cpa-nr

OTR[P,τ ],OTR[τ ](A) + Adv
cpa
AFR̃,R

∞(B) + Adv
cpa-nr

OTR′[τ ],$(A) (6)

≤ Adv
cpa

G̃[P],R̃
(C) + σ2

A

2n+1
(7)

≤
5σ2

priv

2n
+

σ2
A

2n+1
(8)

≤
6σ2

priv

2n
. (9)

where the third inequality follows from Proposition 1, Lemma 2, and Theorem 3, and the fourth inequality
follows from Lemma 1. Similarly, for authenticity notion, there exist B against AFR̃ with σA+σA′ input blocks,

and C against G̃[P] with σauth queries, satisfying

AdvauthOTR[P,τ ](A) ≤ Advcca-nrOTR[P,τ ],OTR′[τ ](A) + AdvauthOTR′[τ ](A) (10)

≤ Advcca-nrOTR[P,τ ],OTR[τ ](A) + Advcca-nrOTR[τ ],OTR′[τ ](A) + AdvauthOTR′[τ ](A) (11)

≤ Advcca-nrOTR[P,τ ],OTR[τ ](A) + Adv
cpa
AFR̃,R

∞(B) + AdvauthOTR′[τ ](A) (12)

≤ Adv
cpa

G̃[P],R̃
(C) + (σA + σA′)2

2n+1
+

2qv
2n

+
qv
2τ

(13)

≤ 5σ2
auth

2n
+

(σA + σA′)2

2n+1
+

2σA′

2n
+

qv
2τ

(14)

≤ 6σ2
auth

2n
+

qv
2τ

, (15)

where the fourth inequality follows from Proposition 1, Lemma 2, and Theorem 3, and the fifth inequality
follows from Lemma 1. This concludes the proof.

6 Experimental Results on Software

We implemented OTR on software. The purpose of this implementation is not to provide a fast code, but to
see the effect of inverse-freeness in an experimental environment. We wrote a reference-like AES C code that
takes byte arrays and uses 4Kbyte tables for combined S-box and Mixcolumn lookup, so-called T-tables. AES
decryption of our code is slightly slower than encryption (see Table 2). We then wrote pure C code of OTR
using the above AES code. All components, e.g. XOR of blocks and GF doubling, are byte-wise codes. For
comparison we also wrote a C code of OCB2 [44] in the same manner, which is similar to a reference code by
Krovetz [2].

We ran both codes on an x86 PC (Core i7 3770, Ivy bridge, 3.4GHz) with 64-bit Windows 7. We used
Visual C++ 2012 (VC12) to obtain 32-bit and 64-bit executables and used GCC 4.7.1 for 32-bit executables,
with option -O2. We measured speed for 4Kbyte messages and one-block header. We also tested the same code
on an ARM board (Cortex-A8 1GHz) using GCC 4.7.3 with -O2 option. Their speed figures in cycles per byte1

are shown in the upper part of Table 2. For both OTR and OCB2, we can observe a noticeable slowdown from
raw AES, however, OTR still receives the benefit of faster AES encryption. Another metric is the size, which is
shown in the lower part of Table 2. For OTR we can remove the inverse T-tables and inverse S-box from AES
code, as they are not needed for AES encryption, resulting in smaller AES objects.

We also measured the performance of these codes when AES is implemented using AESNI (on the Core
i7 machine, using VC12). We simply substituted T-table AES with single-block AES routine using AESNI. In
addition, two common functions to OCB2 and OTR, namely XOR of two 16-byte blocks and GF doubling, are
substituted with SIMD intrinsic codes. Other byte-wise functions are unchanged. On our machine single-block
AES ran at around 4.5 to 5.5 cycles per byte, for both encryption and decryption. Table 3 shows the results.
It looks interesting, in that, although we did not write a parallel AESNI routine, we could observe the obvious

1 As we were unable to use cycle counter in the ARM device, the measurement of ARM was based on a timer.
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Table 2. Reference implementation results of OTR and OCB2. (Upper) Speed in cycles per byte. (Lower) Object size
in Kbyte.

x86 ARM

Algorithm VC12(32-bit) VC12(64-bit) gcc 4.7.1(32-bit) gcc 4.7.3

OTR Enc 27.59 18.94 22.02 69.88
OTR Dec 27.56 18.99 22.2 69.78

OCB2 Enc 27.38 19.93 22.69 71.22
OCB2 Dec 30.86 25.43 34.29 76.16
AES Enc 18.29 12.98 15.9 54.38
AES Dec 22.28 18.36 26.64 58.14

x86 ARM

Object VC12(32-bit) VC12(64-bit) gcc 4.7.1(32-bit) gcc 4.7.3

OTR.o 19.9 21.3 5.4 5.9
OCB2.o 20.5 21.7 4.6 5.3

AES Enc.o 20.2 20.7 6.7 7.1
AES EncDec.o 45.4 46.2 17.3 17.9

OTR Total 40.1 42.0 12.1 13.0
OCB2 Total 65.9 67.9 21.9 23.2

effect of AESNI parallelism via compiler. Notably, both OTR and OCB2 achieved about 2 cycles per byte for
4K data, and OCB2 is slightly faster as expected. We think further optimization of OTR would be possible by
using parallel AES routine with full utilization of SIMD instructions and a careful register handling in a similar
manner to OCB, e.g. see a recent report by Bogdanov et al. [20].

These experiments, though quite naive, imply OTR’s good performance under multiple platforms with a
simple code. Of course, optimized implementations for various platforms are interesting future topics.

Table 3. Performance of codes with single-block AES routine using AES-NI. Data x denotes the plaintext length in
bytes, and a/b denotes a (b) cycles per byte in 32-bit (64-bit) VC12 compilation.

Data (byte) 128 512 1024 2048 4096

OTR Enc 6.01/5.43 3.32/3.16 2.85/2.74 2.66/2.51 2.49/2.40
OTR Dec 7.22/5.60 3.81/3.15 3.06/2.72 2.79/2.51 2.59/2.39

OCB2 Enc 6.39/5.60 3.26/2.76 2.81/2.26 2.53/2.02 2.37/1.90
OCB2 Dec 6.36/5.86 3.04/2.80 2.59/2.26 2.28/2.03 2.11/1.91

7 Remarks

7.1 Remove Inverse from OCB

The abstract structure of OTR has a similarity to OCB, however, removing inverse is not a trivial task. Roughly,

in OCB, each plaintext block is given to the ECB mode of an n-bit TBC ẼK [34], namely C[i] = Ẽ
⟨T ⟩
K (M [i]),

where tweak T consists of nonce N and other parameters, based on a blockcipher EK . The OCB decryption
uses the inversion of TBC, Ẽ−1

K , and the security proof requires that ẼK is a tweakable SPRP, i.e. (ẼK , Ẽ−1
K )

and (P̃, P̃
−1

) are hard to distinguish when P̃
$← PermT (n). Since Ẽ−1

K needs a computation of E−1
K , a natural

way to remove E−1
K from OCB is to compose ẼK from a PRP or a PRF. For example we can do this by

using a 2n-bit 4-round Feistel cipher as ẼK , based on an n-bit PRF, FK . Then, the resulting mode (of FK) is
inverse-free and provably secure, since 4-round Feistel cipher is an SPRP, as shown by Luby and Rackoff [35]
(it is easy to turn a SPRP into a tweakable SPRP). However, we then need four FK calls per two blocks, i.e.
the rate is degraded to two. Considering this, the two-round Feistel is seemingly a bad choice, since it even
fails to provide a (tweakable) PRP. As explained in Section 5, the crucial observation is that, the encryption of
two-round Feistel in OTR is invoked only once for each tweak, and that the authenticity needs only an n-bit
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unpredictable value in the decryption, rather than 2n bits. Two-round Feistel fulfills these requirements, which
makes OTR provably secure.

7.2 Design Rationale for Masking

We remark that using the same mask for the two round functions, i.e. using 2iL for the first and second
rounds of a two-round Feistel, does not work. This is because Property 2 of Section 5 does not hold anymore
since the two-round Feistel becomes an involution. Once you query (X[1], X[2]) and receive (Y [1], Y [2]) =
ϕf1,f2(X[1], X[2]), you know X ′[2] = Y [2] always holds (where (X ′[1], X ′[2]) = ϕ−1

f1,f2
(Y ′[1], Y ′[2])), when

(Y ′[1], Y ′[2]) = (X[1], X[2]). This implies that the adversary can control the checksum value in the decryp-
tion, hence breaks authenticity.

We also remark that the masks for EFE depend on N , hence do not allow precomputation. In contrast the
latest OCB3 allows mask precomputation by using EK(0n) [33]. The reason is that we want our scheme not
to generate EK(0n) for header-less usage (i.e. when A is always empty). As a result our scheme has a rather
similar structure as OCB2 and an AEAD mode based on OCB2, called AEM [44]. Recent studies reported that
the doubling is not too slow [10], hence we employ on-the-fly doubling as a practical masking option.

7.3 Comparison with Other Inverse-free Modes

Section 6 only considers a comparison with OCB. Here we provide a basic comparison with other modes, in
particular those not using the blockcipher inverse. Table 1 shows examples of such inverse-free modes. Among
them, CCM, GCM, and EAX are rate-2, assuming the speed of field multiplication in GCM is comparable with
blockcipher encryption. At least in theory, OTR is faster for sufficiently long messages for its rate-1 computation.
For CCFB, the rate c is a variable satisfying 1 < c and c ≈ 1 is impractical for weak security guarantee2. For
memory consumption, all inverse-free modes including OTR have a similar profile, as long as the blockcipher
encryption is the dominant factor. An exception is GCM since field multiplication usually needs large memories.
At the same time, a potential disadvantage of OTR is the complexity introduced by the two-round Feistel, such
as a limited on-line/parallel capability, and a slight complex design compared with simple designs reusing
existing modes like CTR, CFB, and CMAC.

7.4 Other Instantiations

As the core idea of our proposal is general, it allows various instantiations, by seeing OTR or OTR′ as a
prototype. What we need is just to instantiate R̃ accepting n-bit input and tweak (N, i, ω), and producing n-bit
output. While we employ GF doubling, one can use a different masking scheme, such as Gray code [33, 47], or
word-oriented LFSR [22,33,50], or bit-rotation of a special prime length [39]. Moreover, we can use non-invertible
cryptographic primitives, typically a Hash-based PRF such as HMAC, or a permutation of Keccak [17] with
Even-Mansour conversion [24] for implementing a component of OTR. In the latter case the resulting scheme
does not need an inversion of the permutation, which is different from the permutation-based OCB described
at [40], and there is no output loss like “capacity” bits of SpongeWrap [18]. In these settings, it is possible
that the underlying primitive accepts longer input than output. Then a simple tweaking method by tweak
prepending can be an option. For example we take SipHash [12], which is a VIL-PRF with 64-bit output. A

SipHash-based scheme would be obtained by replacing R̃
⟨N,i,ω⟩

(X) of OTR′ (Fig. 4) with SipHashK(N∥i∥ω∥X),
and replacing R∞(X) with SipHashK(0n∥0∥h∥X), accompanied with an appropriate input encoding. As SipHash
has an iterative structure, a caching of an internal value allows efficient computation of SipHashK(N∥i∥ω∥X)
from SipHashK(N∥i′∥ω′∥X ′). We remark that this scheme has roughly 64-bit security. The proof is trivial from
Theorem 3, combined with the assumption that SipHash is a VIL-PRF.

8 Conclusion

This paper has presented an authenticated encryption scheme using a PRF. This scheme enables rate-1, on-line,
and parallel processing for both encryption and decryption. The core idea of our proposal is to use two-round

2 More formally, the security bound is roughly σ2/2n/c for privacy and (σ2/2n/c + 1/2n(1−(1/c))) for authenticity, with
single decryption query and σ total blocks.
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Feistel permutation with input masking, combined with a message check sum. As a concrete instantiation we
provide a blockcipher mode, called OTR, entirely based on a blockcipher encryption function, which may be seen
as an “inverse-free” version of OCB. Our proposal has a higher complexity than OCB outside the blockcipher,
hence it will not outperform OCB when the blockcipher enc/dec functions are natively supported and equally
fast (say CPU with AESNI), despite the relaxed security assumption. Still, our proposal would be useful for
various other environments where the use of blockcipher inverse imposes a non-negligible cost, or when the
available crypto function is simply not invertible.
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A Proof of Theorem 3

PRIV bound. We observe that the any output block of encryption oracle OTR′-Eτ contains an output block of

R̃
⟨N,i,ω⟩

, where the tweak (N, i, ω) is uniquely used throughout the attack by PRIV-adversary A. For example

any odd ciphertext block contains an output of R̃
⟨N,i,f⟩

for odd i and any even ciphertext block contains an

output of R̃
⟨N,i,s⟩

for even i, and a tag T contains TE, which is an output of R̃
⟨N,i,ω⟩

for some ω ∈ {a1, a2, b1, b2}
and thus random. Tag T is an XOR of TE and TA and the latter is R∞(A) if A ̸= ε and 0n if A = ε, therefore,
T is also independent and random. This implies that the output blocks in (C, T ) is completely random and
independent of the adversary’s choice (except the length), thus indistinguishable from those of $ oracle. PRIV
bound is naturally derived from this observation.
AUTH bound. We first consider the case qv = 1. Let A be AUTH-adversary against OTR′ with q encryption
queries and a decryption query. Without loss of generality we can assume A first performs all encryption queries
before the decryption query, which is the best strategy for maximizing the probability of successful forgery.

Following Section 2.2, we denote the i-th encryption query and the answer as (Ni, Ai,Mi) and (Ci, Ti). Here
|Mi| = |Ci| and Ni ̸= Nj for any 1 ≤ i < j ≤ q from the assumption. Let (Mi[1],Mi[2], . . . ,Mi[mi])

n← Mi

and (MMi[1],MMi[2], . . . ,MMi[ℓi])
2n← Mi, where Mi[j] is called a j-th block and MMi[j] is called a j-th

chunk for Mi. Note that mi = |Mi|n and ℓi = |Mi|2n (which equals to ⌈mi/2⌉). For ciphertext we similarly
define Ci[j] and CCi[j]. The decryption query (or forgery attempt) is denoted by (N ′, A′, C ′, T ′). We require
(N ′, A′, C ′) ̸= (Ni, Ai, Ci) for all i = 1, . . . , q, since forgery attempt with (N ′, A′, C ′) = (Ni, Ai, Ci) and T ′ ̸= Ti

for some i is always rejected.
Let T ∗ be the true tag value for the forgery attempt. Similarly we define TE∗, TA∗ and Σ∗ for the corre-

sponding values produced in the decryption of the forgery attempt, which uses (N ′, A′, C ′). The forgery attempt
is accepted as valid iff T ∗ = T ′, where

T ∗ = msbτ (TE
∗ ⊕ TA∗), and TE∗ = lsbn(DFR̃(N

′, C ′)), and TA∗ = R∞(A′), (16)

where lsbn(X) denotes the last (rightmost) n bits of X. Let m′ = |C ′|n and ℓ′ = |C ′|2n. We consider parsings,

(C ′[1], . . . , C ′[m′])
n← C ′ and (CC ′[1], . . . , CC ′[ℓ′])

2n← C ′. Note that TE∗ is equal to R̃
⟨N ′,ℓ′,ω′⟩

(Σ∗), where Σ∗ is
generated as an internal variable of DFR̃(N

′, C ′) for some ω′ ∈ {a1, a2, b1, b2} uniquely determined by the length

of C ′. Application of function R̃
⟨N ′,ℓ′,ω′⟩

is called a finalization and the tweak (N ′, ℓ′, ω′) is called a finalization
tweak.

