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In this paper, we provide performance measures for software implementations
of the NSA-designed S128 block cipher together with various existing au-
thenticated encryption modes. We investigated S128 using GCM, CCM,
EAX, OCB3, COPA, and PAEAD-1, and we briefly discuss performance advan-
tages and disadvantages of each mode. Our results indicate that S128 is
capable of performing extremely fast authenticated encryption, as fast as 3.4
cycles/byte on a modern x86-based 64-bit processor.
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1. I

Standard block cipher algorithms encrypt data and thereby make it private, but
by themselves do nothing to ensure that data hasn’t been tampered with. In
order to provide data integrity, a standard approach is to use an authenticated
encryption (AE) mode together with an established block cipher. The goal of
this paper is to consider the performance of existing AE modes, when paired
with the recently proposed S block cipher algorithm [1].

AE modes typically also provide the user the option of not encrypting portions
of the data (the “associated data”), but still authenticating that data. Such
modes provide for authenticated encryption with associated data (AEAD). All of
the modes we consider in this paper are AEAD modes.

One of the most widely used authenticated encryption modes is GCM, and it
has reasonably good performance (at least in relatively unconstrained environ-
ments) and is both an ISO and NIST standard. Moreover, many recent high-end
processors by Intel and AMD now provide built-in support for GCM via the
carryless multiply instruction. Together with the AES-NI instructions, fast au-
thenticated encryption (with associated data) is supported on the majority of
desktop processors by Intel and AMD.∗ Nevertheless, many processors in cur-
rent use lack fast AES and GCM support and existing legacy software may not
take advantage of the hardware support even if it is available. In such cases, a

∗Some future ARM processors will also have built-in support for AES.
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fast block cipher like S128 [1], combined with GCM or some other authen-
ticated encryption mode, might be desirable. Moreover, highly constrained
lightweight applications (e.g., RFID, sensor networks) can benefit from a fast
lightweight authenticated encryption mode combined with a fast lightweight
block cipher like S.

There is ongoing interest in developing authenticated encryption methods
which improve upon the AES + GCM combination in terms of either se-
curity, performance in some application space, or robustness.∗ For applica-
tions on highly constrained devices, particularly hardware devices, there have
been efforts to design lightweight hybrid algorithms which simultaneously
perform both encryption and authentication. Two examples of this type are
H-2 [5] and, more recently, ALE [4]. It is difficult to design such
hybrid algorithms. Many of them, including H (the precursor of
H-2) and ALE, have been cryptographically broken (see [12], [7]).
Moreover, in many lightweight applications, a block cipher might be used to au-
thenticate devices, not data, and there is a fairly large overhead which may not
be eliminated when using hybrid designs. Perhaps a better approach would be
to design a lightweight mode which could optionally be used with a lightweight
block cipher when data authentication is required.

In the remainder of this paper, we present performance data for S128 + M,
where M is one of the authenticated encryption modes GCM, CCM, EAX, OCB3,
COPA, or PAEAD-1. We chose to consider modes that were NIST and ISO
standards,† but also included COPA and PAEAD-1, which we found interesting
because of their simplicity, performance, unpatented status and/or suitability
for use in lightweight applications.

2. T S B C

S [1] is a family of block ciphers designed by the National Security Agency
for use in highly constrained environments. The block ciphers come in a range
of block and key sizes and can be used on a variety of hardware and software

∗See, for example, recent research from the DIAC workshops and the ongoing CAESAR
competition, competitions.cr.yp.to/caesar.html.

†Technically, OCB2 is an ISO standard, not OCB3.
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based platforms. For the purposes of this paper, we only consider S128/128,
the S block cipher with a 128-bit block and key size. This is a natural choice
since the authentication modes that we consider are typically specified for use
with 128-bit block ciphers.

