
Online/Offline Attribute-Based Encryption

Susan Hohenberger
Johns Hopkins University

Brent Waters
University of Texas at Austin

Abstract

Attribute-based encryption (ABE) is a type of public key encryption that allows users to
encrypt and decrypt messages based on user attributes. For instance, one can encrypt a message
to any user satisfying the boolean formula (“crypto conference attendee” AND “PhD student”)
OR “IACR member”. One drawback is that encryption and key generation computational costs
scale with the complexity of the access policy or number of attributes. In practice, this makes
encryption and user key generation a possible bottleneck for some applications.

To address this problem, we develop new techniques for ABE that split the computation
for these algorithms into two phases: a preparation phase that does the vast majority of the
work to encrypt a message or create a secret key before it knows the message or the attribute
list/access control policy that will be used (or even the size of the list or policy). A second
phase can then rapidly assemble an ABE ciphertext or key when the specifics become known.
This concept is sometimes called “online/offline” encryption when only the message is unknown
during the preparation phase; we note that the addition of unknown attribute lists and access
policies makes ABE significantly more challenging.

One motivating application for this technology is mobile devices: the preparation work can
be performed while the phone is plugged into a power source, then it can later rapidly perform
ABE operations on the move without significantly draining the battery.

1 Introduction

Attribute-Based Encryption (ABE) was introduced by Sahai and Waters [20] as a more expressive
form of encryption where one can encrypt according to some policy. For example, in a large
corporate setting one might encrypt data to the policy of (“Procurement” AND “Manager”)
OR “Accounting”. There are two main flavors of ABE. In Key-Policy ABE [11], a key is
associated with a boolean formula φ and a ciphertext with a set S of attributes. One can decrypt
iff the set S satisfies the formula φ. Alternatively, in Ciphertext-Policy ABE the roles are flipped;
a key is associated with a set of attributes and the ciphertext with an access formula.

One challenge in building systems that use Attribute-Based Encryption is that the added func-
tionality may come with a significant cost compared to standard public key cryptography. Consider
a Key-Policy ABE system. Here the encryption time will scale with the number of attributes as-
signed to the ciphertext and key generation time will scale with the size of the boolean formula
ascribed to a user’s private key. These costs could impact several applications. If the encryption
algorithm is run on a mobile device, encryption time and battery power are of large importance.
In other applications, authority servers that generate users’ private keys may become a bottleneck.
In both of these scenarios, an exacerbating factor is that the cost for operations may vary widely

1

between each ciphertext and key; thus forcing a system to provision for a load that matches a worst
case scenario. We refer the reader to [5, 18, 23] for further details about ABE performance costs.

In this work, we aim to mitigate this problem by introducing methods for online/offline en-
cryption and key generation in Attribute-Based Encryption. By moving the majority of the cost
of an encryption and key generation into an offline phase, a system will be able to smooth the
computational (and power) demand over a longer range of time, and thus only need the resources
to handle the average case load.

Applications for this Technology One motivating application for splitting the work this way
is that a mobile device could be programmed to automatically do ABE preparation work whenever
it is plugged into a power source, and then when it is unplugged, ABE ciphertexts could be rapidly
formed with a significant reduction in battery consumption.

Another potential advantage of splitting work this way is that in some applications the online
and offline work can be performed in different devices. One might perform the offline work for several
encryptions on a high-end server and store these intermediate ciphertexts on a sensor device such
that the small device never needs to perform a full encryption. In other applications, for security
reasons a designer might wish to limit the number of outward facing servers that have access to
the master secret key (or equivalent). Using online/offline techniques he could have several servers
performing offline operations, but relatively fewer required for the final online step to generate a
user’s private key. While a corrupted offline server (without the master secret) could not break the
system, in collusion it could produce outputs that would allow an eventual key holder to do so.
Therefore, application of this idea would require further analysis and techniques to mitigate this
scenario.

Background on Online/Offline Cryptography Even, Goldreich and Micali [10] initiated
online/offline techniques for signatures and Shamir and Tauman [22] introduced a general method
using chameleon hash functions. In the context of signatures, one would like to perform most of
the work for signing a message in the offline phase, but without knowing what the message to be
signed is. Later in the online phase the signer will learn the message and given the offline work
should be able to sign it relatively quickly.

The focus of our investigation is on moving encryption computation offline. In the basic en-
cryption setting, the job is to perform most of the work for encryption offline, before the message
is known. This is one of the reasons that stream ciphers, such as RC4, are sometimes preferred
over certain block ciphers, because they operate by generating a pseudorandom string (which can
be done offline) and then XORing it with the plaintext (in the online phase).

Let’s next consider the task of moving encryption computation offline for Identity-Based En-
cryption (IBE), where neither the message nor the recipient’s identity is known during the offline
phase. Guo et al. [13] give an offline encryption system for Identity-Based Encryption (and other
works [17, 16, 9, 21] proposed different variants). We illustrate the main idea as a KEM1 variant
of the Boneh-Boyen [6] IBE system. In the offline phase, one will create a ciphertext by encrypting
to a random identity x ∈ Zp with randomness s ∈ Zp. The resulting BB-type ciphertext will have
the form C1 = gs, C2 = (uxh)s and the encapsulated key will be e(g, g)αs, where the bilinear group
description G of order p and g, u, h, e(g, g)α are in the public parameters. The offline algorithm

1A key encapsulation mechanism, where the public key ciphertext encapsulates a symmetric key which could later
be used to symmetrically encrypt the plaintext.

2

will store these ciphertext components as well as remember x and s; these together will consist
of what we call an intermediate ciphertext. In the online phase, the encryptor will learn that she
wishes to encrypt to a certain identity I ∈ Zp. To do this, she simply adds a small “correction
factor” r · (I − x) ∈ Zp to the ciphertext components C1, C2. The computation only takes one
multiplication and subtraction in Zp. A modified decryption algorithm with the correct private
key can then extract the required symmetric key. We note that treating the system as a Key En-
capsulation Mechanism allows us to separate the issues of learning the identity in the online phase
versus learning the message in the online phase.

The Challenge for ABE From the above description, one can see that the correction techniques
critically rely on there being well-known algebraic relationships between the Boneh-Boyen hashes
of different identities. Unfortunately, these do not exist in most initial ABE systems [11, 7, 24]
as an attribute for string x would typically be represented as either a random group element hx
in the parameters or as the result of a (random oracle modeled) hash function H(x). A second
challenge is that the size and structure of ciphertext descriptors is more complex in ABE systems.
For instance, in a KP-ABE system the number of attributes associated with a ciphertext may
vary widely between each encryption. If one encrypts to a small number in each offline stage, the
intermediate ciphertext may be not useable. If one encrypts to a large or maximum number in each
offline phase, it can result in much wasted work. Using offline computation efficiently becomes a
challenge in this setting. For ciphertext-policy ABE, finding a good solution is more challenging as
the “unknown” is an complex access structure.