Let Z = {(Ni, Ai,Mi, Ci, Ti)}i=1,...,q be the transcript obtained by encryption queries. Seeing Z as a random
variable, the forgery probability is written as

AdvauthOTR′(A) = Pr
A,OTR′

[T ′ = T ∗] =
∑
z

Pr
A,OTR′

[T ′ = T ∗|Z = z] · Pr
A,OTR′

[Z = z], (17)

where the probability space is defined by the interactive game involving A and OTR′ (also applies to all
probabilities hereafter). In deriving the authenticity bound, we fix adversaryA and define FPz as Pr[T

′ = T ∗|Z =
z], and bound a maximum of FPz for all possible z with A. This provides the upper bound of AdvauthOTR′(A). Here
we can assume that A produces a decryption query (N ′, A′, C ′, T ′) deterministically from z so that it maximizes

FPz. Note that, the transcript reveals all the input-output pairs for R̃ invoked at all encryption queries, except
the residual bits of Z in the check sum for the case of even plaintext blocks (the security proof does not rely

on this fact though). Hence (N ′, A′, C ′, T ′) can be any function of these input/output pairs of R̃. We perform
a case analysis for (N ′, A′, C ′).
Case 1: N ′ ̸= Ni for all 1 ≤ i ≤ q.
The finalization tweak is new, hence the TE∗ is independent and uniformly random. Thus FPz ≤ 1/2τ .
Case 2: (N ′, C ′) = (Nα, Cα) for some 1 ≤ α ≤ q, and A′ ̸= Aα.
We have T ∗ = msbτ (TEα ⊕ TA∗). First we observe that, throughout the attack the adversary obtains no
knowledge about TAα for all non-empty Aα, since TAα is xored with TEα, and TE1, . . . , TEq, including TEα,
are independent and uniform. Note that for any i ≤ q with Ai = ε we always have TAi = 0n, and for Aα ̸= ε
we have TAα = R∞(Aα), which is random. If we have Aα = Aβ ̸= ε the adversary only knows that TAα is
uniformly random over {0, 1}n, thus completely unpredictable, and the equation TAβ = TAα. This means that
the adversary can not predict TAα for any non-empty Aα beyond random guess. Using this observation we do
a further case analysis with respect to A′.
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Case 2-1: A′ ̸= Ai for all i = 1, . . . , q, and A′ ̸= ε.
We observe that TA∗ = R∞(A′) is uniformly random, thus FPz ≤ 1/2τ .

Case 2-2: A′ ̸= Ai for all i = 1, . . . , q, and A′ = ε.
We observe that TA∗ = 0n and T ∗ = msbτ (TEα) = msbτ (TAα⊕Tα) for non-empty Aα. Then TAα is completely
unpredictable to the adversary. Thus T ∗ is also completely unpredictable, and we have FPz ≤ 1/2τ .

Case 2-3: A′ = Aβ ̸= ε for some β ̸= α.
We observe that TA∗ = TAβ and T ∗ = msbτ (TAβ⊕TEα). As TAβ for non-empty Aβ is completely unpredictable,
we have FPz ≤ 1/2τ .

Case 2-4: A′ = Aβ = ε for some β ̸= α.
We observe that TA∗ = TAβ = 0n and T ∗ = msbτ (TEα) = msbτ (Tα⊕TAα). As Aα ̸= ε holds TAα is completely
unpredictable, and we have FPz ≤ 1/2τ .

Therefore, for all cases we have FPz ≤ 1/2τ . We then consider cases with N ′ = Nα for some α and C ′ ̸= Cα.
Case 3: N ′ = Nα, |C ′| = |Cα| and C ′ ̸= Cα for some 1 ≤ α ≤ q.

Let (Cα[1], . . . , Cα[mα])
n← Cα and (CCα[1], . . . , CCα[ℓα])

2n← Cα. Similarly, let (C ′[1], . . . , C ′[m′])
n← C ′, and

(CC ′[1], . . . , CC ′[ℓ′])
2n← C ′. Here we have m′ = mα and ℓ′ = ℓα as |C ′| = |Cα| holds. Note that we made no

assumption on A′.
Case 3-1: |CC ′[ℓ′]| = 2n.

We observe that the finalization tweaks for α-th query and the forgery attempt are the same, i.e. (Nα, ℓα, a2).
This means that, there exists at least one chunk different, i.e., we must have CC ′[i] ̸= CCα[i], for some 1 ≤ i ≤ ℓ′.
We first consider the case i < ℓα. Then we obtain

M∗[2i− 1] = R̃
⟨N ′,i,s⟩

(C ′[2i− 1])⊕ C ′[2i], and (18)

M∗[2i] = R̃
⟨N ′,i,f⟩

(M∗[2i− 1])⊕ C ′[2i− 1] (19)

in the decryption process of the forgery attempt. Let e1 denote the event M∗[2i−1] = Mα[2i−1]. If C ′[2i−1] ̸=
Cα[2i− 1], e1 occurs with probability 1/2n, and if C ′[2i− 1] = Cα[2i− 1] and C ′[2i] ̸= Cα[2i], the probability is

zero. The event e1, i.e.M
∗[2i−1] ̸= Mα[2i−1], implies that the input to R̃

⟨N ′,i,f⟩
is new, thusM∗[2i] is uniformly

random and independent of any other variables in the transcript. This makes the computed check sum in the
decryption of forgery attempt, written as Σ∗, independent and uniformly random under the event e1. Let e2 be
the event that Σ∗ = Σα, where Σα equals to Mα[2] ⊕Mα[4] ⊕ · · · ⊕Mα[mα]. The above analysis implies that

Pr(e1|Z = z) = 1/2n and Pr(e2|e1,Z = z) = 1/2n hold for any z. In addition, given e2, TE
∗ = R̃

⟨Nα,ℓα,a2⟩
(Σ∗)

is uniformly random and independent of all previously generated values, since R̃
⟨Nα,ℓα,a2⟩

is only invoked once
with input Σα in the encryption queries. Hence we have

FPz = Pr(msbτ (TE
∗ ⊕ TA∗) = T ′|Z = z) (20)

≤ Pr(msbτ (R̃
⟨Nα,ℓα,a2⟩

(Σ∗)⊕ TA∗) = T ′|e1 ∨ e2,Z = z) · Pr(e1 ∨ e2|Z = z) + Pr(e1 ∨ e2|Z = z) (21)

≤ max
x∈{0,1}τ

Pr(msbτ (R̃
⟨Nα,ℓα,a2⟩

(Σ∗)) = x|e1 ∧ e2,Z = z) + Pr(e2|e1,Z = z) + Pr(e1|Z = z) (22)

≤ 1

2τ
+

2

2n
, (23)

where the third inequality is obtained by taking the maximum for all possible values of TA∗. We then consider
the case i = ℓα, i.e. the difference is in the last chunks. For this case the same analysis holds when we exchange
C ′[2i− 1] and C ′[2i]. Thus FPz is bounded by 1

2τ + 2
2n as well.

Case 3-2: n < |CC ′[ℓ′]| < 2n.
The finalization tweak is (Nα, ℓα, a1), for both α-th encryption query and the forgery attempt. We have CC ′[i] ̸=
CCα[i] for some 1 ≤ i ≤ ℓ′. If i < ℓ′ (= ℓα) the case is the same as Case 3-1. Otherwise we have CC ′[j] = CCα[j]
for all j = 1, . . . , ℓ′ − 1 and CC ′[ℓ′] ̸= CCα[ℓ

′]. If we have C ′[m′] ̸= Cα[m
′] (i.e. the difference is in the last

partial blocks), the event M∗[m′ − 1] = Mα[m
′ − 1], which we denote by event e1, has probability 1/2n. This

is because M∗[m′ − 1] = R̃
⟨Nα,ℓα,s⟩

(C ′[m′]) ⊕ C ′[m′ − 1] and C ′[m′] is a new input to R̃
⟨Nα,ℓα,s⟩

. If we have

C ′[m′] = Cα[m
′] and C ′[m′ − 1] ̸= Cα[m

′ − 1] (i.e. the difference is in the last-but-one blocks), we always have
M∗[m′ − 1] ̸= Mα[m

′ − 1], hence e1 never occurs. When e1 occurs, M∗[m′ − 1] is a new input to produce

Z∗ = R̃
⟨Nα,ℓα,f⟩

(M∗[m′ − 1]), which makes Z∗ completely random. As Σ∗ contains Z∗ ⊕ C ′[m′], Σ∗ is also
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random. Therefore, by defining event e2 as Σ∗ = Σα, FPz is bounded as

FPz ≤ Pr(msbτ (R̃
⟨Nα,ℓα,a1⟩

(Σ∗)⊕ TA∗) = T ′|e1 ∨ e2,Z = z) + Pr(e2 ∨ e1|Z = z)

≤ Pr(msbτ (R̃
⟨Nα,ℓα,a1⟩

(Σ∗)⊕ TA∗) = T ′|e1 ∧ e2,Z = z) + Pr(e2|e1,Z = z) + Pr(e1|Z = z)

≤ max
x∈{0,1}τ

Pr(msbτ (R̃
⟨Nα,ℓα,a1⟩

(Σ∗)) = x|e1 ∧ e2,Z = z) +
2

2n

≤ 1

2τ
+

2

2n
, (24)

in the same manner as Case 3-1.

Case 3-3: |CC ′[ℓ′]| = n.
The finalization tweak is (Nα, ℓα, b2), for both α-th encryption query and the forgery attempt. We have CC ′[i] ̸=
CCα[i] for some 1 ≤ i ≤ ℓ′. If i < ℓ′ (= ℓα) the case is the same as Case 3-1. Otherwise we have CC ′[j] = CCα[j]
for all j = 1, . . . , ℓ′ − 1 and CC ′[ℓ′] ̸= CCα[ℓ

′], which implies C ′[m′] ̸= Cα[m
′] (i.e. the difference is in the last

blocks). Since M∗[m′] = C ′[m′] ⊕ Z∗ with Z∗ = R̃
⟨Nα,ℓα,f⟩

(0n), and Mα[m
′] = Cα[m

′] ⊕ Zα with Zα = Z∗,
M∗[m′] is always different from Mα[m

′]. As variables contained in Σα and Σ∗ other than Mα[mα] and M∗[m′]

are the same, we always have Σα ̸= Σ∗. Thus TE∗ = R̃
⟨Nα,ℓα,b2⟩

(Σ∗) is random and independent of TEα,
implying FPz ≤ 1/2τ . Thus FPz is bounded by 1/2τ + 2/2n in Case 3-3.

Case 3-4: |CC ′[ℓ′]| < n.
The finalization tweak is (Nα, ℓα, b1), for both α-th encryption query and the forgery attempt. The analysis is
similar to Case 3-3, and we have FPz ≤ 1/2τ + 2/2n.

Case 4: N ′ = Nα, |C ′| ̸= |Cα| for some 1 ≤ α ≤ q.
Case 4-1: |CCα[ℓα]| = 2n.

The finalization tweak for the forgery attempt is (Nα, ℓ
′, ω) for ω ∈ {a1, a1, b1, b2}, and that for the α-th

encryption query is (Nα, ℓα, a2). Note that ℓ′ may or may not equal to ℓα. As we have (ℓα, a2) ̸= (ℓ′, ω)
(otherwise |C ′| = |Cα| holds) and {N1, . . . , Nq} contains no collision, the finalization tweak (Nα, ℓ

′, ω) is not

invoked in the encryption queries. Hence TE∗ = R̃
⟨Nα,ℓ′,ω⟩

(Σ∗) is independent and random irrespective of Σ∗.
This implies FPz ≤ 1/2τ .

Case 4-2: n < |CCα[ℓα]| < 2n.
The finalization tweak for the forgery attempt is (Nα, ℓ

′, ω) for ω ∈ {a1, a2, b1, b2}, and that for the α-th
encryption query is (Nα, ℓα, a1). If (ℓα, a1) ̸= (ℓ′, ω), we have FPz ≤ 1/2τ as with Case 4-1. If (ℓα, a1) = (ℓ′, ω),
then we must have mα = m′ and |Cα[mα]| ̸= |C ′[m′]| (i.e. the number of blocks are the same and the last blocks

have different lengths). This means that Cα[mα] ̸= C ′[m′], i.e., the inputs to R̃
⟨Nα,ℓα,s⟩

are different due to the
padding. Defining two bad events, e1 and e2, in the same manner to Case 3-2, we have FPz ≤ 1/2τ + 2/2n.

Case 4-3: |CCα[ℓα]| = n.
The finalization tweak for the forgery attempt is (Nα, ℓ

′, ω) for ω ∈ {a1, a2, b1, b2}, and that for the α-th
encryption query is (Nα, ℓα, b2). We have (ℓα, b2) ̸= (ℓ′, ω), and thus FPz ≤ 1/2τ holds as Case 4-1.

Case 4-4: |CCα[ℓα]| < n.
The finalization tweak for the forgery attempt is (Nα, ℓ

′, ω) for ω ∈ {a1, a2, b1, b2}, and that for the α-th
encryption query is (Nα, ℓα, b1). If (ℓα, b1) ̸= (ℓ′, ω), we have FPz ≤ 1/2τ as Case 4-1, and if (ℓα, b1) = (ℓ′, ω) and
there exists CC ′[i] ̸= CCα[i] for some i < ℓ′, the analysis is the same as Case 3-1, and we have FPz ≤ 1/2τ+2/2n.
If (ℓα, b1) = (ℓ′, ω) and CC ′[i] = CCα[i] for all i < ℓ′, we must have mα = m′ and |C ′[m′]|, |Cα[mα]| < n and
|C ′[m′]| ̸= |Cα[mα]|. Then we have M∗[m′] ̸= Mα[mα]. This implies that Σ∗ ⊕ Σα is M∗[m′] ⊕Mα[mα] ̸= 0,
hence Σ∗ and Σα are different. Therefore, we have FPz ≤ 1/2τ .

Summarizing all cases. In all cases, we have FPz ≤ 1/2τ + 2/2n. From Equation (17) this proves

AdvauthOTR′(A) ≤
∑
z

FPz · Pr[Z = z] ≤ 2

2n
+

1

2τ
(25)

for AUTH-adversary A with qv = 1. Combining Equation (25) with the result of Bellare, Goldreich and Mityagin
[13], we have AdvauthOTR′(A) ≤ 2qv/2

n + qv/2
τ for any A with qv ≥ 1. This completes the derivation of AUTH

bound.
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B Proof of Lemma 1

For proving the security bound of G̃[P], the crucial observation is that the input mask, denoted by ∆ in Fig. 3,

is differentially uniform for any two distinct inputs. From Fig. 3 this is easily confirmed that G̃[P] is identical to
Rogaway’s XE mode [44] for n = 128. More specifically, all the coefficients of P(N) or P(0n) appeared in Fig. 3
are written as 2i3j7k. [44] shows that3 2i3j7k ̸= 2i

′
3j

′
7k

′
for any distinct (i, j, k) and (i′, j′, k′) from I ×J ×K,

where I = [−2108..2108] and J = [−27..27] and K = [−27..27].
In our case, (i, j, k) is always in I × J × K, assuming i, which represents the block index of plain-

text/ciphertext/AD, is at most 2n/2 = 264. Then, Theorem 7 of [44] proves that Adv
cpa

G̃[P],P̃
(A) ≤ 4.5q2/2n.