The round function for S128 is the key-dependent map Rk : GF(2)64
×

GF(2)64
→ GF(2)64

× GF(2)64 defined by

Rk(x, y) = ((S−8(x) + y) ⊕ k,S3(y) ⊕ (S−8(x) + y) ⊕ k),

where S−8 corresponds to a right rotation by 8 bits and S3 a left rotation by 3
bits, both on 64-bit words. S128/128 steps 32 times and uses 32 64-bit round
keys derived using the S128 key schedule. The key schedule is also very
simple but isn’t necessary to understand for the purposes of this paper. Eight
parallel encryptions under S128/128 can be performed using the 128-bit
SSE registers on an Intel Xeon E5640 processor (see Appendix), and a rate of 2.6
cycles/byte can be achieved.

The high speed of Smakes it a good choice when fast encryption is necessary
and high-speed AES implementations are either not available or not desired.
For example, in an application where a high-end server needs to send encrypted
data to many low-end, highly constrained devices (e.g., RFID, sensor networks),
AES might not be the best solution if there are strict size or power requirements.
Since Swas designed for such environments it might be preferred on such
devices and would then be required on any back end server communicating
with them.

3. A  A EM

When deciding on an authenticated encryption mode, there are various at-
tributes to consider. An AE mode can be either on-line or off-line, based on
whether or not encryption can be performed without knowing the final bit
length of the data to be encrypted. Most, but not all, AE modes require a nonce,
i.e., a variable that must be changed for each message encrypted with a given
key; nonce reuse can lead to security issues. Existing AE modes are either one-
pass or two-pass, depending on how many calls of the block cipher are required
to perform authenticated encryption. If the encryption of a data block can be
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performed simultaneously with the block before it, then an AE mode is said
to be parallelizable. Parallelizable modes can offer greatly increased through-
put, if the resources are available that allow for encryptions to be performed in
parallel.

Table 3.1 summarizes the characteristics of each of the six modes we analyzed.

on-line one pass associated nonce parallelizable patent
data free free

GCM 4 4 4 4

CCM 4 4

EAX 4 4 4

OCB3 4 4 4 4

COPA 4 4 4 4 4

PAEAD-1 4 4 4 4 4

Figure 3.1: Authentication mode attributes

4. AM

In this section, we investigate performance aspects of the authenticated encryp-
tion modes GCM, CCM, EAX, OCB3, COPA, and PAEAD-1 using S128 as
the underlying block cipher. We provide a brief description of the mode and
discuss possible performance advantages and disadvantages. We also speculate
about the performance of the given mode in highly constrained environments,
though we do not provide any direct evidence to support our speculations,
i.e., we haven’t actually implemented the mode on a constrained device. Our
implementations were all done in C using GCC version 4.5.1 on an Intel Xeon
E5640 processor.
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4.1. GCM

GCM is a NIST and ISO standardized AEAD mode using counter mode for
encryption and hashing over a Galois field for authentication [10]. It was
published in 2004 and became an industry standard because of its flexibity of
usage, high speed, lack of patent encumberance and standardization by NIST
in 2007.

Software implementations of GCM can be adjusted to provide for fast authen-
ticated encryption at the expense of large code size, or for smaller code size at
the expense of speed. In hardware or software, however, especially in highly
constrained environments, GCM consumes a lot of resources. Each block of
data requires two block cipher calls for the encryption/authentication process,
and so GCM is not among the fastest AE modes. However, its high degree
of parallelism can make it competetive in environments where parallelism is
possible.

In our implementation of GCM + S, the performance was very poor due
to our inefficient GHASH computation. Indeed, our implementation ran in
28.4 cycles/byte. This was mostly due to our poor implementation and is not
representative of GCM performance. In Figure 5.1, we provide a good faith
estimate based on the performance data found in [9] which suggests that GCM
+ S could run at a rate of 5.4 cycles/byte for a very good (non AES-NI)
implementation.

