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Abstract. We describe a method to perform scalar multiplication on two

classes of ordinary elliptic curves, namely E : y2 = x3 + Ax in prime charac-
teristic p ≡ 1 mod 4, and E : y2 = x3 + B in prime characteristic p ≡ 1 mod

3. On these curves, the 4-th and 6-th roots of unity act as (computationally

efficient) endomorphisms. In order to optimise the scalar multiplication, we
consider a width-w-NAF (non-adjacent form) digit expansion of positive inte-

gers to the complex base of τ , where τ is a zero of the characteristic polynomial

x2−tx+p of the Frobenius endomorphism associated to the curve. We provide
a precomputationless algorithm by means of a convenient factorisation of the

unit group of residue classes modulo τ in the endomorphism ring, whereby we

construct a digit set consisting of powers of subgroup generators, which are
chosen as efficient endomorphisms of the curve.

1. Introduction

In the last decades the use of elliptic curves in public key cryptography (ECC)
has gained more and more attention. The operation that dominates the execution
time of ECC algorithms is the scalar multiplication, i.e. nP = P + · · ·+ P , where
P is an elliptic curve point and n ∈ Z. The need of time-saving implementations
has led to the development of various scalar multiplication methods.

In analogy with the square-and-multiply method for modular integer exponen-

tiation, one can consider the binary expansion of n, that is n =
∑l−1
j=0 dj2

j , with

dj ∈ {0, 1}; and then one can compute nP with a so-called Horner scheme or
double-and-add method :

nP =

l−1∑
j=0

dj2
j(P ) = d0P + 2(d1P + 2(d2P + 2(· · ·+ 2(dl−1P ) · · · ))) .

It is clear that the fewer nonzero digits in the recoding of n, the fewer additions
in the Horner scheme. As Morain and Olivos first proposed in [11], one can also
take negative digits, i.e. dj ∈ {0,±1}, since point subtraction on elliptic curves is
as easy as addition.

However, the scalar n can be expanded in a more convenient complex base.
Indeed, for every elliptic curve over a finite field of prime characteristic p, there is
a quadratic algebraic number, often denoted as τ , that represents the Frobenius
endomorphism on the curve, namely

τ(x, y) = (xp, yp) .
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Since τ requires only two field exponentiations, its computational cost is very
low in comparison with point doubling.

In his seminal work [13, 14], Solinas developed a τ -and-add method where the
integer n is expanded in basis τ . In this way, in the Horner scheme, point doubling
is replaced by the (faster) Frobenius endomorphism. Solinas applied this idea to
Koblitz curves [8] in characteristic 2. Moreover, Solinas’ integer expansion is a non-
adjacent form (NAF), i.e. in every two consecutive digits there is at least one zero,
which is a desirable property that reduces the number of additions in the Horner
scheme.

Koblitz [9] suggested a NAF τ -and-add algorithm for a family of supersingular
curves in characteristic 3; this method was later improved by Blake, Murty and Xu
[4]. Avanzi, Heuberger and Prodinger [2] exploited the existence of the 6-th roots
of unity in Z[τ ] = {a+ bτ | a, b ∈ Z} to create a sixpartite digit set that decreased
memory consumption by a factor three; Avanzi and Heuberger [1] also provided a
precomputationless factored digit set. A similar study was undertaken by Klein-
rahm [7], examining a curve in characteristic 5 where the 4-th roots of unity belong
to Z[τ ].

In this paper, we study the use of elliptic curves where 4-th and 6-th roots of
unity act on the curve as (computationally cheap) endomorphisms. In particular,

• we study w-NAF integer expansions whose digit sets are invariant under
the action of the roots of unity and therefore reduce the precomputation
effort (Section 3);
• we study the minimal norm representative digit sets and show that these

are w-NADS, i.e. every element of the endomorphism ring admits a finite
w-NAF expansion (Theorem 4.4);
• we study the use of factored digit sets for precomputationless efficient scalar

multiplication (Section 6);
• we explain how to construct such factored digit sets in characteristic p with
p ≡ 7 mod 36 or p ≡ 31 mod 36 or p ≡ 5 mod 8 (Section 9, in particular
Theorem 9.3);
• we provide explicit factored digit sets in characteristics 5, 7, 13, 29, 31, 37,

53, 61 leading to finite recoding (Tables 1 and 2).

The paper is organised as follows. In Section 2 we shall describe two families of
elliptic curves with special endomorphism rings, which will come in handy for our
purpose. In Section 3 we shall discuss w-NAF integer expansions to the base τ ;
a necessary and sufficient condition that guarantees finite recoding of integers will
be provided. In Section 4 minimal norm representative digit sets are introduced.
After giving some examples of suitable elliptic curves (Section 5), in Section 6
we shall study the structure of the unit group of the quotient ring Z[δ]/τwZ[δ],
where Z[δ] is one of the endomorphism rings of Section 2. In Sections 7 and 8
scalar multiplication algorithms will be provided for curves in characteristic 7 and
5 respectively. A deeper analysis for curves in characteristic p ≥ 13 will be carried
out in Section 9.

2. Elliptic curves with special endomorphism ring

Recent work by Avanzi and Heuberger [1], Avanzi, Heuberger and Prodinger
[2], and Kleinrahm [7] point out that for certain elliptic curves over finite fields,



SYMMETRIC DIGIT SETS FOR ELLIPTIC CURVE SCALAR MULTIPLICATION 3

some roots of unity appear in Z[τ ] where τ is the Frobenius endomorphism of the
curve. These roots of unity can be used to create a digit set for a τ -adic expansion
of integers, leading to a very efficient elliptic curve scalar multiplication with re-
duced number of precomputations. In [1, 2] a primitive 6-th root of unity ζ occurs
in Z[τ ] for a supersingular Koblitz curve in characteristic 3; ζ is used to create a
digit set which noticeably speeds up scalar multiplication and decreases memory
requirements at the same time. In [7] a curve in characteristic 5 with i ∈ Z[τ ] is
analysed; the digit set built with the help of i needs no precomputation at all.

Moreover, in [7] a necessary and sufficient condition for either i ∈ Z[τ ] or ζ ∈ Z[τ ]
is given. Recall that the Frobenius endomorphism τ satisfies the characteristic
equation

τ2 − tτ + p = 0

where p is the field characteristic and t = p+1−|E(Fp)| is the trace of the Frobenius
endomorphism. Then τ can be identified with

(1) τ =
t±

√
t2 − 4p

2
.

Proposition 2.1 ([7], c. 4). Let p be a prime number, E an elliptic curve defined
over the finite field Fp, τ the Frobenius endomorphism (x, y) 7→ (xp, yp) of E and t
the trace of τ . Then

• Z[τ ] includes the 4-th roots of unity if and only if t2 − 4p = −4 ;
• Z[τ ] includes the 6-th roots of unity if and only if t2 − 4p = −3 .