Finally, a generalized variant of PRP/PRF switching lemma (e.g., Lemma 1 of [15]) tells that Adv
cpa

P̃,R̃
(A) ≤

0.5q2/2n for q CPA queries, hence the proof is completed as Adv
cpa

G̃[P],R̃
(A) ≤ Adv

cpa

G̃[P],P̃
(A) + Adv

cpa

P̃,R̃
(A) ≤

4.5q2/2n + 0.5q2/2n. ⊓⊔

3 This result does depend on the choice of primitive polynomial defining GF(2n).
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Algorithm OTR′-Eτ (N,A,M)

1. (C, TE)← EFR̃(N,M)
2. if A ̸= ε then TA← R∞(A)
3. else TA← 0n

4. T ← msbτ (TE ⊕ TA)
5. return (C, T )

Algorithm OTR′-Dτ (N,A,C, T )

1. (M,TE)← DFR̃(N,C)
2. if A ̸= ε then TA← R∞(A)
3. else TA← 0n

4. T̂ ← msbτ (TE ⊕ TA)

5. if T̂ = T return M
6. else return ⊥

Algorithm OTR-Eτ (N,A,M)

1. (C, TE)← EFR̃(N,M)
2. if A ̸= ε then TA← AFR̃(A)
3. else TA← 0n

4. T ← msbτ (TE ⊕ TA)
5. return (C, T )

Algorithm OTR-Dτ (N,A,C, T )

1. (M,TE)← DFR̃(N,C)
2. if A ̸= ε then TA← AFR̃(A)
3. else TA← 0n

4. T̂ ← msbτ (TE ⊕ TA)

5. if T̂ = T return M
6. else return ⊥

Algorithm EFR̃(N,M)

1. Σ ← 0n

2. (M [1], . . . ,M [m])
n←M

3. ℓ← ⌈m/2⌉
4. for i = 1 to ℓ− 1 do

5. C[2i− 1]← R̃
⟨N,i,f⟩

(M [2i− 1])⊕M [2i]

6. C[2i]← R̃
⟨N,i,s⟩

(C[2i− 1])⊕M [2i− 1]
7. Σ ← Σ ⊕M [2i]
8. if m is even
9. Z ← R̃

⟨N,ℓ,f⟩
(M [m− 1])

10. C[m]← msb|M [m]|(Z)⊕M [m]

11. C[m− 1]← R̃
⟨N,ℓ,s⟩

(C[m])⊕M [m− 1]
12. Σ ← Σ ⊕ Z ⊕ C[m]
13. if m is odd
14. C[m]←msb|M [m]|(R̃

⟨N,ℓ,f⟩
(0n))⊕M [m]

15. Σ ← Σ ⊕M [m]
16. if m is even and |M [m]| ̸= n

17. then TE ← R̃
⟨N,ℓ,a1⟩

(Σ)
18. if m is even and |M [m]| = n

19. then TE ← R̃
⟨N,ℓ,a2⟩

(Σ)
20. if m is odd and |M [m]| ̸= n

21. then TE ← R̃
⟨N,ℓ,b1⟩

(Σ)
22. if m is odd and |M [m]| = n

23. then TE ← R̃
⟨N,ℓ,b2⟩

(Σ)
24. C ← (C[1], . . . , C[m])
25. return (C, TE)

Algorithm DFR̃(N,C)

1. Σ ← 0n

2. (C[1], . . . , C[m])
n← C

3. ℓ← ⌈m/2⌉
4. for i = 1 to ℓ− 1 do

5. M [2i− 1]← R̃
⟨N,i,s⟩

(C[2i− 1])⊕ C[2i]

6. M [2i]← R̃
⟨N,i,f⟩

(M [2i− 1])⊕ C[2i− 1]
7. Σ ← Σ ⊕M [2i]
8. if m is even
9. M [m− 1]← R̃

⟨N,ℓ,s⟩
(C[m])⊕ C[m− 1]

10. Z ← R̃
⟨N,ℓ,f⟩

(M [m− 1])
11. M [m]← msb|C[m]|(Z)⊕ C[m]
12. Σ ← Σ ⊕ Z ⊕ C[m]
13. if m is odd
14. M [m]← msb|C[m]|(R̃

⟨N,ℓ,f⟩
(0n))⊕ C[m]

15. Σ ← Σ ⊕M [m]
16. if m is even and |C[m]| ̸= n

17. then TE ← R̃
⟨N,ℓ,a1⟩

(Σ)
18. if m is even and |C[m]| = n

19. then TE ← R̃
⟨N,ℓ,a2⟩

(Σ)
20. if m is odd and |C[m]| ̸= n

21. then TE ← R̃
⟨N,ℓ,b1⟩

(Σ)
22. if m is odd and |C[m]| = n

23. then TE ← R̃
⟨N,ℓ,b2⟩

(Σ)
24. M ← (M [1], . . . ,M [m])
25. return (M,TE)

Algorithm AFR̃(A)

1. Ξ ← 0n

2. (A[1], . . . , A[a])
n← A

3. for i = 1 to a− 1 do

4. Ξ ← Ξ ⊕ R̃
⟨0n,i,h⟩

(A[i])
5. Ξ ← Ξ ⊕A[a]

6. if |A[a]| ̸= n then TA← R̃
⟨0n,a,g1⟩

(Ξ)

7. else TA← R̃
⟨0n,a,g2⟩

(Ξ)
8. return TA

Fig. 4. The components of OTR′[τ ] and OTR[τ ].
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Fig. 5. OTR function.
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Algorithm OTR-EE,τ (N,A,M)

1. (C, TE)← EFE(N,M)
2. if A ̸= ε then TA← AFE(A)
3. else TA← 0n

4. T ← msbτ (TE ⊕ TA)
5. return (C, T )

Algorithm OTR-DE,τ (N,A,C, T )

1. (M,TE)← DFE(N,C)
2. if A ̸= ε then TA← AFE(A)
3. else TA← 0n

4. T̂ ← msbτ (TE ⊕ TA)

5. if T̂ = T return M
6. else return ⊥

Algorithm EFE(N,M)

1. Σ ← 0n

2. L← E(N)
3. (M [1], . . . ,M [m])

n←M , ℓ← ⌈m/2⌉
4. for i = 1 to ℓ− 1 do
5. C[2i− 1]← E(2i−1L⊕M [2i− 1])⊕M [2i]
6. C[2i]← E(2i−13L⊕ C[2i− 1])⊕M [2i− 1]
7. Σ ← Σ ⊕M [2i]
8. if m is even
9. Z ← E(2ℓ−1L⊕M [m− 1])

10. C[m]← msb|M [m]|(Z)⊕M [m]
11. C[m− 1]← E(2ℓ−13L⊕ C[m])⊕M [m− 1]
12. Σ ← Σ ⊕ Z ⊕ C[m]
13. if m is odd
14. C[m]← msb|M [m]|(E(2ℓ−1L))⊕M [m]
15. Σ ← Σ ⊕M [m]
16. if m is even and |M [m]| ̸= n
17. then TE ← E(2ℓ−133L⊕Σ)
18. if m is even and |M [m]| = n
19. then TE ← E(2ℓ−1317L⊕Σ)
20. if m is odd and |M [m]| ̸= n
21. then TE ← E(2ℓ−132L⊕Σ)
22. if m is odd and |M [m]| = n
23. then TE ← E(2ℓ−17L⊕Σ)
24. C ← (C[1], . . . , C[m])
25. return (C, TE)

Algorithm DFE(N,C)

1. Σ ← 0n

2. L← E(N)
3. (C[1], . . . , C[m])

n← C, ℓ← ⌈m/2⌉
4. for i = 1 to ℓ− 1 do
5. M [2i− 1]← E(2i−13L⊕ C[2i− 1])⊕ C[2i]
6. M [2i]← E(2i−1L⊕M [2i− 1])⊕ C[2i− 1]
7. Σ ← Σ ⊕M [2i]
8. if m is even
9. M [m− 1]← E(2ℓ−13L⊕ C[m])⊕ C[m− 1]

10. Z ← E(2ℓ−1L⊕M [m− 1])
11. M [m]← msb|C[m]|(Z)⊕ C[m]
12. Σ ← Σ ⊕ Z ⊕ C[m]
13. if m is odd
14. M [m]← msb|C[m]|(E(2ℓ−1L))⊕ C[m]
15. Σ ← Σ ⊕M [m]
16. if m is even and |C[m]| ̸= n
17. then TE ← E(2ℓ−133L⊕Σ)
18. if m is even and |C[m]| = n
19. then TE ← E(2ℓ−1317L⊕Σ)
20. if m is odd and |C[m]| ̸= n
21. then TE ← E(2ℓ−132L⊕Σ)
22. if m is odd and |C[m]| = n
23. then TE ← E(2ℓ−17L⊕Σ)
24. M ← (M [1], . . . ,M [m])
25. return (M,TE)

Algorithm AFE(A)

1. Ξ ← 0n

2. Q← E(0n)
3. (A[1], . . . , A[a])

n← A
4. for i = 1 to a− 1 do
5. Ξ ← Ξ ⊕ E(2i−1Q⊕A[i])
6. Ξ ← Ξ ⊕A[a]

7. if |A[a]| ̸= n then TA← E(2a−13Q⊕ Ξ)
8. else TA← E(2a−132Q⊕ Ξ)
9. return TA

Fig. 6. Alternative representation of Fig. 1 for explicitly showing the masking coefficients.
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C A Variant with Serial AD Processing

Motivation. While OTR of the main body (Section 3) enables parallel processing for both message and
associated data (AD), we naturally want to simplify it when the underlying computing environment is serial.
We find that PMAC-like AFE for AD processing (ADP) is not well suited to serial computing, causing GF
doubling for each AD block. Moreover, when AD is processed first (which is normal), we need to keep TA until
we compute TE, which requires additional memory state. With this in mind, this section defines a variant of
OTR of the main body, which uses CMAC [28] for ADP. We call this variant as “OTR with serial ADP”, while
the original scheme in the main body may be called “OTR with parallel ADP”, if needed, for a consistency
with a submission document of OTR [38] to CAESAR competition [1]. In addition, for the notational purpose
this section uses the name OTRS for an alias of “OTR with serial ADP”, and uses the name OTR to denote
the scheme of the main body.

The security bounds of OTRS and corresponding proofs are also given in this section. Although the security
bounds are mostly the same as OTR, proving the security bounds of OTRS requires partially different steps
due to the differences in authentication.

C.1 Specification

We write OTRS[E, τ ] to denote OTRS with blockcipher E, tag bit size τ (and this corresponds to OTR[E, τ, s]
in [38]). The encryption and decryption functions are denoted by OTRS-EE,τ and OTRS-DE,τ , and shown in
Fig. 7. Encryption of OTRS is also illustrated in Fig 8, and an alternative representation of Fig. 1 is shown by
Fig. 6.

The interfaces of OTRS-EE,τ and OTRS-DE,τ are the same as OTR-EE,τ and OTR-DE,τ of OTR. The algo-
rithms of Fig. 7 are further decomposed into encryption core EF-SE , decryption core DF-SE , and authentication
core AF-SE . For EF-SE and DF-SE the pseudocodes are the same as EFE and DFE of Fig. 4 except line 2.
Here, TA is generated by AF-SE , a variant of OMAC [28], also known as CMAC [4].

C.2 Security Analysis

Extended security notion. PRIV and AUTH notions are slightly extended in that the adversary is allowed
to perform encryption queries (N1, A1,M1), . . . , (Nq, Aq,Mq) as long as (Ni, Ai) ̸= (Nj , Aj) holds for any i ̸= j.
That is, the security is preserved as long as the uniqueness of (A,N) pairs is guaranteed for encryptions,
even if the uniqueness of original nonce, N , is not guaranteed. In a word we can deem (A,N) as nonce.
This comes from the structure of the scheme for combining the result of ADP and the encryption, and has
a similarity to CLOC [29]. In conjunction with this extension we extend the definitions of PRIV-adversary,
AUTH-adversary, and the supplemental notions Advcpa-nrF,G (A) and Advcca-nrF,G (A) so that the adversary is allowed
to perform encryption queries as long as the uniqueness of pairs (A,N) is guaranteed for encryptions. The
parameters for adversaries, such as q and σA, are similarly defined as in the main body.

Bounds. We provide the security bounds of OTRS. For simplicity we assume the underlying blockcipher is an
n-bit URP, P. The computational counterparts are fairly straightforward, thus omitted.

Theorem 4. Fix τ ∈ {1, . . . , n}. For any PRIV-adversary A with parameter (q, σA, σM ),

Adv
priv

OTRS[P,τ ](A) ≤
5σ2

priv

2n

holds for σpriv = q + σA + σM .

Theorem 5. Fix τ ∈ {1, . . . , n}. For any AUTH-adversary A with parameter (q, qv, σA, σM , σA′ , σC′),

AdvauthOTRS[P,τ ](A) ≤
7σ2

auth

2n
+

qv
2τ

holds for σauth = q + qv + σA + σM + σA′ + σC′ .
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Algorithm OTRS-EE,τ (N,A,M)

1. if A ̸= ε then TA← AF-SE(A)
2. else TA← 0n

3. (C, TE)← EF-SE(N,M, TA)
4. T ← msbτ (TE)
5. return (C, T )

Algorithm OTRS-DE,τ (N,A,C, T )

1. if A ̸= ε then TA← AF-SE(A)
2. else TA← 0n

3. (M,TE)← DF-SE(N,C, TA)

4. T̂ ← msbτ (TE)

5. if T̂ = T return M
6. else return ⊥

Algorithm EF-SE(N,M, TA)

1. Σ ← 0n

2. U ← 2(E(N)⊕ TA), L← U , L♯ ← 3U
3. (M [1], . . . ,M [m])

n←M
4. for i = 1 to ⌈m/2⌉ − 1 do
5. C[2i− 1]← E(L⊕M [2i− 1])⊕M [2i]
6. C[2i]← E(L♯ ⊕ C[2i− 1])⊕M [2i− 1]
7. Σ ← Σ ⊕M [2i]
8. L← L⊕ L♯, L♯ ← 2L♯ // L = 2iU , L♯ = 2i3U
9. if m is even

10. Z ← E(L⊕M [m− 1])
11. C[m]← msb|M [m]|(Z)⊕M [m]
12. C[m− 1]← E(L♯ ⊕ C[m])⊕M [m− 1]
13. Σ ← Σ ⊕ Z ⊕ C[m]

14. L∗ ← L♯

15. if m is odd
16. C[m]← msb|M [m]|(E(L))⊕M [m]
17. Σ ← Σ ⊕M [m]
18. L∗ ← L
19. if |M [m]| ̸= n then TE ← E(32L∗ ⊕Σ)
20. else TE ← E(7L∗ ⊕Σ)
21. C ← (C[1], . . . , C[m])
22. return (C, TE)

Algorithm DF-SE(N,C, TA)

1. Σ ← 0n

2. U ← 2(E(N)⊕ TA), L← U , L♯ ← 3U
3. (C[1], . . . , C[m])

n← C
4. for i = 1 to ⌈m/2⌉ − 1 do
5. M [2i− 1]← E(L♯ ⊕ C[2i− 1])⊕ C[2i]
6. M [2i]← E(L⊕M [2i− 1])⊕ C[2i− 1]
7. Σ ← Σ ⊕M [2i]
8. L← L⊕ L♯, L♯ ← 2L♯ // L = 2iU , L♯ = 2i3U
9. if m is even

10. M [m− 1]← E(L♯ ⊕ C[m])⊕ C[m− 1]
11. Z ← E(L⊕M [m− 1])
12. M [m]← msb|C[m]|(Z)⊕ C[m]
13. Σ ← Σ ⊕ Z ⊕ C[m]

14. L∗ ← L♯

15. if m is odd
16. M [m]← msb|C[m]|(E(L))⊕ C[m]
17. Σ ← Σ ⊕M [m]
18. L∗ ← L
19. if |C[m]| ̸= n then TE ← E(32L∗ ⊕Σ)
20. else TE ← E(7L∗ ⊕Σ)
21. M ← (M [1], . . . ,M [m])
22. return (M,TE)

Algorithm AF-SE(A)

1. Ξ ← 0n

2. Q← E(0n)
3. (A[1], . . . , A[a])

n← A
4. for i = 1 to a− 1 do
5. Ξ ← E(A[i]⊕ Ξ)
6. Ξ ← Ξ ⊕A[a]
7. if |A[a]| ̸= n then TA← E(2Q⊕ Ξ)
8. else TA← E(4Q⊕ Ξ)
9. return TA

Fig. 7. Algorithms of OTRS. Tag bit size is 0 < τ ≤ n, and X denotes the 10∗ padding of X.
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Fig. 8. Encryption of OTRS. Box with underline and X denote the 10∗ padding of input X.

