
Algebraic Algorithms for LWE

Martin R. Albrecht1, Carlos Cid1, Jean-Charles Faugère2, and Ludovic Perret2

1 Information Security Group
Royal Holloway, University of London

Egham, Surrey TW20 0EX, United Kingdom
2 INRIA, Paris-Rocquencourt Center, POLSYS Project

UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France
CNRS, UMR 7606, LIP6, F-75005, Paris, France

martin.albrecht@rhul.ac.uk, carlos.cid@rhul.ac.uk,
jean-charles.faugere@inria.fr, ludovic.perret@lip6.fr

Abstract. The Learning with Errors (LWE) problem, proposed by Regev in 2005, has become an
ever-popular cryptographic primitive, due mainly to its simplicity, flexibility and convincing theoretical
arguments regarding its hardness. Among the main proposed approaches to solving LWE instances —
namely, lattice algorithms, combinatorial algorithms, and algebraic algorithms — the last is the one
that has received the least attention in the literature, and is the focus of this paper. We present a detailed
and refined complexity analysis of the original Arora-Ge algorithm, which reduced LWE to solving a
system of high-degree, error-free polynomials. Moreover, we generalise their method and establish the
complexity of applying Gröbner basis techniques from computational commutative algebra to solving
LWE. As a result, we show that the use of Gröbner basis algorithms yields an exponential speed-up
over the basic Arora-Ge algorithm. On the other hand, our results show that such techniques do not
yield a subexponential algorithm for the LWE problem.
We also apply our algebraic algorithm to the BinaryError-LWE problem, which was recently intro-
duced by Micciancio and Peikert. We show that BinaryError-LWE in dimension n can be solved in
subexponential time given access to a quasi-linear number of samplesm under a regularity assumption.
We also give precise complexity bounds for BinaryError-LWE given access to linearly many samples.
Our approach outperforms the best currently-known generic heuristic exact CVP solver as soon as
m/n ≥ 6.6.
The results in this work depend crucially on the assumption that the encountered systems have no spe-
cial structure. We give experimental evidence that this assumption holds and also prove the assumption
in some special cases. Therewith, we also make progress towards proving Fröberg’s long-standing
conjecture from algebraic geometry.

1 Introduction

Learning with Errors. Since its introduction, the Learning with Errors problem (LWE) has proven to be
a rich and versatile source of many innovative cryptographic constructions, such as the oblivious transfer
protocol by Peikert et al. [37], a leakage-resilient cryptosystem by Akavia et al. [1], and homomorphic
encryption [3, 15, 30], among many others.

Definition 1 (LWE [38, 39]). Let n,m ≥ 1 be integers, q be an odd positive integer, χ be a probability
distribution on Zq and s ∈ Znq be a secret vector. We denote by L(n)

s,χ the probability distribution on Zn×mq ×
Zmq obtained by choosing A ∈ Zn×mq uniformly at random, sampling a vector e ∈ Zmq according to χm,
and returning (A, s · A + e) = (A, c) ∈ Zn×mq × Zmq . LWE is the problem of finding s ∈ Znq from

(A, s ·A+ e) sampled according to L(n)
s,χ.

In what follows, χα,q will denote a discrete Gaussian distribution over Z which returns an integer x with
probability exp

(
−π x2/s2

)
/
∑
y∈Z exp

(
−π y2/s2

)
, where s = αq, considered modulo q. A typical set-

ting is αq = nε, with 0 ≤ ε ≤ 1. It has been shown that as soon as ε > 1/2, worst-case GAPSVPÕ(n/α)

reduces to average-case LWE [14, 36, 38, 39]. Thus, any algorithm solving LWE for ε > 1/2 can solve
GAPSVPÕ(n/α). It is widely believed that only exponential classical and quantum algorithms exist for
solving GAPSVPÕ(n/α).
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Arora and Ge’s algorithm. In [5], Arora and Ge proposed the first algebraic algorithm to solve the LWE
problem. Their approach reduces LWE to finding the common root of a multivariate system of high-
degree, error-free polynomials. The proposed algorithm solves LWE in 2Õ(n2ε) operations, hence being
sub-exponential when ε < 1

2 . This shows that Regev’s original reduction in [38, 39] is indeed tight.
In more detail, let (a, c) ∈ Znq × Zq be an LWE sample and write f = c −

∑n
i=1 ai · xi where the

xi are variables. If we assume that the error e is in the interval {−T, . . . , T}, then the polynomial F =

f ·
∏T
i=1(f + i) · (f − i) of degree 2T + 1 evaluates to zero when xi = si. Thus, if T < bq/2c then

F = 0 is a constraint on the possible values for the secret vector s, and collecting many such equations and
solving the resulting multivariate high-degree system of equations allows to recover the secret. In [5] these
systems are solved by the linearisation method, i.e. first replacing monomials with a new linearised variable
and then by solving the resulting linear system of equations. This method requiresO

(
n2T+1

)
equations to

succeed, which could be obtained by collecting more samples. However, since χα,q is a discrete Gaussian
distribution, requesting more samples also increases the probability that the noise of at least one sample
falls outside of the chosen interval {−T, . . . , T} invalidating the constraint F = 0. Hence, as the number
of samples grows so does the required value of T so that the polynomial system remains error-free. This
on the other hand may require a further increase in the number of samples (cf. Section 3). This trade-off
is analysed in [5] to obtain the complexity of the Arora-Ge algebraic algorithm to solve LWE. We note
however that the discussion above implies that the algorithm from [5] is not applicable if the number of
available samples is smaller than O

(
n2T+1

)
.

In Section 4, we make a detailed analysis of the original Arora-Ge algorithm, and derive the precise com-
plexity of applying linearisation as described above. The results of our analysis are given in the following
theorem.

Result 1 Let n, q, σ = αq/
√
2π be parameters of an LWEχα,q instance, 2 ≤ ω < 3 be the linear algebra

constant and DAG = 8σ2 log n+ 1.
If DAG ∈ o(n) then the Arora-Ge algorithm solves the computational LWE problem in

O
(
2
ω·DAG log n

DAG · σ q log q
)
= O

(
2 8ω σ2 logn(logn−log(8σ2 logn)) · poly(n)

)
operations and in

O
(
2ω·n log

DAG
n · σ q log q

)
= O

(
2ω n log(8σ2 logn)−ω n logn · poly(n)

)
operations if n ∈ o(σ2 log(n)).

Specialising to σ =
√
n we obtain a complexity of O

(
2(2+ε)ωn log logn

)
. Our results shows that, in this

case, the original Arora-Ge algorithm is asymptotically slower than the BKW algorithm [2] and lattice
reduction if sieving is used to implement the SVP oracle, but asymptotically faster than lattice reduction if
enumeration is used to implement the SVP oracle [4].

Gröbner bases. Gröbner bases are fundamental tools in commutative algebra and algebraic geometry. A
Gröbner basis G for an ideal I in a polynomial ring is a basis such that any leading term of any element
in the ideal I is divisible by a leading term of an element in G. In univariate polynomial rings the notion
of a Gröbner basis coincides with the greatest common divisor; for linear polynomials it coincides with
the notion of a row echelon form. Gröbner bases go back to the seminal work of Buchberger [16, 17, 19]
who also gave a first algorithm for computing them by showing that repeated computation and reduction
of S-polynomials computes a Gröbner basis. Gröbner basis algorithms have been frequently applied (suc-
cessfully) on the algebraic cryptanalysis of a range of cryptographic schemes [27].
In this work we are interested in the fact that Gröbner bases allow to find all common roots of multivariate
polynomial systems. Indeed, the linearisation approach described above is a special case of a Gröbner basis
computation. In contrast to this special case, though, general Gröbner basis algorithms are also applicable if
less thanO

(
nd
)

polynomials of degree d are available – at the cost of increased computational complexity.
We give more background on Gröbner bases in Section 2.
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In Section 5 we show that applying standard Gröbner basis algorithms yields an exponential speed-up for
solving LWE compared to Result 1, under a regularity assumption. In particular, we arrive at the following
theorem.

Result 2 Let ω be the linear algebra constant, letH2(x) = −x log2(x)−(1−x) log2(1−x) be the binary
entropy function and C some known constant which can be explicitly computed. Let (ai, bi)i≥1 be elements

of Znq × Zq sampled according to LWEχα,q with a standard deviation σ =
√
n√
2π

. There is an algorithm
solving the computational LWE problem in

O
(
2
n
(
ω (1+C)H2( C

1+C )+
π·log2(e)

4

))
(1)

operations with success probability of at least 1− 2
π
√
n
= 1− o(1), if the system of equations encountered

during the execution of the algorithm is semi-regular.

Hence, applying Gröbner basis algorithms gives an exponential speed-up over the algorithm from [5]. This
places it in the same complexity class as the BKW algorithm or lattice reduction when sieving implements
the SVP oracle, albeit with a larger leading constant in the exponent. It is worth noting that all known algo-
rithms for achieving time complexity 2O(n) – BKW, sieving, Gröbner bases – also require 2O(n) memory.

BinaryError-LWE. A variant of LWE with errors values in {0, 1} (or any uniform range) was recently
introduced by Micianccio and Peikert in [35]. This generalises an earlier result of Döttling and Müller-
Quade [22] who first introduced a variant of LWE with uniform errors whilst keeping a strong security
reduction to lattice problems. These two works highlight the current interest of the cryptographic com-
munity in studying variants of LWE with small non-Gaussian errors. From a practical perspective these
variants are interesting because they allow to forgoe Gaussian sampling (with large parameters) which is
often the most expensive step when implementing lattice-based cryptography. In this regard [35] represents
a significant step forward as it allows to sample the error from a binary distribution while still regaining a
reduction to GAPSVP, albeit with a severe limit on the number of samples m:

Theorem 1 (BinaryError-LWE [35]). Let n,m = n
(
1 + 1

c log(n)

)
for c > 1 be integers, and q ≥ nO(1)

be a sufficiently large polynomially bounded (prime) modulus. Then, solving LWE with parameters n,m, q
and independent uniformly random binary errors is at least as hard as approximating lattice problems in
the worst-case on Θ

(
n/ log(n)

)
-dimensional lattices within a factor Õ(

√
n · q).

As already pointed out in [22, 35], the algorithm from [5] yields a polynomial-time algorithm for solving
BinaryError-LWE as soon as m = O

(
n2
)
. Hence, there is a gap between m = n

(
1 + 1

c log(n)

)
for

c > 1, where the hardness reduces to standard LWE, and m = O
(
n2
)

where the problem is known to
be easy due to the Arora-Ge algorithm. However, understanding the hardness of the problem for samples
within this interval should be of great interest: applications in lattice-based cryptography typically require
the provision of n

(
1 + 1

c log(n)

)
< m < O

(
n2
)

samples, e.g. m = O (n) or m = Õ(n). It is hence a
natural and relevant open question how the security of BinaryError-LWE degrades as more samples are
made available.
From [5] and our generalisation using Gröbner basis algorithms, it follows that the complexity of solving
LWE with uniform errors in {−T, . . . , T} is at most the cost of computing a Gröbner basis for m polyno-
mials of degree 2T + 1 in n variables. In Section 6, we show – under a similar regularity assumption as
above – that BinaryError-LWE can be solved in sub-exponential time as soon as the number of samples is
quasi-linear, e.g. m = O (n log log n).