Nevertheless, with respect to our goal of creating an effective integer τ -adic ex-
pansion, we shall prove that this condition is not essential: provided that the 4-th
(resp. 6-th) roots of unity belong to the endomorphism ring End (E) of the curve,
but not necessarily to Z[τ ], we can still exploit their action on the points of E, an
operation that will turn out to require negligible time.

Consider the ring of Gaussian integers Z[i] = {a + bi | a, b ∈ Z} and the ring
of Eisenstein integers Z[ω] = {a + bω | a, b ∈ Z} where ω = (−1 +

√
−3)/2 is a

primitive third root of unity. Clearly, the former contains the 4-th roots of unity,
the latter includes the 6-th’s.

Actually, let ζ = −ω = (1 +
√
−3)/2 be a primitive sixth root of unity; then

Z[ω] = Z[ζ]. We prefer to adopt the latter notation Z[ζ] instead of the standard
Z[ω] for the ring of Eisenstein integers, as it will better serve our purpose.

There is a tight relationship between the rings Z[i] and Z[ζ], and certain elliptic
curves in prime characteristic p 6= 2, 3.

The following theorem is a well-known often-mentioned fact, although the au-
thors could not find a self-contained proof in the literature. However, the result
can be derived from [12, III.9.3, III.10.1, V.4.1].

Theorem 2.2. Let p be a prime number such that p ≡ 1 mod 4, and consider the
family of elliptic curves over Fp
(2) E : y2 = x3 +Ax, with A ∈ Fp, A 6= 0 .

Then the endomorphism ring of E is isomorphic to Z[i].
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Let p be a prime number such that p ≡ 1 mod 3, and consider the family of
elliptic curves over Fp

(3) E : y2 = x3 +B, with B ∈ Fp, B 6= 0 .

Then the endomorphism ring of E is isomorphic to Z[ζ].

Henceforth p will always be a prime number such that p ≡ 1 mod 3 or p ≡ 1
mod 4. We shall denote the endomorphism ring as Z[δ], where δ is either i or ζ
depending on whether the elliptic curve belongs to the family (2) or (3).

Furthermore, the endomorphisms defined by the 4-th (resp. 6-th) roots of unity
turn out to be very efficient to compute, as they require one field multiplication
only (cf. for instance [12, III §10]).

More precisely, consider an elliptic curve of family (3). Then the endomorphisms
defined by the primitive 6-th roots of unity ζ and its complex conjugate ζ are given
by

[ζ](x, y) = (u2x,−y) ,

[ζ](x, y) = (ux,−y)

where u ∈ Fp is an element of order 3. We can also determine the endomorphisms
defined by the third primitive roots of unity ω and ω:

[ω](x, y) = [−ζ](x, y) = (ux, y) ,

[ω](x, y) = [−ζ](x, y) = (u2x, y) .

In the case of family (2), the 4-th primitive roots of unity i and −i define the
following endomorphisms:

[i](x, y) = (−x,−vy) ,

[−i](x, y) = (−x, vy)

where v ∈ Fp is an element of order 4.
Recall that, in any Fp, if m ∈ Z is such that m | p − 1 then there are ϕ(m)

elements of order m, where ϕ is Euler’s totient function. In our case there are two
possible values for the coefficient u (idem for v). One can find the right coefficient by
testing each value on some points of E(Fp) or E(Fp2), as the action of the Frobenius
endomorphism is known to be τ(x, y) = (xp, yp) and τ can be represented in terms
of ζ or i, once a branch of the root in (1) is chosen.

3. Integer expansion to the base τ

In order to find a τ -adic expansion for integers, we shall work in the whole
endomorphism ring Z[δ], instead of Z[τ ]. Recall that Z[τ ] ⊆ Z[δ], but equality does
not necessarily hold. We regard an integer n as an element of Z[δ], and the digits
of its τ -adic expansion belong to Z[δ], but not necessarily to Z[τ ]. In other words,
our digit set will be a finite subset D of Z[δ], containing 0 and other convenient
endomorphisms.

This larger digit set recoding is admissible for scalar multiplication. Indeed, let

n be a positive integer and suppose n =
∑l−1
j=0 κjτ

j is a τ -adic recoding with digit
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set D ⊆ Z[δ]. Let P be a point of the elliptic curve E; computation of nP can be
done with a so-called Horner scheme:

nP =

l−1∑
j=0

κjτ
j(P )

= τ(. . . (τ(τ(κl−1P ) + κl−2P ) + · · ·+ κ1P ) + κ0P .

For 0 ≤ j ≤ l − 1, κj is an endomorphism that is not necessarily a scalar mul-
tiplication. Of course, κj applies to the point P ∈ E, and κjP is still a point of
E. It may also be convenient to precompute κP for all κ ∈ D and store these values.

We state some useful definitions about digit sets to the basis τ (cf. [3, §2]).

Definition 3.1. Let w ∈ N, w ≥ 1 and η ∈ Z[δ]. A τ -adic recoding η =
∑l−1
j=0 κjτ

j

is called width-w Non-Adjacent Form (w-NAF ) if every block of w consecutive
digits has at most one nonzero digit, i.e. for all j = 0, . . . , l − 2

κj 6= 0 ⇒ κj+1 = · · · = κj+w−1 = 0 .

Definition 3.2. Let w ∈ N, w ≥ 1. A digit set Dw ⊆ Z[δ] for w-NAF τ -adic
recoding consisting of 0 and exactly one representative of each residue class modulo
τw not divisible by τ in Z[δ] is called reduced residue system modulo τw.

Definition 3.3. A digit set Dw ⊆ Z[δ] for τ -adic recoding is called width-w Non-
Adjacent Digit Set (w-NADS) if every element η ∈ Z[δ] has a finite recoding

η =

l−1∑
j=0

κjτ
j

with κj ∈ D and this recoding is w-NAF.

Algorithm 1 (cf. [3, Alg. 1]) shows how to construct a w-NAF τ -adic recoding.

Algorithm 1 w-NAF τ -adic recoding of integers

Input: n, w ∈ N, digit set Dw, basis τ

Output: n =
∑l−1
j=0 djτ

j with dj ∈ Dw and with w-NAF property, if such recoding
exists; otherwise, the algorithm will enter an infinite loop.

1: z := n
2: l := 0
3: while z 6= 0 do
4: if z ≡ 0 mod τ then
5: dl := 0
6: else
7: let dl ∈ Dw s.t. dl ≡ z mod τw . guarantees w − 1 zeros
8: end if
9: z := z−dl

τ
10: l := l + 1
11: end while
12: return (〈dl−1, . . . , d0〉, l)
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The next theorem provides a necessary and sufficient condition for a digit set to
be w-NADS. It is based on [3, Thm 1] and [10].