C.3 Proofs of Theorems 4 and 5

Overview. The proof structure is the same as those of Theorem 1 and Theorem 2. In the first step, we reinterpret
the scheme as a mode of tweakable blockcipher, and then prove the security of the tweakable blockcipher in the
second step, and the third step combines the results of previous two steps. However, the difference in the AD
processing and the place to add TA makes some differences in proofs, mostly in the second step.
First step: TBC-based design. We define an AEAD scheme denoted by OTRS[τ ]. It is compatible to

OTRS[E, τ ] and uses a tweakable n-bit URF, R̃ : T × {0, 1}n → {0, 1}n. Here, tweak T is represented as a

vector, T = (x, y, i, w) ∈ T def
= Aae ×Nae ×N×Ω, where Ω = {f, s, a1, a2, b1, b2}. The definition of OTRS is in

Fig. 9 and its encryption is illustrated in Fig. 14. Here OTRS[τ ] consists of encryption function, OTRS-Eτ , and
decryption function, OTRS-Dτ , and these functions use encryption and decryption cores, EF-SR̃ and DF-SR̃,
shown in Fig. 9. These cores can be seen as counterparts to EF-SE and DF-SE . The AD processing is absorbed,
hence there is no counterpart to AF-SE . The privacy and authenticity bounds of OTRS are shown in Theorem
6. The proof of Theorem 6 is in Section C.5.

Theorem 6. Fix τ ∈ {1, . . . , n}. For any PRIV-adversary A,

Adv
priv

OTRS[τ ](A) = 0.

23



Algorithm OTRS-Eτ (N,A,M)

1. (C, TE)← EF-SR̃(N,A,M)
2. T ← msbτ (TE)
3. return (C, T )

Algorithm OTRS-Dτ (N,C,A, T )

1. (M,TE)← DF-SR̃(N,A,C)

2. T̂ ← msbτ (TE)

3. if T̂ = T return M
4. else return ⊥

Algorithm EF-SR̃(N,A,M)

1. Σ ← 0n

2. (M [1], . . . ,M [m])
n←M

3. ℓ← ⌈m/2⌉
4. for i = 1 to ℓ− 1 do

5. C[2i− 1]← R̃
⟨A,N,i,f⟩

(M [2i− 1])⊕M [2i]

6. C[2i]← R̃
⟨A,N,i,s⟩

(C[2i− 1])⊕M [2i− 1]
7. Σ ← Σ ⊕M [2i]
8. if m is even
9. Z ← R̃

⟨A,N,ℓ,f⟩
(M [m− 1])

10. C[m]← msb|M [m]|(Z)⊕M [m]

11. C[m− 1]← R̃
⟨A,N,ℓ,s⟩

(C[m])⊕M [m− 1]
12. Σ ← Σ ⊕ Z ⊕ C[m]
13. if m is odd
14. C[m]← msb|M [m]|(R̃

⟨A,N,ℓ,f⟩
(0n))⊕M [m]

15. Σ ← Σ ⊕M [m]
16. if m is even and |M [m]| ̸= n

17. then TE ← R̃
⟨A,N,ℓ,a1⟩

(Σ)
18. if m is even and |M [m]| = n

19. then TE ← R̃
⟨A,N,ℓ,a2⟩

(Σ)
20. if m is odd and |M [m]| ̸= n

21. then TE ← R̃
⟨A,N,ℓ,b1⟩

(Σ)
22. if m is odd and |M [m]| = n

23. then TE ← R̃
⟨A,N,ℓ,b2⟩

(Σ)
24. C ← (C[1], . . . , C[m])
25. return (C, TE)

Algorithm DF-SR̃(N,A,C)

1. Σ ← 0n

2. (C[1], . . . , C[m])
n← C

3. ℓ← ⌈m/2⌉
4. for i = 1 to ℓ− 1 do

5. M [2i− 1]← R̃
⟨A,N,i,s⟩

(C[2i− 1])⊕ C[2i]

6. M [2i]← R̃
⟨A,N,i,f⟩

(M [2i− 1])⊕ C[2i− 1]
7. Σ ← Σ ⊕M [2i]
8. if m is even
9. M [m− 1]← R̃

⟨A,N,ℓ,s⟩
(C[m])⊕ C[m− 1]

10. Z ← R̃
⟨A,N,ℓ,f⟩

(M [m− 1])
11. M [m]← msb|C[m]|(Z)⊕ C[m]
12. Σ ← Σ ⊕ Z ⊕ C[m]
13. if m is odd
14. M [m]← msb|C[m]|(R̃

⟨A,N,ℓ,f⟩
(0n))⊕ C[m]

15. Σ ← Σ ⊕M [m]
16. if m is even and |C[m]| ̸= n

17. then TE ← R̃
⟨A,N,ℓ,a1⟩

(Σ)
18. if m is even and |C[m]| = n

19. then TE ← R̃
⟨A,N,ℓ,a2⟩

(Σ)
20. if m is odd and |C[m]| ̸= n

21. then TE ← R̃
⟨A,N,ℓ,b1⟩

(Σ)
22. if m is odd and |C[m]| = n

23. then TE ← R̃
⟨A,N,ℓ,b2⟩

(Σ)
24. M ← (M [1], . . . ,M [m])
25. return (M,TE)

Fig. 9. The encryption and decryption algorithms of OTRS[τ ] using a tweakable n-bit URF R̃.

Moreover, for any AUTH-adversary A using q encryption queries and qv decryption queries,

AdvauthOTRS[τ ](A) ≤
2qv
2n

+
qv
2τ

.

Second step: analysis of TBC. In Fig. 10 we define a TBC, G̃′[P]⟨A,N,i,ω⟩(X), where (A,N, i, ω) ∈ T denotes
a tweak and X denotes an input. It uses an n-bit URP, P. For tweaks that do not appear in Fig. 10, we let
them as undefined. Let R̃ be a tweakable URF compatible with G̃′[P]. Then, in the same manner to Proposition
1 we have the following proposition.

Proposition 2. If EF-SR̃ (DF-SR̃) uses G̃′[P] instead of R̃, we obtain EF-SP (DF-SP).

We remark that G̃′[P] here does not perform GF doublings in a sequential manner, and performs AF-SP for

every input, however, this does not cause a problem for simulation purpose. We then prove that G̃′[P] is a secure
tweakable URF, shown by the following lemma. The proof is in Section C.4.

Lemma 3. For adversary A accessing G̃′[P] using q queries, we write the j-th query of A as (Xj , Aj , Nj , ij , ωj)
and let σ be the total blocks of unique ADs, defined as

∑
j=j[1],...,j[J] |Aj |n, where Aj[h] is the first representative

element in the h-th equivalent class (i.e. Aj[h] ̸= Ak for all k < j[h]), and J denotes the number of all equivalent
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Algorithm G̃′[P]⟨A,N,i,ω⟩(X)

1. if A ̸= ε then TA← AF-SP(A)
2. else TA← 0n

3. L← P(N)⊕ TA
4. Y ← P(g(i, ω, L)⊕X)
5. return Y

Function g(i, ω, L)

1. L← 2L
2. Switch ω
3. Case f : ∆← 2i−1L
4. Case s : ∆← 2i−13L
5. Case a1 : ∆← 2i−133L
6. Case a2 : ∆← 2i−1317L
7. Case b1 : ∆← 2i−132L
8. Case b2 : ∆← 2i−17L
9. return ∆

Fig. 10. Tweakable permutation implicitly used by OTRS[P, τ ]. AF-S is described in Fig. 7.

classes. Note that σ ≤
∑

j |Aj |n holds. Then we have

Adv
cpa

G̃′[P],R̃
(A) ≤ (2q + σ)2 + q2 + σ2

2n
,

where R̃ is a tweakable URF compatible with G̃′[P].

Third step: deriving bounds. In a similar manner to the proof of Theorem 1, we introduce adversary B
against G̃′[P] with σM + q queries and σA total blocks of unique ADs, and derive the bound as

Adv
priv

OTRS[P,τ ](A) = Adv
cpa-nr

OTRS[P,τ ],$(A) (26)

≤ Adv
cpa-nr

OTRS[P,τ ],OTRS[τ ](A) + Adv
cpa-nr

OTRS[τ ],$(A) (27)

≤ Adv
cpa

G̃′[P],R̃
(B) (28)

≤ (2(q + σM ) + σA)
2 + (q + σM )2 + σ2

A

2n
(29)

≤
5σ2

priv

2n
, (30)

where the second inequality follows from Theorem 6, and the third follows from Lemma 3. For proving AUTH
bound, we similarly introduce B against G̃′[P] with σM + σC′ + q + qv queries and σA + σA′ total blocks of
unique ADs, and derive the bound as

AdvauthOTRS[P,τ ](A) ≤ Advcca-nrOTRS[P,τ ],OTRS[τ ](A) + AdvauthOTRS[τ ](A) (31)

≤ Adv
cpa

G̃′[P],R̃
(B) + 2qv

2n
+

qv
2τ

(32)

≤ (2(q + σM + qv + σC′) + σA + σA′)2 + (q + σM + qv + σC′)2 + (σA + σA′)2

2n
+

2qv
2n

+
qv
2τ
(33)

≤ 5σ2
auth

2n
+

2qv
2n

+
qv
2τ

(34)

≤ 7σ2
auth

2n
+

qv
2τ

, (35)

where the second inequality follows from Theorem 6, and the third follows from Lemma 3. This concludes the
proof.

C.4 Proof of Lemma 3

We first consider G̃′[R], a function obtained by substituting P in Fig. 10 with an n-bit URF, R. Then we

decompose G̃′[R] into a family of smaller functions written as Q = {Qi}i=1,...,10
4. Let Rnd ∈ {0, 1}n be an

4 The decomposition of OMAC here is slight different from the original proof [28], in that we explicitly separate the
case when the first input block is all-zero from other cases. We employ this separation to reduce the following proof
complexity, but the original decomposition of [28] would work as well.
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Algorithm G[Q]⟨A,N,i,ω⟩(X)

1. TA← CMAC′[Q](A)
2. L← TA⊕Q1(N)
3. S ← g(i, ω, L)⊕X

4. Y ← Q
(i,ω)
10 (S)

5. return Y

Algorithm CMAC′[Q](X)

1. if X = ε then Y ← 0n

2. else
3. (X[1], X[2], . . . , X[x])

n← X
4. if x = 1 then
5. if |X[x]| ̸= n then Y ← Q5(X[x])
6. else Y ← Q6(X[x])
7. if x = 2 then
8. if X[1] = 0n then
9. if |X[x]| ̸= n then Y ← Q8(X[x])

10. else Y ← Q9(X[x])
11. else S ← Q1(X[1]) // X[1] ̸= 0n

12. if |X[x]| ̸= n then Y ← Q3(S ⊕X[x])
13. else Y ← Q4(S ⊕X[x])
14. if x > 2 then
15. if X[1] = 0n then S ← Q7(X[2]), I ← 3
16. else S ← Q1(X[1]), I ← 2 // X[1] ̸= 0n

17. for i = I to x− 1
18. do S ← Q2(S ⊕X[i]) // when x ≥ I + 1
19. if |X[x]| ̸= n then Y ← Q3(X[x])
20. else Y ← Q4(X[x])
21. return Y

Fig. 11. An equivalent function to G̃′[R], G[Q].

independent and uniform variable, then we define

Q1(x)
def
= R(x)⊕ Rnd, Q2(x) = R(x⊕ Rnd)⊕ Rnd (36)

Q3(x)
def
= R(x⊕ Rnd⊕ 2U), Q4(x)

def
= R(x⊕ Rnd⊕ 4U) (37)

Q5(x)
def
= R(x⊕ 2U), Q6(x)

def
= R(x⊕ 4U) (38)

Q7(x)
def
= R(x⊕ U)⊕ Rnd, Q8(x)

def
= R(x⊕ U ⊕ 2U) (39)

Q9(x)
def
= R(x⊕ U ⊕ 4U), Q

(i,ω)
10 (x)

def
= R(x⊕ g(i, ω, Rnd)) (40)

where U = R(0n). All functions have n-bit input and output, except Q1 and Q10. Here Q1 has input domain

{0, 1}n \ {0n}, and Q
(∗,∗)
10 (∗) has input domain (N×Ω)×{0, 1}n. Both have n-bit output. Function g(∗, ∗, ∗) is

defined as Fig 10 and g(i, ω, x) is a multiplication over GF(2n) with x and a constant depending on (i, ω), written
as c(i,ω) ∈ GF(2n). Therefore we may represent g(i, ω, x) by c(i,ω) ·x. For example c(i,s) = 2(2i−13) = 2i3. In the

rest of the proof we assume i in g(i, ω, x) is no more than 2n/2, which is needed for security. From Proposition
5 of [44] we have

Proposition 3. In Fig 10, for any (i, ω) with i = 1, . . . , 2n/2, c(i,ω) ̸= c(i′,ω′) for any (i, ω) ̸= (i′, ω′), and c(i,ω)

is not an identity element nor zero element.

Using Q we build a function G[Q] which is equivalent to G̃′[R], shown by Fig. 20. It uses CMAC′[Q], which is
equivalent to the original CMAC [28] (instantiated by URF) except that the empty input produces 0n output
and the opposite GF coefficients for last-block mask, i.e. 2 (4) for the case the last input block is partial (full).
Note that L in the algorithm of G[Q] contains Rnd from the output of Q1, but has no effect on the final output

Y , as Rnd is canceled out by input mask of Q
(i,ω)
10 thanks to the XOR-linearity of g. We may abbreviate Q

(i,ω)
10 (x)

as Q10(x) if underlying (i, ω) is obvious. We then show that Q is indistinguishable from a set of URFs.