Result 3 Let ω be the linear algebra constant and letH2(x) = −x log2(x)−(1−x) log2(1−x) be the bi-
nary entropy function. Ifm = O (n log log n), then there exists an algorithm which solves the BinaryError-
LWE problem in

O
(
m2 2

ω n log log logn
8 log logn

)
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operations if the equation system encountered in the execution of the algorithm is semi-regular.

If m = C · n, with C ≥ 1, then there exists an algorithm which solves the BinaryError-LWE problem in

O
(
n2 2ω n(1+β)H2( β

1+β )
)

operations with with β =
(
C − 1

2 −
√
C(C − 1)

)
if the system of equations encountered during the

execution of the algorithm is semi-regular.

More concretely, the algorithm discussed in this paper can solve the BinaryError-LWE problem in dimen-
sion n in time n2 · 20.344n as soon as m ≥ 6.6n. For comparison, the best currently-known generic exact
CVP solver [11] takes time 20.377n. We note that many other LWE solving strategies such as combinatorial
algorithms [2] or lattice reduction in the low advantage regime [34] do not apply in this setting.

Our results (Theorem 7, Section 6) show therefore that, despite its attractive implementation features,
BinaryError-LWE should be ruled out for cryptographic applications that require a quasi-linear number of
samples. Finally we note that while our results can also apply to the natural generalisations of BinaryError-
LWE to any uniform error in a bounded interval {−T, . . . , T} [35, Theorem 4.6], in this paper we focus
on the BinaryError-LWE case for brevity.

Regularity Assumptions. Our complexity estimates depend crucially on two algebraic assumptions about
the systems we consider. The assumption is as follows for BinaryError-LWE:
Assumption 2. Let (A, s · A + e) = (A, c) ∈ Zn×mq × Zmq be sampled according to L(n)

s,U(F2)
, and let

P (x) = X(X − 1). We define:

f1 = P
(
c1 −

n∑
j=1

sjAj,1
)
= 0, . . . , fm = P

(
cm −

n∑
j=1

sjAj,m
)
= 0.

It holds that 〈f1, . . . , fm〉 is semi-regular (Definition 2, Section 2), i.e. has only trivial algebraic depen-
dencies.

For general LWE, Assumption 1 is similar but we consider a polynomial P (X) = X
∏CGB·σ
i=1 (X+ i)(X−

i), where CGB depends on the parameters of the Gaussian distribution.

It is believed that random systems of equations are semi-regular. Hence, our semi-regularity assumptions
essentially state that our systems are neither easier nor harder to solve than random systems of equations.

If the systems considered in this work were easier than random systems this would imply that the analysis
of Section 5 could be much improved and lead to progress towards a sub-exponential classical algorithm
for solving GAPSVP. On the other hand, if these systems were harder to solve than random systems,
this would reveal new algebraic dependencies amongst LWE samples, which could likely also be used
to improve (non-algebraic) solving strategies. Hence, our assumption in this paper that there is no special
structure in our problem instances seems to be a reasonable one. We note also that Gröbner basis algorithms
do not rely on this regularity assumption. Indeed, they have been successfully used in the past to exploit
that a problem instance which does not behave like a semi-regular sequence [27].

Section 7.1 reports on our experimental verification that Assumptions 1 and 2 hold for reasonable parameter
sets. For example, for BinaryError-LWE, we have verified them for n ≤ 100.

Fröberg’s Conjecture. Our assumptions are closely related to the long-standing Fröberg conjecture [28]
in algebraic geometry which states that semi-regular sequences form a dense subset among the set of all
sequences. More precisely, the Fröberg conjecture states that generically the rank of some linear map
associated to Macaulay matrices (the matrices occurring in a Gröbner basis computation) is maximal. A
property is said to be generic if it holds on a Zariski open subset ZO when the characteristic of the base field
K is 0. In Zariski’s topology, a closed subset is defined as the vanishing set of algebraic equations. Hence,
we can find a polynomial h(a) in Z[a] which does not depend on the field K such that h(a) 6= 0⇒ a ∈ ZO.
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The main difficulty in proving Fröberg’s conjecture is to prove that the polynomial h is not identically zero
or that ZO is not empty (see [29]).
To prove Fröberg’s conjecture it is sufficient to find one explicit family of polynomials which can be proven
semi-regular for any m and n. Proving Assumptions 1 or 2 would provide such family and hence prove
Fröberg’s conjecture. Furthermore, any non-trivial partial results on our assumptions would lead to progress
on the general Fröberg’s conjecture. over a sufficiently big finite field, sequences with the same number of
polynomials (m) and same number of variables (n),m = n+1 in characteristic 0,m polynomials of degree
2 with n ≤ 11, and m polynomials of degree 3 with n ≤ 8 [20, 28, 29]. Indeed, Fröberg and Hollman [29]
already investigated semi-regularity for powers of generic linear forms. In characteristic 0, [29, Lemma 2.1]
proves that a sequence of n+ 1 squares of generic linear forms in n variables is generically semi-regular.
In Section 7 we report on progress towards proving Fröberg conjecture by investigating our assumptions.
In Theorem 8 (Section A.2), we first prove that the equations f1, . . . , fm generated for BinaryError-LWE
are linearly independent with high probability. Secondly, we show that the sequence f1, . . . , fm is semi-
generic (Definition 3), i.e. {xi · fj}1≤j≤n1≤i≤n spans a vector space of maximal dimension. We prove that such
algebraic independence at low degree holds with m ≤ n + bn−22 c in Theorem 10. This improves on a
result of [29, Theorem 2.2] where Fröberg and Hollman proved that the squares of m generic linear forms
are semigeneric as long as m ≤ n+ 15 and n ≤ 6. Finally, we consider algebraic independence at higher
degree and prove in Theorem 11 that BinaryError-LWE samples give rise to a semi-regular sequence with
high probability for m = n+ 1 and for a sufficiently large field.
In closing, we note that Fröberg’s conjecture is similar in spirit to the Gaussian Heuristic often relied
on in the complexity analysis of lattice-reduction algorithms. For example, the complexity analysis of the
currently best know heuristic CVP solver [11] mentioned above and predictions for the quality of output for
the BKZ algorithm [18] rely on it. Where Fröberg’s conjecture asserts that most ideals have a predictable
degree of regularity, i.e. no special structure deviating from this expectation, the Gaussian Heuristic asserts
that for most lattices the shortest vectors of random lattices have a predictable norm, i.e. no special structure
deviating from this expectation.

Open problems. While computational commutative algebra provides a rich resource to improve on the re-
sults in [5] for solving LWE and variants thereof, our results indicate that it is unlikely that sub-exponential
algorithms for solving LWE can be found by directly applying standard Gröbner basis algorithms to LWE.
A promising avenue, however, is to combine geometric with algebraic techniques to improve our under-
standing of the hardness of LWE. Secondly, applying algebraic techniques to Ring-LWE, which offers a
much richer algebraic structure, is an area for future work.

2 Computation of Gröbner Bases

Lazard [32] showed that computing a Gröbner basis for a system of homogeneous polynomials f1 . . . , fm is
equivalent to perform Gaussian elimination on the Macaulay matricesMacaulay

d,m for d, where min
(
deg(f1),

. . . ,deg(fm)
)
≤ d ≤ D for some integer D. The Macaulay matrixMacaulay

d,m for a set of homogeneous
polynomials f1 . . . , fm is defined as the coefficient matrix of (ti,j · fi) where 1 ≤ i ≤ m and ti,j runs
through all monomials of degree d − deg(fi). It can be shown that Macaulay matrices up to degree d can
be used to compute a partial Gröbner basis, called d-Gröbner basis. Lazard showed that for d big enough,
a d-Gröbner basis is indeed a Gröbner basis:

Theorem 2 ( [32]). Let q be a prime and let f = (f1, . . . , fm) ∈ (Zq[x1, . . . , xn])m be homogeneous
polynomials and ≺ be a monomial ordering. There exists a positive integer D for which Gaussian elimi-
nation on allMacaulay

d,m (f1, . . . , fm) matrices for d, 1 ≤ d ≤ D computes a Gröbner basis of 〈f1, . . . , fm〉
w.r.t. to ≺.

It follows that the complexity of computing a Gröbner basis is bounded by the complexity of performing
Gaussian elimination on the Macaulay matrices up to some degree D. In general, computing the maxi-
mum degree occurring in a Gröbner computation is a difficult problem. However, for a specific family of
polynomial systems this degree is known [6–8, 10].
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Definition 2 (Semi-regular Sequence [8, 10]). Let m ≥ n, and f1, . . . , fm ∈ Zq[x1, . . . , xn] be homo-
geneous polynomials of degrees d1, . . . , dm respectively and I the ideal generated by these polynomials.
The system is said to be a semi-regular sequence if the Hilbert polynomial [19] associated to I w.r.t. the
grevlex order is:

HP(z) =

[∏m
i=1(1− zdi)
(1− z)n

]
+

, (2)

with [S]+ being the polynomial obtained by truncating the series S before the index of its first non-positive
coefficient. We shall call degree of regularity of a semi-regular sequence the quantity:

1 + deg
(
HP(z)

)
.

This degree of regularity is the degree D involved in Theorem 2 for a semi-regular sequence.

Finally, let f1, . . . , fm ∈ Zq[x1, . . . , xn] be a sequence of affine polynomials. We denote by fH1 , . . . , f
H
m ∈

Zq[x1, . . . , xn] the corresponding homogeneous components of highest degree. We shall say that f1, . . . , fm
is semi-regular if the sequence fH1 , . . . , f

H
m is semi-regular.

Throughout this paper, we will use the following complexity results about computing Gröbner bases for
semi-regular sequences.

Proposition 1 (adapted from [9]). Let F = (f1, . . . , fm) ∈ (Zq[x1, . . . , xn])m be affine polynomials
with m > n. If f1, . . . , fm is semi-regular, then the number of operations in Zq required to compute a
Gröbner basis for any admissible order is bounded by:

O
(
mDreg

(
n+Dreg

Dreg

)ω)
, as Dreg →∞, (3)

where 2 ≤ ω < 3 is the linear algebra constant and Dreg is the degree of regularity of 〈f1, . . . , fm〉.

In general, (3) only holds for the grevlex monomial ordering, but efficient algorithms exist to convert a
Gröbner basis from one ordering to another [26]. However, in our case where m > n we expect a unique
solution which implies the Gröbner bases with respect to all monomial orderings are identical and the issue
does not arise (cf. [12]).

The complexity bound (3) is pessimistic as we do not take the particular structure of the matrices involved
into account. Typically, Macaulay matrices have huge rank defects which correspond to useless compu-
tations. More recent algorithms such as F4 [23] and F5 [24] take advantage of the structure of Macaulay
matrices and avoid some or all of these useless computations. This leads to considerable speed-ups in prac-
tice [25, 27] and in theory [9]. However, to simplify the asymptotical analysis we apply Theorem 2 which
performs row reductions on Macaulay matrices.

The following classical approximation of the binomial coefficient due to Stirling will be useful to prove
some of our results below.

Lemma 1. Let H2(x) = −x log2(x) − (1 − x) log2(1 − x) be the binary entropy. For n and k large
enough, we have log2

(
n
k

)
≈ nH2

(
k
n

)
.

Similarly, we have the following lemma.

Lemma 2.

log

(
n+D

D

)
≈

D log(n/D), if D ∈ o(n),

n log(D/n), if n ∈ o(D).

This follows easily from Stirling’s expansion of the binomial.
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3 The Arora & Ge Algorithm

The Arora & Ge algorithm proceeds by generating a non-linear system of (error-free) multivariate equations
from LWE samples by making use of the following well-known fact about the Gaussian distribution.

