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ABSTRACT
Oblivious RAM (ORAM) is a cryptographic primitive that
hides memory access patterns to untrusted storage. ORAM
may be used in secure processors for encrypted computation
and/or software protection. While recursive Path ORAM is
currently the most practical ORAM for secure processors,
it still incurs large performance and energy overhead and
is the performance bottleneck of recently proposed secure
processors.

In this paper, we propose two optimizations to recursive
Path ORAM. First, we identify a type of program local-
ity in its operations to improve performance. Second, we
use pseudorandom function to compress the position map.
But applying these two techniques in recursive Path ORAM
breaks ORAM security. To securely take advantage of the two
ideas, we propose unified ORAM. Unified ORAM improves
performance both asymptotically and empirically. Empiri-
cally, our experiments show that unified ORAM reduces data
movement from ORAM by half and improves benchmark
performance by 61% as compared to recursive Path ORAM.

1. INTRODUCTION
Oblivious RAM (ORAM) is a cryptographic primitive that

conceals memory access patterns, i.e., the addresses of mem-
ory accesses. ORAM hides access patterns by continuously
reshuffling the memory and translating the address of each
memory access to a set of randomized memory locations.
Provably, these randomized memory locations are guaran-
teed to be independent of the actual addresses.

ORAM was first proposed by Goldreich and Ostrovsky [8]
for software protection. Their goal was to make a processor’s
interaction with memory oblivious, meaning that the interac-
tion does not depend on the software running in the processor.
Another important application of ORAM in secure proces-
sors is encrypted computation [5]. In this scenario, the user
wants to do computation on an untrusted server and does not
want any adversary (including the untrusted server) to learn
his/her data. One solution is to have tamper-resistant secure
processors on the server side. The user encrypts and sends
his/her data to the secure processor, inside which the data is
decrypted and computed upon. After the computation, the
secure processor encrypts the results and sends them back
to the user. ORAM also finds applications in areas outside
processors, e.g., secure remote storage [37, 36] and proof of
retrievability [2]. This paper focuses on secure processors.

While it is assumed that adversaries cannot look inside
a tamper-resistant secure processor, we still have to pro-

tect the interaction between the processor and the external
main memory. In both software protection and encrypted
computation, encrypting the memory is not enough; access
patterns also leak information. Zhuang et al. [45] showed
that memory access patterns can leak the program’s control
flow graph, and therefore leak sensitive data through data-
dependent conditional branches. However, most existing
secure processors, including Intel’s TPM+TXT [14, 42, 1],
XOM [19, 20, 21] and Aegis [40, 41] have not taken measures
to protect memory access patterns.

ORAM completely hides access patterns, but has long been
assumed to be too expensive for processors. Only recently,
ORAM was embraced by secure processors like Ascend [5,
44] and Phantom [25]. Both Ascend and Phantom use Path
ORAM [38] because of its efficiency and simplicity. One
problem of Path ORAM when used in processors is that it
needs to store a large data structure called Position Map
(PosMap for short) on-chip. The PosMap size is proportional
to the number of data blocks (cachelines) in the memory and
can be hundreds of megabytes. The solution to the above
problem is recursive ORAM, proposed by Shi et al. [33].
The idea is to store the large data structures (PosMap in
the Path ORAM case) in additional ORAMs to reduce the
on-chip storage requirement. The cost of recursive ORAM is
longer latency: now we have to access all the ORAMs in the
recursion every time. Even after architectural optimizations
[31], a recursive Path ORAM with reasonable configurations
has to transferred over 400× data between the client and
ORAM, compared with normal DRAM.

In this work, we propose two optimizations to recursive
Path ORAM. First, we observe that there is locality in Path
ORAM PosMap accesses. This means we can cache part of
the PosMap in PosMap Lookaside Buffer (PLB) to reduce
PosMap accesseses. Second, we propose a technique to com-
press Path ORAM PosMap using pseudorandom functions
(PRF). However, utilizing PosMap locality or pseudoran-
domness turns out to be tricky: näıvely applying the ideas
either leaks information on access patterns or hardly brings
performance gain.