Lemma 4. Let Q̃ = {Q̃i}i=1,...,10 be the set of functions, where Q̃i is an independent URF compatible with Qi.

We also consider Q and Q̃ as tweakable functions accepting tweak t ∈ {1, . . . , 10}. Then we have

Adv
cpa

Q,Q̃
(A) ≤ q2

2n
,
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for adversary A using q queries, where each query consists of tweak t and the corresponding input to Qt or Q̃t.

Proof. Let ∆t and ∇t be the input and output masks for Qt, defined as

∆1 = 0n, ∆2 = Rnd, ∆3 = Rnd⊕ 2U, ∆4 = Rnd⊕ 4U, ∆5 = 2U,

∆6 = 4U, ∆7 = U, ∆8 = U ⊕ 2U, ∆9 = U ⊕ 4U, ∆
(i,ω)
10 = g(i, ω, Rnd), (41)

and

∇1 = Rnd, ∇2 = Rnd, ∇7 = Rnd, (42)

and other ∇is are 0
n, including ∇(i,ω)

10 = 0n for any (i, ω), where U = R(0n) and Rnd are independently random.

Then Qt(x) = R(∆t ⊕ x) ⊕ ∇t for t ≤ 9, and Q
(i,ω)
10 (x) = R(∆

(i,ω)
10 ⊕ x) ⊕ ∇(i,ω)

10 . We introduce Fig. 21 which

defines two games, GameQ and GameQ̃. A query is (t,X, i, ω) and for any t ̸= 10, i and ω are assumed to be
fixed default values to avoid pointless queries. In Fig. 21 masks are written as functions taking all arguments, e.g.

∆2(U, Rnd, i, ω) = ∆2 = Rnd and ∆10(U, Rnd, i, ω) = ∆
(i,ω)
10 = g(i, ω, Rnd). We observe that GameQ and GameQ̃

precisely simulate Q and Q̃. For GameQ̃ this is obvious, since the output of GameQ̃ is always independent and
uniformly random. For GameQ the generation procedure of Y and YE in GameQ is opposite to that of Q; in
GameQ, if XE is a new value, Y is uniformly sampled and then Y = YE ⊕ ∇t is determined, while Q first
determines YE randomly and computes Y = YE ⊕∇t. However, both yield the identical marginal distribution
of (Y, YE). If XE has a collision, GameQ determines YE from the set of previously sampled values, and Y is
determined as Y ← YE⊕∇t. Games of Fig. 21 define the flag bad to set (in line 13) when two inputs to ρ after
the input maskings collide. Then, following the Game-Playing technique [15], both games are identical until bad
gets set to true, thus we have

Adv
cpa

Q,Q̃
(A) ≤ Pr[AGameQ ⇒ 1]− Pr[AGameQ̃ ⇒ 1] ≤ Pr[AGameQ̃ sets bad ]. (43)

Hence what we need is to bound the last probability, which is derived from the pairwise collision probability
of input masks. We see that

max
t∈{2,...,9},d∈{0,1}n

Pr
U,Rnd

[∆t = d] ≤ 1

2n
(44)

max
(i,ω)∈N×Ω,d∈{0,1}n

Pr
U,Rnd

[∆
(i,ω)
10 = d] ≤ 1

2n
(45)

max
t,t′∈{2,...,9},t̸=t′,d∈{0,1}n

Pr
U,Rnd

[∆t ⊕∆t′ = d] ≤ 1

2n
(46)

max
t∈{2,...,9},(i,ω)∈N×Ω,d∈{0,1}n

Pr
U,Rnd

[∆t ⊕∆
(i,ω)
10 = d] ≤ 1

2n
(47)

max
(i,ω),(i′,ω′)∈N×Ω,(i,ω) ̸=(i′,ω′),d∈{0,1}n

Pr
U,Rnd

[∆
(i,ω)
10 ⊕∆

(i′,ω′)
10 = d] ≤ 1

2n
(48)

where the probabilities are defined by U and Rnd, which are independent and uniform over {0, 1}n (as U
is a sole output of URF involved in the event). (87) and (45) denote the collision probability of the form
[∆1 ⊕Xi = ∆j ⊕Xk] ≡ [∆j = Xi ⊕Xk] for j ̸= 1, and (46) to (88) denote the other collision cases. Here (47)
and (88) follow5 from Proposition 3. These equations show that any collision occurs at most with probability
1/2n, and since q queries in the game yield at most q+1 accesses to ρ, the bound is derived as

(
q+1
2

)
/2n ≤ q2/2n.

This proves Lemma 7. ⊓⊔

We consider G[Q̃] : T × {0, 1}n → {0, 1}n, which is obtained by substituting Qi with Q̃i in Fig. 20, for

all i = 1, . . . , 10. In G[Q̃] the internal CMAC-like function is written as CMAC′[Q̃]. We then need to evaluate

the indistinguishability between G[Q̃] and a URF compatible with G[Q̃], R̃. For doing this we consider another

decomposition of G[Q̃]. Let fNX be a function using Q̃1 and Q̃10, such that

fNX(N, i, ω,X)
def
= Q̃

(i,ω)

10 (g(i, ω, Q̃1(N))⊕X). (49)

5 In more detail, (47) with t = 1 (t = 2) needs c(i,ω) · Rnd (Rnd⊕ c(i,ω) · Rnd) to be uniform, which holds if c(i,ω) is not
zero (identity element).
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Initialization
00 U ← ρ(0n)

$← {0, 1}n

01 Rnd
$← {0, 1}n

On query (t,X, i, ω) ∈ {1, . . . , 10} × {0, 1}n × N×Ω // (i, ω) works for t = 10
10 XE ← ∆t(U, Rnd, i, ω)⊕X // X ̸= 0n when t = 1

11 Y
$← {0, 1}n

12 YE ← Y ⊕∇t(U, Rnd, i, ω)

13 if XE ∈ Dom(ρ) then bad← true, YE ← ρ(XE), Y ← YE ⊕∇t(U, Rnd, i, ω)

14 else ρ(XE)← YE
15 return Y

Fig. 12. GameQ contains the boxed arguments, while GameQ̃ does not.

We also define fA as CMAC′[Q̃]. Then we have

G[Q̃]⟨A,N,i,ω⟩(X) = fNX(N, i, ω,X ⊕ g(i, ω, fA(A))) (50)

due to the linearity of g. We then claim that a pair of functions, (fNX , fA), is hard to distinguish from a pair of
independent compatible URFs, respectively denoted by RNX and RA, where RA is a VIL-URF that can accept
an empty string (unlike a normal URF) and produces 0n.

The proof is basically the same as the proof of OMAC [28] (more precisely the analysis of MOMAC function

in [28]), however direct application of [28]’s proof is not possible due to the existence of fNX which shares Q̃1

with fA. Fig. 13 shows how (fNX , fA) is queried. Throughout queries we assume that the oracle maintains the

following lists. Let L1
i,ω be the list of n-bit (non-tweak) input blocks to Q̃10 in fNX , defined as g(i, ω, Q̃1(N))⊕X.

Similarly, let L2
κ be the list of input blocks to Q̃κ in fA, for κ ∈ {3, 4, 5, 6, 8, 9}, which denotes the index set of

finalization function. Let ε1 be the event that a collision of two values in the same list L1
i,ω, for some queried

(i, ω), and let ε2 be the event that a collision of two values in the same list L2
κ, for some κ ∈ {3, 4, 5, 6, 8, 9}.

Consider adversary A accessing pair (fNX , fA), where a query specifies which function to access combined with
an input to the specified function. Let q be the number of total queries and σ be the total input blocks to
fA. We naturally assume there is no duplicate queries. We observe that the finalization functions, i.e. Q̃i to
generate the output Y in Fig. 13, used by fNX and fA are different. Therefore (fNX , fA) can be seen as a pair
of Carter-Wegman MACs using independent finalizations, or more generally a Carter-Wegman MAC combining
fNX and fA with one-bit tweak for additional input to specify which one is used. This implies that

Adv
cpa

(fNX ,fA),(RNX ,RA)(A) ≤ Pr[ε1 ∪ ε2], and hence (51)

≤ Pr[ε1] + Pr[ε2] (52)

holds true, where probabilities are defined by A and (fNX , fA), and the probability of the right hand side (rhs)
of (51) (and thus (52)) for adaptive adversaries can be bounded by that of the non-adaptive adversaries, which
is obtained by, e.g., applying [Theorem 2 and Corollary 1 of [37]] to a Carter-Wegman MAC function combining
fNX and fA. Hence we can focus on the two probabilities of rhs of (52) for q inputs given by a non-adaptive
adversary.

We first analyze Pr[ε2]. Let f−1
A be the function defined as fA without the finalization, i.e. whose output

is obtained by substituting Q̃κ of fA with identity function for all κ ∈ {3, 4, 5, 6, 8, 9}. Let h(X) : {0, 1}∗ →
{3, 4, 5, 6, 8, 9} be the function that maps an input to fA or f−1

A to the index of the corresponding finalization
function (e.g. h(0n∥1n) = 9). Then we have

Pr[ε2] = max
X1,...,Xq,|Xi|n=mi,Σimi=σ,

Xi ̸=Xj for all i < j

∑
i ̸=j,h(Xi)=h(Xj)

Pr[f−1
A (Xi) = f−1

A (Xj)]. (53)

Let X and X ′ be two distinct inputs with |X|n = m, |X ′|n = m′, and h(X) = h(X ′) = κ. Without loss of
generality we assumem ≥ m′. Then Pr[f−1

A (Xi) = f−1
A (Xj)] is zero when κ = 5 or 6 (which impliesm = m′ = 1),

and when κ = 8 or 9 (which implies m = m′ = 2 with X[1] = X ′[1] = 0n, X[2] ̸= X ′[2]) since f−1
A output is

X[2]. We then consider the remaining cases having κ = 3 or 4 (which include m,m′ = 2 and X[1], X ′[1] ̸= 0n,
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Initialization
Set L1

i,ω as ∅ for all (i, ω), L2
κ as ∅ for all κ ∈ {3, 4, 5, 6, 8, 9}

When fNX is queried with (N,X, i, ω)

1. S ← g(i, ω, Q̃1(N))⊕X, update list L1
i,ω ← S

2. Y ← Q̃
(i,ω)

10 (S)
3. return Y

When fA is queried with X

1. if X = ε then Y ← 0n

2. else
3. (X[1], X[2], . . . , X[x])

n← X
4. if x = 1 then
5. if |X[x]| ̸= n then Y ← Q̃5(X[x]), update list L2

5 ← X[x]

6. else Y ← Q̃6(X[x]), update list L2
6 ← X[x]

7. if x = 2 then
8. if X[1] = 0n then

9. if |X[x]| ̸= n then Y ← Q̃8(X[x]), update list L2
8 ← X[x]

10. else Y ← Q̃9(X[x]), update list L2
9 ← X[x]

11. else S ← Q̃1(X[1]) // X[1] ̸= 0n

12. if |X[x]| ̸= n then Y ← Q̃3(S ⊕X[x]), update list L2
3 ← S ⊕X[x]

13. else Y ← Q̃4(S ⊕X[x]), update list L2
4 ← S ⊕X[x]

14. if x > 2 then
15. if X[1] = 0n then S ← Q̃7(X[2]), I ← 3

16. else S ← Q̃1(X[1]), I ← 2 // X[1] ̸= 0n

17. for i = I to x− 1
18. do S ← Q̃2(S ⊕X[i]) // when x ≥ I + 1

19. if |X[x]| ̸= n then Y ← Q̃3(S ⊕X[x]), update list L2
3 ← S ⊕X[x]

20. else Y ← Q̃4(S ⊕X[x]), update list L2
4 ← S ⊕X[x]

21. return Y

Fig. 13. fNX and fA, with finalization input lists.

and the cases with at least one of m,m′ is more than 2). Let CBCF be the standard CBC-MAC function
using n-bit function F as the internal blockcipher, working for any input in ({0, 1}n)i for i = 1, 2, . . . . We now
introduce the following lemma of Black and Rogaway [19].

Lemma 5. ( [19]) For n-bit URF R and two distinct inputs to CBCR, X and X ′, |X| = mn and |X ′| = m′n,
we have

Pr[CBCR(X) = CBCR(X
′)] ≤ m ·m′

2n
+

max{m,m′}
2n

.

Note that the lemma also implies Pr[CBCR(X) = c] ≤ 2(m+ 1)/2n for any c ∈ {0, 1}n (by applying CBC for
both X∥0n and c), and Pr[CBCR(X) ⊕ CBCR(X

′) = c] ≤ (m+ 1) · (m′ + 1)/2n + max{m+ 1,m′ + 1}/2n for
any c ∈ {0, 1}n (by applying CBC for both X∥c and X ′∥0n). The remaining cases with κ = 3 or 4 can be further
divided into the following sub-cases. Recall that we assumed h(X) = h(X ′), thus both X and X ′ have either
partial last blocks or full last blocks.
Case 1: m = m′ = 2, X[1], X ′[1] ̸= 0n. Then f−1

A (X) = Q̃1(X[1]) ⊕X[2] and f−1
A (X ′) = Q̃1(X

′[1]) ⊕X ′[2],

hence Pr[f−1
A (Xi) = f−1

A (Xj)] is at most 1/2n.
Case 2: m > 2, m′ = 2, X[1], X ′[1] ̸= 0n. Then we have

Pr[f−1
A (Xi) = f−1

A (Xj)] = Pr[CBCQ̃2
(V,X[3], . . . , X[m− 1])⊕X[m] = V ′] ≤ 2(m− 1)

2n
, (54)

where V = Q̃1(X[1])⊕X[2] and V ′ = Q̃1(X
′[1])⊕X ′[2], and the inequality follows from Lemma 5.

Case 3: m = 3, m′ = 2, X[1] = 0n, X ′[1] ̸= 0n. Then f−1
A (X) = Q̃7(X[2])⊕X[3] and f−1

A (X ′) = Q̃1(X
′[1])⊕
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X ′[2], hence the probability is 1/2n.

Case 4: m > 3, m′ = 2, X[1] = 0n, X ′[1] ̸= 0n. The same analysis as Case 2 holds, with V = Q̃7(X[2])⊕X[3].
The probability is bounded by 2(m− 1)/2n.

Case 5: m > 2, m′ > 2, X[1], X ′[1] ̸= 0n. Let V = Q̃1(X[1]) ⊕ X[2] and V ′ = Q̃1(X
′[1]) ⊕ X ′[2]. When

(X[1], X[2]) ̸= (X ′[1], X ′[2]), the probability of V = V ′ is at most 1/2n, and given V ̸= V ′ we have two distinct
inputs to CBCQ̃2

. Thus the conditional collision probability is

Pr[CBCQ̃2
(V,X[3], . . . , X[m− 1])⊕ CBCQ̃2

(V ′, X ′[3], . . . , X ′[m′ − 1]) = X[m]⊕X ′[m′]|V ̸= V ′]

≤ (m− 1)(m′ − 1)

2n
+

m− 1

2n
(55)

from Lemma 5 and the assumption m ≥ m′. Therefore, by adding the V -collision probability, the bound is
obtained as (m− 1)(m′ − 1)/2n + (m′ − 1)/2n +1/2n, which is at most mm′/2n +m/2n. When (X[1], X[2]) =
(X ′[1], X ′[2]), we have V = V ′ and two distinct inputs to CBCQ̃2

, hence the same bound applies.