Lemma 3. Let χ denote the Gaussian distribution with standard deviation σ. Furthermore, for x > 0, we
denote Q(x) = 1

2

(
1− erf

(
x√
2

))
. Then, for all C > 0, it holds that:

Pr[e $← χ : |e| > C · σ] ≈ 2×Q(C) ≤ 2

C
√
2π
e−C

2/2 ∈ eO(−C
2).

That is, for a C > 0, elements sampled from a Gaussian distribution take only values on the interval
[−C · σ, . . . , C · σ] of Zq with probability at least 1− eO(−C

2) if we represent elements in Zq as integers
in [−b q2c, . . . , b

q
2c]. Moreover, if e $← χ then P (e) = 0 for

P (X) = X

C·σ∏
i=1

(X + i)(X − i),

with probability at least 1− eO(−C
2). Clearly P is of degree 2C · σ + 1 ∈ O (C · σ).

It follows that if (ai, bi) = (ai, 〈ai, s〉+ ei) ∈ Znq × Zq , and ei
$← χ, then

P
(
− b+

n∑
j=1

(ai)(j)xj
)
= 0, (4)

with probability at least 1 − eO(−C
2). Each sample (ai, 〈ai, s〉 + ei) = (ai, bi) ∈ Znq × Zq allows to

generate a non-linear equation of degree 2C · σ + 1 in the n components of the secret s which holds with
probability 1− eO(−C

2).

The Arora & Ge algorithm then proceeds by generating MAG independent equations of the form (4), to be
then solved by linearisation. However, a value for C – denoted by CAG – occurring in Lemma 3 has to be
chosen sufficiently large so that all errors ei lie with high probability in the interval [−CAG · σ, . . . , CAG ·
σ] ⊆ Zq , i.e. such that the secret s is indeed a common solution of theMAG equations. To this end, let SAG

be the system of equations generated from MAG equations as in (4) and bound the probability of failure by
the union bound:

pf =MAG × Pr[e $← χα,q : |e| > CAG · σ] ≤
MAG

eO(C
2
AG)

.

Hence, pf is an upper bound on the probability that the secret s ∈ Znq is not a solution to SAG . Let also
DAG = 2CAG σ + 1 be the degree of the equations occuring in SAG. It is shown in [5] (cf. Section 4) that
taking CAG ∈ Õ(σ) allows us to make the probability of failure negligible.

In summary, the Arora & Ge algorithm reduces solving LWE to linearisation of a system ofMAG equations
of degree DAG = 2CAG σ + 1 ∈ Õ(σ2). In particular, the following theorem holds:

Theorem 3 ( [5]). Let DAG < q. The system obtained by linearizing

MAG = O
((

n+DAG

DAG

)ω
σ q log q

)
= nO(DAG) = 2Õ(DAG)

equations as in (4) has at most one solution with high probability.

Note that O
((
n+DAG

DAG

))
equations is sufficient to linearise the system. The extra factor σ q log q allows to

prove that the linearised system has at most one solution with high probability [5]. The overall complexity
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of the Arora-Ge algorithm is the cost of performing Gaussian elimination on a matrix of size MAG ×(
n+DAG

DAG

)
, i.e.

CplxAG = nO(DAG) = 2Õ(σ2) = 2Õ(n2ε).

Note also that, if we have the standard deviation σ = nε, then the algorithm requires 2Õ(n2ε) LWE samples
for performing the linearisation step. It follows that the Arora & Ge algorithm is subexponential when
ε < 1/2.

4 Refined Analysis of the Arora & Ge Algorithm

We note that the analysis above and in [5] leaves much room for improvements, as it hides not only con-
stants in the exponent but also logarithm factors. In this section, we make a more refined analysis of the
complexity of the Arora & Ge algorithm when using the linearisation method, so that we can then compare
potential improvements due to the application of Gröbner bases in Section 5.

As established in the previous section, the overall complexity of solving an LWE instance with the Arora
& Ge algorithm is that of executing Gaussian elimination on a matrix of size MAG ×

(
n+DAG

DAG

)
. Gaussian

elimination on an m × n matrix of rank r has complexity O
(
mnrω−2

)
[31]. The Arora & Ge algorithm

hence has a complexity of

O

(
MAG ·

(
n+DAG

DAG

)ω−1)
= O

(
MAG ·

(
n+ 2CAG σ + 1

2CAG σ + 1

)ω−1)
.

We now consider the bound on CAG.

Lemma 4. Let n, q, σ = αq/
√
2π be parameters of an LWEχα,q instance where q = poly(n). Let p′f ∈

[0, 1] be a constant upper bound on the probability of failure and

CAG ≤ 2σ log n+ a1/2 ≈ 4σ log n,

with a = 4(σ log n)2 + 2 log(σ q log q)− 2 log p′f + 2 log n. Finally, let also DAG = 2CAG σ + 1. Then,
the system obtained by linearizing

(
n+DAG

DAG

)
σ q log q equations of degree as in (4) is correct, i.e. the secret

is a zero of all the polynomials, with probability bigger than 1− p′f .

Proof. The probability of failure is upper bounded by:

pf =MAG × Pr[e $← χα,q : |e| > CAG · σ] ≈
2
(
n+DAG

DAG

)
σ q log q

√
2π CAG eC

2
AG/2

<

(
n+DAG

DAG

)
σ q log q

CAG · eC
2
AG/2

.

We bound
(
n+DAG

DAG

)
by nDAG . While this approximation is rather loose, it allows to simplify our expression

sufficiently to recover a closed form of the complexity. With this simplification, our goal is to find CAG

such that:

0 ≤ nDAG · σ q log q
CAG · eC

2
AG/2

= p′f ≤ 1.

That is:
elog

(
σ q log q

)
e(2CAG σ+1) logn

elog p
′
f ·
(
elogCAG · eC2

AG/2
) = 1.

Thus we need to solve

0 = log(σ q log q) + 2CAG σ log n+ log n− logCAG − log p′f − C2
AG/2

> log(σ q log q) + 2CAG σ log n+ log n− log p′f − C2
AG/2
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for CAG. The last line has 2 roots:

[R1 = 2σ · log(n)− a1/2, R2 = 2σ · log(n) + a1/2],

with a = 4(σ log n)2 + 2 log(σ q log q)− 2 log p′f + 2 log n.

Note that a1/2 > 2σ log(n) and hence R1 < 0. Thus, the smallest possible value for CAG is R2. Now,
assume that q ∈ poly(n), i.e. q ≈ nc. Also, recall that p′f is a constant. Thus, for n big enough:

a = 4(σ log n)2 + 2 log(σ q log q)− 2 log p′f + 2 log n

= 4(σ log n)2 + 2c log(σ n c log n)− 2 log p′f + 2 log n

≈ 4(σ log n)2.

So, we have CAG ≤ 2σ log n+ a1/2 ≈ 4σ log n. ut

We arrive at the following theorem:

Theorem 4. Let n, q, σ = α q/
√
2π be parameters of an LWEχα,q instance. If DAG(= 8σ2 log n+ 1) ∈

o(n) then the Arora & Ge algorithm solves the computational LWE problem in time complexity

O
(
2
ω·DAG log n

DAG · σ q log q
)
= O

(
2 8ω σ2 logn(logn−log(8σ2 logn)) · poly(n)

)
and memory complexity

O
(
2
2·DAG log n

DAG · σ q log q
)
= O

(
2 16σ2 logn(logn−log(8σ2 logn)) · poly(n)

)
.

If n ∈ o(σ2 log(n)) then the Arora & Ge algorithm solves the computational LWE problem in time com-
plexity

O
(
2ω·n log

DAG
n · σ q log q

)
= O

(
2ω n log(8σ2 logn)−ω n logn · poly(n)

)
and memory complexity

O
(
2 2n log

DAG
n · σ q log q

)
= O

(
2 2n log(8σ2 logn)−2n logn · poly(n)

)
.

Proof. The result follows immediately from plugging the Lemmata 2 and 4 into Theorem 3.

5 Solving LWE with Gröbner Bases

In this section we address the natural question of whether the complexity of the basic Arora & Ge algorithm
can be improved by using Gröbner basis algorithms instead of the linearisation method. The main motiva-
tion is that the constant CAG (and hence the degree of the equations) depends on the number of equations
MAG considered. Hence, on the one hand, we may lower the number of equations to a value lower than
Õ(n2 ε) whilst keeping the probability of failure small enough. On the other hand, this means that the cost
of solving the resulting system will grow compared to that of linearisation. The optimisation target is then
to find a tradeoff allowing to improve upon linearisation.
We assume that σ = nε, with 0 ≤ ε ≤ 1. Let also θ, 0 ≤ θ ≤ ε ≤ 1. We consider the number of samples
of the following form:

MGB = eγθ , with γθ = n2·(ε−θ).

Note that θ = 0 corresponds up to polylog factors to the basic Arora-Ge approach. To explain the rational
for the choosing this form for MGB the number of samples, we state below a simple lemma which relates
the number of samples to the degree of the multivariate equations:
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Lemma 5. Let (a1, b1), . . . , (am, bm) be elements of Znq × Zq sampled according to LWEχα,q . If C =√
2 log(m) then the equations generated as in (4) vanish with probability at least:

pg = 1−

√
1

π · log(m)
.

Proof. By Lemma 3, the probability of failure satisfies

≤ 2m

C
√
2π
e−C

2/2 =
2m√

4π · log(m)
e−
(√

2 log(m)
)2
/2 =

1√
π · log(m)

.

From this the probably of success pg ≥ 1− pf follows. ut

Remark 1. If m ∈ O (n) then it holds that pg ∈ 1− o(1).

We can then deduce the degree DGB required for MGB = eγθ equations. From Lemma 5, we have to fix
CGB =

√
2 · log(MGB) =

√
2 · γθ. Thus:

DGB = 2
√
2 · log(MGB) · σ + 1

∈ O
(√

log(MGB) · σ
)
= O (

√
γθ · σ) = O

(
n2ε−θ

)
= O

(
γθ · nθ

)
.

To ease the analysis below, we further simplify DGB to:

DGB ≈ γθ · nθ = log(MGB) · nθ.

Furthermore, we restrict our attention to the case σ =
√
n/
√
2π. Now, in order to analyse the complexity

of the Gröbner basis computation, we need to make the following assumption about the structure of the
generated equations:

Assumption 1 Let (a1, b1), . . . , (aMGB , bMGB) be elements of Znq × Zq sampled according to LWEχα,q .
Let P (X) = X

∏CGB·σ
i=1 (X + i)(X − i). We define:

fi = P
(
− b+

n∑
j=1

(ai)(j)xj
)
= 0,∀i, 1 ≤ i ≤MGB. (5)

Then, 〈f1, . . . , fm〉 is semi-regular.

We justify this assumption in Section 7.
FromDGB andMGB we now need to establish the degree of regularity. Whilst there are classical results on
the degree of regularity in the literature, these do not apply here. In particular, we need to consider systems
of equations having a non-constant degree. For brevity and due to the fact a detailed analysis is beyond
the scope of this paper, we only provide the general statement which allows to derive the result below in
Appendix A (Proposition 3).

Lemma 6. Let A ≥ 1, and f1, . . . , fm ∈ Zq[x1, . . . , xn] be semi-regular polynomials of degree n
A , and

Dreg be the degree of regularity of these polynomials. If m = e
π·n
4·A2 , then3 it holds that Dreg behaves

asymptotically as
CA · n,where CA is a constant which depends on A.