4.2. CCM

CCM [14] is a NIST and ISO standardized AEAD mode which uses counter
mode for encryption and CBC-MAC mode for authentication. It was created
as an unpatented alternative to the patented OCB mode that had been recently
introduced by Rogaway, Bellare and Black [11]. CCM requires two block cipher
calls per block of encrypted data and one per block of associated data. Due to
its use of CBC-MAC mode, the authentication of the data is not parallelizable,
although the counter mode used for encryption is. CCM is not on-line, as the
length of the data must be known before the CBC-MAC computation can begin.
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In our implementation of CCM + S, we acheived an authenticated encryp-
tion rate of 9.7 cycles/byte. CCM and the related EAX were among the slowest
of the modes that we tested, mostly because they required two passes and did
not allow for parallelization.

CCM may be a good choice in highly constrained hardware or software envi-
ronments, if speed is not the main concern, and if the size of the message is
known in advance. The fact that CCM is not parallelizable may be irrelevant
for some applications. Both counter mode and CBC-MAC require very little
overhead from block to block; in particular, they don’t require complex data
formatting or expensive mask computation. In [4], a small hardware implemen-
tation of CCM requires about 1040 GE. The smallest implementation of S
in hardware requires 1280 GE (see [1]) so a rough estimate is that CCM + S
would require about 2320 GE. Finally, despite the shortcomings of CCM, it is
free to use and is a NIST standard.

4.3. EAX

EAX is an ISO standardized AEAD mode using counter mode for encryption
and a variation of the CMAC mode, called OMAC, for authentication [2]. It
was designed to be a more flexible alternative to the popular CCM mode.
Through its implementation of counter and OMAC modes, it retains many of
the properties of CCM while fixing some of its problems (e.g., EAX is on-line).
This comes at the expense of further complication to the overall design. Like
CCM, EAX requires two block cipher calls per block of encrypted data and
one per block of associated data, giving it a very similar rate of authenticated
encryption.

In our EAX implementation using S, we found it had performance very
similar to CCM, at around 9.7 cycles/byte. If code size or area are important,
EAX is probably not as well-suited as CCM for lightweight hardware or software
environments due to its greater overhead from the addition of a tweak and
message padding. However, by using OMAC instead of CMAC, EAX makes it
possible to do on-line encryption and to pre-process constant associated data,
and this makes it preferable to CCM in unconstrained environments. Like
CCM, it is free of licensing restrictions.
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4.4. OCB3

OCB3 [8] is an improvement to the ISO standardized OCB2 authenticated en-
cryption mode. OCB3 provides for encryption and authentication with a single
call to the block cipher, nearly doubling the average rate of encryption of two-
pass modes like CCM or EAX. OCB3 is also fully parallelizable, giving it even
greater performance benefits.

Our implementation of OCB3 + S was able to achieve a very fast authen-
ticated encryption rate of 3.5 cycles/byte, much higher than for any two-pass
mode. Krovetz and Rogaway [9] state that an optimized implementation of
OCB3 may have an overhead as low as 0.3 cycles/byte which would give the
combination of OCB3 + S a rate of around 2.9 cycles/byte, improving our
results. However, OCB3 has some drawbacks. In highly constrained environ-
ments, OCB3 is likely to use significant memory or code on software platforms,
and to require a significant amount of area in hardware. The most significant
issue with OCB3 is not with the mode itself, but with the fact that it is encum-
bered by licensing restrictions.∗ This appears to be the primary reason for its
slow adoption.

4.5. COPA

COPA [3] is a recent AEAD mode introduced at the Summer Design and Security
of Cryptographic Functions, Algorithms, and Devices Workshop in Albena, Bulgaria.†

It is advertised as a nonce-free, parallelizable AE mode that requires two block
cipher calls per block of encrypted data and one per block of associated data.
Designed to be flexible, it allows for pre-processing of constant associated data
and for on-line encryption. While COPA is not a standardized mode of authen-
ticated encryption, we found it interesting because of its lack of a nonce and
simple structure.

We could not find a formal paper describing the complete details of COPA, and
so our implementation of COPA + S is based on what we could deduce

∗Rogaway has recently relaxed, but not entirely eliminated, licensing restrictions associated
with OCB3.