To address the problem, we propose unified ORAM. Unified
ORAM can take advantage of PosMap locality and pseudo-
randomness in a provably secure fashion. Table 1 summarizes
our improvements over recursive Path ORAM. Unified Path
ORAM with PLB eliminates most of the PosMap accesses,
reducing data movement from external memory by 45% com-
pared with recursive Path ORAM, though the asymptotic
performance stays the same. Pseudorandom PosMap leads
to an asymptotic improvement over recursive Path ORAM,
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Table 1: Asymptotic and empirical overhead of unified Path
ORAM and recursive Path ORAM, in relation to normal
memory. N is the total number data blocks. Bd is data
block size. Parameter setting for the empirical results are
given in Section 6.1.

ORAM scheme Asymptotic Empirical

Recursive [38] O
(

logN + log3 N
Bd

)
460×

Unified + PLB O
(

logN + log3 N
Bd

)
254×

Unified + PLB + PRF O
(

logN + log3 N
Bd log logN

)
232×

and also slightly improves empirical performance. Combining
the two ideas, unified ORAM outperforms recursive ORAM
in both asymptotic and empirical performance. Our experi-
ments show that using unified ORAM in a secure processor
improves benchmark performance by about 60% on average.

The rest of the paper is organized as follows: Section 2
covers background on ORAM and (recursive) Path ORAM.
Section 3 introduces the position map lookaside buffer, an
important building block for our unified ORAM. Section 4
presents the architecture of the unified ORAM in detail. Sec-
tion 5 introduces compressed PosMap using pseudorandom
functions, and show it improves performance both asymptot-
ically and empirically. We evaluate unified ORAM in Section
6, and discuss extensions in Section 7. Section 8 describes
related work and Section 9 concludes.

2. BACKGROUND
In a system using ORAM, the programs send requests to

an ORAM controller, and the ORAM controller interacts
with the external untrusted storage (e.g., DRAM). Let A be
the sequence of memory requests made by programs. Let
R represent the observable interaction between the ORAM
controller and the external storage to serve the memory
request sequence A. ORAM requires that computationally
bounded adversaries cannot learn anything about A from R.
In other words, given any two program address sequences
A1 and A2, the resulting interaction R1 and R2 should be
indistinguishable (if we make them to have the same length).

In this paper, we focus on Path ORAM, but our idea works
for several other ORAMs as well (see Section 8).

2.1 Basic Path ORAM
Path ORAM [38] is currently one of the most efficient

ORAM schemes, and more importantly is practical for hard-
ware implementation [25] due to its simplicity. Immediately
after its first proposal in 2012 [35], it gained popularity in
secure processors [5, 44, 25, 24].

In Path ORAM, the untrusted external storage is logically
structured as a binary tree, as shown in Figure 1(a). We refer
to it as Path ORAM tree or ORAM tree for short. The
root of the ORAM tree is referred to as level 0, and the leafs
as level L (we say such a tree has depth L). Each node in
the tree is called a bucket and can hold up to Z data blocks
(cachelines). Buckets that have less than Z data blocks are
filled with dummy blocks. A dummy block is conceptually
an empty slot that can be taken up by a real data block at
any time. All the blocks in the tree including the dummy
blocks are encrypted with probabilistic encryption (e.g., AES
counter mode [22]), so any two blocks (dummy or real) are
indistuiguishable after encryption. Each leaf node has a

unique leaf label r. We also refer to the path from the root
to leaf r as path r. The ORAM tree is not trusted and can
be read by an adversary at any time.

The Path ORAM controller has a position map, a stash
and associated control logic. The position map (PosMap for
short) is a lookup table that associates each data block with a
random leaf in the ORAM tree. The stash is a memory that
stores up to a small number of data blocks that temporarily
cannot be put back into the ORAM tree. We will assume
the stash can store up to 200 blocks throughout the paper.

Path ORAM invariant and operation. At any time,
each data block in Path ORAM is mapped to a random leaf
via PosMap. Path ORAM maintains the following invariant:
If a block is mapped to leaf r, then it must be either in some
bucket on path r or in the stash.

The steps to access a block with program address a are as
follows:

1. Look up PosMap with a, yielding the corresponding
leaf label r.

2. Read all the buckets along path r into the ORAM
controller. Decrypt all the blocks and add all real
blocks to the stash (dummy blocks are discarded).

3. Due to the Path ORAM invariant, block a must be in
the stash at this point. Return block a (to the last-level
cache).

4. Assign a new random leaf r′ to block a (update PosMap).

5. Evict and encrypt as many blocks as possible from the
stash to path r while keeping the invariant. Fill any
remaining space on the path with encrypted dummy
blocks.