Our Contributions We develop new techniques for online/offline ABE encryption and key gen-
eration that tackle these challenges. The first non-trivial task is to identity ABE constructions
that have the required algebraic structure to enable online/offline computation. Unfortunately,
most existing schemes do not. However, a few do. We first identified the recent “large universe”
construction of Lewko and Waters [14] as a candidate base scheme due to its algebraic structure
that appears amenable to adding correction factors.2 We finally decided to use a recent more effi-
cient prime-order variant due to Rouselakis and Waters [19]. (We are not aware of any other ABE
schemes that can support a similarly efficient online/offline tradeoff.)

We begin by designing online/offline encryption algorithms for Key-Policy ABE. For our first
construction we assume a set number of attributes that will be associated with each ciphertext. In
this setting we develop a correction technique for the KP-ABE [19] system. We prove security by
directly reducing to the security of [19]. This has the advantage of simplicity in that we do not
need to revisit the guts of the prior proof. In addition, we will automatically inherenit any future
improvements in the proof for the underlying scheme.

For reasons, discussed above assuming a fixed number of attributes per ciphertext is undesirable.
To this end we come up with a method of “pooling” work done offline. In this system an encryptor
will continuously create offline ciphertext pieces and add these to a pool. When the encryption
algorithm later needs to encrypt to a set S of attributes, it grabs |S| pieces from the pool connecting
each one to a single attribute from S. The work per attribute is dominated by one multiplication
in Zp. We describe this as a “connect and correct” approach.

2Interestingly, [14] aimed for a large universe construction in the standard model and thus our use of the schemes’s
additional structure is a byproduct of removing the random oracles.

3

We extend our offline encryption approach to the more complex case of Ciphertext-Policy ABE.
The challenge here is that a CP-ABE ciphertext is associated with a Linear Secret Sharing Scheme
(LSSS) matrix. Again, we develop a pooling technique. However, in this application for each row of
the matrix M given online, we will need to correct each ciphertext component to an LSSS share in
the exponent and to the corresponding attribute. Finally, we show how online/offline key generation
can be derived from our encryption techniques. In particular, we observe a symmetry between CP-
ABE encryption and KP-ABE key generation that allows us to develop an online/offline pair of
algorithms for the latter.

Combining with Outsourcing for ABE We make a brief detour here to discuss how the
results of this work might be combined with prior ABE results to make a practical overall system.

In 2011, Green, Hohenberger and Waters [12] presented a solution for outsourcing the decryption
of ABE ciphertexts. That is, they assumed that ABE ciphertexts might be stored in the cloud.
They then showed how a user can provide the cloud with a single translation key that allows
the cloud to translate any ABE ciphertext satisfied by that user’s attributes into a very short
El Gamal-style ciphertext, without the cloud being able to read any part of the user’s messages.
These transmitted ciphertexts are short (saving on bandwidth and receiving time), but also quick
to decrypt (with roughly one or two exponentiations). Thus, the ability to outsource decryption to
the cloud allows a mobile device to quickly decrypt an ABE-encrypted message.

Conversely, the results of this work allow a mobile device to quickly encrypt an ABE-encrypted
message. These two results could be combined into one system, where a mobile device would
be fully ABE operational while drastically reducing the computational costs for both decryption
(with the help of the cloud) and encryption (with the help of a preparation phase while the phone
charges). We believe that creative solutions of this sort can be implemented transparently, but will
provide noticeably better performance for users.

2 Definitions for Online/Offline ABE

We work in the key encapsulation mechanism (KEM) setting, where the attributed-based ciphertext
hides a symmetric session key that can then be used to symmetrically encrypt data of arbitrary
length. The goal in the online/offline setting is to allow as much precomputation of attribute-
based ciphertext as possible without knowing the intended access policy (ciphertext-policy) or set
of attributes (key-policy). Appendix A reviews access structures, linear secret sharing schemes
(LSSS) and related conventions.

Definition 2.1 (Online/Offline Attribute-Based KEM Specification). Let S represent a set of
attributes and A an access structure. For generality, we will define (Ikey, Ienc) as the inputs to the
extract and online encryption functions respectively. In a KP-ABE scheme (Ikey, Ienc) := (A, S),
while in a CP-ABE scheme, we have (Ikey, Ienc) := (S,A). We define the function f as follows:

f(Ikey, Ienc) :=


1 if Ienc ∈ Ikey in KP-AB setting

1 if Ikey ∈ Ienc in CP-AB setting

0 otherwise.

An online/offline KP-AB (resp., CP-AB) key-encapsulation mechanism for access structure space
G is a tuple of the following algorithms:

4

Setup(λ,U)→ (PK,MK). The setup algorithm takes as input a security parameter λ and a uni-
verse description U , which defines the set of allowed attributes in the system. It outputs the
public parameters PK and the master secret key MK.

Extract(MK, Ikey)→ SK. The extract algorithm takes as input the master secret key MK and an
access structure (resp., set of attributes) Ikey and outputs a private key SK associated with
the attributes.

Offline.Encrypt(PK)→ IT. The offline encryption algorithm takes as input the public parameters
PK and outputs an intermediate ciphertext IT.

Online.Encrypt(PK, IT, Ienc)→ (key,CT) The online encryption algorithm takes as input the
public parameters PK, an intermediate ciphertext IT and a set of attributes (resp., access
structure) Ienc and outputs a session key key and a ciphertext CT.

Decrypt(SK,CT)→ key. The decryption algorithm takes as input a private key SK for Ikey and
a ciphertext CT associated with Ienc and decapsulates ciphertext CT to recover a session key
key if S satisfies A or the error message ⊥ otherwise.

For a fixed universe description U and λ ∈ N, the KP-AB correctness property requires that
for all (PK,MK) ∈ Setup(λ,U), all S ⊆ U , all A ∈ G, all SK ∈ Extract(MK,A), if (key,CT) ∈
Online.Encrypt(PK,Offline.Encrypt(PK), S) and if S satisfies A, then Decrypt(SK,CT) outputs key.
CP-AB correctness is defined analogously, with the last inputs to Extract and Online.Encrypt re-
versed.

Security Model for Online/Offline AB-KEM Let Π = (Setup,Extract,Offline.Encrypt,
Online.Encrypt,Decrypt) be an AB-KEM for access structure space G, and consider the following
experiment for an adversary A, parameter λ and attribute universe U :

The Online/Offline AB-KEM experiment OO-ABKEM-ExpA,Π(λ,U):

Setup. The challenger runs the Setup algorithm and gives the public parameters, PK to the
adversary.

Phase 1. The challenger initializes an empty table T , an empty set D and an integer counter
j = 0. Proceeding adaptively, the adversary can repeatedly make any of the following queries:

• Create(Ikey): The challenger sets j := j + 1. It runs the key generation algorithm on
Ikey to obtain the private key SK and stores in table T the entry (j, Ikey,SK).
Note: Create can be repeatedly queried with the same input.