Before stating the theorem, we recall that Z[i] and Z[ζ] are Euclidean domains
with their respective norms

N (a+ bi) = a2 + b2 = |a+ bi|2 ,

N (a+ bζ) = a2 + ab+ b2 = |a+ bζ|2 ,

where | · | denotes the usual absolute value of a complex number. Also, N (τ) = p,
the base field characteristic.

Theorem 3.1. Let Dw be a reduced residue system for w-NAF recoding to the basis
τ , with w ∈ N, w ≥ 1. Let dmax = max {N (d) | d ∈ Dw}. Then Dw is a w-NADS
if and only if for all z ∈ Z[δ] such that

(4) N (z) ≤ dmax

(|τw| − 1)
2 ,

z has a finite Dw-τ -adic expansion.

Proof. ⇒) obvious.

⇐) Consider Algorithm 1. The crucial step is how the algorithm chooses the
least significant digit of the input z.

If z is divisible by τ , then the least significant digit is 0 and the remaining digits
are those of z/τ , which has smaller norm than z.

Otherwise, a digit d ∈ Dw is chosen in such a way that d ≡ z mod τw. Then
the w least significant digits of z are 00 . . . 0d (w − 1 zeros); the remaining digits
are those of z−d

τw . As long as

(5) N

(
z − d
τw

)
< N (z) ,

the norms N (z) yield a strictly decreasing sequence of non-negative integers, that
must be finite. Thus Algorithm 1 must terminate or (5) must be violated.

Note that
|z − d|
|τw|

≤ |z|+ |d|
|τw|

≤ |z|+
√
dmax

|τw|
.

Then the inequality (5) is true if

|z|+
√
dmax

|τw|
< |z| ,

or equivalently,

|z| >
√
dmax

|τw| − 1
.

Therefore, as long as

N (z) >
dmax

(|τw| − 1)
2 ,

(5) is true. All other z admit a finite expansion by assumption, so Algorithm 1
cannot enter an infinite loop. Hence Dw is a w-NADS. �
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In other words, for all those elements z ∈ Z[δ] such that (4) does hold, we have
to check whether they have a finite recoding or not. In fact, these are the only
values of z whereby Algorithm 1 may enter an infinite loop.

4. Minimal Norm Representatives

In order to guarantee that a finite w-NAF τ -adic recoding exists for every integer,
one option is to choose Dw as a Minimal Norm Representative (MNR) digit set, i.e.
Dw consists of 0 and exactly one representative of minimal norm of each residue
class modulo τw not divisible by τ .

Definition 4.1. Let α ∈ Z[δ] be not divisible by τ . Then α is a representative of
minimal norm of its residue class modulo τw if

N (α) ≤ N (β) for all β ∈ Z[δ] s.t. β ≡ α mod τw .

Note that a representative of minimal norm needs not to be unique. Clearly,

N (α) ≤ N (β) ⇔ |α| ≤ |β| .

Lemma 4.1. Suppose |τ | > 2, let u, v ∈ Z[δ] be two distinct units. Then u 6≡ v
mod τw for all w ≥ 1.

Proof. Since u and v are units, |u| = |v| = 1. If u ≡ v mod τw for some w ≥ 1,

then u ≡ v mod τ . Thus τ | u − v, and therefore N (τ) | N (u− v) = |u− v|2 ≤
(|u|+ |v|)2 = 4, but N (τ) = |τ |2 > 4. �

In other words, when |τ | > 2 (or equivalently p > 4), all elements of Z[δ] having
norm equal to 1 belong to different residue classes modulo τw, for all w ≥ 1.

Note that Lemma 4.1 does not hold for Koblitz curves in characteristic 3 [9]; in
that case the units of Z[ζ] are not distinct in the quotient ring.

It is clear that if u ∈ Z[δ] has norm 1, then u is a representative of minimal
norm of its residue class. Lemma 4.1 also implies that, if |τ | > 2, then u is the only
element of norm 1 in its residue class. Therefore we have the following

Corollary 4.2. Suppose |τ | > 2 and u ∈ Z[δ] is a unit. If D ⊆ Z[δ] is an MNR
digit set, then u ∈ D.

Lemma 4.3. Let p = N (τ) = |τ |2 and suppose p = 5 or p = 7, and w = 1. If D1

is an MNR digit set for 1-τ -adic recoding, then

for p = 5 , D1 = {0,±1,±i} ;

for p = 7 , D1 = {0,±1,±ζ,±ζ2} .

Proof. Let p = 5 (the other case is analogous). Since D1 is an MNR digit set, by
Corollary 4.2 D1 must contain, along with 0, all the units of Z[δ] = Z[i], i.e. 0, ±1,
±i ∈ D1.

In addition, D1 is a reduced residue system modulo τ . The number of residue
classes modulo τ not divisible by τ is precisely ϕ(N (τ)) = ϕ(5) = 4. Therefore
D1 = {0,±1,±i}. �

Theorem 4.4. Suppose |τ | > 2, let w ∈ N, w ≥ 1. Let Dw be an MNR reduced
residue system modulo τw. Then Dw is a w-NADS.
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Proof. We apply Theorem 3.1. Let z ∈ Z[δ] be such that (4) does not hold, namely

(6) N (z) ≤ dmax

(|τw| − 1)
2 .

Since Z[δ] is a Euclidean domain with the norm N, for any z ∈ Z[δ] there exist
q, r ∈ Z[δ] such that z = qτw + r and N (r) < N (τw). So the residue class of z mod
τw can be represented by r. Due to the MNR condition on Dw, the digit d ≡ z
mod τw must be such that N (d) ≤ N (r) < N (τw) = pw.

Therefore dmax < pw. In addition, if w ≥ 2, or w = 1 and p > 7, then

(7) N (z) <
pw

(
√
pw − 1)

2 < 2 ,

which yields N (z) ≤ 1, as N (z) is an integer. Thus either z = 0 or z is a unit; in
the latter case, since Dw is an MNR digit set, z ∈ Dw by Corollary 4.2.

Finally, if p = 5 or p = 7, and w = 1, then (7) does not hold, but in both cases
dmax = 1 (cf. Lemma 4.3). So from (6) we have that z = 0 ∈ Dw. �

5. Some curves in small characteristic

We give some examples of elliptic curves belonging to the families (2) and (3) in
characteristic p = 5, 7, 13.

Example 5.1. Let p = 5 ≡ 1 mod 4
Let E : y2 = x3 +Ax, A 6= 0; then End(E) ∼= Z[i].

A t τ
1 2 1± 2i Z[τ ] ( Z[i]
2 4 2± i Z[τ ] = Z[i]
3 −4 −2± i Z[τ ] = Z[i]
4 −2 −1± 2i Z[τ ] ( Z[i]

Example 5.2. Let p = 7 ≡ 1 mod 3
Let E : y2 = x3 +B, B 6= 0; then End(E) ∼= Z[ζ].