Case 6: m > 2, m′ > 2, X[1] = 0n, X ′[1] ̸= 0n or X[1] ̸= 0n, X ′[1] = 0n. The same as Case 5, and the bound
is mm′/2n +m′/2n.

Therefore, summarizing all cases we have

Pr[ε2] ≤ max
X1,...,Xq,|Xi|n=mi,Σi|Xi|n=σ,

Xi ̸=Xj for all i < j

∑
i̸=j,h(Xi)=h(Xj)

Pr[f−1
A (Xi) = f−1

A (Xj)] (56)

≤ max
X1,...,Xq,|Xi|n=mi,Σi|Xi|n=σ,

Xi ̸=Xj for all i < j

∑
i̸=j,h(Xi)=h(Xj)

mi ·mj

2n
+

max{mi,mj}
2n

(57)

≤ σ2

2n
, (58)

where the last inequality follows from [19].
The analysis of Pr[ε1] is easy. For any two (N,X, i, ω) ̸= (N ′, X ′, i′, ω′) with (i, ω) = (i′, ω′), the probability

of collision (i.e. g(i, ω, Q̃1(N))⊕X = g(i′, ω′, Q̃1(N
′))⊕X ′) is at most 1/2n, hence

Pr[ε1] ≤
(
q

2

)
· 1

2n
≤ q2

2n+1
. (59)

Combining (58) and (59), we have

Adv
cpa

(fNX ,fA),(RNX ,RA)(A) ≤
0.5q2 + σ2

2n
. (60)

Finally, we consider F, a function compatible with G[Q] defined as

F⟨A,N,i,ω⟩(X)
def
= RNX(N, i, ω,X ⊕ g(i, ω,RA(A))). (61)

Recall that we assumed RA(ε) = 0n as fA. Hence g(i, ω,RA(ε))) = 0n holds. Then we focus the collision
probability at inputs to RNX . It is simple to observe that

Pr[(N, i, ω,X ⊕ g(i, ω,RA(A))) = (N ′, i′, ω′, X ′ ⊕ g(i′, ω′,RA(A
′)))] ≤ 1

2n
(62)

for any two distinct (A,N, i, ω,X) and (A′, N ′, i′, ω′, X ′), including the cases A and/or A′ is empty. This is
because we require (N, i, ω) = (N ′, i′, ω′) to have non-zero probability for the left hand side of (62) and if
A ̸= A′ the sum X ⊕ g(i, ω,RA(A))⊕X ′⊕ g(i′, ω′,RA(A

′)), which equals to c(i,ω) · (RA(A)⊕RA(A
′))⊕X ⊕X ′,

is uniform. When A = A′ and X ̸= X ′ the collision probability is apparently zero. This implies that

Adv
cpa

F,R̃
(A) ≤

(
q

2

)
· 1

2n
≤ q2

2n+1
(63)

for any adversary with q queries, irrespective of lengths of A.
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Then, for any adversary A querying G̃′[P] using q queries and total blocks of unique ADs being σ, there

exist adversary B querying Q (or Q̃) with 2q + σ queries and adversary C querying (fNX , fA) (or (RNX ,RA))
with q queries with σ total blocks to the second function, satisfying

Adv
cpa

G̃′[P],R̃
(A) ≤ Adv

cpa

G[Q],G[Q̃]
(A) + Adv

cpa

G[Q̃],F
(A) + Adv

cpa

F,R̃
(A) (64)

≤ Adv
cpa

Q,Q̃
(B) + Adv

cpa

(fNX ,fA),(RNX ,RA)(C) +
0.5q2

2n
(65)

≤ (2q + σ)2

2n
+

0.5q2 + σ2

2n
+

0.5q2

2n
=

(2q + σ)2 + q2 + σ2

2n
, (66)

where the second inequality follows from (63), and the third follows Lemma 7 and (60). This concludes the
proof.

C.5 Proof of Theorem 6

The proof is mostly a subset of proof of Theorem 3.
PRIV bound. We observe that any output block of encryption oracle OTRS-Eτ contains an output block of

R̃
⟨A,N,i,ω⟩

, where the tweak (A,N, i, ω) is uniquely used throughout the attack by PRIV-adversary A whose
queries have unique pairs of (A,N). This implies that the output blocks in (C, T ) is independent and uniform,
thus indistinguishable from those of $ oracle. PRIV bound being 0 is naturally derived from this observation.
AUTH bound. Following the proof of Theorem 3, we first consider the case qv = 1. Let A be AUTH-adversary
against OTRS with q encryption queries and a decryption query. Without loss of generality we can assume A
first performs all encryption queries before the decryption query. As well as the proof of Theorem 3 we use the
notations (Ni, Ai,Mi), and (Ci, Ti) for i = 1, . . . , q, and a decryption query (a forgery attempt) (N ′, A′, C ′, T ′)
satisfying (N ′, A′, C ′) ̸= (Ni, Ai, Ci) for all i = 1, . . . , q. Here |Mi| = |Ci| and (Ai, Ni) ̸= (Aj , Nj) for any
1 ≤ i < j ≤ q by assumption. Let T ∗ be the true tag value for the forgery attempt, and let TE∗ and Σ∗ be
the corresponding values produced in the forgery attempt using (N ′, A′, C ′). The forgery attempt is accepted
as valid iff T ∗ = T ′, where

T ∗ = msbτ (TE
∗), and TE∗ = lsbn(DF-SR̃(N

′, A′, C ′)). (67)

Let m′ = |C ′|n and ℓ′ = |C ′|2n. Note that TE∗ is equal to R̃
⟨A′,N ′,ℓ′,ω′⟩

(Σ∗), where Σ∗ is generated as an internal
variable of DF-SR̃(N

′, A′, C ′) for some ω′ ∈ {a1, a2, b1, b2} uniquely determined by the length of C ′. Application

of function R̃
⟨A′,N ′,ℓ′,ω′⟩

is called a finalization and the tweak (A′, N ′, ℓ′, ω′) is called a finalization tweak. We
let Z = {(Ni, Ai,Mi, Ci, Ti)}i=1,...,q be the transcript obtained by encryption queries, and by seeing Z as a
random variable, the forgery probability is obtained as the maximum of FPz defined as Pr[T ′ = T ∗|Z = z], for
all transcripts. We can then perform a case analysis for (N ′, A′, C ′), which is a simplified version of the one
provided for the proof of Theorem 3. Specifically we have two cases.
Case 1: (A′, N ′) ̸= (Ai, Ni) for all 1 ≤ i ≤ q.
The finalization tweak is new, hence TE∗ is independent and uniformly random. Thus FPz ≤ 1/2τ .
Case 2: (A′, N ′) = (Aα, Nα), and C ′ ̸= Cα for some 1 ≤ α ≤ q.
The analysis is completely the same as Case 3 and Case 4 in the proof of Theorem 3. This is because analyses
given in these cases work irrespective of the values of A, and OTRS assuming (A,N) as nonce and OTR′

assuming A = ε is essentially equivalent. Following the Case 3 and Case 4 in the proof of Theorem 3, we have
FPz ≤ 2/2n + 1/2τ .

Finally, the case qv > 1 is obtained by combining the above bound for qv = 1 with the result of [13]. This
provides AUTH bound 2qv/2

n + qv/2
τ , which completes the proof.

31



Fig. 14. Encryption of OTRS function.
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Algorithm OTRS-EE,τ (N,A,M)

1. if A ̸= ε then TA← AF-SE(A)
2. else TA← 0n

3. (C, TE)← EF-SE(N,M, TA)
4. T ← msbτ (TE)
5. return (C, T )

Algorithm OTRS-DE,τ (N,A,C, T )

1. if A ̸= ε then TA← AF-SE(A)
2. else TA← 0n

3. (M,TE)← DF-SE(N,C, TA)

4. T̂ ← msbτ (TE)

5. if T̂ = T return M
6. else return ⊥

Algorithm EF-SE(N,M, TA)

1. Σ ← 0n

2. L← E(N)⊕ TA,L← 2L
3. (M [1], . . . ,M [m])

n←M , ℓ← ⌈m/2⌉
4. for i = 1 to ℓ− 1 do
5. C[2i− 1]← E(2i−1L⊕M [2i− 1])⊕M [2i]
6. C[2i]← E(2i−13L⊕ C[2i− 1])⊕M [2i− 1]
7. Σ ← Σ ⊕M [2i]
8. if m is even
9. Z ← E(2ℓ−1L⊕M [m− 1])

10. C[m]← msb|M [m]|(Z)⊕M [m]
11. C[m− 1]← E(2ℓ−13L⊕ C[m])⊕M [m− 1]
12. Σ ← Σ ⊕ Z ⊕ C[m]
13. if m is odd
14. C[m]← msb|M [m]|(E(2ℓ−1L))⊕M [m]
15. Σ ← Σ ⊕M [m]
16. if m is even and |M [m]| ̸= n
17. then TE ← E(2ℓ−133L⊕Σ)
18. if m is even and |M [m]| = n
19. then TE ← E(2ℓ−1317L⊕Σ)
20. if m is odd and |M [m]| ̸= n
21. then TE ← E(2ℓ−132L⊕Σ)
22. if m is odd and |M [m]| = n
23. then TE ← E(2ℓ−17L⊕Σ)
24. C ← (C[1], . . . , C[m])
25. return (C, TE)

Algorithm DF-SE(N,C, TA)

1. Σ ← 0n

2. L← E(N)⊕ TA,L← 2L
3. (C[1], . . . , C[m])

n← C, ℓ← ⌈m/2⌉
4. for i = 1 to ℓ− 1 do
5. M [2i− 1]← E(2i−13L⊕ C[2i− 1])⊕ C[2i]
6. M [2i]← E(2i−1L⊕M [2i− 1])⊕ C[2i− 1]
7. Σ ← Σ ⊕M [2i]
8. if m is even
9. M [m− 1]← E(2ℓ−13L⊕ C[m])⊕ C[m− 1]

10. Z ← E(2ℓ−1L⊕M [m− 1])
11. M [m]← msb|C[m]|(Z)⊕ C[m]
12. Σ ← Σ ⊕ Z ⊕ C[m]
13. if m is odd
14. M [m]← msb|C[m]|(E(2ℓ−1L))⊕ C[m]
15. Σ ← Σ ⊕M [m]
16. if m is even and |C[m]| ̸= n
17. then TE ← E(2ℓ−133L⊕Σ)
18. if m is even and |C[m]| = n
19. then TE ← E(2ℓ−1317L⊕Σ)
20. if m is odd and |C[m]| ̸= n
21. then TE ← E(2ℓ−132L⊕Σ)
22. if m is odd and |C[m]| = n
23. then TE ← E(2ℓ−17L⊕Σ)
24. M ← (M [1], . . . ,M [m])
25. return (M,TE)

Algorithm AF-SE(A)

1. Ξ ← 0n

2. Q← E(0n)
3. (A[1], . . . , A[a])

n← A
4. for i = 1 to a− 1 do
5. Ξ ← E(A[i]⊕ Ξ)
6. Ξ ← Ξ ⊕A[a]
7. if |A[a]| ̸= n then TA← E(2Q⊕ Ξ)
8. else TA← E(4Q⊕ Ξ)
9. return TA

Fig. 15. Alternative representation of Fig. 7 for explicitly showing the masking coefficients.
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Fig. 16. Encryption of OTRC, where V = lsbn(DF-CE(0
n, A))⊕N if A ̸= ε and V = N if A = ε.

D A Variant with Combined AD Processing

D.1 Specification

This section specifies a variant of OTR with a novel combined method for authentication of associated data and
decryption function. We call it OTR with combined ADP or OTRC for short. We write OTRC[E, τ ] to denote
OTRC with blockcipher E and tab bit-length τ . OTRC consists of the encryption and decryption core functions,
defined as EF-CE and DF-CE . They are almost the same as EFE and DFE of OTR, the only difference is in
the generation of L, which is now simply an encryption of the first n-bit argument of the core functions written
as V . For encryption, if AD A is non-empty, OTRC first computes V = lsbn(DF-CE(0

n, A)) ⊕N and if A is
empty, V = N . Then OTRC computes EF-CE(V,M) → (C, TE). The tag is msbτ (TE). Reuse of DF-CE for
AD processing is beneficial to reducing the implmentation size, for both software and hardware, while enabling
parallel AD processing. Since the global structure of OTRC is similar to OTRS, it allows the caching for static
AD, and enjoys OTRS’s extended security notion as well (i.e. (A,N) can be used as nonce). Fig. 16 shows the
encryption algorithm of OTRC, and Fig. 17 shows the pseudocode of OTRC.

D.2 Security Analysis

Seucirty bounds. The security proof is done in a way similar to that of OTR with serial ADP. We provide the
security bounds of OTRC for the extended security notions as explained by Appendix C, that is, the definitions
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Algorithm OTRC-EE,τ (N,A,M)

1. V ← N
2. if A ̸= ε then V ← V ⊕ lsbn(DF-CE(0

n, A))
3. (C, TE)← EF-CE(V,M)
4. T ← msbτ (TE)
5. return (C, T )

Algorithm OTRC-DE,τ (N,A,C, T )

1. V ← N
2. if A ̸= ε then V ← V ⊕ lsbn(DF-CE(0

n, A))
3. (M,TE)← DF-CE(V,C)

4. T̂ ← msbτ (TE)

5. if T̂ = T return M
6. else return ⊥

Algorithm EF-CE(V,M)

1. Σ ← 0n

2. U ← E(V ), L← U , L♯ ← 3U
3. (M [1], . . . ,M [m])

n←M
4. for i = 1 to ⌈m/2⌉ − 1 do
5. C[2i− 1]← E(L⊕M [2i− 1])⊕M [2i]
6. C[2i]← E(L♯ ⊕ C[2i− 1])⊕M [2i− 1]
7. Σ ← Σ ⊕M [2i]
8. L← L⊕ L♯, L♯ ← 2L♯

9. if m is even
10. Z ← E(L⊕M [m− 1])
11. C[m]← msb|M [m]|(Z)⊕M [m]
12. C[m− 1]← E(L♯ ⊕ C[m])⊕M [m− 1]
13. Σ ← Σ ⊕ Z ⊕ C[m]

14. L∗ ← L♯

15. if m is odd
16. C[m]← msb|M [m]|(E(L))⊕M [m]
17. Σ ← Σ ⊕M [m]
18. L∗ ← L
19. if |M [m]| ̸= n then TE ← E(32L∗ ⊕Σ)
20. else TE ← E(7L∗ ⊕Σ)
21. C ← (C[1], . . . , C[m])
22. return (C, TE)

Algorithm DF-CE(V,C)

1. Σ ← 0n

2. U ← E(V ), L← U , L♯ ← 3U
3. (C[1], . . . , C[m])

n← C
4. for i = 1 to ⌈m/2⌉ − 1 do
5. M [2i− 1]← E(L♯ ⊕ C[2i− 1])⊕ C[2i]
6. M [2i]← E(L⊕M [2i− 1])⊕ C[2i− 1]
7. Σ ← Σ ⊕M [2i]
8. L← L⊕ L♯, L♯ ← 2L♯

9. if m is even
10. M [m− 1]← E(L♯ ⊕ C[m])⊕ C[m− 1]
11. Z ← E(L⊕M [m− 1])
12. M [m]← msb|C[m]|(Z)⊕ C[m]
13. Σ ← Σ ⊕ Z ⊕ C[m]

14. L∗ ← L♯

15. if m is odd
16. M [m]← msb|C[m]|(E(L))⊕ C[m]
17. Σ ← Σ ⊕M [m]
18. L∗ ← L
19. if |C[m]| ̸= n then TE ← E(32L∗ ⊕Σ)
20. else TE ← E(7L∗ ⊕Σ)
21. M ← (M [1], . . . ,M [m])
22. return (M,TE)

Fig. 17. Algorithms of OTR with combined ADP (OTRC). Tag bit size is 0 < τ ≤ n, and X denotes the 10∗ padding
of X, and |N | ≤ n− 1.

of Advpriv, Advauth, Advcpa-nr and Advcca-nr are identical to those defined in Appendix C. For simplicity we assume
the underlying blockcipher is an n-bit URP, P. The computational counterparts are fairly straightforward, thus
omitted.