Path ORAM security. The path read and write oper-
ation (Step 2 and 5) are done in a data-independent way
(e.g., always from the root to the leaf); and due to proba-
bilistic encryption, all the ciphertexts along the path change.
Therefore, the leaf label r is the only information revealed
to an observer on an ORAM access. Step 4 is the key to
Path ORAM’s security, where a block is remapped to a new
random leaf whenever it is accessed. This guarantees that
PosMap always contains fresh random leaf labels for all the
blocks, and thus a random path r, retrieved from PosMap,
is read and written on every access regardless of the actual
program address sequence.

2.2 Recursive Path ORAM
Recursive ORAM was first proposed by Shi et al. [33]

to reduce client-side storage and was used to build Path
ORAM in a secure processor setting [5, 31]. In our setting,
the client is the secure processor and client-side storage must
fit on-chip. The idea of recursive ORAM is that we can put
the large client-side storage (PosMap for Path ORAM) into
a second ORAM.

We refer to the original data Path ORAM as the data
ORAM denoted as ORam0, and the second Path ORAM as
a PosMap ORAM denoted as ORam1. Suppose each block
in ORam1 contains χ leaf labels for blocks in ORam0. Then,
for a block with address a0 in ORam0, its leaf label is in
block a1 = a0/χ of ORam1

1. Accessing data block a0 now
1All divisions in this paper are program disivion, a/χ mean-
ing ba/χc. We omit the flooring for simplicity.
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Figure 1: Basic and Recursive Path ORAM constructions. The addresses a, a+ 1, etc are tags of cachelines. In (b), a block in
PosMap ORAM stores leaf labels for several cachelines. LL$ stands for Last-Level-Cache. The latency and the amount of data
transferred are representative of the baseline recursive Path ORAM (see Section 2.3 and 6.1).

involves two steps. First, the ORAM controller accesses
PosMap ORAM to get block a1 = a0/χ, from which the
ORAM controller retrieves the leaf label of a0 and replaces
it with a new random leaf label. Then it loads block a0 from
data ORAM. The steps in Figure 1(b) to access each ORAM
align with Steps 1 - 5 from the basic Path ORAM case in
Section 2.1.

Of course, the new on-chip PosMap might still be too large.
In that case, additional PosMap ORAMs (ORam2, ORam3,
· · · , ORamH−1) may be added to further shrink the on-chip
PosMap. The PosMap blocks ai (i > 0) are analogous to
page tables in conventional virtual memory systems, where
the leaf labels are pointers to the next-level page tables or
the pages. Both page tables and PosMap ORAMs have to
be queried on each main memory access; a recursive ORAM
access is similar to a full page table walk.

2.3 (Recursive) Path ORAM Overhead
On each Path ORAM access, the ORAM controller has to

read and write an entire path. We define PathLen to be the
amount of data on a path. In an ORAM tree with depth L,
each path contains L+ 1 buckets. Each bucket contains Z
blocks and and some metadata for probabilistic encryption,
e.g., the counter in AES counter mode [22]. Each block has B
bits, and is stored alongside with its U1-bit program address
and U2-bit leaf label. So the amount of data on a path (in
bit) is

PathLen = (L+ 1)[Z(B + U1 + U2) + CounterSize] (1)

The total amount of data movement in recursive ORAM is
the sum of PathLen for all the ORAMs.

The PathLen metric directly relates to Path ORAM la-
tency and energy overhead. Path ORAM latency and energy
overhead are almost linear in PathLen. The dominant part of
Path ORAM latency is the time it takes to transfer PathLen
Bytes of data between the external ORAM tree and the
ORAM controller. Path ORAM energy mainly consists of
three parts: (1) to access the external DRAM that stores
the ORAM tree, (2) to transfer the data to and from ORAM
controller and (3) to decrypt/encrypt the data. All three
parts are linear in the amount of data movement.

In this paper, we care about both theoretical (asymptotic)
and empirical (experimental) performance.

2.3.1 Asymptotic performance
Let N be the number of data blocks in ORAM, we need

U1 = U2 = logN . Now it makes sense to use counters also of
O(logN) bits not to further increase complexity 2. It is also
reasonable to assume data block size Bd is at least Ω(logN)
in practice. Then Path ORAM’s asymptotic bandwidth
overhead is then given by 2 · PathLen/Bd = O (logN).