B t τ τ = a+ bζ

1 −4 −2±
√
−3 −3 + 2ζ, −1− 2ζ Z[τ ] ( Z[ζ]

2 −1 − 1
2 ±

3
√
−3
2 −2 + 3ζ, 1− 3ζ Z[τ ] ( Z[ζ]

3 −5 − 5
2 ±

√
−3
2 −3 + ζ, −2− ζ Z[τ ] = Z[ζ]

4 5 5
2 ±

√
−3
2 2 + ζ, 3− ζ Z[τ ] = Z[ζ]

5 1 1
2 ±

3
√
−3
2 −1 + 3ζ, 2− 3ζ Z[τ ] ( Z[ζ]

6 4 2±
√
−3 1 + 2ζ, 3− 2ζ Z[τ ] ( Z[ζ]

Example 5.3. Let p = 13 ≡ 1 mod 4 and mod 3.
Let E : y2 = x3 +Ax, A 6= 0. The trace t can be equal to ±4 or ±6, and in each

case the Frobenius endomorphism is one of the roots τ(4) = 2± 3i, τ(−4) = −2± 3i,
τ(6) = 3± 2i, and τ(−6) = −3± 2i. For all these curves Z[τ ] ( Z[i].

Now let E : y2 = x3+B, B 6= 0. For these curves the trace t can be ±2, ±5 or ±7,

and Z[τ ] = Z[ζ] if and only if t = ±7. For example, with τ(5) = 5
2 ±

3
√
−3
2 = 1 + 3ζ,
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Z[τ ] = Z[3ζ] ( Z[ζ].

As we can see from the examples above, in each family of curves all values of
τ are associated up to complex conjugation. The next theorem follows from the
results in [6, c. 18 Thm 4, Thm 5].

Theorem 5.1. Let p ≥ 5 be a prime integer. Consider the family (2) (resp. (3))
of elliptic curves over Fp, whose endomorphism ring is isomorphic to Z[i] (resp.
Z[ζ]).

Then in Z[i] (resp. Z[ζ]) there are exactly 4 (resp. 6) different complex numbers
representing the Frobenius endomorphism of precisely p−1

4 (resp. p−1
6 ) curves of

the family (2) (resp. (3)).
Furthermore, if τ1 and τ2 represent the Frobenius endomorphisms for some el-

liptic curves of type (2) (or type (3)), then either τ1 is associated to τ2, or τ1 is
associated to τ2.

6. The unit group of Z[δ]/τwZ[δ]

The unit group (Z[δ]/τwZ[δ])∗ of the quotient ring Z[δ]/τwZ[δ] consists of all
residue classes modulo τw that are not divisible by τ in Z[δ]. Therefore we can
obtain a reduced residue system modulo τw by choosing, along with 0, one repre-
sentative of each residue class modulo τw not divisible by τ . This reduced residue
system modulo τw can serve as a digit set for a w-NAF τ -adic recoding of integers.

In this section we shall study the structure of (Z[δ]/τwZ[δ])∗.

First of all, we notice that for fixed p, due to Theorem 5.1, the values of the
Frobenius endomorphism of different curves in the same family give rise to the
same (up to isomorphism) quotient ring Z[δ]/τwZ[δ], for any w ≥ 1.

In general, if α and β are associated in Z[δ], then αZ[δ] = βZ[δ] and therefore

Z[δ]/αZ[δ] = Z[δ]/βZ[δ] .

This applies precisely to our case, where τ represents one of the two complex
solutions of the characteristic equation τ2 − tτ + p = 0. It makes no difference
which root we choose as basis for integer expansion. Thus we can select τ ’s in such
a way that they are all associated to one another. In this way, the quotient ring
Z[δ]/τwZ[δ], and thus the resulting digit set, is the same (up to isomorphism) for
all curves in the same family (2) or (3) and the same characteristic.

Furthermore, since N (τ) = p is a prime integer, τ is prime in Z[δ], i.e. if τ | cd
then τ | c or τ | d for all c, d ∈ Z[δ].

Lemma 6.1. Let n ∈ Z. Then τ | n in Z[δ] if and only if p | n in Z.

Proof. Since ττ = p, we have that τ | p in Z[δ]. Therefore, if p | n in Z, then τ | n
in Z[δ].

Conversely, suppose τ | α with α ∈ Z[δ]. Then α = τβ for some β ∈ Z[δ]. Thus
N (α) = N (τ) ·N (β), and therefore N (τ) | N (α) in Z. In particular, suppose n ∈ Z
and τ | n in Z[δ]. Then p = N (τ) | N (n) = n2. Hence p | n in Z. �

Lemma 6.2. We have τ - τ in Z[δ].
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Proof. Let τ = a + bδ for some a, b ∈ Z. First, we notice that b 6≡ 0 mod p. In
fact, suppose b = pk for some k ∈ Z. Then

0 ≡ τ = a+ pkδ ≡ a mod τ .

Since a ∈ Z, a ≡ 0 mod p, say a = ph for some h ∈ Z. Thus we have a
contradiction:

p = N (τ) = N (ph+ pkδ) = N (p) N (h+ kδ) ≥ p2 .

Now consider τ = a+ bδ. Then

τ = τ − bδ + bδ ≡ 0 mod τ ⇔
−bδ + bδ = b(δ − δ) ≡ 0 mod τ .

But b 6≡ 0 mod p, and then b 6≡ 0 mod τ by Lemma 6.1. Also, δ 6≡ δ mod τ
by Lemma 4.1. Since τ is prime, b(δ − δ) 6≡ 0 mod τ . Hence τ - τ . �

Lemma 6.3. Let n ∈ Z. For any w ∈ N,

pw | n in Z ⇔ τw | n in Z[δ] .

Proof. Since pw = τwτw, we have τw | pw in Z[δ]. Suppose n ∈ Z and pw | n. Then
τw | n in Z[δ].

Conversely, we proceed by induction on w.

w = 1: already proved in Lemma 6.1.

Suppose that τw | n ⇒ pw | n for some w > 1.
If τw+1 | n, then τw | n, and therefore pw | n in Z by induction hypothesis. If w

is not the maximal power of p that divides n, then clearly pw+1 | n. Suppose w is
the maximal power of p that divides n. Since τw+1 | n and τw+1 | pw+1, it follows
that

τw+1 | gcd (n, pw+1) = pw = τwτw .

Then it must be τ | τ , but this is impossible by Lemma 6.2.
�

Lemma 6.3 yields an injective ring homomorphism

Z/pwZ ↪→ Z[δ]/τwZ[δ] .