• Corrupt(i): If there exists an ith entry in table T , then the challenger obtains the entry
(i, Ikey,SK) and sets D := D ∪ {Ikey}. It then returns to the adversary the private key
SK. If no such entry exists, then it returns ⊥.

• Decrypt(i,CT): If there exists an ith entry in table T , then the challenger obtains the
entry (i, Ikey,SK) and returns to the adversary the output of the decryption algorithm
on input (SK,CT). If no such entry exists, then it returns ⊥.

Challenge. The adversary gives a challenge value I∗enc such that for all Ikey ∈ D, f(Ikey, I
∗
enc) 6= 1.

The challenger runs Online.Encrypt(PK,Offline.Encrypt(PK), I∗enc) to obtain (key∗,CT∗). It
then randomly selects a bit b. If b = 0, it returns (key∗,CT∗) to the adversary. If b = 1, it
selects a random session key R in the session key space and returns (R,CT∗).

Phase 2. Phase 1 is repeated with the restrictions that the adversary cannot

5

• trivially obtain a private key for the challenge ciphertext. That is, it cannot issue a
Corrupt query that would result in a value Ikey which satisfies f(Ikey, I

∗
enc) = 1 being

added to D.

• issue a decryption query on the challenge ciphertext CT∗.

Guess. The adversary outputs a guess b′ of b. The output of the experiment is 1 if and only if
b = b′.

Definition 2.2 (Online/Offline AB-KEM Security). An online/offline AB-KEM Π is CCA-secure
(or secure against chosen-ciphertext attacks) for attribute universe U if for all probabilistic polynomial-
time adversaries A, there exists a negligible function negl such that:

Pr[OO-ABKEM-ExpA,Π(λ,U) = 1] ≤ 1

2
+ negl(λ).

CPA Security. We say that a system is CPA-secure (or secure against chosen-plaintext attacks)
if we remove the Decrypt oracle in both Phase 1 and 2.

Selective Security. We say that a system is selectively secure if we add an Init stage before
Start where the adversary outputs the challenge I∗enc (instead of waiting until Challenge).

3 A KP-ABE Scheme with Online/Offline Encryption

We now show how to extend the unbounded KP-ABE scheme of Rouselakis and Waters [19, Ap-
pendix C] to be an online/offline system. We will work in a key encapsulation mechanism (KEM)
model as specified in Defintion 2, so that we can focus on preparing for an unknown attribute set.
Any plaintext can be encrypted in a hybrid manner during the online phase by a symmetric cipher
keyed with the encapsulated key. We first show a simple system that assumes a bound P on the
maximum number of attributes that can be used to encrypt a ciphertext. We show how to remove
this bound in Section 3.2.

Setup(λ,U) The setup algorithm takes in a security parameter λ and a universe U of attributes.
chooses a bilinear group G of prime order p ∈ Θ(2λ). It also chooses random generators g, h, u, w ∈
G and picks a random exponent α ∈ Zp. It then sets the keys as:

PK = (G, p, g, h, u, w, e(g, g)α), MSK = (PK, α).

We assume that the universe of attributes can be encoded as elements in Zp.

Extract(MSK, (M,ρ)) The extract algorithm takes as input the master secret key MSK and an
LSSS access structure (M,ρ). Let M be an ` × n matrix. The function ρ associates rows of M
to attributes. The algorithm initially chooses random values y2, . . . , yn ∈ Zp. It then computes
` shares of the master secret key as (λ1, λ2, . . . , λ`) := M · (α, y2, . . . , yn)T (where T denotes the
transpose). It then picks ` random exponents t1, t2, . . . , t` ∈ Zp. For i = 1 to `, it computes

Ki,0 := gλiwti Ki,1 :=
(
uρ(i)h

)−ti
Ki,2 := gti .

The private key is SK := ((M,ρ), {Ki,0,Ki,1,Ki,2}i∈[1,`]).

6

Offline.Encrypt(PK) The offline encryption algorithm takes in the public parameters only. Here
we describe the basic system which assumes a maximum bound of P attributes will be associated
with any ciphertext. We describe more advanced variations in Section 3.2. The algorithm first
picks a random s ∈ Zp and computes

key := e(g, g)αs C0 := gs.

Next, for j = 1 to P , it chooses random rj , xj ∈ Zp and computes

Cj,1 := grj Cj,2 := (uxjh)rjw−s.

One can view this as encrypting for a random attribute xj , where this will be corrected in the
online phase. We remark that the work done in the offline phase is roughly equivalent to the work
of the regular encryption algorithm in [19, Appendix C].

The intermediate ciphertext is IT := (key, C0, {rj , xj , Cj,1, Cj,2}j∈[1,P]).

Online.Encrypt(PK, IT, S) The online encryption KEM algorithm takes as input the public
parameters, an intermediate ciphertext IT, and a set of attributes S = (A1, A2, . . . , Ak≤P). For
j = 1 to k, it computes Cj,3 := (rj · (Aj − xj)) mod p. Intuitively, this will correct to the proper
attributes. It sets the ciphertext as:

CT := (S,C0, {Cj,1, Cj,2, Cj,3}j∈[1,k]).

The encapsulated key is key. The dominant cost is one multiplication in Zp per attribute in S.

Decrypt(SK,CT) The decryption algorithm in the KEM setting recovers the encapsulated key.
It takes as input a ciphertext CT = (S,C0, {Cj,1, Cj,2, Cj,3}j∈[1,k]) for attribute set S and a private
key SK = ((M,ρ), {Ki,0,Ki,1,Ki,2}i∈[1,`]) for access structure (M,ρ). If S does not satisfy this
access structure, then the algorithm issues an error message. Otherwise, it sets I := {i : ρ(i) ∈ S}
and computes constants wi ∈ Zp such that

∑
i∈I wi ·Mi = (1, 0, . . . , 0), where Mi is the i-th row of

the matrix M . Then it then recovers the encapsulated key by calculating key :=∏
i∈I

(
e(C0,Ki,0) · e(Cj,1,Ki,1) · e(Cj,2 · uCj,3 ,Ki,2)

)wi
= e(g, g)αs (1)

where j is the index of the attribute ρ(i) in S (it depends on i). This does not increase the number
of pairing operations over [19, Appendix C], although it adds |I| exponentiations.

Correctness If the attribute set S of the ciphertext is authorized, we have that
∑

i∈I wiλi = α.
Therefore, key:

:=
∏
i∈I

(
e(C0,Ki,0) · e(Cj,1,Ki,1) · e(Cj,2 · uCj,3 ,Ki,2)

)wi

=
∏
i∈I

(e(gs, gλiwti) · e(grj , (uρ(i)h)−ti) · e((uxjh)rjw−s · urj(ρ(i)−xj), gti))wi

=
∏
i∈I

(e(g, g)sλi · e(g, w)sti · e(g, u)−rjtiρ(i) · e(g, h)−rjti · e(g, u)ρ(i)rjti · e(g, h)rjti · e(g, w)−sti)wi

=
∏
i∈I

e(g, g)swiλi = e(g, g)sα.