For recursive ORAM, suppose each PosMap block contains
χ leaf labels. Then PosMap block size is Bp = χ logN After
H = O(logN/ logχ) levels of recursion, client-side PosMap
size is reduced to O(logN). A good strategy, given in a more
recent version of Path ORAM [39], is to make χ a constant
(≥ 2). The resulting bandwidth overhead is then

2

Bd
ΣH−1
h=0 PathLenh =

2

Bd
O (Bd logN +H ·Bp · logN)

= O

(
logN +

log3N

Bd

)
(2)

2.3.2 Empirical performance
In the analysis of empirical performance throughout the

paper, including Section 6, we assume U1 = U2 = 32 bits
and CounterSize = 8 bits. We assume a baseline recursive
Path ORAM with 4GB capacity, data block size Bd = 512
bits, PosMap block size Bd = 256 (the best PosMap block
size found by [31]) and H = 5. These parameters gives
ΣH−1
h=0 PathLenh = 14.4 KBytes. This means 14.4 KBytes of

data has to be read and written on each ORAM access, in
contrast to a single access to a 64-Byte cacheline in normal
memory. This is over 460× data movement.

In fact, not very intuitively, more than half of the overhead
comes from PosMap ORAMs. The PathLen for data ORAM
is only 5.7 KBytes. The remaining 8.7 KBytes come from
PosMap ORAMs. So all the PosMap ORAMs combined
account for about 60% of the total amount of data move-
ment, and accordingly about 60% of the latency and energy
overhead. This paper addresses this issue and significantly
reduces the overhead of PosMap ORAMs accesses.

2We remark that such counters will overflow in polynomial
time. If that happens, all blocks are copied into a new
Path ORAM and the algorithm resumes. This process takes
O(logN) Path ORAM operations, a constant factor if amor-
tized. This was implicitly assumed in previous work [38].
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3. POSMAP LOOKASIDE BUFFER (PLB)
In this section, we introduce Position map Lookaside Buffer

(PLB), which is an important building block of our unified
ORAM.

When we introduced the recursive Path ORAM in Section
2.2, we intentionally compared it to virtual memory and
position map to page tables. Conventional virtual memory
systems have Translation Lookaside Buffers (TLB) to cache
page tables. Similarly, PLBs aim at reducing the number
of accesses to PosMap ORAMs by caching them on-chip.
However, näıvely adding PLBs in recursive Path ORAM
either breaks ORAM security or hardly gets any performance
gain.

3.1 PLB Motivation
The key idea of PLB is that position map accesses have

locality. A block in PosMap ORAM contains a set of leaf
labels for consecutive blocks (see Figure 1(b)) in the next
ORAM. Most programs have locality and tend to access
neighboring cachelines most of the time, resulting in accessing
the same PosMap block multiple times. Based on this insight,
we propose using PLBs to cache PosMap ORAMs on-chip,
to reduce the number of PosMap ORAM accesses.

As in Section 2.2, we refer to the data ORAM as ORam0,
the first PosMap ORAM as ORam1, the second PosMap
ORAM ORam2 etc. On an ORAM access to address a0,
recursive Path ORAM has to access all the H ORAMs in
the recursion in decreasing order (ORamH−1 first). For each
PosMap ORAM ORami, we can add a PLB, referred to as
PLBi. Ideally, if block ai = a0/χ

i is already in PLBi, the
ORAM controller directly starts from accessing ORami−1,
skipping ORami and all the smaller PosMap ORAMs. Un-
fortunately, this leaks information about the access pattern.

3.2 PLB (In)security
PLB hit/miss correlates directly to a program’s access

pattern—whether or not the access pattern has good local-
ity. Consider the following simple example. Access pattern
(1) scans each cacheline with a unit stride (i.e., it accesses
cacheline 0, 1, 2, ...); Access pattern (2) uses a large stride
such as 100 (i.e., it accesses cacheline 0, 100, 200, ...). Access
pattern (1) will hit in PLB1 most of the time and only ac-
cesses data ORAM. But access pattern (2) constantly misses
in PLB1 and needs to access ORam1 everytime. Since ORam0

and ORam1 are stored at different physical locations in the
external memory, an observer can clearly tell the two access
patterns apart.

A simple fix to the above problem is to apply a public
access rate each PosMap ORAM. Unfortunately, it is usually
difficult to set the rates right, since the ‘correct’ rates depend
on many factors like program locality, program input size,
PLB capacity, PosMap ORAM block size and so on. Setting
rates wrong may often negate all the benefits from PLB.