These rings have the same cardinality, because the number of residue classes
modulo τw in Z[δ] is N (τw) = pw. Hence we obtain a ring isomorphism

Z[δ]/τwZ[δ] ∼= Z/pwZ ,

and then an isomorphism of unit groups

(8) (Z[δ]/τwZ[δ])∗ ∼= (Z/pwZ)∗

for any w ∈ N, w ≥ 1.
The unit group is cyclic and has order ϕ(pw) = (p− 1)pw−1, where ϕ is Euler’s

totient function. Note that for w = 1, Z[δ]/τZ[δ] ∼= Z/pZ is a field with p elements.

Consider p = 7. The unit group (Z[ζ]/τwZ[ζ])∗ has order 6 · 7w−1 and we can
split it into the direct product of a cyclic subgroup of order 6 and a cyclic subgroup
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of order 7w−1. We want to find a generator for each subgroup. Actually, we already
know an element of order 6: one of the two primitive 6-th roots of unity ζ or ζ.

Similarly, let p = 5. The unit group (Z[i]/τwZ[i])∗ has order 4 · 5w−1. Again, we
want to split it into the direct product of a cyclic subgroup of order 4, namely 〈i〉,
and a cyclic subgroup of order 5w−1.

In both cases it is possible to obtain a direct product because the orders of the
subgroups are coprime. Our next goal is finding an element of order pw−1. We
shall prove that τ + 1 is a canonical choice suitable for every p and every w.

Proposition 6.4. For any integer w ≥ 1, τ + 1 is an element of order pw−1 in
(Z[δ]/τwZ[δ])∗.

The proof of this proposition follows the idea of the proof that p + 1 has order
pw−1 modulo pw, for any w ≥ 1 (cf. [6, c. 4 Cor. 2] for instance).

Proof. By induction on w.
For w = 1, clearly τ + 1 ≡ 1 mod τ and has order 1.

Suppose that for some w ≥ 1

(τ + 1)
pw−1

= 1 + a(w)τw

for some a(w) ∈ Z[δ] such that τ - a(w).
Then

(τ + 1)
pw

= (1 + a(w)τw)
p

= 1 + pa(w)τw +

(
p

2

)
a(w)

2
τ2w + · · ·+ a(w)

p
τpw

= 1 + pa(w)τw + ph2a(w)
2
τ2w + · · ·+ a(w)

p
τpw

= 1 + τa(w)τw+1 + τh2a(w)
2
τ2w+1 + · · ·+ a(w)

p
τpw

= 1 + τw+1
(
a(w)τ + h2a(w)

2
ττw + · · ·+ a(w)

p
τ (p−1)w−1

)
.

Here h2 = p−1
2 is such that p · h2 =

(
p
2

)
.

Let a(w + 1) = a(w)τ + h2a(w)
2
ττw + . . . . Then

(τ + 1)
pw

= 1 + a(w + 1)τw+1 ≡ 1 mod τw+1

and
a(w + 1) ≡ a(w)τ mod τ .

But τ - a(w) and τ - τ (cf. Lemma 6.2). Since τ is prime in Z[δ], we conclude
that τ - a(w + 1).

This proves that the order of τ + 1 mod τw+1 is pb with b ≤ w, that implies

1 ≡ (τ + 1)
pb

mod τw+1 .

Suppose b < w. Then

1 ≡
(

(τ + 1)
pb
)pw−1−b

mod τw+1

= (τ + 1)
pw−1

≡ 1 + a(w)τw mod τw+1 .
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Then a(w)τw ≡ 0 mod τw+1, but τ - a(w), so we have a contradiction. �

Remark. As an elliptic curve endomorphism, τ + 1 is quite efficient to compute,
as it requires only one elliptic curve addition, along with one application of the
Frobenius endomorphism, which takes negligible time.

Hence, we have just obtained the following

Theorem 6.5. For any integer w ≥ 1

(Z[i]/τwZ[i])∗ = 〈i〉 × 〈τ + 1〉 for p = 5 ,

(Z[ζ]/τwZ[ζ])∗ = 〈ζ〉 × 〈τ + 1〉 for p = 7 .

For w = 1, the subgroup 〈τ + 1〉 is trivial.

With the help of this theorem, we will now proceed with the construction of a
digit set for a w-NAF τ -adic integer recoding in characteristic 7 and 5 (actually,
they work quite similarly). In both cases we will also give an algorithm for elliptic
curve scalar multiplication.

7. Characteristic p = 7

Let p = 7 and let us begin with a τ -adic expansion of window size w = 1.
In order to build a digit set D1, in addition to 0, we have to choose a represen-

tative for each nonzero residue class mod τ , i.e. elements of the unit group

(Z[ζ]/τZ[ζ])∗ = {±1,±ζ,±ζ2} = 〈ζ〉 ,
or equivalently (Z[ζ]/τZ[ζ])∗ = {±1,±ω,±ω2}. Hence the digit set will be

D1 = {0,±1,±ζ,±ζ2} .
One advantage of using roots of unity as digits is that they all have norm equal

to 1, and they are the only elements of Z[ζ] with such a property. Hence, the 6-th
roots of unity provide (unique) representatives of minimal norm for each nonzero
residue class modulo τ . This implies that D1 is a (unique) MNR (Minimal Norm
Representative) digit set, and thus it yields a finite τ -adic recoding for every inte-
ger, or equivalently D1 is a 1-NADS (cf. Theorem 4.4).

Another advantage of D1 is that, as elliptic curve endomorphisms, the 6-th roots
of unity are very efficient to compute, as each of them requires one field multipli-
cation only (see Section 2).

Now we wish to construct a w-NAF integer recoding for any window size w ≥ 1.
By Theorem 6.5, we know that

(Z[ζ]/τwZ[ζ])∗ = 〈ζ〉 × 〈τ + 1〉
where τ + 1 has order 7w−1.

Then the digit set will be

Dw = {0} ∪ { ζr(τ + 1)s | 0 ≤ r < 6, 0 ≤ s ≤ 7w−1 − 1 } .
It follows that if an element η ∈ Z[ζ] has a finite Dw-τ -adic recoding, then η can

be written as

η =

l−1∑
j=0

εj(τ + 1)sjτ j
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where εj = 0 or εj = ζr for 0 ≤ r < 6 and 0 ≤ sj ≤ 7w−1 − 1 .

However, for w > 1 we cannot ensure that every element in Z[ζ] has a finite τ -
adic recoding. In other words, we do not know whether Dw is w-NADS or not. To
overcome this problem, in [3, §3.2.1] the authors suggest to step down the window
size w in Algorithm 1 for the rest of the computation, whenever the following holds:

|z| ≤ |z|+ |dl|
|τw|

,

or equivalently,

(9) |dl| ≥ |z| (|τw| − 1) .