Theorem 7. Fix τ ∈ {1, . . . , n}. For any PRIV-adversary A with parameter (q, σA, σM ),

Adv
priv

OTRC[P,τ ](A) ≤
10σ2

priv

2n

holds for σpriv = q + σA + σM .

Theorem 8. Fix τ ∈ {1, . . . , n}. For any AUTH-adversary A with parameter (q, qv, σA, σM , σA′ , σC′),

AdvauthOTRC[P,τ ](A) ≤
12σ2

auth

2n
+

qv
2τ

holds for σauth = q + qv + σA + σM + σA′ + σC′ .

D.3 Proofs of Theorems 7 and 8

The proofs are largely the same as Appendix C with a separate analysis for the pseudorandomness of the last
n-bit output of DF-C. This section has some overlaps with Appendix C, and thus some notations are reused,
in order to make this section self-contained and accessible with minimum reference to Appendix C.
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First step: TBC-based design.
In Fig. 18, we define an AEAD scheme denoted by OTRC[τ ]. It is compatible to OTRC[E, τ ] and uses a

tweakable n-bit URF, R̃ : T × {0, 1}n → {0, 1}n. Here, tweak T is represented as a vector, T = (x, y, i, w) ∈
T def

= Aae × Nae × N × Ω, where Ω = {f, s, a1, a2, b1, b2}. For convenience we let Ω1 = {f, s} and Ω2 =
{a1, a2, b1, b2}. Here OTRC[τ ] consists of encryption function, OTRC-Eτ , and decryption function, OTRC-Dτ ,
and these functions use encryption and decryption cores, EF-CR̃ and DF-CR̃. The privacy and authenticity
bounds of OTRC are shown in Theorem 9. We remark that OTRC and OTRS in Appendix C are equivalent
(though we introduce function η for convenience), hence the proof of Theorem 9 trivially follows from that of
Theorem 6.

Theorem 9. Fix τ ∈ {1, . . . , n}. For any PRIV-adversary A,

Adv
priv

OTRC[τ ](A) = 0.

Moreover, for any AUTH-adversary A using q encryption queries and qv decryption queries,

AdvauthOTRC[τ ](A) ≤
2qv
2n

+
qv
2τ

.

Second step: analysis of TBC. In Fig. 19, we define a TBC, G̃[P]⟨A,N,i,ω⟩(X), where (A,N, i, ω) ∈ T denotes
a tweak and X denotes an input. It uses an n-bit URP, P. For tweaks that do not appear in Fig. 10, we let
them as undefined. Let R̃ be a tweakable URF compatible with G̃[P].

Proposition 4. If EF-C and DF-C use G̃[P] instead of R̃, we obtain EF-CP and DF-CP.

We remark that G̃[P] here does not perform GF doublings in a sequential manner, and performs DF-CP with
the first argument set to 0n for every input, however, this does not cause a problem for simulation purpose. We
then prove that G̃[P] is a secure tweakable URF, shown by the following lemma. The proof is in Appendix D.4.

Lemma 6. For adversary A accessing G̃[P] using q queries with σA total blocks for A, we have

Adv
cpa

G̃[P],R̃
(A) ≤ 10(σ2

A + q2)

2n
,

where R̃ is a tweakable URF compatible with G̃[P].

Third step: deriving bounds. We show that, for A accessing OTRC[P, τ ] using q encryption queries with

σM total plaintext blocks and σA total AD blocks, there is an adversary B accessing G̃[P] with σM + q queries
and σA total AD blocks, such that

Adv
priv

OTRC[P,τ ](A) = Adv
cpa-nr

OTRC[P,τ ],$(A) (68)

≤ Adv
cpa-nr

OTRC[P,τ ],OTRC[τ ](A) + Adv
cpa-nr

OTRC[τ ],$(A) (69)

≤ Adv
cpa

G̃[P],R̃
(B) (70)

≤ 10σ2
A + 10(q + σM )2

2n
(71)

≤
10σ2

priv

2n
, (72)

where the second inequality follows from Proposition 4 and Theorem 9, and the third follows from Lemma 6.
For proving AUTH bound, we similarly introduce B against G̃[P] with q+ qv + σM + σC′ queries and σA + σA′

total AD blocks, and derive the bound as

AdvauthOTRC[P,τ ](A) ≤ Advcca-nrOTRC[P,τ ],OTRC[τ ](A) + AdvauthOTRC[τ ](A) (73)

≤ Adv
cpa

G̃[P],R̃
(B) + 2qv

2n
+

qv
2τ

(74)

≤ 10(σA + σA′)2 + 10(q + qv + σM + σC′)2

2n
+

2qv
2n

+
qv
2τ

(75)

≤ 10σ2
auth

2n
+

2qv
2n

+
qv
2τ

(76)

≤ 12σ2
auth

2n
+

qv
2τ

, (77)
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Algorithm OTRC-Eτ (N,A,M)

1. (C, TE)← EF-CR̃(N,A,M)
2. T ← msbτ (TE)
3. return (C, T )

Algorithm OTRC-Dτ (N,C,A, T )

1. (M,TE)← DF-CR̃(N,A,C)

2. T̂ ← msbτ (TE)

3. if T̂ = T return M
4. else return ⊥

Algorithm EF-CR̃(N,A,M)

1. Σ ← 0n

2. (M [1], . . . ,M [m])
n←M

3. (ℓ, ω)← η(M)
4. for i = 1 to ℓ− 1 do

5. C[2i− 1]← R̃
⟨A,N,i,f⟩

(M [2i− 1])⊕M [2i]

6. C[2i]← R̃
⟨A,N,i,s⟩

(C[2i− 1])⊕M [2i− 1]
7. Σ ← Σ ⊕M [2i]
8. if m is even
9. Z ← R̃

⟨A,N,ℓ,f⟩
(M [m− 1])

10. C[m]← msb|M [m]|(Z)⊕M [m]

11. C[m− 1]← R̃
⟨A,N,ℓ,s⟩

(C[m])⊕M [m− 1]
12. Σ ← Σ ⊕ Z ⊕ C[m]
13. if m is odd
14. C[m]← msb|M [m]|(R̃

⟨A,N,ℓ,f⟩
(0n))⊕M [m]

15. Σ ← Σ ⊕M [m]

16. TE ← R̃
⟨A,N,ℓ,ω⟩

(Σ)
17. C ← (C[1], . . . , C[m])
18. return (C, TE)

Algorithm DF-CR̃(N,A,C)

1. Σ ← 0n

2. (C[1], . . . , C[m])
n← C

3. (ℓ, ω)← η(C)
4. for i = 1 to ℓ− 1 do

5. M [2i− 1]← R̃
⟨A,N,i,s⟩

(C[2i− 1])⊕ C[2i]

6. M [2i]← R̃
⟨A,N,i,f⟩

(M [2i− 1])⊕ C[2i− 1]
7. Σ ← Σ ⊕M [2i]
8. if m is even
9. M [m− 1]← R̃

⟨A,N,ℓ,s⟩
(C[m])⊕ C[m− 1]

10. Z ← R̃
⟨A,N,ℓ,f⟩

(M [m− 1])
11. M [m]← msb|C[m]|(Z)⊕ C[m]
12. Σ ← Σ ⊕ Z ⊕ C[m]
13. if m is odd
14. M [m]← msb|C[m]|(R̃

⟨A,N,ℓ,f⟩
(0n))⊕ C[m]

15. Σ ← Σ ⊕M [m]

16. TE ← R̃
⟨A,N,ℓ,ω⟩

(Σ)
17. M ← (M [1], . . . ,M [m])
18. return (M,TE)

Algorithm η(X)

1. (X[1], . . . , X[m])
n← X

2. ℓ← ⌈m/2⌉
3. if m is even and |X[m]| ̸= n then ω = a1
4. if m is even and |X[m]| = n then ω = a2
5. if m is odd and |X[m]| ̸= n then ω = b1
6. if m is odd and |X[m]| = n then ω = b2
7. return (ℓ, ω)

Fig. 18. The encryption and decryption algorithms of OTRC[τ ] using a tweakable n-bit URF R̃. Here OTRC[τ ] is
equivalent to OTRS[τ ] in Fig. 9.

where the second inequality follows from Proposition 4 and Theorem 9, and the third follows from Lemma 6.
This concludes the proof.

D.4 Proof of Lemma 6

We first consider G̃[R], a function obtained by substituting P in Fig. 10 with an n-bit URF, R. In the same
manner to Appendix C, we define a family of small functions written as Q = {Qi}i=1,...,5, using two dummy
variables, Rnd1, Rnd2 ∈ {0, 1}n, which are independent and uniform over n bits. Formally, we have

Q
(i,ω)
1 (x)

def
= R(x⊕ g(i, ω, U)) for ω ∈ Ω1, (78)

Q
(i,ω)
2 (x)

def
= R(x⊕ g(i, ω, U))⊕ Rnd1 for ω ∈ Ω2, (79)

Q3(x)
def
= R(x⊕ Rnd1)⊕ Rnd2, (80)

Q
(i,ω)
4 (x)

def
= R(x⊕ g(i, ω, Rnd2)) for ω ∈ Ω, (81)

Q5(x)
def
= R(x)⊕ Rnd2, (82)
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Algorithm G̃[P]⟨A,N,i,ω⟩(X)

1. V ← N
2. if A ̸= ε then V ← V ⊕ lsbn(DF-CP(0

n, A))
3. L← P(V )
4. Y ← P(g(i, ω, L)⊕X)
5. return Y

Function g(i, ω, L)

1. Switch ω
2. Case f : ∆← 2i−1L
3. Case s : ∆← 2i−13L
4. Case a1 : ∆← 2i−133L
5. Case a2 : ∆← 2i−1317L
6. Case b1 : ∆← 2i−132L
7. Case b2 : ∆← 2i−17L
8. return ∆

Fig. 19. Tweakable permutation implicitly used by OTRC[P, τ ]. DF-C is described in Fig. 17.

Algorithm G[Q]⟨A,N,i,ω⟩(X)

1. if A ̸= ε then
2. V̂ ← N ⊕DF-C′[Q1,Q2](A)

3. L̂← Q3(V̂ )
4. else
5. V̂ ← N
6. L̂← Q5(V̂ )

7. S ← g(i, ω, L̂)⊕X

8. Y ← Q
(i,ω)
4 (S)

9. return Y

Algorithm DF-C′[Q1,Q2](A)

1. Σ ← 0n

2. (X[1], . . . , X[m])
n← X

3. (ℓ, ω)← η(X)
4. for i = 1 to ℓ− 1 do
5. Y [2i− 1]← Q

(i,s)
1 (X[2i− 1])⊕X[2i]

6. Y [2i]← Q
(i,f)
1 (Y [2i− 1])⊕X[2i− 1]

7. Σ ← Σ ⊕ Y [2i]
8. if m is even
9. Y [m− 1]← Q

(ℓ,s)
1 (X[m])⊕X[m− 1]

10. Z ← Q
(ℓ,f)
1 (Y [m− 1])

11. Y [m]← msb|X[m]|(Z)⊕X[m]
12. Σ ← Σ ⊕ Z ⊕X[m]
13. if m is odd
14. Y [m]← msb|X[m]|(Q

(ℓ,f)
1 (0n))⊕X[m]

15. Σ ← Σ ⊕ Y [m]

16. T ← Q
(ℓ,ω)
2 (Σ)

17. return T

Fig. 20. G[Q], a function equivalent to G̃[R].

where U = R(0n), and x ∈ {0, 1}n for Qi for i = 1, 2, 3, 4 and x ∈ {0, 1}n \ {0n} for Q5. For convenience,
Q3 and Q5 may assume (i, ω) as a part of input but defined to be a default constant (dummy), and we write
IQ ⊆ {0, 1}n × N × Ω × {1, . . . , 5} to denote the set of all valid inputs to Q, by seeing the last coordinate of
IQ to specify the member of the family. Function g(∗, ∗, ∗) is as defined in Fig. 19. We remark that g(i, ω, x)
is a multiplication over GF(2n) with x and a constant depending on (i, ω) written as c(i,ω) ∈ GF(2n) (e.g.
c(3,s) = 223). Thus we can write g(i, ω, x) = c(i,ω) · x. In the rest of the proof we assume i in g(i, ω, x) is from 1

to 2n/2 − 1, which is needed (and sufficient) for our security bounds. Recall that we assumed n = 128 and the
lexicographically-first primitive polynomial for defining GF(2n). Then, from Proposition 5 of [44] the following
holds.

Proposition 5. Let (i, ω) and (i′, ω′) be distinct elements over {1, . . . , 2n/2 − 1} × Ω. Then we have c(i,ω) ̸=
c(i′,ω′) and c(i,ω) is not a zero element.

Using Q we build a function G[Q] shown by Fig. 20. It uses DF-C′[Q1,Q2] for AD processing, which is
equivalent to DF-CR taking the first argument V = 0n and returning only the last n bits (i.e. TE). We observe
that in G[Q], Rnd1 and Rnd2 are always canceled between two consecutive calls of Qi. For example, suppose

that the output of Q3 is L̂ and the consecutive input to Q4 is S as Fig. 20. Then the internal output of R in
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Q3 is L = L̂⊕ Rnd2 and the internal input to R in Q
(i,ω)
4 is

S ⊕ g(i, ω, Rnd2) = (g(i, ω, L̂)⊕X)⊕ g(i, ω, Rnd2)

= g(i, ω, L⊕ Rnd2)⊕ g(i, ω, Rnd2)⊕X = g(i, ω, L)⊕X, (83)

from XOR-linearity of g, which precisely simulates the case of G̃[R]. Also, Q5 does not take 0n in Fig. 20
since N is shorter than n bits and always padded by one-zero padding function. That is, we have the following
proposition.

Proposition 6. G[Q] is equivalent to G̃[R].

We then show that Q is indistinguishable from a set of independent URFs.

Lemma 7. Let Q̃ = {Q̃i}i=1,...,5 be the set of functions, where Q̃i is an independent URF compatible with Qi.

Taking Q and Q̃ as tweakable functions accepting tweak t ∈ {1, . . . , 5}, we have

Adv
cpa

Q,Q̃
(A) ≤ (q + 1)q

2n+1
,

for adversary A using q queries, where each query is in IQ.