4. UNIFIED ORAM
We propose unified ORAM to fill the PLB security hole

and extract substantial gain out of PLBs. Our key idea to
fix the PLB insecurity is that, if we can make the accesses to
any ORAM in the recursion indistinguishable, then we will
not reveal PLB hit/miss results. We describe how unified
ORAM works in Section 4.1, and then discuss how it makes
PLB secure in Section 4.2.

Data blocks 

memory available to programs 

PosMap1 
(for data blocks) 

PosMap2  
(for PosMap1) 

PosMap3  
(for PosMap2) 

Address range 

Block 0  ̶- ̶-  

Block 64M 

Block 64M  -̶ ̶- 
Block (64+8)M 

Block (64+8)M  -̶ ̶-  
Block (64+8+1)M 

Unified ORAM 

PLB  caches  
PosMap1 & PosMap2 

Off-chip 

On-chip 

Figure 2: Unified ORAM address space. Assuming there are
64M data blocks, and each PosMap block contains χ = 8 leaf
labels for the next ORAM.

4.1 Address Mapping and Operations
In a unified ORAM, we still need hierarchical PosMap,

denoted by {PosMap1,PosMap2, · · · ,PosMapH−1}. PosMap1
is the PosMap for the data blocks (cachelines). PosMaph+1

is the PosMap for PosMaph (h ≥ 1), and will be smaller than
PosMaph by a factor of χ. There is only one Path ORAM tree,
which contains all the data blocks as well as all the PosMap
blocks (in {PosMap1,PosMap2, · · · ,PosMapH−1}). Data blocks
and PosMap blocks must have the same size.

Different blocks occupy different logical address spaces in
the unified ORAM, illustrated in Figure 2. Suppose there
are N data blocks. They will occupy address space [0,N).
This is the memory space seen by the programs. Addresses
beyond N are reserved for PosMaps and are not accessible
to the programs. PosMap1 occupies address [N,N +N/χ),
PosMap2 occupies address [N +N/χ,N +N/χ+N/χ2), and
so on (we assume N is an integer multiple of χH). The
smallest PosMap (PosMap2 in Figure 2) is stored on-chip.

For a data block with address a0 (a0 < N), its first-level
PosMap block is the (a0/χ)-th block in PosMap1, which has
address a1 = N + a0/χ; its second-level PosMap block is
the (a0/χ

2)-th block in PosMap2, which has address a2 =
N + N/χ + a0/χ

2, and so on. Here is a simpler way to
calculate the location of the leaf label for a block. For a
block with address ai

3, its leaf label is either in on-chip
PosMap, or in block ai+1 = N + ai/χ (which belongs to
PosMapi+1). It is easy to check the equivalence of the two
approaches. Since ai = (Σij=0N/χ

j) + a0/χ
i,

ai+1 = (Σi+1
j=0N/χ

j) + a0/χ
i+1

= N + [(Σij=0N/χ
j) + a0/χ

i]/χ

= N + ai/χ (3)

Note that all division includes flooring.

3it is a data block if i = 0, and belongs to PosMapi otherwise
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Below are the steps to access a data block with address a0
(a0 < N) in unified ORAM:

1. (PLB lookup) For i = 1 : H − 1:

(a) Look up the PLB for block ai = N + ai−1/χ (due
to Equation 3).

(b) If hit, let h = i−1 and go to Step 2; else, continue.

If none of ai hits, set h = H − 1 and go to Step 2.

2. (PosMap block accesses) For i = h : 1 (i decreas-
ing):

Access the unified ORAM for block ai and put it into
the PLB. If this evicts another PosMap block from the
PLB, add that block to the stash.

3. (Data block access) Access the unified ORAM for
block a0 and return it to the last-level cache.

In Step 2 and 3, the leaf label for block ah is originally in
PLB, or in the on-chip PosMap if h = H − 1. The leaf labels
for the other blocks ai (0 ≤ i < h) are obtained from the
unified ORAM tree, and blocks aj (1 ≤ j < h) are brought
into the PLB.