The constant CA in the Lemma can be computed explicitly for any value of A as explained in Proposition
3. For A = 1, we get in particular that Dreg = 1.41 · n, for n big enough. Putting all these results together
we can now derive the complexity of solving LWE using a Gröbner basis algorithm.

3 We will see that the constant π/4 in the exponent allows to adjust the success probability in Theorem 5.
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Theorem 5. Let A ≥ 1, ω, CA be as defined in Lemma 6, ω, 2 ≤ ω < 3, be the linear algebra constant,
andH2(x) = −x log2(x)− (1−x) log2(1−x). Let (ai, bi)i≥1 be elements of Znq ×Zq sampled according

to LWEχα,q with a standard deviation σ =
√
n√
2π

and A ≥ 1. There is an algorithm recovering the secret in

O
(
2
n
(
ω (1+CA)H2

(
CA

1+CA

)
+
π·log2(e)

4·A2

))
(time) and

O
(
2
n
(
2 (1+CA)H2

(
CA

1+CA

)
+
π·log2(e)

4·A2

))
(memory).

The algorithm has success probability ≥ 1− 2
π
√
n
= 1− o(1).

Proof. Let MGB = e
π·n
4·A2 and DGB = n/A. We generate a system of MGB non-linear equations of degree

DGB as (5). Under our regularity assumption 1, the complexity of computing a Gröbner basis for this
system is:

O
(
n e

π·n
4·A2

(
n(1 + CA)

CA n

)ω)
, (6)

Combining this with Lemma 1 gives the complexity. By Lemma 3, the probability of failure verifies is
≤ 2m

C
√
2π
e−C

2/2. In our case, C ≈
√
2πn
2 which gives a failure probability ≤ 2

π
√
n

. ut

Note that the complexities in Theorem 5 are minimized by taking a constantA = 1. So, we get a complexity

of O
(
2n
(
2.35ω+1.13

))
(time) and O

(
25.85n

)
(memory). Thus, our analysis shows that using Gröbner

bases yields an exponential speed-up (for σ =
√
n/
√
2π and under Assumption 1) over the basic Arora-

Ge approach (cf. Theorem 4). On the slightly negative side, our results also give a negative answer to the
natural question whether the combination of Gröner basis techniques with the Arora-Ge modelling can
yield a subexponential algorithm for the LWE problem4: from Lemma 6, one can notice that there is no
choice of A (constant, log n, . . . ) which makes the number of samples sub-exponential whilst keeping the
degree of regularity sub-linear.

6 Solving LWE with Bounded Errors

We now turn to studying the complexity of solving BinaryError-LWE using the modelling of Arora &
Ge [5] and applying a Gröbner basis algorithm for solving the resulting system of equations. As dis-
cussed earlier, BinaryError-LWE is an LWE instance over Zq but with errors restricted to the binary
field [35]. This variant is particularly attractive for real-world practical implementations of LWE-based
cryptographic schemes. Generating noise-free non-linear equations for BinaryError-LWE is straightfor-
ward: if e = (e1, . . . , em) ∈ {0, 1}m and P (X) = X(X − 1), then we have P (ei) = 0, for all
i, 1 ≤ i ≤ m.

Now, let (G, s×G+ e) = (G, c) ∈ Zn×mq × Zmq be sampled according to L(n)
s,U(F2)

. Then

ei = ci −
n∑
j=1

sjGj,i, for 1 ≤ i ≤ m.

It follows that the secret s ∈ Znq is a solution of the following algebraic system:

f1 = P
(
c1 −

n∑
j=1

sjGj,1
)
= 0, . . . , fm = P

(
cn −

n∑
j=1

sjGj,n
)
= 0. (7)

4 Which was, admittedly, one of our original motivations to consider Gröbner basis algorithms as an alternative to
linearisation in the original Arora & Ge method.
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This is an algebraic system of m quadratic equations in Zq[x1, . . . , xn]. As already pointed out in [5, 35],
this system can be solved using linearization if m = O

(
n2
)
. However the case m < O

(
n2
)

remained
untreated. Here, we address this problem of evaluating the complexity of solving the algebraic system (7)
with an arbitrary number m of equations.

As discussed in Section 2, answering this question in general is hard. But for one particular class of systems,
namely semi-regular systems of equations, this question has in fact been settled. In particular, the following
result [6–8, 10] allows us to classify the complexity of solving polynomial systems with respect to the
number of equations.

Theorem 6. (i) Let m = C · n, with C > 1, and let f1, . . . , fm ∈ Zq[x1, . . . , xn] be a semi-regular
system of equations. The degree of regularity of f1, . . . , fm behaves asymptotically as

Dreg =

(
C − 1

2
−
√
C(C − 1)

)
n− a1

2
(
C(C − 1)

)1/6 n 1
3

−

(
2− 2C − 1

4
(
C(C − 1)

)1/2
)

+O
(

1

n
1
3

)
,

where a1 ≈ 2.3381 is the largest zero of the classical Airy function.
(ii) Let m = n · log1/ε(n), for any constant ε > 0, or m = n log log n. The degree of regularity of

f1, . . . , fm behaves asymptotically as:

Dreg =
n2

8m
(1 + o(1)) .

A proof of i) can be found, for instance, in [10, Theorem 1]. A proof similar to the case of ii) can be found
in [7]. However, there is slight difference between [7] (binary fields) and our case (generic prime fields). In
Appendix A we briefly sketch a proof for ii) of Theorem 6.

Hence, under the assumption that the system (7) behaves like a semi-regular system of equations, Theo-
rem 6 allows one to compute an upper bound on the complexity for solving it with Gröbner basis algo-
rithms. While no proof currently exists that would demonstrate that the system (7) does indeed behave like
a semi-regular system, we make the following assumption based on the discussion in Section 7.

Assumption 2 Let (G, s × G + e) = (G, c) ∈ Zn×mq × Zmq be sampled according to L(n)
s,U(F2)

, and let
P (x) = X(X − 1). We define:

f1 = P
(
c1 −

n∑
j=1

sjGj,1
)
= 0, . . . , fm = P

(
cn −

n∑
j=1

sjGj,m
)
= 0. (8)

It holds that 〈f1, . . . , fm〉 is semi-regular.

Based on Assumption 2, we can now state the main result of this section. We classify the hardness of our
approach with various number of samples. The first one corresponds to the number of equations required
in the security proof [35, Theorem 1.2]. We then consider a slightly larger number of equations than what
is required in the security proof, i.e. m = 2n equations. In addition we give the results for a quasi-linear
number of equations.

Theorem 7. Let ω, 2 ≤ ω < 3, be the linear algebra constant, andH2(x) = −x log2(x)−(1−x) log2(1−
x). Under Assumption 2, we have the following.

(i) If m = n
(
1 + 1

log(n)

)
, then there is an algorithm solving BinaryError-LWE with a time complexity:

O
(
n2 21.37ω n

)
. (9)
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(ii) If m = 2 · n, then there is an algorithm solving BinaryError-LWE with a time complexity

O
(
n2 20.43ω n

)
. (10)

(iii) More generally, if m = C · n, with C > 1, there is an algorithm solving BinaryError-LWE in:

O
(
n2 2ω n(1+β)H2( β

1+β )
)

(time) and O
(
n2 22n(1+β)H2( β

1+β )
)

(memory), (11)

with β =
(
C − 1

2 −
√
C(C − 1)

)
.

(iv) If m = O (n log log n), then there is a subexponential algorithm solving BinaryError-LWE with com-
plexity

O
(
m2 2

ω n log log logn
8 log logn

)
(time), O

(
m2 2

2n log log logn
8 log logn

)
(memory). (12)

(v) Finally, if m = n · log1/ε(n), for any ε > 0, then there is a subexponential algorithm solving
BinaryError-LWE whose complexity is:

O

m2 2
ω n log

(
log1/ε(n)

)
8 log1/ε(n)

 (time), O

m2 2
2n log

(
log1/ε(n)

)
8 log1/ε(n)

 (memory). (13)

Proof. As explained Section 2, the complexity of computing a Gröbner basis is:

O
(
mDreg

(
n+Dreg

Dreg

)ω)
(time), O

(
mDreg

(
n+Dreg

Dreg

)2
)

(memory). (14)

Under our semi-regularity assumption, Theorem 6 gives: Dreg = 0.5 · n+ o(n) for m = n
(
1 + 1

log(n)

)
,

Dreg = 0.08 · n+ o(n) for m = 2 · n and more generally

Dreg =

(
C − 1

2
−
√
C(C − 1)

)
n+ o(n)

for m = C · n, for any constant C > 1. In these cases, the binomial coefficient in (14) has the following
form: (

α · n
β · n

)
, for some α > β > 0.

We obtain (9) – (11) by taking β =
(
C − 1

2 −
√
C(C − 1)

)
by applying Lemma 1. For (12) and (13), we

combine Lemma 2 and Theorem 6. ut

It follows from Theorem 7 that we can solve BinaryError-LWE in dimension n in time n2 20.344n using
memory n2 20.289n as soon as as soon as m ≥ 6.6n. We note that this is better than the best currently-
known generic (exact) CVP solver [11]. Theorem 7 also provides a good picture of the hardness degradation
of BinaryError-LWE for the number of available samples ranging from m = n

(
1 + 1

c log(n)

)
for c > 1,

a case for which BinaryError-LWE is as hard as solving some lattice problem in the worst case (as shown
in [35]) to m = O

(
n2
)
, the case for which it can be solved in polynomial-time. In view of items (iv)-(v)

of Theorem 7, we conclude that BinaryError-LWE should be ruled out for cryptographic applications that
require a quasi-linear number of samples.

7 Justifications of our Assumptions

The results in this work depend crucially on two assumptions, namely that all systems of equations occur-
ring in this work are semi-regular, i.e. have no special structure. While no full proof currently exists that
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would demonstrate either Assumption 1 or 2, we argue below why it is reasonable to believe that these as-
sumptions hold. Each semi-regularity assumption essentially states that our systems are not easier and not
harder to solve than a random system of equations and reiterate that if these systems were easier than ran-
dom systems this would imply that the analysis of Section 5 could be much improved and lead to progress
towards a subexponential classical algorithm for solving Bounded Distance Decoding. Furthermore, this
subexponential classical algorithm would work despite ignoring the particular error distribution and would
consist of applying a generic Gröbner basis algorithm. We consider this case to be unlikely. Furthermore,
we note that Arora and Ge showed in [5] that Assumption 1 holds for m = 2Õ(σ2) (Theorem 3).
Following [5], we prove that Assumption 2 holds for m = O

(
n2
)

in Section A.2. We also prove sev-
eral partial results regarding our assumptions in Section A.2 and present experimental evidencethat these
assumptions hold for reasonably large parameters in Section 7.1.