Proof of Lemma 7. Let ∆
(i,ω)
t be the input masks for Qt, and let ∇t be the output mask for Qt. They are

defined as

∆
(i,ω)
1 = g(i, ω, U), ∆

(i,ω)
2 = g(i, ω, U), ∆

(i,ω)
3 = Rnd1, ∆

(i,ω)
4 = g(i, ω, Rnd2), ∆

(i,ω)
5 = 0n, (84)

∇1 = 0n, ∇2 = Rnd1, ∇3 = Rnd2, ∇4 = 0n, ∇5 = Rnd2, (85)

where U = R(0n) and Rnd1 and Rnd2 are independently random. We remark that all masks are functions of

(U, Rnd1, Rnd2, i, ω), thus we can write as Q
(i,ω)
t (x) = R(∆

(i,ω)
t ⊕x)⊕∇t. We show Fig. 21 for defining two games,

GameQ and GameQ̃. We observe that GameQ and GameQ̃ precisely simulate Q and Q̃ for adversary who does
not repeat queries (here a query is in IQ). For GameQ̃ this is obvious, since the output of GameQ̃ is always
independent and uniformly random. For GameQ the generation procedure of Y and YE in GameQ is opposite
to that of Q; in GameQ, if XE is a new value, Y is uniformly sampled and then Y = YE ⊕∇t is determined,
while Q first determines YE randomly and computes Y = YE⊕∇t. However, both yield the identical marginal
distribution of (Y, YE). If XE has a collision, GameQ determines YE from the set of previously sampled values,
and Y is determined as Y ← YE ⊕∇t. Games of Fig. 21 define the flag bad to set (in line 13) when two inputs
to ρ after the input maskings collide. Then, following the Game-Playing technique [15], both games are identical
until bad gets set to true, thus we have

Adv
cpa

Q,Q̃
(A) ≤ Pr[AGameQ ⇒ 1]− Pr[AGameQ̃ ⇒ 1] ≤ Pr[AGameQ̃ sets bad ]. (86)

Hence, what we need is to bound the last probability, which is derived from the pairwise collision probability
of inputs to ρ, including 0n to produce U . From Proposition 5, we see that

max
(x,i,ω,t)∈IQ

Pr
U,Rnd1,Rnd2

[∆
(i,ω)
t = x] ≤ 1

2n
(87)

max
(x,i,ω,t),(x′,i′,ω′,t′)∈IQ

(x,i,ω,t) ̸=(x′,i′,ω′,t′)

Pr
U,Rnd1,Rnd2

[∆
(i,ω)
t ⊕∆

(i′,ω′)
t′ = x⊕ x′] ≤ 1

2n
, (88)

where (87) is for bounding the probability of x ⊕ ∆
(i,ω)
t = 0n for a query (x, i, ω, t) (note that this does not

happen with t = 5 as (0n, i, ω, 5) ̸∈ IQ), and (88) is for bounding the probability of x ⊕∆
(i,ω)
t = x′ ⊕∆

(i′,ω′)
t′

for a pair of distinct, valid queries, (x, i, ω, t) and (x′, i′, ω′, t′).
These equations show that any collision occurs at most with probability 1/2n, and since q queries in the

game yield at most q + 1 accesses to ρ, the bound is derived as
(
q+1
2

)
/2n ≤ (q + 1)q/2n+1. This proves Lemma

7. ■
We next evaluate G[Q̃], i.e. using Q̃ = {Q̃1, . . . , Q̃5} instead of Q. The core of G[Q̃] is DF-C′[Q̃1, Q̃2], and

we prove DF-C′[Q̃1, Q̃2] : {0, 1}∗ → {0, 1}n is a PRF. We remark that this lemma is slightly more general than

what we need, as it includes the empty string as a valid input, however DF-C′[Q̃1, Q̃2] in G[Q̃] never takes the
empty string.
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Initialization
00 U ← ρ(0n)

$← {0, 1}n

01 Rnd1
$← {0, 1}n, Rnd2

$← {0, 1}n
On query (X, i, ω, t) ∈ IQ // (i, ω) is a dummy for t = 3, 5

10 XE ← ∆
(i,ω)
t ⊕X // X ̸= 0n when t = 5

11 Y
$← {0, 1}n

12 YE ← Y ⊕∇t

13 if XE ∈ Dom(ρ) then bad← true, YE ← ρ(XE), Y ← YE ⊕∇t

14 else ρ(XE)← YE
15 return Y

Fig. 21. GameQ and GameQ̃. The latter does not contain the boxed argument.

Lemma 8. For adversary A using q queries, we have

Adv
prf

DF-C′[Q̃1,Q̃2]
(A) ≤ q(q − 1)

2n
. (89)

Proof of Lemma 8. We decompose DF-C′[Q̃1, Q̃2] into the message hashing, f [Q̃1], which takes input X ∈
{0, 1}∗ to generate Σ (corresponding to the result of line 15 in Fig. 20) and η(X), using Q̃1 instead of Q1, and

the finalization, g[Q̃2](Σ, η(X)) = Q̃
(η(X))

2 (Σ). Then we have DF-C′[Q̃1, Q̃2] = g[Q̃2] ◦ f [Q̃1], and this can be
seen as a Carter-Wegman MAC. We only need to know the maximum probability of

Coll1(X,X ′) = Pr
Q̃1

[(Σ, η(X)) = (Σ′, η(X ′))], (90)

where (Σ, η(X)) = f [Q̃1](X) and (Σ′, η(X ′)) = f [Q̃1](X
′) for distinct X,X ′ ∈ {0, 1}∗, including ε. In the

following we perform a case analysis, which is mostly the same as Case 3 and Case 4 of Appendix A. Here,
w.l.o.g. we assume η(X) = η(X ′) = (ℓ, ω), which also implies |X|n = |X ′|n = m for some m and, |X| ≤ |X ′|.
We employ the notations of Fig. 20 for internal variables, such as X[1] and Z for input X and X ′[1] and Z ′ for
X ′.
Case 1 : ℓ = 1. We have Σ = Y [1] and Σ = Y ′[1]. Let us first assume X and X ′ are non-empty. Then

|X| = |X[1]| = |Y [1]| and |X ′| = |X ′[1]| = |Y ′[1]|. If |X| ̸= |X ′|, due to the definition of one-zero padding,
Σ ̸= Σ′ always holds. If |X| = |X ′|, Σ ⊕Σ′ = Y [1]⊕ Y ′[1] = (X ⊕X ′)∥0n−|X| is non-zero.

Next, when X is empty while X ′ is not, this implies 1 ≤ |X ′| < n so that both have ω = b1, and we have
Σ = 10n−1 and Σ′ = Y ′[1], for 1 ≤ |Y ′[1]| < n. Since the latter always contains bit 1 in the (|X ′| + 1)-th

position, Σ ⊕Σ′ ̸= 0n holds. Thus Coll1(X,X ′) is zero for both sub-cases.

Case 2 : ℓ = 2. We have Σ = X[2]⊕ Z, where Z = Q̃
(1,f)

1 (Y [1]) and Y [1] = Q̃
(1,s)

1 (X[2])⊕X[1]. Similarly we

have Σ′ = X ′[2]⊕Z ′ and Z ′ = Q̃
(1,f)

1 (Y ′[1]) and Y ′[1] = Q̃
(1,s)

1 (X ′[2])⊕X ′[1]. If X[2] = X ′[2] and X[1] ̸= X ′[1],

we have X[2] = X ′[2] and thus Y [1] ̸= Y ′[1] always holds. Then Z and Z ′ are independent and uniform variables,

which implies Coll1(X,X ′) = 1/2n.
If X[2] ̸= X ′[2], we always have X[2] ̸= X ′[2] (as we assume ω is identical), thus Y [1] = Y ′[1] can happen

with probability 1/2n. Given Y [1] ̸= Y ′[1], Z and Z ′ are independent and uniform, thus Z = Z ′ occurs with
probability 1/2n. Thus Coll1(X,X ′) is at most 2/2n.
Case 3 : ℓ > 2, m is even. Suppose the difference is only in the last two blocks, i.e. (X[2i − 1], X[2i]) =
(X ′[2i − 1], X ′[2i]) for 1 ≤ i ≤ ℓ − 1, and (X[2ℓ − 1], X[2ℓ]) ̸= (X ′[2ℓ − 1], X ′[2ℓ]), where 2ℓ = m. We observe

that Σ ⊕Σ′ is a sum of Z ⊕ Z ′ ⊕X[2ℓ]⊕X ′[2ℓ] and independent terms using Q̃
(i,ω′)

1 for i < ℓ, ω′ ∈ Ω1. Here,

Z = Q̃
(ℓ,f)

1 (Y [2ℓ−1]) and Y [2ℓ−1] = Q̃
(ℓ,s)

1 (X[2ℓ])⊕X[2ℓ−1]. From the analysis similar to Case 2, Coll1(X,X ′)
is at most 2/2n.

Otherwise, we have (X[2i − 1], X[2i]) ̸= (X ′[2i − 1], X ′[2i]) for some 1 ≤ i ≤ ℓ − 1. Then Σ ⊕ Σ′ is a sum
of Y [2i] ⊕ Y ′[2i] and independent terms. From the analysis similar to Case 2, Y [2i] ⊕ Y ′[2i] = c occurs with
probability at most 2/2n for any c ∈ {0, 1}n. Thus, again Coll1(X,X ′) is at most 2/2n in this case.
Case 4 : ℓ > 2, m is odd. Suppose the difference is only in the last one block, i.e. (X[2i − 1], X[2i]) =
(X ′[2i − 1], X ′[2i]) for 1 ≤ i ≤ ℓ − 1, and X[m] ̸= X ′[m]. Then Σ ⊕ Σ′ = Y [m] ⊕ Y ′[m] and from the same
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analysis as Case 1, Coll1(X,X ′) is zero. Otherwise, we have (X[2i − 1], X[2i]) ̸= (X ′[2i − 1], X ′[2i]) for some
1 ≤ i ≤ ℓ− 1 and from the same analysis as Case 3, Coll1(X,X ′) is at most 2/2n.

Summarizing all cases, Coll1(X,X ′) ≤ 2/2n for any two distinct inputs, X and X ′. Using this bound with
(a variant of) Lemma 2 of Black and Rogaway [19], we have

Adv
prf

DF-C′[Q̃1,Q̃2]
(A) ≤ max

∑
1≤i<j≤q

Coll1(Xi, Xj) ≤
(
q

2

)
· 2

2n
≤ q(q − 1)

2n
, (91)

where the maximum is taken for all (non-adaptive) choices of distinct q inputs, (X1, . . . , Xq). This proves the
Lemma 8. ■

We then show that G[Q̃] is a tweakable PRF. Let G2[Q̃,Rv] be the same as G[Q̃] except that DF-C′[Q̃1, Q̃2]
is substituted with an independent variable-input-length random function, Rv. We prove the following.

Lemma 9. For adversary A using q queries, we have

Adv
prf

G2[Q̃,Rv]
(A) ≤ q(q − 1)

2n
. (92)

Proof of Lemma 9. We define

Coll2((A,N, i, ω,X), (A′, N ′, i′, ω′, X ′))
def
= Pr

Rv,Q̃3,Q̃5

[(S, i, ω) = (S′, i′, ω′)] (93)

as the probability of input collision for Q̃4 in G2[Q̃,Rv], where the output is Y = Q̃
(i,ω)

4 (S).

Then (93) is bounded as follows. W.l.o.g., we assume (i, ω) = (i′, ω′) and focus on the collision S = S′.

• Case [(A,N) = (A′, N ′) and X ̸= X ′]: We have S ⊕ S′ = X ⊕X ′ ̸= 0n.

• Case [A = A′ = ε,N ̸= N ′]: Here S ⊕ S′ = g(i, ω, Q̃5(N))⊕ g(i, ω, Q̃5(N
′))⊕X ⊕X ′. From Proposition

5 and N ̸= N ′ (as both are shorter than n bits), the collision probability of S is 1/2n.

• Case [A = A′ ̸= ε,N ̸= N ′]: Here, we have

S ⊕ S′ = g(i, ω, Q̃3(N ⊕ Rv(A)))⊕ g(i, ω, Q̃3(N
′ ⊕ Rv(A

′)))⊕X ⊕X ′

= g(i, ω, Q̃3(N ⊕ Rv(A))⊕ Q̃3(N
′ ⊕ Rv(A)))⊕X ⊕X ′. (94)

Since N ⊕ Rv(A) ̸= N ′ ⊕ Rv(A), the collision probability is 1/2n.

• Case [A ̸= A′, A,A′ ̸= ε]: Inputs to Q̃3 are N ⊕Rv(A) and N ′⊕Rv(A
′). They will collide with probability

1/2n. If inputs to Q̃3 are distinct, S = S′ occurs with probability 1/2n. Thus collision probability of S is
at most 2/2n.

• Case [A ̸= A′, A = ε]: Here, S ⊕ S′ = g(i, ω, Q̃5(N)) ⊕ g(i, ω, Q̃3(N
′ ⊕ Rv(A

′))) ⊕X ⊕X ′. Since Q̃5(N)

and Q̃3(V
′ ⊕N ′) are independent and random, the collision probability of S is 1/2n.

Therefore, (93) is at most 2/2n for any distinct inputs.

In the same manner as (91), this implies

Adv
prf

G2[Q̃,Rv]
(A) ≤

(
q

2

)
· 2

2n
≤ q(q − 1)

2n
, (95)

which proves Lemma 9. ■
Now we are ready to bound Adv

prf

G̃[P]
(A). Recall that A uses q queries with σA total blocks for AD. Let

σp = σA + 3q. We observe that σp + 1 is the maximum number of required P invocations in G̃[P] queried by A,
including P(0n) which can be cached. Summarizing all results, we have

Adv
prf

G̃[P]
(A) ≤ Adv

cpa

G̃[P],G̃[R]
(A) + Adv

cpa

G̃[R],G[Q]
(A) + Adv

cpa

G[Q],G[Q̃]
(A) + Adv

cpa

G[Q̃],G2[Q̃,Rv]
(A) + Adv

prf

G2[Q̃,Rv ]
(A).

(96)
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Each term is bounded as

Adv
cpa

G̃[P],G̃[R]
(A) ≤ (σp + 1) · σp

2n+1
from PRP-PRF switching lemma, (97)

Adv
cpa

G̃[R],G[Q]
(A) = 0 from Proposition 6, (98)

Adv
cpa

G[Q],G[Q̃]
(A) ≤ Adv

cpa

Q,Q̃
(B) ≤ (σp + 1) · σp

2n+1
from Lemma 7, (99)

Adv
cpa

G[Q̃],G2[Q̃,Rv ]
(A) ≤ q(q − 1)

2n
from Lemma 8, (100)

Adv
prf

G2[Q̃,Rv]
(A) ≤ q(q − 1)

2n
from Lemma 9, (101)

where B uses σp + 1 queries. Taking the sum of all bounds, the right hand side of (96) is at most

2(σp + 1) · σp

2n+1
+

2q(q − 1)

2n
=

(σp + 1) · σp

2n
+

2q(q − 1)

2n
(102)

=
(σA + 3q + 1) · (σA + 3q) + 2q(q − 1)

2n
(103)

≤ σ2
A + 6qσA + σA + 11q2 + q

2n
(104)

≤ 8σ2
A + 12q2

2n
≤ 10(σ2

A + q2)

2n
, (105)

where the last two inequalities follow from the fact σA ≥ q (note that the empty string counts as 1 block). This
proves Lemma 6. ⊓⊔
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