7

Recall that in the symmetric setting e(g, u) = e(u, g), for all g, u ∈ G, although this scheme can
operate in an asymmetric setting with small alterations.

3.1 Proof of Selective Security

Discussion on Security. We shortly show that the security of our online/offline system can
be directly based on the security of the underlying Rouselakis-Waters [19, Appendix C] system.
The Rouselakis-Waters system that we reduce security to is selectively secure based on a “q-type”
assumption in prime order groups. We remark that our techniques appear to be equally ammenable
to transforming the Lewko-Waters [15] system to an online/offiline system. The Lewko-Waters
system is proven selectively secure from a static assumption in composite order groups. If such a
transformation were done (as well as a reduction to their scheme), the new scheme would inherit
those assumptions.

In [11, Section 9], Goyal et al. discuss how to combine delegation in their ABE systems with the
techniques of Canneti-Halevi-Katz [8] to build a CCA secure ABE scheme from a CPA one. We
believe that a similar delegation structure exists in our schemes, so that similar techniques would
likely work out (although we do not work out the details here).

Theorem 3.1. The above online/offline KP-AB-KEM scheme is selectively CPA-secure with re-
spect to Definition 2.2 under the assumption that the scheme of Rouselakis and Waters [19, Ap-
pendix C] is a selectively CPA-secure KP-ABE system.

Proof. To prove the theorem, we will show that any PPT attacker A with a non-negligible advan-
tage in the OO-ABKEM-Exp experiment against the above scheme, which we will denote ΠOO =
(Setup,Extract,Offline.Encrypt,Online.Encrypt,Decrypt), can be used to break the selective CPA-
security of the Rouselakis-Waters scheme, which we will denote ΠRW = (SetupRW ,ExtractRW ,
EncryptRW ,DecryptRW), with a PPT simulator B.

The simulator plays the role of the challenger and interacts with A in OO-ABKEM-Exp with
security parameter λ and the universe of attributes set to U = Zp.

Initialization Initially, B receives an attribute set S∗ = {A∗1, A∗2, . . . , A∗k} ⊆ U from A and gives
it to the RW challenger.

Setup Next, B receives the public parameters PK = (G, p, g, h, u, w, e(g, g)α) from the RW chal-
lenger and passes them to A unchanged.

Phase 1 The secret keys are the same in both schemes, so any key generation request from A is
passed to the RW challenger to obtain the key.

Challenge B chooses two distinct, random messages m0,m1 in the RW message space and sends
them to its RW challenger, and receives back a challenge ciphertext CT∗RW = (S∗, C, C0, {Cj,1,
Cj,2}j∈[1,|S∗|]). Here C is the encrypted message times e(g, g)αs, C0 = gs and for each attribute

Aj ∈ S∗, we have Cj,1 = grj and Cj,2 = (uAjh)rjw−s.

8

It then selects random values z1, . . . , z|S| ∈ Zp and computes the ciphertext CT∗OO as (S∗, C0)
followed by

C∗j,1 := Cj,1 = grj C∗j,2 := Cj,2 · u−zj = (uAjh)rjw−su−zj C∗j,3 := zj .

To see why this is a correctly formed ciphertext, one needs to recall the third pairing of equation 1,
where one must compute e(C∗j,2 · u

C∗j,3 ,Ki,2), as well as observe that the ciphertext is randomized
to have the proper distribution. The zj blinding will cancel out in this step. Next, B guess which
message was encrypted τB ∈ {0, 1} and computes keyguess := C/mτB . Finally, B then sends to A
the tuple (keyguess,CT∗OO).

Phase 2 B proceeds as in Phase 1.

Guess Eventually, A outputs a bit τA. If τA = 0 (meaning that A guesses that keyguess is the key
encapsulated by CT∗OO), then B outputs τB. If τA = 1 (meaning that A guesses that keyguess is a
random key), then B outputs 1−τB. The distribution for A is perfect. Thus, if A has advantage ε in
the OO-ABKEM-Exp experiment, then B breaks the RW KP-ABE system with the same probability.

3.2 A More Advanced System: Pooling Attributes for an Unbounded System

Previously, we presented a system that imposed a bound of P attributes associated with any
ciphertext. We presented P as if it was a system-wide bound for all ciphertexts, for simplicity.
A slightly less naive solution would involve creating a set of intermediate ciphertexts prepared for
different sizes of attribute sets, and then pulling the “right-sized IT” off-the-shelf during the online
phase (e.g., create one IT for a set of size 1, another for a set of size 2, etc.). However, these
approaches could prove wasteful, as certain ITs may be created and stored without being used.

Pooling Construction. Instead, we introduce the idea of “pooling” to eliminate waste during
the offline phase. The intermediate ciphertext is now comprised of two logical types of objects: a
main module and an attribute module. During the offline phase(s), an arbitrary number of main
and attribute modules are independently created. During the online phase for attribute set S, one
main module and |S| attribute modules will be consumed. The critical feature of this approach
is that any attribute module can be attached to any main module. The online phase uses exactly
what it needs, and any modules left in the pool can be used on subsequent ciphertexts.

Specifically, during Offline.Encrypt, a main module is computed as follows. It picks a random
s ∈ Zp and sets ITmain := (key, C0, Cw), where these values are computed as

key := e(g, g)αs C0 := gs Cw := w−s.

During Offline.Encrypt, an attribute module is computed as follows. It picks a random r, x ∈ Zp
and sets ITatt := (r, x, C ′1, C

′
2), where these values are computed as

C ′1 := gr C ′2 := (uxh)r.

During Online.Encrypt for an attribute set S, the algorithm selects any one main module
ITmain := (key, C0, Cw) and any |S| attribute modules ITatt,j := (rj , xj , C

′
j,1, C

′
j,2) available in

9

the pool. Finally, it computes CT as (S,C0, {Cj,1, Cj,2, Cj,3}j∈[1,|S|]), where

Cj,1 := C ′j,1 = grj Cj,2 := C ′j,2 · Cw = (uxjh)rj · w−s Cj,3 := rj · (Aj − xj).

The encapsulated key is key.

Security Discussion. The dominant cost in the online encryption algorithm is 2 modular multi-
plications per attribute in S. To formally capture the pooling model, the specification and security
definition in Section 2 would need to be expanded to have the Offline.Encrypt algorithm keep state
(e.g., the pool) between iterations and to pass this state into Online.Encrypt as well. Since pooling
does not impact the structure or distribution of the final ciphertexts over Section 3 and the adver-
sary in the security experiment only views final ciphertexts, it is relatively straightforward to prove
the selective security of the pooling scheme.