In order to apply this workaround, Dw must fulfil the following requirements:
for some 1 ≤ k < w

• there exists a sequence of reduced residue systems Dk ⊆ Dk+1 ⊆ · · · ⊆ Dw
modulo τk, τk+1, . . . , τw respectively;
• Dk is a k-NADS.

It is clear that in our case Dv ⊆ Dv+1 for all v = 1, . . . , w − 1. Moreover,
D1 = {0,±1,±ζ,±ζ2} is a 1-NADS.

Algorithm 2 is a modified version of Algorithm 1 where a control step has been
added (cf. [3, §3.2.1, Alg.6] with small adjustments): if (9) holds, the algorithm
reduces the window size w and tries again until (9) is false, or v = k; at this point
we use the fact that Dk is a k-NADS.

Algorithm 2 Windowed τ -adic recoding with guaranteed termination

Input: n, w ∈ N, basis τ , reduced residue systems Dk ⊆ Dk+1 ⊆ · · · ⊆ Dw
modulo τk, τk+1, . . . , τw respectively s.t. Dk is a k-NADS for some 1 ≤ k < w.

Output: n =
∑l−1
j=0 djτ

j

1: z := n
2: l := 0
3: v := w
4: while z 6= 0 do
5: if z ≡ 0 mod τ then
6: dl := 0
7: else
8: let dl ∈ Dv s.t. dl ≡ z mod τv

9: if |dl| ≥ |z|(|τv| − 1) and v > k then
10: v := v − 1
11: go to step 8
12: end if
13: end if
14: z := z−dl

τ
15: l := l + 1
16: end while
17: return (〈dl−1, . . . , d0〉, l)



14 C. HEUBERGER AND M. MAZZOLI

Now we are ready to implement an efficient algorithm for scalar multiplication.
Let E : y2 = x3 + B, B 6= 0, be an elliptic curve over F7. We can regard E as a
curve over F7m for any m ≥ 1. Let n be an integer, P ∈ E(F7m); suppose n has
the following w-NAF τ -adic recoding:

n =

l−1∑
j=0

εj(τ + 1)sjτ j .

Algorithm 3 shows how to compute nP ; it is a variant of [7, Alg. 4], with small
modifications. It consists of two nested Horner schemes: the outer one loops on the
exponent of τ + 1, whilst the inner one loops on the exponent of τ . For window
size w = 1, the outer loop vanishes. It is worth noting that this algorithm requires
no precomputation at all.

Algorithm 3 Scalar multiplication (p = 7)

Input: curve E, point P = (x, y), scalar n =
∑l−1
j=0 εj(τ + 1)sjτ j

Output: nP
1: R := O
2: for j = 7w−1 − 1 down to 0 do
3: R := (τ + 1)R
4: S := O
5: for k = l − 1 down to 0 do
6: S := τS
7: if εk 6= 0 and sk = j then . εk = ζr with 0 ≤ r ≤ 5
8: switch r
9: case 0: S := S + (x, y)

10: case 1: S := S + (u2x,−y)
11: case 2: S := S + (v2x, y)
12: case 3: S := S + (x,−y)
13: case 4: S := S + (u2x, y)
14: case 5: S := S + (v2x,−y)
15: end if
16: end for
17: R := R+ S
18: end for
19: return R

Example 7.1. Let E be an elliptic curve in characteristic 7 defined over F7m and
given by the equation

E : y2 = x3 − 1 ,

whose endomorphism ring is isomorphic to Z[ζ]. The Frobenius endomorphism of E

τ : (x, y) 7→
(
x7, y7

)
has trace t = 4 and satisfies the characteristic equation τ2− 4τ + 7 = 0 . Therefore

τ = 2 +
√
−3 = 1 + 2ζ .
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The actions on E of the 6-th roots of unity are

[ζ] : (x, y) 7→ (4x,−y) [ζ] : (x, y) 7→ (2x,−y)

[ω] : (x, y) 7→ (2x, y) [ω] : (x, y) 7→ (4x, y) .

By Theorem 6.5 we have that for any w ≥ 1

(Z[ζ]/τwZ[ζ])∗ = 〈ζ〉 × 〈τ + 1〉 .

For instance,

D1 = {0,±1,±ζ,±ζ2}
D2 = {0, ±1, ±ζ, ±ζ2, ±(τ + 1), ±ζ(τ + 1), ±ζ2(τ + 1), . . .

. . . , ±(τ + 1)6, ±ζ(τ + 1)6, ±ζ2(τ + 1)6} .

As an example, consider n = 10. A base-τ expansion of n with digit set D1 is

10 = ζ + ζ2τ + ζ2τ2 + ζ4τ3 ,

whilst a 2-NAF τ -adic recoding of n with digit set D2 is

10 = ζ(τ + 1)
3 − τ2 − τ4 .

8. Characteristic p = 5

Let p = 5. The discussion is analogous to the case p = 7.
By Theorem 6.5, for any w ≥ 1

(Z[i]/τwZ[i])∗ = 〈i〉 × 〈τ + 1〉

where τ + 1 has order 5w−1.
In particular, for window size w = 1, (Z[i]/τZ[i])∗ = 〈i〉.
Therefore the digit set will be

Dw = {0} ∪ { ir(τ + 1)s | 0 ≤ r < 4, 0 ≤ s ≤ 5w−1 − 1 } .

It follows that if an element η ∈ Z[i] admits a finite Dw-τ -adic recoding, then η
can be written as

η =

l−1∑
j=0

εj(τ + 1)sjτ j

where εj = 0 or εj = ir for 0 ≤ r < 4, and 0 ≤ sj ≤ 5w−1 − 1 .
We cannot guarantee that every element in Z[i] has a finite w-NAF τ -adic recod-

ing, i.e. we do not know if Dw is a w-NADS. However, Dw satisfies the requirements
of Algorithm 2, hence we can step down the window size whenever it is necessary;
eventually D1 = {0,±1,±i} is a 1-NADS.

Finally, let us turn to scalar multiplication. Let E : y2 = x3 +Ax, A 6= 0, be an
elliptic curve over F5. We can regard E as a curve over F5m for any m ≥ 1.

Algorithm 4 describes how to compute nP for any point P ∈ E(F5m) and any

integer n with w-NAF τ -adic recoding: n =
∑l−1
j=0 εj(τ + 1)sjτ j .

Basically, this algorithm works as Algorithm 3 and as [7, Alg. 4] with minor
adjustments; no precomputation is required.
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Algorithm 4 Scalar multiplication (p = 5)

Input: curve E, point P = (x, y), scalar n =
∑l−1
j=0 εj(τ + 1)sjτ j

Output: nP
1: R := O
2: for j = 5w−1 − 1 down to 0 do
3: R := (τ + 1)R
4: S := O
5: for k = l − 1 down to 0 do
6: S := τS
7: if εk 6= 0 and sk = j then . εk = ir with 0 ≤ r ≤ 3
8: switch r
9: case 0: S := S + (x, y)

10: case 1: S := S + (−x, uy)
11: case 2: S := S + (x,−y)
12: case 3: S := S + (−x,−uy)
13: end if
14: end for
15: R := R+ S
16: end for
17: return R

9. Characteristic p ≥ 13

Now we consider prime numbers larger than 7, thus we will work in characteristic
p ≥ 13 (note that 11 6≡ 1 mod 3 and 11 6≡ 1 mod 4).