7.1 Experimental Verification

We experimentally confirmed that our assumptions hold for reasonably large parameters. Namely, we ver-
ified Assumption 1 for systems up to n = 8 variables. In particular we computed for n = 8 and m = 256,
α ·q/

√
2π = 1 using MAGMA [13] (V2.20-4) and Sage [41]. The generated system of equations has degree

9 and the degree of semi-regularity is 13. The highest degree reached was indeed degree 13.
While n ≤ 8 might seem rather small, we point out that it is the last n for which we can reasonably expect
to run experiments on current hardware. Theorem 5 bounds the memory complexity by O

(
25.85n

)
. We

note that for n = 8, our computation required 65GB of memory and 68 hours to complete. Hence, we
would require about 25.85 · 65GB of memory to perform this computation for n = 9 which is beyond our
reach.
To verify Assumption 2, we generated systems as in (8). We took q as the next prime larger than n (or n2 in
some instances). We then computed a Gröbner basis of the equations using MAGMA. Below we report the
maximal degree reached Dreal in our experiments, and the theoretical degree of regularity Dreg, as given
by Assumption 2. We note that the largest of these experiments took 7 days to complete.

n m Dreg Dreal

∈ {5, . . . , 25} dn log2(n)e 3 3
∈ {26, . . . , 53} dn log2(n)e 4 4

60 d2n log2(n)e 3 3
100 4 · dn log2(n)e 3 3

In addition of these experimental results, we provide formal proofs of our assumptions in several cases in
Appendix A.2.
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In Teo Mora, editor, ISSAC 2002: Proceedings of the 2002 International Symposium on Symbolic and Algebraic
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32. Daniel Lazard. Gröbner-bases, Gaussian elimination and resolution of systems of algebraic equations. In Pro-

ceedings of the European Computer Algebra Conference on Computer Algebra, volume 162 of Lecture Notes in
Computer Science, Berlin, Heidelberg, New York, 1983. Springer Verlag.

33. Dong Hoon Lee and Xiaoyun Wang, editors. ASIACRYPT 2011, volume 7073 of LNCS. Springer, December 2011.



16

34. Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based encryption. In Aggelos Kiayias,
editor, CT-RSA 2011, volume 6558 of LNCS, pages 319–339. Springer, February 2011.

35. Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small parameters. In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 21–39. Springer, August 2013.

36. Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In
Michael Mitzenmacher, editor, 41st ACM STOC, pages 333–342. ACM Press, May / June 2009.

37. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable oblivious
transfer. In Wagner [42], pages 554–571.

38. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Harold N. Gabow and
Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press, May 2005.

39. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM,
56(6):34:1–34:40, September 2009.

40. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Journal of the ACM,
27(4):701–717, 1980.

41. William Stein et al. Sage Mathematics Software Version 6.2. The Sage Development Team, 2013. Available at
http://www.sagemath.org.

42. David Wagner, editor. CRYPTO 2008, volume 5157 of LNCS. Springer, August 2008.
43. R. Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and algebraic computation (EU-

ROSAM’79), Internat. Sympos., volume 72 of Lecture Notes in Computer Science, pages 216–226. Springer Verlag,
1979.

A Appendix

A.1 Degree of Regularity

The proof of Theorem 6-ii) is derived from the following more general result.

Proposition 2. Let ε > 0, and F (n) ∈ {log1/ε(n), log log n}. Assuming m = F (n)n, then the degree of
regularity of a system of quadratic semi-regular equations f1, . . . , fm ∈ Zq[x1, . . . , xn] behaves asymp-
totically as:

Dreg =
(
F (n)− 1/2−

√
F 2(n)− F (n)

)
n =

1

8

n

F (n)
+O

(
n

F 2(n)

)
.

Proof. We assume that we have m quadratic equations in n variables. In this case, we have to consider the
Hilbert series:

Hm,n(z) =

(
1− z2

)m
(1− z)n

=

∞∑
d=0

hd z
d.

The degree of regularity is the index Dreg such that hDreg < 0. We try to find Dreg = `(n)n = ` n such
that h` n < 0. To do so, we consider :

h` n =

∮
Hm,n(z)

z` n
dz =

∮
ef(z)ndz,

where the contour is a circle centered in 0 whose radius is smaller than 1.
In our context:

f(z) =
log(Hm,n(z))

n
=
m log

(
1− z2

)
− n log (1− z)− n ` log (z)

n
.

Laplace’s Method gives then:
h` n ≈

∑
{a|f ′(a)=0}

ef(a)n.

More details about this preliminary part can be found in the literature, for instance [6–8,10]. As n increases,
the integral concentrates in the neighbourhood of one or several saddle points, i.e. the solutions of f ′ = 0.
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When the equation f ′(z) = 0 has two solutions, we have h` n ≈ ef(z
−)n + ef(z

+)n → ∞. Hence, since
when d = Dreg = ` n we must have hd = 0 this implies that the equation f ′(z) = 0 has a multiple root.
In our case, we have:

f ′(z) =
1

1− z
− 2m z

n(1− z2)
− `

z
.

Now, we set m = nF (n). We have multiple root if the discriminant of f ′ is 0. As a consequence, ` = `(n)
is the smallest real root of :(
4n3 F (n)2+4n3−8n3 F (n)

)
`2+

(
−8n3 F (n)3−16n3 F (n)+20n3 F (n)2+4n3)`−2n3 F (n)+n3 F (n)2+n3.

This yields :

`(n) =
(
F (n)− 1/2−

√
F 2(n)− F (n)

)
n =

1

8

n

F (n)
+O

(
n

F 2(n)

)
.

ut

In Section 5, we use the following result.

Proposition 3. Let α and β be constants > 0, and f1, . . . , fm ∈ K[x1, . . . , xn] be semi-regular polynomi-
als of degree αn. We define the function F (X, `) =

log(1+`)−` log(`)+` log(1+`)−log(1+`−X)+log(`−X)`−log(`−X)α−log(1+`−X)`+log(1+`−X)α−log(β ).

Assuming m = βn, then it holds that:

Dreg

n
≈
{
α if α < α0

PositiveRealRoot
(
F (α, `)

)
, if α0 ≤ α < 6,

and α0 is the real value such that F (α0, α0) = 0.

We give below the value of α0 for various β.

β α0

eπ/4 0.3595671731
2 0.293815373
3 0.641794121
1.1 0.019208159

For β = eπ/4, the degree of regularity is then for instance ≈ 1.41n. Below, we compare the theoretical
degree of regularity obtained from Proposition 3 for various β and α with the degree of regularity obtained
by computing the generic Hilbert series (Definition 2).
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The proof of this result is beyond the scope of this paper. The first step is similar to the the previous
Proposition 2, i.e. we use Laplace’s method to approximate the coefficient h` n in the Hilbert series. The
next step requires different tools than the ones used classically to cancel the coefficient asymptotically. The
proof will be the full version of this paper.
To simplify the analysis, it is possible to upper bound uniformly the degree of regularity, i.e.:

Proposition 4. Let α and β be constants > 0, and f1, . . . , fm ∈ K[x1, . . . , xn] be semi-regular polynomi-
als of degree αn. If m = βn:

Dreg ≤ n ·
β

β − 1

For β = e
π
4 , we have β

β−1 = 1.83.

A.2 Formal Proof in Limited Cases

A technical difficulty for proving results towards Fröberg’s conjecture is that over a finite field the notion
of Zariski open set is meaningless due to the field equations. However, the notion of genericity can be
understood via the classical Schwartz-Zippel-DeMillo-Lipton lemma [21, 40, 43].

Lemma 7 (Schwartz, Zippel, DeMillo, Lipton [21, 40, 43]). Let K be a field and P ∈ K[x1, . . . , xn]
be a non-zero polynomial. Select r1, . . . , rn uniformly at random from a finite subset X of K. Then, the
probability that P (r1, . . . , rn) = 0 is less than deg(P )/|X |.
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Linear Independence. Assumption 2 for BinaryError-LWE implies in particular that the equations (8)
are linearly independent with high probability which we prove below for any 1 ≤ m ≤

(
n+1
2

)
.

Theorem 8. Let (A, s · A + e) = (A, c) ∈ Zn×mq × Zmq be sampled according to L
(n)
s,U(F2)

, and let

P (x) = X(X − 1). Assume that q > 2m. Then, for all 1 ≤ m ≤
(
n+1
2

)
, the equations

f1 = P
(
c1 −

n∑
j=1

xjAj,1
)
, . . . , fm = P

(
cm −

n∑
j=1

xjAj,m
)
, (15)

are linearly independent with probability≥ 1− 2m
q . In particular, the homogeneous components fH1 , . . . , f

H
m

of degree 2 are linearly independent with probability ≥ 1− 2m
q .

Proof. The coefficients of the fis can be viewed as polynomials of degree ≤ 2 in the components of the
matrix A. We denote the number of monomials of degree 2 by N , and by Mac2 the m×N matrix whose
rows are the coefficients of the fHi s. This is the Macaulay matrix of the fHi s at degree 2. We assume that
the monomials are sorted with respect to a graded reverse lexicographical order. Let Mat2 be a m × m
sub-matrix of Mac2. We can view Det(Mat2) as a polynomial p of degree 2m whose variables are the
components of A. According to Lemma 9 (Appendix A.3), the polynomial p is non-zero for all 1 ≤ m ≤(
n+1
2

)
. The Schwartz-Zippel-DeMillo-Lipton Lemma (Lemma 7) yields that p(A) 6= 0 with probability

≥ 1− 2m
q . ut

Note that the notion of semi-genericity only depends on the homogeneous components of highest degree.
Thus, the polynomial P in Theorem 8 can be replaced by X2 and the proof would remain the same. By
a similar argument the constants cis are not relevant to the proof. This illustrates that it is equivalent to
consider the semi-regularity of the systems as in Assumption 2 or the semi-regularity of the square of
linear forms as done by Fröberg and Hollman [29].

A consequence of Theorem 8 is:

Corollary 1. Let q > 2m. There is a polynomial-time algorithm solving BinaryError-LWE with probabil-
ity 1− 2m

q as soon as n < m ≤
(
n+1
2

)
.

In [35] it was already mentioned that BinaryErrors-LWE can be solved in polynomial-time as soon as the
number of samples is O

(
n2
)
, albeit no proof was given. In particular, a direct adaptation of [5, Theorem

3.1] to BinaryErrors-LWE gives:

Theorem 9. Let (A, s · A + e) = (A, c) ∈ Zn×mq × Zmq be sampled according to L
(n)
s,U(F2)

, and let
P (x) = X(X − 1). The system obtained by linearizing the fi’s, as defined in (15), has unique solution
with probability ≥ 1 − 2m · qN2−m, with N2 =

(
n+2
2

)
. The bound is then non-trivial (< 1) if m ≥ cN2,

for some constant c > 0.

Proof. We know that s ∈ Znq is a solution of f1, . . . , fm. Given s′ 6= s, the idea is to bound the probability
that s′ vanishes simultaneously the linearised system corresponding to f1, . . . , fm.

By definition, c = (s ·A) + e. So, we can write:

fi = P
(
ei −

n∑
j=1

(sj − xj)Aj,i
)
.

Now by setting x∗j = (sj − xj), we have:

f∗i (x
∗
1, . . . , x

∗
n) = fi(s1 − x∗1, . . . , sn − x∗n) = P

(
ei −

n∑
j=1

x∗jAj,i
)
.
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Thus, ∃s′ 6= s such that fi(s′) = 0 ⇐⇒ ∃ a non-zero s∗ ∈ Znq such that f∗i (s
∗) = 0. We can view

f∗i (s
∗) has a multivariate polynomial of degree 2 in the components of A. Thus, assuming that f∗i (s

∗) is
non-identically zero, it holds that:

Pr
(A,c)←$L

(n)

s,U(F2)

(
f∗i (s

∗) = 0 | ei = b
)
≤ 2/q, with b ∈ {0, 1}.

The fact that the f∗i (s
∗) is a non-zero polynomial – viewed as a polynomial whose variables in the compo-

nents of A follows easily from [5, Lemma 3.4].