4 A CP-ABE Scheme with Online/Offline Encryption

We now turn our attention to developing online/offline CP-ABE systems. This is intuitively harder
than KP-ABE, because the structure of ciphertext is more complex. We must now be able to create
an intermediate ciphertext in the offline phase that can be quickly be translated to a ciphertext for
a hitherto unknown access structure. To do this, we will use and extend the basic “correction” and
pooling concepts introduced for KP-ABE. Our online/offline system is based on the unbounded
CP-ABE scheme of Rouselakis and Waters [19, Section 4], where again it takes a special algebraic
structure to make this work, which most other CP-ABE systems do not appear to have. As before,
we are working in the KEM model. We’ll first show a simple system that assumes a bound P on
the maximum number of rows in an LSSS access structure that will be used to encrypt. We will
subsequently discuss how to remove this bound.

Setup(λ,U) The setup algorithm chooses a bilinear group G of prime order p ∈ Θ(2λ). It also
chooses random generators g, h, u, v, w ∈ G and picks a random exponent α ∈ Zp. It then sets the
keys as:

PK = (G, p, g, h, u, v, w, e(g, g)α), MSK = (PK, α).

Again, we will view the attribute universe as consisting of elements in Zp.

Extract(MSK, S) The extract algorithm takes as input the master secret key MSK and an at-
tribute set S = {A1, A2, . . . , Ak} ⊆ Zp. The algorithm chooses random values r, r1, r2, . . . , rk ∈ Zp.
It then computes K0 := gαwr,K1 := gr, and for i = 1 to k, it computes

Ki,2 := gri Ki,3 :=
(
uAih

)ri v−r.
The private key is SK := (S,K0,K1, {Ki,2,Ki,3}i∈[1,k]).

Offline.Encrypt(PK) The offline encryption algorithm takes in the public parameters only. Here
we describe the basic system which assumes a maximum bound of P rows in any LSSS access
structure used in a ciphertext. We describe more advanced variations in Section B.1. The algorithm
first picks a random s ∈ Zp and computes

key := e(g, g)αs C0 := gs.

10

Next, for j = 1 to P , it chooses random λ′j , xj , tj ∈ Zp and computes

Cj,1 := wλ
′
jvtj Cj,2 := (uxjh)−tj Cj,3 := gtj .

One can view this as encrypting for a random attribute xj with a random “share” λ′j of s, where
this will be corrected in the online phase. We remark that the work done in the offline phase is
roughly equivalent to the work of the regular encryption algorithm in [19, Section 4].

The intermediate ciphertext is IT := (key, s, C0, {λ′j , tj , xj , Cj,1, Cj,2, Cj,3}j∈[1,P]).

Online.Encrypt(PK, IT, (M,ρ)) The online encryption KEM algorithm takes as input the public
parameters, an intermediate ciphertext IT, and an LSSS access structure (M,ρ), where M is an
`×n matrix and ` ≤ P . It picks random y2, . . . , yn ∈ Zp, sets the vector ~y = (s, y2, . . . , yn)T (where
T denotes the transpose of the matrix) and computes a vector of shares of s as (λ1, . . . , λ`)

T = M~y.
For j = 1 to `, it computes

Cj,4 := λj − λ′j Cj,5 := tj · (ρ(j)− xj).

Intuitively, this will correct to the proper attributes and shares of s. It sets the ciphertext as:

CT := ((M,ρ), C0, {Cj,1, Cj,2, Cj,3, Cj,4, Cj,5}j∈[1,k]).

The encapsulated key is key. The dominant cost is one multiplication in Zp per row of M .

Decrypt(SK,CT) The decryption algorithm in the KEM setting recovers the encapsulated key. It
takes as input a ciphertext CT = ((M,ρ), C0, {Cj,1, Cj,2, Cj,3, Cj,4, Cj,5}j∈[1,k]) for access structure
(M,ρ) and a private key SK = (S, {Ki,0,Ki,1,Ki,2}i∈[1,`]) for access structure (M,ρ). If S does
not satisfy this access structure, then the algorithm issues an error message. Otherwise, it sets
I := {i : ρ(i) ∈ S} and computes constants wi ∈ Zp such that

∑
i∈I wi ·Mi = (1, 0, . . . , 0), where

Mi is the i-th row of the matrix M . Then it then recovers the encapsulated key by calculating

key :=
e(C0,K0)

e(w
∑

i∈I Ci,4wi ,K1) ·
∏
i∈I(e(Ci,1,K1)

· 1

e(Ci,2 · uCi,5 ,Kj,2) · e(Ci,3,Kj,3))wi
= e(g, g)αs (2)

where j is the index of the attribute ρ(i) in S (it depends on i). We note that this decryption algo-
rithm adds one pairing operation and |I|+1 exponentiations over [19, Appendix C]. Alternatively,
one could re-arrange the equation for no additional pairings at the cost of 2|I| exponentiations.

In Appendix B, we show correctness, prove the below theorem and provide a pooling solution.

Theorem 4.1. The above online/offline CP-AB-KEM scheme is selectively CPA-secure with re-
spect to Definition 2.2 under the assumption that the scheme of Rouselakis and Waters [19, Section
4] is a selectively CPA-secure CP-ABE system.

5 Online/Offline ABE Key Generation

Private key generation in ABE systems requires the master secret key MSK. This key is so valuable
that any organization granting keys might do well to store it on only a small number of well-guarded
servers. At the same time, this could create a bottleneck in systems with many users, especially

11

when private keys are reissued each time period for revocation purposes. In this section, we discuss
how the key generation operation in the KP-ABE system of Section 3 and the CP-ABE system
of Section 4 can operate in an online/offline fashion as well. Thus, the bulk of the key generation
work can be performed by servers that are truly offline (or otherwise well secured). These pre-
computations can be passed to the online servers, where incoming requests can be processed quickly.

Recall that in the KP-ABE setting, a private key embeds an LSSS access structure, whereas in
the CP-ABE setting, the private key embeds a set of attributes. We will borrow ideas from the
prior two sections to deal with these objects, where again we can employ both the “correct and
connect” and “pooling” concepts.

To capture online/offline key generation, one needs to replace the Extract algorithm with an
offline algorithm that takes in the MK and produces a intermediate private key (or pool of private
key parts) and an online algorithm that takes in this intermediate key (or pool) together with
an access structure and then produces the private key. The security experiment is essentially
unchanged except that the Create oracle (called in Phases 1 and 2) now calls Offline.Extract and
Online.Extract in sequence to create a private key.

5.1 Online/Offline Key Generation for KP-ABE Keys

The Setup and encryption algorithms remain the same as Section 3. We present a pooling solution,
and because the structure of the private keys change, so must the decryption algorithm.

Offline.Extract(MSK) There are no “main” key modules. A “row” module is computed by
selecting random λ′, x, t ∈ Zp and outputting Irow := (λ′, x, t,K0,K1,K2) where

K0 := gλ
′
wt K1 := (uxh)−t K2 := gt.