†See www.cosic.esat.kuleuven.be/summer_school_albena/
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about COPA from the diagram presented at the summer program. This imple-
mentation was able to achieve a relatively high rate of 5.9 cycles/byte, putting it
between CCM/EAX and the one-pass mode OCB3 (and PAE, described below).
It could potentially be suitable for high performance, lightweight hardware and
software use, depending on how efficiently the masks can be generated.

4.6. PAE

PAE [13] is a relatively new family of one-pass AEAD modes. PAEAD-1 (the
variant of PAE used for our timing data) is an AEAD mode that aims to achieve
performance similar to OCB3 while using less memory and avoiding OCB3’s
licensing restrictions. It is parallelizable, on-line, and able to achieve encryp-
tion and authentication with only one block cipher call per block of data. The
PAE family also provides the user flexiblity in the inclusion of associated data
and allows memory to be optimized either for encryption or for decryption.
PAEAD-1 is the variant optimized for encryption; it requires only the block
cipher encryption algorithm to achieve authentication, but necessitates encryp-
tion and decryption for verification.

In our S implementation of PAEAD-1, we were able to achieve very fast
authenticated encryption at 3.4 cycles/byte, which was the best of the modes
we tested. PAEAD-1 has the advantage that it can compute its masks on
the fly using an LFSR, rather than relying on stored values computed during
pre-processing. This potentially makes PAEAD-1 attractive for lightweight
applications.

5. P R

Table 5.1 shows timing data for implementations of the AE modes we consid-
ered, using S128 as the underlying block cipher. To obtain the numbers in
the table, we applied the algorithm in question to a long (65536 byte) message
which had no associated data∗. All timing data was obtained using an Intel
Xeon E5640 64-bit processor, and our code, written in C, is not fully optimized,

∗Inclusion of associated data will tend to improve timing estimates
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leaving some room for improvement. However, these numbers are an accurate
estimate of the performance of each combination.

mode GCM CCM EAX OCB3 COPA PAEAD-1
rate (5.4) 9.7 9.7 3.5 5.9 3.4

Figure 5.1: Encryption/authentication rate in cycles/byte for the
combination S128 + mode. The GCM figure is an estimate.

There are a variety of considerations that go into the choice of an authenticated
encryption mode, and there is no single mode of the six we considered that we
would claim is the best for all situations. We conclude with a summary of the
strengths and weaknesses of each.

Although it has a larger code size and worse performance than some other
modes tested, GCM benefits from being both NIST and ISO standardized, and
from the fact that it’s widely deployed. EAX is a clear improvement to the older
CCM mode in high performance environments, but it is not NIST standardized,
and it is likely to require greater overhead and achieve poorer performance in
constrained environments. The simplicity and low overhead of CCM could
make it effective in highly constrained environments, but it requires two block
cipher calls per block, and the message length must be known before the CBC-
MAC can begin. While OCB3 generally has very high performance, it requires
relatively large code size and computational overhead for the creation of the
masks, and this can affect its suitability for constrained environments. Addi-
tionally, its licensing restrictions have limited its adoption. COPA is interesting
because it eliminates the need for a nonce, and because it performs quite well
for a two-pass mode. However, it is not yet fully specified in the literature, and
it is slow when compared to the one-pass modes tested.

All the AE modes we analyzed provide authenticated encryption with per-
formance adequate for most requirements. We were particularly interested,
however, in finding an AE mode that, combined with S, could potentially
achieve high performance in constrained environments. Of the modes we ana-
lyzed, the PAE family seems the most promising for a practical implementation
in a lightweight setting. These modes require only one block cipher call per
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block, use a relatively small amount of memory, and have no licensing restric-
tions. They are also flexible, allowing for the algorithm to be tuned to the
application. Therefore, the combination S + PAE seems to offer superior
performance for lightweight applications. Because our current results remain
somewhat speculative, we encourage further research in this area.
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6. A
Below is the source code used for the parallel implementations of S128.
This code performs eight parallel S128 encryptions. The 128-bit crypto-
variable K is pre-expanded to generate 32, 64-bit round keys k0, . . . , k31. These
are stored in 32, 128-bit SSE registers k[0] = (k0, k0), k[1] = (k1, k1), . . ., k[31] =

(k31, k31). If the ki are of type ull(unsigned long long) then, for example,
k[0] = _mm_set_epi64x(k0, k0). The array of doubled round keys, k[i], of type
__m128i is passed to the encryption function. The eight 128-bit plaintext and
ciphertext blocks are stored in the arrays pt[ ] and ct[ ] of type ull. The
first block of plaintext is (pt[1],pt[0]), the next is (pt[3],pt[2]), etc., and
similarly for the ciphertext.