The same result holds if you replace f∗i by its linearization Lf∗i . Thus, for any S′ = s′ ⊗ s′ ∈ ZN2
q with

s′ 6= s ∈ Znq , it holds that:

Pr
(A,c)←$L

(n)

s,U(F2)

(
Lf1(S

′) = 0, . . . , Lfm(S
′) = 0

)
=

m∏
i=1

Pr
(A,c)←$L

(n)

s,U(F2)

(
Lfi(S

′) = 0
)
.

We then have Pr
(A,c)←$L

(n)

s,U(F2)

(
Lfi(S

′) = 0
)
=

1

2
Pr

(A,c)←$L
(n)

s,U(F2)

(
Lfi(S

′) = 0 | ei = 0
)
+

1

2
Pr

(A,c)←$L
(n)

s,U(F2)

(
Lfi(S

′) = 0 | ei = 1
)
≤ 2/q.

Finally, we consider the event ES′ = “Lf1(S
′) = 0, . . . , Lfm(S

′) = 0”. The probability that the linearised
system has more than one solution is the probability of the event ∪S′ES′ which is:

Pr
(A,c)←$L

(n)

s,U(F2)

(linearised system has not unique solution) ≤ 2m · qN2−m.

ut

For linearisation to succeed (Theorem 9) we require a number of samples m ≥ c
(
n+2
2

)
. In contrast, for

a Gröbner basis algorithm to succeed in polynomial time (Corollary 1) m =
(
n+1
2

)
suffices. Hence, ap-

plying a Gröbner basis algorithm reduces the number of samples required to solve BinaryError-LWE in
polynomial-time and at the same degree as linearisation.

Semigenericity. Following the terminology in [29], we consider the notion of semigenericity.

Definition 3. Let f1, . . . , fm ∈ Zq[x1, . . . , xn] be homogeneous equations of degree d. We shall say that
a sequence of polynomials f1, . . . , fm is semigeneric if {xi · fj}1≤j≤n1≤i≤n spans a vector space of maximal
dimension, i.e. min

(
n · m,

(
d−1+n

d

))
. For affine polynomials f1, . . . , fm ∈ Zq[x1, . . . , xn], we shall say

that the sequence f1, . . . , fm is semigeneric if fH1 , . . . , f
H
m is semigeneric.

For BinaryError-LWE, this corresponds to investigate Assumption 2 for Macaulay matrices at degree 3.
In [29, Theorem 2.2], the authors prove that the square of m generic linear forms are semigeneric as long
as m ≤ n + 15 and n ≤ 6. Here, we prove that system (15) is semigeneric for m ≤ n + bn−22 c ≈ ( 32 )n
without any restriction on n by employing a strategy similar to the proof of Theorem 8.

Theorem 10. Let q = Ω(n2) and let (A, s · A + e) = (A, c) ∈ Zn×mq × Zmq be sampled according to

L
(n)
s,U(F2)

. For any m such that 1 ≤ m ≤ n + bn−22 c the sequence (15) is semigeneric with probability
≥ 1− 2mn

q .

Proof. Let N be the number of monomials of degree 3 and let Mat3 be a sub-matrix of size m · n×m · n
of the Macaulay matrix fH1 , . . . , f

H
m at degree 3. We can view Det(Mat3) as a polynomial p of degree 2mn

whose variables are the components of A. According to Lemma 11 (Appendix A.3), p is non-zero. Hence,
Lemma 7 yields that p(A) 6= 0 with probability ≥ 1− 2mn

q . ut
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Full Proof of Assumption 2 for m = n+ 1. We conclude this part by proving that Assumption 2 holds
for m = n+ 1 equations. However, the proof imposes a minimum size on q.
We will make use of the following lemma below for which the proof is exactly as for [29, Lemma 2.1].

Lemma 8. Let P (x) = X(X − 1) and consider a matrix A∗ ∈ Zn×n+1
q such that all coefficients are zero

except:

– A∗[i, i] = 1, for all i, 1 ≤ j ≤ n.
– A∗[i, n+ 1] = 1, for all i, 1 ≤ i ≤ n.

Let c = s ·A∗+e, s ∈ Znq be chosen uniformly at random, e ∈ {0, 1}n+1 be sampled uniformly. Then, the
sequence P

(
c1 −

∑n
k=1 xkA

∗
k,1

)
, . . . , P

(
cn+1 −

∑n
k=1 xkA

∗
k,n+1

)
∈ Zq[x1, . . . , xn] is semi-regular.

Example 1 For n = 5 the matrix A∗ in Lemma 8 is


1 1 1 1 1
0 1 0 0 1
0 0 1 0 1
0 0 0 0 1
0 0 0 1 1

 .

Theorem 11. Let q = O (en), let (A, s · A + e) = (A, c) ∈ Zn×mq × Zmq be sampled according to

L
(n)
s,U(F2)

, and let P (X) = X(X − 1). With probability at least 1 − o(1), it holds that the sequence
f1 = P

(
c1 −

∑n
j=1 xjAj,1

)
, . . . , fn+1 = P

(
cn+1 −

∑n
j=1 xjAj,n+1

)
is semi-regular.

Proof. It is well known that the degree of regularity of a semi-generic sequence of m = n + 1 equations
is dn+1

2 e. So, we need to prove that the Macaulay matrices associated to fH1 , . . . , f
H
n+1 of degree 2 to n+1

2
are of maximal possible rank. That is, the only linear dependencies occurring in the Macaulay matrices are
the one induces by the trivial syzygies, i.e. fHi f

H
j = fHj f

H
i . Until now, we investigated degrees 2 and 3 for

which there is no trivial syzygies.
Let [td]HP(z) be the dth coefficient of the Hilbert polynomials (2). This coefficient gives the rank defects,
and then the expected rank, of the Macaulay matrix of fH1 , . . . , f

H
m at degree d ≥ 2. As in the previous

proofs, we can write easily that Macaulay matrix of fH1 , . . . , f
H
m at each degree d has the expected rank if

a minor is non-zero. The degree of this minor is O
(
nd−1

)
. To conclude the proof we note that Lemma 8

provides a family of sufficiently generic systems with m = n+ 1 equations. ut

We note that the results of this section can be adapted from BinaryError-LWE to UniformError-LWE.
We can generalize for instance Theorem 8 to UniformError-LWE.

Theorem 12. Let T > 0, and (G, s × G + e) = (G, c) ∈ Zn×mq × Zmq be sampled according to

L
(n)
s,U([−T ...,T ]). Let also P (x) = X

∏T
i=1(X−i). We assume that q > (2T+1)·m. For all 1 ≤ m ≤

(
n+1
2

)
,

we define:

f1 = P
(
c1 −

n∑
j=1

xjGj,1
)
, . . . , fm = P

(
cm −

n∑
j=1

xjGj,m
)
.

It holds that fH1 , . . . , f
H
m are linearly independent with probability ≥ 1− (2T+1)m

q .

Proof. Let N be the number of monomials of degree ≤ 2T + 1. We define Mac as m ×N matrix whose
rows are the coefficients of the fis. Let p = Det(Mat) be the determinant of a m×m sub-matrix Mat of
Mac. If p is non-zero, Schwartz-Zippel-DeMillo-Lipton Lemma yields the result stated. The fact that p is
non-zero follows from a similar argument than Lemma 9. ut
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A.3 Auxilary Lemmas

This appendix collects proofs allowing to show that tge polynomials used in Appendix A.2 are non-zero
which allows us to apply Schwartz-Zippel-DeMillo-Lipton Lemma.
The lemma below is used in Theorem 8 to show that the determinant considered is non-zero.

Lemma 9. For all i, 1 ≤ i ≤ n, construct a n×
(
n− (i− 1)

)
matrix Gi as follows. All the coefficients of

Gi are zero except:

– Gi[i, j] = 1, for all j, 1 ≤ j ≤
(
n− (i− 1)

)
.

– Gi[j + (i− 1), j] = 1, for all j, 1 ≤ j ≤
(
n− (i− 1)

)
.

Now, let G∗ = G1‖G2‖ · · · ‖Gn be a block matrix, s ∈ Znq chosen uniformly at random, and e ∈ {0, 1}m
sampled uniformly. We set c = s×G∗ + e and P (x) = X(X − 1) and define:

f1 = P
(
c1 −

n∑
j=1

xjG
∗
j,1

)
, . . . , fm = P

(
cm −

n∑
j=1

xjG
∗
j,m

)
.

Then, the homogeneous components fH1 , . . . , f
H
m of degree 2 are linearly independent.

Proof. Let fi,j be the the jth equation derived from the matrix Gi (the equation corresponding to the jth
column of the ith matrix Gi) . We start with the simple case m = n where G∗ = G1. The monomial of
highest degree in f1,1 = P (c1 − x1) is simply x21. More generally, for all i, 1 ≤ j ≤ n, the monomials of
degree 2 in f1,j = P (cj − x1 − xj) are x21, x1xj and x2j . Remark then that the system

F1 := [f̃1,1 = f1,1, f̃1,2 = −f1,1 + f1,2, . . . , f̃1,n = −f1,1 + f1,n]

has a triangular shape: the leading monomial of f̃1,j is x1 · xj (all the terms of degree 2 divisible by x1)
and hence distinct.
More generally, let G∗ = G1‖G2‖G3‖ · · · ‖Gn. We consider, for all i, 1 ≤ i ≤ n:

Fi := [f̃i,1 = fi,1, f̃i,2 = −fi,1 + fi,2, . . . , f̃i,n−i+1 = −fi,1 + fi,n−i+1]. (16)

All these equations are in triangular form, and leading monomials of Fi are the monomials xixj , with
j ≥ i. Consequently the set of equations

⋃
1≤i≤n Fi are linearly independent. Finally, the numbers of rows

of G∗ is n+ (n− 1) + (n− 2) + · · · (n− (n− 1)) = n2 − n(n− 1)/2 = n(n+ 1)/2 =
(
n+1
2

)
. ut

Example 2 For n = 4, and m = n(n+ 1)/2 = 10 the matrix G∗ is as follows:


1 1 1 1 0 0 0 0 0 0
0 1 0 0 1 1 1 0 0 0
0 0 1 0 0 1 0 1 1 0
0 0 0 1 0 0 1 0 1 1

 .
The equations fi,j corresponding are then

[x21 + 15 · x1 + 5,

x21 + 2 · x1 · x2 + x22 + 4,

x21 + 2 · x1 · x3 + x23 + 10 · x1 + 10 · x3 + 12,

x21 + 2 · x1 · x4 + x24 + 9 · x1 + 9 · x4 + 3,

x22 + 5 · x2 + 6,

x22 + 2 · x2 · x3 + x23 + 4,

x22 + 2 · x2 · x4 + x24 + 16 · x2 + 16 · x4,

x23 + 13 · x3 + 8,

x23 + 2 · x3 · x4 + x24 + 7 · x3 + 7 · x4 + 12,

x24 + 14 · x4 + 2].
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By performing the reductions as in (16), we get:

[x2
1 + 15 · x1 + 5,

2 · x1 · x2 + x22 + 2 · x1 + 16,

2 · x1 · x3 + x23 + 12 · x1 + 10 · x3 + 7,

2 · x1 · x4 + x24 + 11 · x1 + 9 · x4 + 15,

x2
2 + 5 · x2 + 6,

2 · x2 · x3 + x23 + 12 · x2 + 15,

2 · x2 · x4 + x24 + 11 · x2 + 16 · x4 + 11,

x2
3 + 13 · x3 + 8,

2 · x3 · x4 + x24 + 11 · x3 + 7 · x4 + 4,

x2
4 + 14 · x4 + 2].