Online.Extract(pool, (M,ρ)) Let M be an `×n matrix. The algorithm initially chooses random
values y2, . . . , yn ∈ Zp. It then computes ` shares of the master secret key as (λ1, λ2, . . . , λ`) :=
M · (α, y2, . . . , yn). Next select any ` row modules from the pool. For i = 1 to `, set

Ki,3 := λi − λ′i Ki,4 := ti · (ρ(i)− xi).

The private key is SK := ((M,ρ), {Ki,0,Ki,1,Ki,2,Ki,3,Ki,4}i∈[1,`]). The dominant cost is one
multiplication per row of M .

Decrypt(SK,CT) Using the prior steps and notation, it recovers the encapsulated key as key :=∏
i∈I

(
e(C0,Ki,0 · gKi,3) · e(Cj,1,Ki,1 · uKi,4) · e(Cj,2 · uCj,3 ,Ki,2)

)wi
= e(g, g)αs.

This adds 2|I| exponentiations over the construction in Section 3.

5.2 Online/Offline Key Generation for CP-ABE Keys

The CP-ABE system in Section 4 can be extended in a similar manner. In that system, there will
be a “main” key module which contains K0,K1 and Kv := v−r. The attribute modules are identical

12

to those of Section 3.2 and the keys are assembled as in the online phase of 3.2. The decryption
equation is then key := e(C0,K0)/D, where

D = e(w
∑

i∈I Ci,4wi ,K1) ·
∏
i∈I

(e(Ci,1,K1) · e(Ci,2 · uCi,5 ,Kj,2 · uKj,4) · e(Ci,3,Kj,3))wi ,

resulting in e(g, g)αs.

6 Performance Analysis

Encryption Algorithm Bilinear Operations Est. Time Est. Time
P = 10 P = 100

KP-ABE from [19, App. C] 1ET + (3P + 2)E1 + 2PM1 .133 1.134

KP-Offline Sec. 3 1ET + (3P + 2)E1 + 2PM1 .133 1.134

KP-Online Sec. 3 0 < .001 < .001

KP-Pool-Offline Sec. 3.2 1ET + (3P + 2)E1 + PM1 .133 1.132

KP-Pool-Online Sec. 3.2 PM1 < .001 .001

CP-ABE from [19] 1ET + (5P + 1)E1 + 2PM1 .203 1.870

CP-Offline Sec. 4 1ET + (5P + 1)E1 + 2PM1 .203 1.870

CP-Online Sec. 4 0 < .001 < .001

CP-Pool-Offline Sec. B.1 1ET + (5P + 1)E1 + 2PM1 .203 1.870

CP-Pool-Online Sec. B.1 0 < .001 .001

Figure 1: Performance estimates for regular and online/offline encryption algorithms. We mapped
these algorithms into the asymmetric bilinear setting, placing the ciphertexts in G1 and keys in G2.
Let Ei (resp., Mi) denote an exponentiation (reps., multiplication) in the group Gi. The bilinear
operations are the dominate cost, so we ignore minor factors such as arithmetic in Zp. The variable
P represents the size of the attribute list (in KP-ABE) or the complexity of the access policy (in
CP-ABE). The times are in seconds. It is helpful to compare the cost of the original scheme (with
a citation) to the cost of the online phase of the given algorithms. In three of the four schemes
presented, all bilinear group operations for encryption can be shifted to the offline phase.

We provide estimates on the performance of the proposed schemes in Figures 1 and 2. These
numbers are extrapolated from operation times on a 256-bit Bareto-Naehrig curve using version
0.3.1 of the RELIC library [3]. Times are measured in milliseconds (averaged over 10,000 iterations)
and were computed on an Intel Core i7 processor with 16GB RAM [2]. We ignore small numbers
of operations which will be negligible by comparison, such as arithmetic in Zp.

A natural question to ask is: how much pre-processing can I do for an ABE encryption (similarly,
key generation) before I know the message I want to encrypt or the access structure that I want
to encrypt under? It may come as a surprise that the results are so drastic. Indeed, our estimates
show that the answer to this question is: you can do almost all of the encryption work, before you
know any of the specifics of what/to whom you are encrypting.

Indeed, our worst-case for encryption was key-policy ABE in pooling mode, and even then over
99% of the work could be done offline. Similarly, the worst-case for key generation was ciphertext-
policy ABE in pooling mode, and even then over 99% of the work could be done offline. It is also

13

Key Generation Algorithm Bilinear Operations Est. Time Est. Time
P = 10 P = 100

KP-ABE from [19, App. C] 5PE2 + 2PM2 .370 3.703

KP-Pool-Offline Sec. 5.1 5PE2 + 2PM2 .370 3.703

KP-Pool-Online Sec. 5.1 0 < .001 < .001

CP-ABE from [19] (3P + 4)E2 + (2P + 1)M2 .252 2.253

CP-Pool-Offline Sec. 5.2 (3P + 4)E2 + (P + 1)M2 .251 2.251

CP-Pool-Online Sec. 5.2 PM2 < .001 .003

Figure 2: Performance estimates for regular and online/offline key generation algorithms. We
mapped these algorithms into the asymmetric bilinear setting, placing the ciphertexts in G1 and
keys in G2. Let Ei (resp., Mi) denote an exponentiation (reps., multiplication) in the group Gi.
The bilinear operations are the dominate cost, so we ignore minor factors such as arithmetic in Zp.
The variable P represents the size of the attribute list (in CP-ABE) or the complexity of the access
policy (in KP-ABE). The times are in seconds. It is helpful to compare the cost of the original
scheme (with a citation) to the cost of the online phase of the given algorithms. In both schemes,
our estimates show that over 99% of the work to generate a key can be shifted to the offline phase.

worth noting that the total computation required between the offline and online phases is nearly
identical to the work required by the original scheme. Thus, the total work remains the same, but
the vast majority of it can be shifted in time to a moment when the device is least busy or has
access to a power source.

We remark that the operation counts given here for the schemes in [19] differ slightly from the
summary given in that work. The counts from [19] were obtained from the Charm [1] benchmark-
ing utility, which may have performed various optimizations, whereas ours are a strict count of
operations from the algorithms as presented in the paper [19]. We do not expect these differences
to have any significant impact on the estimates in Figures 1 and 2.

7 Conclusions

We are exploring methods to make attribute-based encryption (ABE) more efficient for deployment.
To this end, we investigated how devices might quickly encrypt ABE messages or generate user
keys, even for complex policies.

We developed new “connect and correct” techniques for ABE that split the computation for
encryption and key generation into two phases: a preparation phase that does the vast majority of
the work to encrypt a message or create a secret key before it knows the message or the attribute
list/access control policy that will be used (or even the size of the list or policy). A second phase
can then rapidly assemble an ABE ciphertext or key when the specifics become known. This
concept is sometimes called “online/offline” encryption. We provided efficient constructions for
both key-policy and ciphertext-policy ABE systems.