As before, we wish to split the unit group (Z[δ]/τwZ[δ])∗ into a direct product
of some convenient cyclic subgroups, whose orders must be coprime.

Recall that the order of the unit group is (p− 1)pw−1. It is clear that p− 1 and
pw−1 are coprime, so we can always split the unit group into the direct product of
a subgroup of order p− 1 and a subgroup of order pw−1. We have already proven
that the latter is 〈τ + 1〉 (cf. Proposition 6.4).

Furthermore, if p ≡ 1 mod 3 (resp. p ≡ 1 mod 4), then p − 1 = 6 · k (resp.
p − 1 = 4 · k) for some k ∈ N, k ≥ 1. This means that the subgroup of order
p− 1 contains a subgroup of order 6 (resp. 4) generated by ζ (resp. i). For p = 5
and p = 7 the description of the unit group is complete at this point (i.e. k = 1).
Instead, for larger primes, we also have a non-trivial subgroup of order k > 1.

Let us begin with p ≡ 1 mod 3.
Thus p − 1 = 6 · k for some k ∈ N, k > 1. We wish to keep the subgroup 〈ζ〉

of order 6, so that we do not lose the computational advantage of the 6-th roots of
unity. Therefore we shall restrict ourselves to those primes such that k is coprime
to 6. This means

p 6≡ 1 mod 4 and p 6≡ 1 mod 9 ,

which yields

(10) p ≡ 31 mod 36 or p ≡ 7 mod 36 .

Some prime numbers congruent to 31 modulo 36 are: 31, 67, 103, 139, 211.
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Whereas some primes congruent to 7 modulo 36 are: 7, 43, 79, 151, 223.

Now consider p ≡ 1 mod 4. Then p − 1 = 4 · k for some k ∈ N, k > 1. As
before, we shall restrict ourselves to those primes such that k is coprime to 4. In
other words

p 6≡ 1 mod 8 ,

that leads to

(11) p ≡ 5 mod 8 .

Some prime numbers of this form are: 5, 13, 29, 37, 53, 61.

For the sake of simplicity, let d = 4 when δ = i, or d = 6 when δ = ζ. Therefore
k = (p− 1)/d.

Let w ∈ N, w ≥ 1. Suppose that, for p as in (10) or (11), we have found an
element σw ∈ Z[δ] of order k modulo τw. Hence

(Z[δ]/τwZ[δ])∗ = 〈δ〉 × 〈σw〉 × 〈τ + 1〉 .
In general, we may not find a canonical choice for σw, as we did with τ + 1. In

fact, fixed p, an element of order k modulo τw in general has not order k modulo
τw+1. Therefore σw depends on both the characteristic p and the window size w.

The problem with the corresponding digit set

Dw = {0} ∪ { δrσws(τ + 1)t | 0 ≤ r < d, 0 ≤ s < k, 0 ≤ t < pw−1 }
is that the requirements of Algorithm 2 are generally not satisfied:

(1) in general 〈σv〉 6⊆ 〈σv+1〉, thus Dv 6⊆ Dv+1 ;
(2) we cannot tell a priori if D1 is a 1-NADS.

The second problem can be dealt with by means of Theorem 3.1 on a case-by-case
basis; cf. Tables 1 and 2 at the end of this section.

Concerning the first problem, we can solve it by providing a different factorisation
of the unit group. The next proposition is a general case of [5, Lemma 1.4.5]; we
partially follow the original proof.

Proposition 9.1. Let p be an odd prime number, let m 6= 1 be an element of order
d modulo p. Then m has order d · pa−1 modulo pa for all a ≥ 1, unless md ≡ 1
mod p2; in this case m+ p has order d · pa−1 modulo pa for all a ≥ 1.

Proof. Suppose md 6≡ 1 mod p2. We have to prove the following:

(1) mdpa−1 ≡ 1 mod pa for all a ≥ 1 ;

(2) let l be a prime such that l | d ; then m
d
l p

a−1 6≡ 1 mod pa for all a ≥ 1 ;

(3) mdpa−2 6≡ 1 mod pa for all a ≥ 2 .

(1) By induction on a.
For a = 1, obviously md ≡ 1 mod p.

Suppose mdpa−2 ≡ 1 mod pa−1 for some a ≥ 2, that is mdpa−2

= 1 + cpa−1 for
some c ∈ Z. Then

mdpa−1

= (1 + cpa−1)
p

= 1 + cpa +

(
p

2

)
c2p2(a−1) + · · · ≡ 1 mod pa .

(2) Let g be a primitive root mod p. Then

m ≡ g
p−1
d h mod p
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for some 1 ≤ h ≤ d such that gcd (h, d) = 1. Thus

m
d
l p

a−1

≡ g(p−1)h
l p

a−1

≡ g(p−1)h
l 6≡ 1 mod p

because h/l is not an integer. In fact, if l | h, since l | d, then l | gcd (h, d) = 1.

Therefore m
d
l p

a−1 6≡ 1 mod pa for all a ≥ 1.

(3) By induction on a.
If a = 2, we already know that md 6≡ 1 mod p2.

Suppose mdpa−3 6≡ 1 mod pa−1 for some a ≥ 2. It is easy to see that if p is an
odd prime and xp ≡ 1 mod pa, then x ≡ 1 mod pb for all b < a. In our case, if

mdpa−2 ≡ 1 mod pa for some a ≥ 2, then mdpa−3 ≡ 1 mod pb for all b < a, which
contradicts the induction hypothesis.

Lastly, suppose md ≡ 1 mod p2. Then

(m+ p)
d

= md + dmd−1p+

(
d

2

)
md−2p2 + . . .

≡ 1 + dmd−1p 6≡ 1 mod p2

since p - m and p - d (because d < p). It is immediate to see that (1)-(2)-(3) hold
for m+ p in place of m.

�

As a consequence of Proposition 9.1 and the group isomorphism (8) we have

Corollary 9.2. Let σ ∈ Z[δ] be an element of order k modulo τ .
If σk 6≡ 1 mod τ2, then σ is an element of order k · pw−1 modulo τw for all

w ≥ 1. Otherwise, if σk ≡ 1 mod τ2, then σ + τ is an element of order k · pw−1
modulo τw for all w ≥ 1.