In order to prove Theorem 13, we first consider the case where m = n as an intermediate step.

Theorem 13. We assume q = Ω(n2). Let (G, s×G+ e) = (G, c) ∈ Zn×mq × Zmq be sampled according

to L(n)
s,U(F2)

, and let P (x) = X(X − 1). For any m, 1 ≤ m ≤ n, the equations

f1 = P
(
c1 −

n∑
j=1

xjGj,1
)
, . . . , fm = P

(
cm −

n∑
j=1

xjGj,m
)
,

are semigeneric with probability ≥ 1− 2mn
q .

Proof. The strategy is similar to the proof of Theorem 8. Let N be the number of monomials of degree 3
and let Mat3 be a sub-matrix of size m · n ×m · n of the Macaulay matrix at at degree 3 of fH1 , . . . , f

H
m.

We can view Det(Mat3) as a polynomial p of degree 2mn whose variables are the components of G. The
next result shows that the determinant polynomial considered is not identically zero.

Lemma 10. Let P (x) = X(X − 1). Let G∗ = G1 be as defined in Lemma 9. We set c = s × G∗ + e,
s ∈ Znq chosen uniformly at random, m = n and e ∈ {0, 1}m sampled uniformly. We define:

f1 = P
(
c1 −

n∑
k=1

xkG
∗
k,1

)
, . . . , fm = P

(
cm −

n∑
k=1

xkG
∗
k,m

)
.

Then, the polynomials f1, . . . , fm are semi-generic.

Proof. We first perform a simple reduction on the fj , that is:

f̃2 = f̃2 − f1, . . . , f̃n = f̃n − f1, f̃1 = 2f1.

From now on, we consider a degree ordering for which x1 > x2 > . . . > xn. It holds that

LT(f̃j) = 2 · x1 · xj ,∀j, 1 ≤ j ≤ n.

We can see that the terms of degree 3 in xi · f̃1 is equal to T (1)
i,1 := {2x21xi}1≤i≤n. Similarly, we have that

T
(1)
i,j := {2 · x1xixj , xix2j}

2≤j≤n
1≤i≤n are terms of degree 3 in xi · f̃j (with j 6= 1).

We consider a matrix M (1) := {M (1)[i, j] = xi · f̃j}1≤j≤m1≤i≤n and define r(1)i,j as the function which returns

LT(M (1)[i, j]). For all (i, j) ∈ [1, . . . , n]× [1, . . . , n], we have: r(1)i,j = 2 · x1 · xi · xj . Hence, r(1)i,j = r
(1)
j,i

for all (i, j) ∈ [1, . . . , n]× [1, . . . , n]. So, M (1)[i, j] and M (1)[j, i] have the same leading terms. Our goal
is to perform suitable linear combinations on the polynomials of M (1)[i, j] such that all components have
distinct leading terms.



24

We first process the first column and first row of M (1). We define C1 := {(i, 1) | i ∈ [1, . . . , n]}, and
R1 := {(1, j) | j ∈ [2, . . . , n]}. For all (i, j) = (i, 1) ∈ C1, we have LT(M (1)[i, 1]) = 2 · x21 · xi. For
all (i, j) = (1, j) ∈ R1, we have also LT(M (1)[1, j]) = 2 · x21 · xj . Thus, for all (1, j) ∈ R1, we update
M (1)[1, j] as follows:

M (1)[1, j] =M (1)[1, j]−M (1)[j, 1].

After this step, for all (1, j) ∈ R1, the term of degree 3 in M (1)[1, j] is now T
(1)
1,j := {x1x2j} and then

r
(1)
1,j := x1x

2
j . For all (i, 1) ∈ C1, we still have r(1)i,1 := 2x21 · xi and T (1)

i,1 := {2x21xi}.
Now, we consider the set L1 := {(i, j) ∈ [2, . . . , n] × [2, . . . , n] | i − j ≥ 0} This is the lower diagonal
part. For all (i, j) ∈ L1, with i 6= j, we update the matrix M (1) as follows:

M (1)[i, j] =M (1)[i, j]−M (1)[j, i]

For (i, i) ∈ L1, we have that r(1)i,i = 2x1x
2
i . However, x21xi = r

(1)
1,i /2, we then update the elements of the

diagonal as follows:
M (1)[i, i] =M (1)[i, i]− 2 ·M (1)[1, i].

After this step, for all (i, j) ∈ L1, with i 6= j, the terms of degree 3 in M (1)[i, j] is T (1)
i,j = {x2jxi,−xjx2i }

and we set r(1)i,j := x2jxi. For i = j > 1, T (1)
i,i reduces to {x3j}.

For all (i, j) ∈ L1, the terms r(1)i,j are distinct. Indeed, given (i, j) ∈ L1, the only solution (i′, j′) ∈ L1 to

r
(1)
i,j = r

(1)
i′,j′ is trivial, i.e. (i = i′, j = j′).

Now, let U1 := {(i, j) ∈ [2, . . . , n]× [2, . . . , n] | i− j < 0}. For all (i, j) ∈ U1, we have r(1)i,j = 2x1xixj .

For all (i, j) ∈ U1, the terms r(1)i,j are distinct. Indeed, given (i, j) ∈ U1, the only non-trivial solu-

tion (i′, j′) ∈ U1 to r
(1)
i,j = r

(1)
i′,j′ is (i′ = j, j′ = i). Since (i, j) ∈ U1, this implies that i′ − j′ >

0 and then (i′, j′) 6∈ U1. For all, (i, j) ∈ U1, the terms of degree 3 of M (1)[i, j] remains T (1)
i,j :=

{2x1xixj , xix2j}
2≤j≤n
1≤i≤n .

To summarize:

– r
(1)
i,1 := rC1

i,1 = 2x21xi, for all i, 1 ≤ i ≤ n,

– r
(1)
1,j := rR1

1,j = x1x
2
j , for all j, 2 ≤ j ≤ n,

– r
(1)
i,j := rU1

i,j = 2x1xixj , for all (i, j) ∈ U1,

– r
(1)
i,j := rL1

i,j = x2jxi, for all (i, j) ∈ L1.

ut

Example 3 For n = 4, G∗ = G1 is as follows:


1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

 .
The equations f̃j corresponding are:

[2 · x21 + 14 · x1 + 7,

2 · x1 · x2 + x22 + 16 · x1 + 6 · x2 + 1,

2 · x1 · x3 + x23 + 13 · x1 + 3 · x3 + 7,

2 · x1 · x4 + x24 + 14 · x1 + 4 · x4 + 13].
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By performing the reductions as in the previous lemma, we get:

[2 · x3
1 + 14 · x21 + 7 · x1,2 · x2

1 · x2 + 14 · x1 · x2 + 7 · x2,

2 · x2
1 · x3 + 14 · x1 · x3 + 7 · x3,

2 · x2
1 · x4 + 14 · x1 · x4 + 7 · x4,

x1 · x2
2 + 16 · x21 + 9 · x1 · x2 + x1 + 10 · x2,

2 · x1 · x2 · x3 + x2 · x23 + 13 · x1 · x2 + 3 · x2 · x3 + 7 · x2,

2 · x1 · x2 · x4 + x2 · x24 + 14 · x1 · x2 + 4 · x2 · x4 + 13 · x2,

x1 · x2
3 + 13 · x21 + 6 · x1 · x3 + 7 · x1 + 10 · x3,

2 · x1 · x3 · x4 + x3 · x24 + 14 · x1 · x3 + 4 · x3 · x4 + 13 · x3,

x1 · x2
4 + 14 · x21 + 7 · x1 · x4 + 13 · x1 + 10 · x4,

x3
2 + 2 · x2

1 + 15 · x1 · x2 + 6 · x22 + 15 · x1 + 15 · x2,

x2
2 · x3 + 16 · x2 · x23 + 4 · x1 · x2 + 16 · x1 · x3 + 3 · x2 · x3 + 10 · x2 + x3,

x2
2 · x4 + 16 · x2 · x24 + 3 · x1 · x2 + 16 · x1 · x4 + 2 · x2 · x4 + 4 · x2 + x4,

x3
3 + 8 · x21 + x1 · x3 + 3 · x23 + 3 · x1 + 4 · x3,

x2
3 · x4 + 16 · x3 · x24 + 3 · x1 · x3 + 13 · x1 · x4 + 16 · x3 · x4 + 4 · x3 + 7 · x4,

x3
4 + 6 · x21 + 4 · x24 + 8 · x1 + 10 · x4].

Finally, the following lemma is used in Theorem 10.

Lemma 11. Let P (x) = X(X − 1). Let G1 be defined as in Lemma 10. We consider a n×m2 matrix G2,
with m2 = bn−22 c. The coefficients are zero except for:

– G2[2, j] = 1, for all j, 1 ≤ j ≤ m2.
– G2[2j + 1, j] = G2[2j + 2, j] = 1, for all j, 1 ≤ j ≤ m2.

Let m = n+m2, G∗ = G1‖G2 be a block matrix of size n×m. We set c = s×G∗ + e, s ∈ Znq chosen
uniformly at random, and e ∈ {0, 1}m sampled uniformly. We define:

f1 = P
(
c1 −

n∑
k=1

xkG
∗
k,1

)
, . . . , fm = P

(
cm −

n∑
k=1

xkG
∗
k,m

)
.

Then, the sequence f1, . . . , fm is semigeneric.

Proof. Let M (1) be the matrix constructed as in Lemma 10. The matrix is such that:

– ∀(1, j) ∈ R1, the term of degree 3 in M (1)[1, j] is T (1)
1,j := {x1x2j}.

– ∀(i, 1) ∈ C1, the term of degree 3 in M (1)[i, 1] is T (1)
i,1 := {2x21xi}.

– ∀(i, j) ∈ U1, the terms of degree 3 of M (1)[i, j] is T (1)
i,j := {2x1xixj , xix2j}

2≤j≤n
1≤i≤n .

– ∀(i, j) ∈ L1, i 6= j, the terms of degree 3 in M (1)
i,j is T (1)

i,j := {x2jxi,−xjx2i }.
– The terms of degree 3 in M (1)

i,i (i > 1) is T (1)
i,i := {x3i }.

The leading terms of the polynomials in M (1) are then divided by a square or divided by x1. In fact, all the
terms of degree 3 divisible by x1 appear as leading terms.

For all j, 1 ≤ j ≤ m2, we denote by f2,j = fm1+j the equations derived from G2. This is the polynomial
constructed from the jth column of G2. We define by

T
(2)
i,j := {xix22, xix22j+1, xix

2
2j+2, 2xix2x2j+1, 2xix2x2j+2, 2xix2j+1x2j+2}1≤j≤m2

1≤i≤n
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the terms of degree 3 in xi · f2,j . We also consider a matrix M (2) := {M (2)[i, j] = xi · f2,j}1≤j≤m2

1≤i≤n .
The first step of the proof is to perform all possible reductions of the polynomials in M (2) modulo the
polynomials M (1)[i, j].

The term xix
2
2 can always be reduced by the leading term of a polynomial in the second column of M (1).

For all (i, j) ∈ [1, . . . , n]× [1, . . . ,m2], we cancel this term as follows:

M (2)[i, j] =M (2)[i, j]−M (1)[i, 2].

After such reductions, the terms of degree 3 in M (2)[i, j] is updated as:

T
(2)
i,j = {x2x2i , xix22j+1, xix

2
2j+2, 2xix2x2j+1, 2xix2x2j+2, 2xix2j+1x2j+2}, for i > 2.