We provided performance estimates that showed over 99% of the computational work could be
moved to offline phase in many scenarios. We expect that this technology could reduce battery
consumption on mobile devices and help reduce the bottleneck on a master authority server tasked
with generating user keys. Overall, it helps reduce the cost of bringing ABE into practice.

14

Acknowledgments

The authors thank Joseph Ayo Akinyele and Matthew Green for advice on performance numbers
and other helpful comments. Susan Hohenberger was supported in part by the National Science
Foundation CNS-1154035 and CNS-1228443; the Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory under contract FA8750-11-2-0211, DARPA
N11AP20006, the Office of Naval Research under contract N00014-11-1-0470, and a Microsoft
Faculty Fellowship. The views expressed are those of the authors and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

References

[1] J Ayo Akinyele, Gary Belvin, Christina Garman, Matthew Pagano, Michael Rushanan, Paul
Martin, Ian Miers, Matthew Green, and Avi Rubin. Charm: A tool for rapid cryptographic
prototyping. Available from http://www.charm-crypto.com/, 2012.

[2] Joseph Ayo Akinyele and Matthew Green. Personal communication., 2013.

[3] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient LIbrary for Cryptography. http:

//code.google.com/p/relic-toolkit/.

[4] Amos Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, Israel
Institute of Technology, Technion, Haifa, Israel, 1996.

[5] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryp-
tion. In IEEE Symposium on Security and Privacy, pages 321–334, 2007.

[6] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without
random oracles. In EUROCRYPT, pages 223–238, 2004.

[7] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data. In
TCC, pages 535–554, 2007.

[8] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based
encryption. In EUROCRYPT, pages 207–222, 2004.

[9] Sherman S. M. Chow, Joseph K. Liu, and Jianying Zhou. Identity-based online/offline key
encapsulation and encryption. In ASIACCS, pages 52–60, 2011.

[10] Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital signatures. J. Cryp-
tology, 9(1):35–67, 1996.

[11] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In ACM Conference on Computer and Commu-
nications Security, pages 89–98, 2006.

[12] Matthew Green, Susan Hohenberger, and Brent Waters. Outsourcing the decryption of ABE
ciphertexts. In USENIX Security Symposium, 2011.

15

[13] Fuchun Guo, Yi Mu, and Zhide Chen. Identity-based online/offline encryption. In Financial
Cryptography, pages 247–261, 2008.

[14] Allison B. Lewko and Brent Waters. Unbounded HIBE and attribute-based encryption. In
EUROCRYPT, pages 547–567, 2011.

[15] Allison B. Lewko and Brent Waters. New proof methods for attribute-based encryption:
Achieving full security through selective techniques. In CRYPTO, pages 180–198, 2012.

[16] Joseph K. Liu and Jianying Zhou. An efficient identity-based online/offline encryption scheme.
In ACNS, pages 156–167, 2009.

[17] Zhongren Liu, Li Xu, Zhide Chen, Yi Mu, and Fuchun Guo. Hierarchical identity-based
online/offline encryption. In ICYCS, pages 2115–2119, 2008.

[18] Matthew Pirretti, Patrick Traynor, Patrick McDaniel, and Brent Waters. Secure attribute-
based systems. In ACM Conference on Computer and Communications Security, pages 99–112,
2006.

[19] Yannis Rouselakis and Brent Waters. Practical constructions and new proof methods for large
universe attribute-based encryption. In ACM Conference on Computer and Communications
Security, pages 463–474, 2013.

[20] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages
457–473, 2005.

[21] S. Sharmila Deva Selvi, S. Sree Vivek, and C. Pandu Rangan. Identity based online/offline
encryption and signcryption schemes revisited. In InfoSecHiComNet, pages 111–127, 2011.

[22] Adi Shamir and Yael Tauman. Improved online/offline signature schemes. In CRYPTO, pages
355–367, 2001.

[23] Patrick Traynor, Kevin R. B. Butler, William Enck, and Patrick McDaniel. Realizing massive-
scale conditional access systems through attribute-based cryptosystems. In NDSS, 2008.

[24] Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and
provably secure realization. In PKC, pages 53–70, 2011.

A Access Structures and Notation

A.1 Access Structures

Definition 1 (Access Structure [4]). Let {P1, P2, . . ., Pn} be a set of parties. A collection A ⊆
2{P1,P2,...,Pn} is monotone if ∀B,C : if B ∈ A and B ⊆ C then C ∈ A. An access structure
(respectively, monotone access structure) is a collection (resp., monotone collection) A of non-empty
subsets of {P1, P2, . . . , Pn}, i.e., A ⊆ 2{P1,P2,...,Pn}\{∅}. The sets in A are called the authorized sets,
and the sets not in A are called the unauthorized sets.

16

In our context, the role of the parties is taken by the attributes. Thus, the access structure
A will contain the authorized sets of attributes. We restrict our attention to monotone access
structures. However, it is also possible to (inefficiently) realize general access structures using our
techniques by defining the “not” of an attribute as a separate attribute altogether. Thus, the
number of attributes in the system will be doubled. From now on, unless stated otherwise, by an
access structure we mean a monotone access structure.

A.2 Linear Secret Sharing Schemes

The construction will use linear secret sharing schemes, as slightly adapted from Beimel [4]:

Definition 2 (Linear Secret-Sharing Schemes (LSSS)). A secret-sharing scheme Π over a set of
parties P is called linear (over Zp) if

1. The shares of the parties form a vector over Zp.

2. There exists a matrix M with ` rows and n columns called the share-generating matrix for
Π. There exists a function ρ which maps each row of the matrix to an associated party. That
is for i = 1, . . . , `, the value ρ(i) is the party associated with row i. When we consider the
column vector v = (s, r2, . . . , rn), where s ∈ Zp is the secret to be shared, and r2, . . . , rn ∈ Zp
are randomly chosen, then Mv is the vector of ` shares of the secret s according to Π. The
share (Mv)i belongs to party ρ(i).

It is shown in [4] that every linear secret sharing-scheme according to the above definition also
enjoys the linear reconstruction property, defined as follows: Suppose that Π is an LSSS for the
access structure A. Let S ∈ A be any authorized set, and let I ⊆ {1, 2, . . . , `} be defined as
I = {i : ρ(i) ∈ S}. Then, there exist constants {ωi ∈ Zp}i∈I such that, if {λi} are valid shares of
any secret s according to Π, then

∑
i∈I ωiλi = s. It is shown in [4] that these constants {ωi} can

be found in time polynomial in the size of the share-generating matrix M .
Like any secret sharing scheme, it has the property that for any unauthorized set S /∈ A, the

secret s should be information theoretically hidden from the parties in S.

Note on Convention. We use the convention that vector (1, 0, 0, . . . , 0) is the “target” vector for
any linear secret sharing scheme. For any satisfying set of rows I in M , we will have that the target
vector is in the span of I.