The code was compiled using GCC version 4.5.1 with the -O3 option for speed.
The -msse4 option is also required. The resulting encryption rate is 2.6 cy-
cles/byte on an Intel Xeon E5640 processor. The x86intrin.h header file also
needs to be included.



#define ull unsigned long long
#define XOR _mm_xor_si128
#define SHFL _mm_shuffle_epi8
#define SET _mm_set_epi64x
#define STR _mm_store_si128
#define ADD _mm_add_epi64
#define SWAP _mm_set_epi64x(0x080f0e0d0c0b0a09LL,0x0007060504030201LL)
#define LOW _mm_unpacklo_epi64
#define HIGH _mm_unpackhi_epi64
#define SR _mm_srli_epi64
#define SL _mm_slli_epi64

#define R(X,Y,k) (X[0]=SHFL(X[0],SWAP), X[1]=SHFL(X[1],SWAP), X[2]=SHFL(X[2],SWAP),\
X[3]=SHFL(X[3],SWAP), X[0]=ADD(X[0],Y[0]), X[1]=ADD(X[1],Y[1]),\
X[2]=ADD(X[2],Y[2]), X[3]=ADD(X[3],Y[3]),\
X[0]=XOR(X[0],k), X[1]=XOR(X[1],k), X[2]=XOR(X[2],k), X[3]=XOR(X[3],k),\
Z[0]=Y[0], Z[1]=Y[1], Z[2]=Y[2], Z[3]=Y[3],\
Z[0]=SL(Z[0],3), Z[1]=SL(Z[1],3), Z[2]=SL(Z[2],3), Z[3]=SL(Z[3],3),\
Y[0]=SR(Y[0],61), Y[1]=SR(Y[1],61), Y[2]=SR(Y[2],61), Y[3]=SR(Y[3],61),\
Y[0]=XOR(Y[0],Z[0]), Y[1]=XOR(Y[1],Z[1]), Y[2]=XOR(Y[2],Z[2]),\
Y[3]=XOR(Y[3],Z[3]), Y[0]=XOR(X[0],Y[0]), Y[1]=XOR(X[1],Y[1]),\
Y[2]=XOR(X[2],Y[2]), Y[3]=XOR(X[3],Y[3]))

void Encrypt(ull pt[],ull ct[],__m128i k[])
{
int i;
__m128i X[4],Y[4],Z[4];

X[0]=SET(pt[3],pt[1]); Y[0]=SET(pt[2],pt[0]);
X[1]=SET(pt[7],pt[5]); Y[1]=SET(pt[6],pt[4]);
X[2]=SET(pt[11],pt[9]); Y[2]=SET(pt[10],pt[8]);
X[3]=SET(pt[15],pt[13]); Y[3]=SET(pt[14],pt[12]);

for(i=0;i<32;i++) R(X,Y,k[i]);

STR((__m128i *)ct,LOW(Y[0],X[0]));
STR((__m128i *)(ct+2),HIGH(Y[0],X[0]));

STR((__m128i *)(ct+4),LOW(Y[1],X[1]));
STR((__m128i *)(ct+6),HIGH(Y[1],X[1]));

STR((__m128i *)(ct+8),LOW(Y[2],X[2]));
STR((__m128i *)(ct+10),HIGH(Y[2],X[2]));

STR((__m128i *)(ct+12),LOW(Y[3],X[3]));
STR((__m128i *)(ct+14),HIGH(Y[3],X[3]));

}
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