For i = 1, 2 the only difference is that the term x2x
2
i not appear in T (2)

i,j .

We consider the particular case of the first row M (2):

T
(2)
1,j = {2x1x2x2j+1, 2x1x2x2j+2, x1x

2
2j+1, 2x1x2j+1x2j+2, x1x

2
2j+2}.

We can see that all these terms can be reduced by the leading terms of a suitableM (1)[i, j]. More precisely,
x1x

2
2j+1, and x1x22j+2 can be reduced by M (1)[1, 2j + 1] and M (1)[1, 2j + 2] respectively. Thus, for all

j, 1 ≤ j ≤ m2, we update the matrix as follows:

M (2)[1, j] =M (2)[1, j]−M (1)[1, 2j + 1]−M (1)[1, 2j + 2].

The corresponding reductions will only yield new terms of degree < 3.

Similarly, x1x2x2j+1, x1x2x2j+2, x1x2j+1x2j+2 can be reduced by aM (1)[i′, j′] with (i′, j′) ∈ U1. Thus,
for all j, 1 ≤ j ≤ m2, we update the matrix as follows:

M (2)[1, j] = −M (2)[1, j] +M (1)[2, 2j + 1] +M (1)[2, 2j + 2] +M (1)[2j + 1, 2j + 2].

After this step, we have:

T
(2)
1,j = {x2x22j+1, x2x

2
2j+2, x2j+1x

2
2j+2} and LT(M (2)[1, j]) = x2x

2
2j+1.

We consider then the second row of M (2) whose terms of degree 3 are:

T
(2)
2,j = {2x22x2j+1, 2x

2
2x2j+2, x2x

2
2j+1, 2x2x2j+1x2j+2, x2x

2
2j+2}.

We can again reduce x22x2j+1 and x22x2j+2 by the leading terms of polynomials of M (1). However, the
reduction will create new elements x2x22j+1 and x2x22j+2 which are irreducible modulo LT(M (1)). For all
j, 1 ≤ j ≤ m2, we set:

M (2)[2, j] =M (2)[2, j]− 2M (1)[2j + 1, 2]− 2M (1)[2j + 2, 2].

After this step, we have

T
(2)
2,j = {3x2x22j+1, 2x2x2j+1x2j+2, 3x2x

2
2j+2} and LT(M (2)[1, j]) = 3x2x

2
2j+1.

T
(2)
2,j and T (2)

2,j can not be further reduced by LT(M (1)).

Let U2 := {(i, j) ∈ [4, . . . , n]× [1, . . . ,m2] | i > 2j + 2}. In this case, we can cancel the terms x22j+1xi
and x22j+2xi by M (1). However, the reduction will create new terms x2j+1x

2
i and x2j+2x

2
i which are

irreducible modulo LT(M (1)). More precisely, for all (i, j) ∈ U2, we update the matrix M (2) as follows:

M (2)[i, j] =M (2)[i, j]−M (1)[i, 2j + 2]−M (1)[i, 2j + 1].
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The terms of degree 3 of M (2)[i, j] are then:

T
(2)
i,j = {2x2x2j+1xi, 2x2x2j+2xi, x2x

2
i , 2x2j+1x2j+2xi, x2j+1x

2
i , x2j+2x

2
i }, ∀(i, j) ∈ U2.

The terms of T (2)
i,j are clearly no divisible by x1. We have that x2x2i is irreducible modulo LT(M (1)).

The others terms are divisible by a square only if i = 2j + 2. However, x2x22j+2 and x2j+1x
2
2j+2 can

not be reduced modulo LT(M (1)). Again, x2j+1x
2
i and x2j+2x

2
i can not be reduced by LT(M (1)). Thus,

∀(i, j) ∈ U2, the set T (2)
i,j is irreducible modulo LT(M (1)).

For i = 2j + 2, we have a rather similar situation. The only difference is that the reduction of x32j+2 will
only yield terms of degree < 3. We have then:

T
(2)
2j+2,j = {2x2x2j+1x2j+2, 3x2x

2
2j+2, 3x2j+1x

2
2j+2}.

Similarly, for i = 2j + 1, we have:

T
(2)
i,j = {3x2x22j+1, 2x2x2j+1x2j+2, x

3
2j+1, 2x

2
2j+1x2j+2, x2j+2x

2
2j+1}.

Using LT(M (1)), we can reduce x22j+1x2j+2 and x32j+1. So, we compute:

M (2)[2j + 1, j] =M (2)[2j + 1, j]− 2M (1)[2j + 2, 2j + 1]−M (1)[2j + 1, 2j + 1].

This yields:
T

(2)
2j+1,j = {3x2x

2
2j+1, 2x2x2j+1x2j+2, 3x2j+1x

2
2j+2}.

Finally, we define L2 := {(i, j) ∈ [3, . . . , n]× [1, . . . ,m2] | 2 < i < 2j + 1}. For all, (i, j) ∈ L2, it holds
that:

T
(2)
i,j = {x2x2i , 2x2xix2j+1, 2x2xix2j+2, xix

2
2j+1, xix

2
2j+2, 2xix2j+1x2j+2}.

All in all, after these steps, no term of M (2) can be reduced by LT(M (1)).

We have then:

– T
(2)
1,j = {x2x22j+1, x2x

2
2j+2, x2j+1x

2
2j+2}, for all j, 1 ≤ j ≤ m2,

– T
(2)
2,j = {3x2x22j+1, 2x2x2j+1x2j+2, 3x2x

2
2j+2}, for all j, 1 ≤ j ≤ m2,

– T
(2)
i,j = {x2x2i , 2x2xix2j+1, 2x2xix2j+2, xix

2
2j+1, xix

2
2j+2, 2xix2j+1x2j+2} ,∀(i, j) ∈ L2,

– T
(2)
2j+1,j = {3x2x22j+1, 2x2x2j+1x2j+2, 3x2j+1x

2
2j+2}, for all j, 1 ≤ j ≤ m2,

– T
(2)
2j+2,j = {2x2x2j+1x2j+2, 3x2x

2
2j+2, 3x2j+1x

2
2j+2}, for all j, 1 ≤ j ≤ m2,

– T
(2)
i,j = {2x2x2j+1xi, 2x2x2j+2xi, x2x

2
i , 2x2j+1x2j+2xi, x2j+1x

2
i , x2j+2x

2
i }, ∀(i, j) ∈ U2.

We now proceed the polynomials M (2) to have distinct leading monomials.

We first reduce polynomials of the second row. That is, for all j, 1 ≤ j ≤ m2:

M (2)[2, j] =M (2)[2, j]− 3M (2)[1, j].

This gives:
T

(2)
2,j = {2x2x2j+1x2j+2,−3x2j+1x

2
2j+2}.

Also, for all j, 1 ≤ j ≤ m2, we compute:

M (2)[2j + 2, j] =M (2)[2j + 2, j]−M (2)[2, j].

This gives:
T

(2)
2j+2,j = {3x2x

2
2j+2, 6x2j+1x

2
2j+2}.
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For all j, 1 ≤ j ≤ m2, we compute:

M (2)[2j + 1, j] =M (2)[2j + 1, j]− 3M (2)[1, j].

This gives:
T

(2)
2j+1,j = {2x2x2j+1x2j+2,−3x2x22j+2}.

Finally, for all j, 1 ≤ j ≤ m2:

M (2)[2j + 1, j] =M (2)[2j + 1, j]−M (2)[2, j].

This gives:
T

(2)
2j+1,j = {−3x2x

2
2j+2, 3x2j+1x

2
2j+2}.

Finally, for all j, 1 ≤ j ≤ m2:

M (2)[2j + 1, j] =M (2)[2j + 1, j] +M (2)[2j + 2, j].

This gives
T

(2)
2j+1,j = {9x2j+1x

2
2j+2}.

To summarize, we have:

– T
(2)
1,j = {x2x

2
2j+1, x2x

2
2j+2, x2j+1x

2
2j+2}, and r(2)1,j = x2x

2
2j+1, for all j, 1 ≤ j ≤ m2,

– T
(2)
2,j = {2x2x2j+1x2j+2,−3x2j+1x

2
2j+2}, and r(2)2,j = 2x2x2j+1x2j+2, for all j, 1 ≤ j ≤ m2,

– T
(2)
i,j = {x2x2i , 2x2xix2j+1, 2x2xix2j+2, xix

2
2j+1, xix

2
2j+2,2xix2j+1x2j+2}, and rU2

i,j = 2xix2j+1x2j+2,∀(i, j) ∈
L2,

– T
(2)
2j+2,j = {3x2x

2
2j+2, 6x2j+1x

2
2j+2}, and and r(2)2j+2,j = 3x2x

2
2j+2, for all j, 1 ≤ j ≤ m2,

– T
(2)
2j+1,j = {9x2j+1x

2
2j+2}, and r(2)2j+2,1 = 9x2j+1x

2
2j+2 for all j, 1 ≤ j ≤ m2,

– T
(2)
i,j = {2x2x2j+1xi, 2x2x2j+2xi, x2x

2
i , 2x2j+1x2j+2xi, x2j+1x

2
i , x2j+2x

2
i }, and rU2

i,j = 2x2x2j+1xi,∀(i, j) ∈
U2

By inspecting the terms in bold, it can be noticed that they are all distinct. ut

Example 4 For n = 5, G∗ = G1‖G2 is as follows:


1 1 1 1 0
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 0 0 1 0

 .
The initial system – after a first simple reduction on the equations of G1 – is:

[2 · x21 + 16 · x1 + 17, 2 · x1 · x2 + x22 + 5 · x1 + 13 · x2 + 19,

2 · x1 · x3 + x23 + 3 · x1 + 11 · x3 + 7,

2 · x1 · x4 + x24 + 27 · x1 + 6 · x4 + 22,

2 · x1 · x5 + x25 + 15 · x1 + 23 · x5 + 22,

x22 + 2 · x2 · x3 + 2 · x2 · x4 + x23 + 2 · x3 · x4 + x24 + 3 · x2 + 3 · x3 + 3 · x4 + 2].

We give below homogeneous components of degree 3 of the polynomials of M (2) after all the operations
described in the previous proof.

[x2 · x2
3 + x2 · x24 + x3 · x24,

2 · x2 · x3 · x4 + 26 · x3 · x24,

9 · x3 · x2
4,

3 · x2 · x2
4 + 6 · x3 · x24,

2 · x2 · x3 · x5 + 2 · x2 · x4 · x5 + x2 · x25 + 2 · x3 · x4 · x5 + x3 · x25 + x4 · x25].
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Remark 2. We emphasize that we have found an example which extends Lemma 11. We construct a matrix
G := G1‖G2‖ · · · ‖Gn. The matrices G1 and G2 are defined as in Lemma 11. Each block Gb, b > 2 will
be of size n×

⌊
n−b
b+1

⌋
and such that all the coefficients are zero except for :

– G2[b, j] = 1, for all j, 1 ≤ j ≤ m2.
– G2[j(b+ 1), j] = G2[b · j + 2, j] = 1, · · · , G2[j(b+ 1) + b, j], for all j, 1 ≤ j ≤

⌊
n−b
b+1

⌋
.

We perform experiments to verify that such G yields semigeneric systems. We have been able to verify the
assumption up to n = 100. However, we have not been able to prove that such family is semigeneric. This
would allow to prove semigenericity for m ≈ n2/ log n.