For any unauthorized set of rows I the target vector is not in the span of the rows of the set I.
Moreover, there will exist a vector w such that w · (1, 0, 0 . . . , 0) = −1 and w ·Mi = 0 for all i ∈ I.

Using Access Trees. Some prior ABE works (e.g., [11]) described access formulas in terms of
binary trees. Using standard techniques [4] one can convert any monotonic boolean formula into
an LSSS representation. An access tree of ` nodes will result in an LSSS matrix of ` rows.

B CP-ABE Construction: Security Analysis and Pooling

We show correctness of the construction in Section 4.

17

Correctness If the attribute set S of the ciphertext is authorized, we have that
∑

i∈I wiλi = s.
Therefore key:

:=
e(C0,K0)

e(w
∑

i∈I Ci,4wi ,K1) ·
∏
i∈I e(Ci,1,K1)wi

· 1∏
i∈I(e(Ci,2 · uCi,5 ,Kj,2) · e(Ci,3,Kj,3))wi

=
e(gs, gαwr)

e(w
∑

i∈I(λi−λ′i)wi , gr) ·
∏
i∈I(e(w

λ′ivti , gr))wi
· 1∏

i∈I(e((u
xih)−ti · uti(ρ(i)−xi), grj) · e(gti , (uAjh)rjv−r))wi

=
e(g, g)αs · e(g, w)sr

e(g, w)r
∑

i∈I(λi−λ′i)wi ·
∏
i∈I e(g, w)λ

′
ire(g, v)tire(g, u)ρ(i)tirje(g, h)−tirje(g, u)Ajtirje(g, h)tirje(g, v)−tir

=
e(g, g)αs · e(g, w)sr

e(g, w)r
∑

i∈I(λi−λ′i)wi ·
∏
i∈I e(g, w)λ

′
ir

=
e(g, g)αs · e(g, w)sr

e(g, w)r
∑

i∈I wiλi

= e(g, g)αs

Recall that in the symmetric setting e(g, u) = e(u, g), for all g, u ∈ G, although this scheme can
operate in an asymmetric setting with small alterations. Also, ρ(i) = Aj .

Next, we prove Theorem 4.1. The security discussion in Section 3.1 applies here as well.

Proof. To prove the theorem, we will show that any PPT attacker A with a non-negligible advan-
tage in the OO-ABKEM-Exp experiment against the above scheme, which we will denote ΠOO =
(Setup, Extract, Offline.Encrypt, Online.Encrypt, Decrypt), can be used to break the selective CPA-
security of the Rouselakis-Waters scheme, which we will denote ΠRW = (SetupRW ,ExtractRW ,
EncryptRW ,DecryptRW), with a PPT simulator B.

The simulator plays the role of the challenger and interacts with A in OO-ABKEM-Exp with
security parameter λ and the universe of attributes set to U = Zp.

Initialization Initially, B receives an LSSS access structure (M∗, ρ∗) from A and gives it to the
RW challenger. Let M∗ be an `× n matrix.

Setup Next, B receives the public parameters PK = (G, p, g, h, u, v, w, e(g, g)α) from the RW
challenger and passes them to A unchanged.

Phase 1 The secret keys are the same in both schemes, so any key generation request from A is
passed to the RW challenger to obtain the key.

Challenge B chooses two distinct, random messages m0,m1 in the RW message space and sends
them to its RW challenger, and receives back a challenge ciphertext CT∗RW = ((M∗, ρ∗), C, C0, {Cj,1,
Cj,2, Cj,3}j∈[1,`]). Here C is the encrypted message times e(g, g)αs, C0 = gs and for each row in M∗,

we have Cj,1 = wλjvtj , Cj,2 = (uρ
∗(j)h)tj and Cj,3 = gtj .

18

It then selects random blinding values z1, . . . , z`, z
′
1, . . . , z

′
` ∈ Zp and computes the ciphertext

CT∗OO as ((M∗, ρ∗), C0) followed by

C∗j,1 := Cj,1 · w−zj = wλj−zjvtj

C∗j,2 := Cj,2 · u−z
′
j = (uρ

∗(j)h)tj · u−z
′
j

C∗j,3 := Cj,3 = gtj

C∗j,4 := zj

C∗j,5 := z′j .

To see why this is a correctly formed ciphertext, one must plug these values back into the decryption
equation, worked out in steps for the correctness section, and see that the blinding values all cancel
out. Next, B guess which message was encrypted τB ∈ {0, 1} and computes keyguess := C/mτB .
Finally, B then sends to A the tuple (keyguess,CT∗OO).

Phase 2 B proceeds as in Phase 1.

Guess Eventually, A outputs a bit τA. If τA = 0 (meaning that A guesses that keyguess is the
key encapsulated by CT∗OO), then B outputs τB. If τA = 1 (meaning that A guesses that keyguess
is a random key), then B outputs 1 − τB. The distribution for A is perfect. Thus, if A has
advantage ε in the OO-ABKEM-Exp experiment, then B breaks the RW KP-ABE system with the
same probability.

B.1 Pooling Attributes for an Unbounded Ciphertext-Policy System

In the previous section, we presented an online/offline system that imposed a bound of P rows
on any LSSS access matrix associated with any ciphertext. As introduced in Section 3.2, we now
show how to remove this bound by creating a “pool” from which to draw ready-made ciphertext
components. As before, the intermediate ciphertext is comprised of two logical types of objects: a
main module and an attribute module. During the offline phase(s), an arbitrary number of main
and attribute modules are independently created. During the online phase for LSSS access structure
(M,ρ), one main module and ` attribute modules will be consumed, where M is an `× n matrix.
Any attribute module can be attached to any main module.

Specifically, during Offline.Encrypt, a main module is computed as follows. It picks a random
s ∈ Zp and sets ITmain := (key, C0), where these values are computed as

key := e(g, g)αs C0 := gs.

During Offline.Encrypt, an attribute module is computed as follows. It picks a random λ, x, t ∈
Zp and sets ITatt := (λ, x, t, C1, C2, C3), where these values are computed as

C1 := wλvt C2 := (uxh)t C3 := gt.

During Online.Encrypt for an LSSS access structure (M,ρ), where M is an ` × n matrix, the
algorithm selects any one main module ITmain := (key, C0) and any ` attribute modules ITatt,j :=
(λj , xj , tj , Cj,1, Cj,2, Cj,3) available in the pool. It picks random y2, . . . , yn ∈ Zp, sets the vector

19

~y = (s, y2, . . . , yn)T (where T denotes the transpose of the matrix) and computes a vector of shares
of s as (λ1, . . . , λ`)

T = M~y.
Finally, it computes CT as ((M,ρ), C0, {Cj,1, Cj,2, Cj,3, Cj,4, Cj,5}j∈[1,`]), where

Cj,4 := λj − λ′j Cj,5 := tj · (ρ(j)− xj).

The encapsulated key is key. The dominant cost in the online encryption algorithm is one modular
multiplication per row in M . The security discussion at the end of Section 3.2 applies here as well.

20