Therefore we have obtained the following

Theorem 9.3. Let w ∈ N, w ≥ 1. Let σ ∈ Z[δ] be an element of order k modulo τ .
If σk 6≡ 1 mod τ2, then

(12) (Z[δ]/τwZ[δ])∗ = 〈δ〉 × 〈σ〉 .
In this case σ has order k · pw−1 modulo τw.

Otherwise σ + τ has order k · pw−1 modulo τw, and then

(13) (Z[δ]/τwZ[δ])∗ = 〈δ〉 × 〈σ + τ〉 .

It is worth noting that the generator σ (or σ+τ) does not depend on the window
size w. In the case (12), for any w ≥ 1 the digit set is

Dw = {0} ∪ { δrσs | 0 ≤ r < d, 0 ≤ s ≤ kpw−1 − 1 } .
If η ∈ Z[δ] admits a finite Dw-τ -adic recoding, then η can be written as

η =

l−1∑
j=0

εjσ
sjτ j

where εj = 0 or εj = δr for 0 ≤ r < d, and 0 ≤ sj ≤ kpw−1 − 1.
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Whereas, in the case (13), we simply replace σ by σ+ τ . In both cases it is clear
that Dv ⊆ Dv+1 for all v ≥ 1.

Algorithm 5 shows how to compute nP when p satisfies (11), in particular p ≡ 1
mod 4, so that the 4-th roots of unity act as elliptic curve endomorphisms. It works
basically like Algorithm 4; here σ is applied instead of τ + 1. When p satisfies (10),
it suffices to change the switch routine with the one in Algorithm 3. Finally, if σ
has not the desired order modulo τ2, then we take σ + τ in place of σ (we still call
it σ in the algorithm).

Algorithm 5 Scalar multiplication (p ≥ 13)

Input: curve E, point P = (x, y), scalar n =
∑l−1
j=0 εjσ

sjτ j

Output: nP
1: R := O
2: for j = kpw−1 − 1 down to 0 do
3: R := σR
4: S := O
5: for h = l − 1 down to 0 do
6: S := τS
7: if εh 6= 0 and sh = j then . εh = ir with 0 ≤ r ≤ 3
8: switch r
9: case 0: S := S + (x, y)

10: case 1: S := S + (−x, uy)
11: case 2: S := S + (x,−y)
12: case 3: S := S + (−x,−uy)
13: end if
14: end for
15: R := R+ S
16: end for
17: return R

We still have to see whether D1 is a 1-NADS or not.

Example 9.1. In characteristic p = 13 we obtain again an MNR digit set for
window size w = 1.

Recall that the unit group of Z[i]/τZ[i] has order 12 and splits as

(Z[i]/τZ[i])∗ = 〈i〉 × 〈σ〉
where σ has order 3 modulo τ . A generator of the second subgroup is either 1 + i
(for τ = −3 + 2i and associates) or 1 − i (for τ and associates). For instance, let
τ = −3 + 2i and σ = 1 + i. Then the corresponding digit set is

D1 = { 0, ±1, ±i, ±(1 + i), ±i(1 + i), ±(1 + i)
2
, ±i(1 + i)

2 }
= { 0, ±1, ±i, ±(1 + i), ±(1− i), ±2i, ±2 } .

It is worth noting that D1 contains exactly all the elements of norm 0, 1, 2, 4
(there are no elements of norm 3 in the Gaussian integers). Hence D1 is a (unique)
MNR digit set and thus Theorem 4.4 guarantees that every element of Z[i] has a
finite D1-τ -adic expansion, i.e. D1 is a 1-NADS.
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p τ unit group
⌈

dmax

(
√
p−1)2

⌉
MNR digit set 1-NADS

5 1 + 2i 〈i〉 1 yes yes

13 −3 + 2i 〈i〉 × 〈1 + i〉 1 yes yes

29 5 + 2i 〈i〉 × 〈−1− i〉 4 no yes

37 1 + 6i 〈i〉 × 〈1 + i〉 10 no yes

53 −7 + 2i 〈i〉 × 〈1− i〉 104 no yes

61 5 + 6i 〈i〉 × 〈1− i〉 354 no yes

101 1 + 10i 〈i〉 × 〈1− i〉 204850 no no

109 −3 + 10i 〈i〉 × 〈2 + i〉 huge no no

149 −7 + 10i 〈i〉 × 〈−1 + i〉 547186713 no no

157 −11 + 6i 〈i〉 × 〈2 + i〉 huge no no

173 13 + 2i 〈i〉 × 〈1 + i〉 29778077114 no no

181 9 + 10i 〈i〉 × 〈−1 + i〉 113430097979 no ??

197 1 + 14i 〈i〉 × 〈−1− i〉 1656430250748 no no

Table 1. Digit set D1 in characteristic p ≡ 1 mod 4, p 6≡ 1
mod 8. All values of τ correspond to the curve E : y2 = x3 + x
over Fp, where End (E) ∼= Z[i].

Furthermore, note that

(1 + i)
3

= −2 + 2i = 1 + (−3 + 2i) = 1 + τ 6≡ 1 mod τ2 ,

so 1 + i has order 3 · 13w−1 mod τw for all w ≥ 1, by Corollary 9.2. Hence, by
Theorem 9.3 we have that, for any w ≥ 1

(Z[i]/τwZ[i])∗ = 〈i〉 × 〈1 + i〉 .

Although for larger primes p > 13, D1 is no longer an MNR digit set, yet there
are some cases in which it is a 1-NADS. This can be verified by means of Theorem
3.1.

Results are displayed in Table 1 for some digit sets in the case of End (E) ∼= Z[i],
and in Table 2 when End (E) ∼= Z[ζ].

Example 9.2. Let p = 101. In this case D1 is not a 1-NADS. An integer that does
not have a finite expansion to the basis τ = 1 + 10i is for instance 3 (starting from
the left with the least significant digit):

3 = 〈 i(1− i)13, i(1− i)21, −1, i(1− i)14, −(1− i)17, −1, −(1− i)10,

− i(1− i)13, −i(1− i)21, 1, −i(1− i)14, (1− i)17, 1, (1− i)10,

i(1− i)13, i(1− i)21, . . . 〉 .

Example 9.3. For p = 181, the norm bound of Theorem 3.1 seems quite large to
be tested efficiently. Nevertheless, we have computed the D1-τ -adic expansion of
all integers up to 33055, and no infinite expansion has arisen so far.
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p τ unit group
⌈

dmax

(
√
p−1)2

⌉
MNR digit set 1-NADS

7 −3 + 2ζ 〈ζ〉 1 yes yes

31 −5 + 6ζ 〈ζ〉 × 〈2− ζ〉 4 no yes

Table 2. Digit set D1 in characteristic p = 7, 31 for the curve
E : y2 = x3 + 1 over Fp, where End (E) ∼= Z[ζ].
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