We will have only a single unified PLB, which can cache
blocks from any PosMap and does not distinguish them in
LRU replacement policy. We choose this design mainly for
its simplicity. In addition, we believe this design is more
robust to locality at different scale. For example, suppose
accesses to PosMap1 do not have good locality, and the PLB
rarely hits on PosMap1 blocks; then the LRU policy will tend
to evict these PosMap1 blocks, and effectively devote the
space to caching other PosMap blocks. One can consider
using more complicated PLBs, for example, having separate
PLBs for different PosMaps, or favoring blocks from certain
PosMaps based on their hit rate in the past. We leave these
schemes to future work.

4.2 Security of Unified ORAM
Our security unified ORAM follows the security of Path

ORAM. The basic operation of the unified ORAM is to load
a block from the unified ORAM tree, which is exactly a
Path ORAM operation—reading and writing a random path.
Which block is accessed or whether it is a data block or a
PosMap block is protected by Path ORAM. The security
proof for Path ORAM [38] holds for unified ORAM.

We note that the original ORAM threat model assumes
adversaries do not modify ORAM, and cannot monitor the
ORAM timing channel. If we want to extend the threat
model to defend against these two types of adversaries, we
need additional techniques. We will discuss these techniques
in Section 7.1, and show that unified ORAM outperforms
recursive ORAM under all the threat models.

4.3 Hardware Simplifications
Besides improving ORAM performance and energy, an-

other advantage of unified Path ORAM is that it reduces the
hardware complexity of the ORAM controller. We compare
the storage requirement of each major module for recursive
ORAM and unified ORAM in Table 2.

The first simplication to hardware directly follows the fact
that we now have only one ORAM tree. Thus we only need
one stash, as opposed to one stash per ORAM in recursive
Path ORAM. In the path write-back operation, blocks from

Table 2: The sizes of the modules inside the ORAM controller
(in KBytes) for recursive ORAM and unified ORAM.

Stash PosMap PLB Total

Recursive ORAM H = 4 45 102 0 147

Recursive ORAM H = 5 45 5 0 50

Unified ORAM H = 4 14 32 32 78

Unified ORAM H = 4
with compressed PosMap 14 4 32 50

any ORAM are treated the same: they are all ordinary blocks
in the unified ORAM tree.

The on-chip PosMap of our unified ORAM (without com-
pressed PosMap) is smaller than that of recursive ORAM
with H = 4, but larger than that of recursive ORAM with
H = 5. We will present in Section 5 compressed PosMap,
which makes our on-chip PosMap as small as that of recur-
sive ORAM with H = 5. We remark that for both recursive
ORAM and unified ORAM, we can always add more levels
of PosMaps in the recursion to further reduce the on-chip
PosMap, at the cost of more data movement and longer
ORAM access latency. So there is no good way to compare
the on-chip PosMap size. But we also point out that unified
ORAM makes it cheaper to add more PosMaps, because these
extra PosMaps will usually be accessed less than 1% of time
thanks to the PLB. As a comparison, in recursive ORAM,
a sixth ORAM (though shorter in depth) still increases the
latency by about 10%.

Another potential advantage of unified ORAM is to save
the on-chip storage for leaf labels per cacheline. It is less
relevant to our main results and requires some explanation,
so we postpone its discussion to Section 7.2.

5. COMPRESSED POSMAP
In this section, we propose a technique to compress the

position map of Path ORAM using Pseudo Random Function
(PRF).

A PRF family y = PRFK(x) is a collection of efficiently-
computable functions, where K is a random secret key. It
guarantees that, anyone who does not know K (even given
x) cannot distinguish y from a truly random bit-string in
polynomial time with non-negligible probability [9].

5.1 Construction
Following our notation and analysis in Section 4.1, suppose

each PosMap block contains k leaf labels for the next ORAM.
Then the leaf labels for block {a, a+ 1, · · · , a+ χ− 1}4
will be retrieved from block a/χ + N (due to Equation 3).
Block a/χ+N contains contains a α-bit group counter (GC)
and χ β-bit individual counters (IC):

GC || IC0 || IC1 || IC2 || · · · || ICχ−1,

where || is concatenation. The leaf label of block a + j is
defined to be

PRFK(GC || ICj || a+ j) mod 2L.

The output (we will call it uncompressed format) is compu-
tationally indistinguishable from a truly random number in
4a is a multiple of χ here so that these χ blocks share the
same PosMap block. The addresses a, a+1, · · · can be either
data blocks or PosMap blocks, so we omit the subscript i.
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[0to2L) as long as we never feed the same input to the PRF.
Block identifier a + j is included in the input, so different
blocks will always use different inputs to the PRF. If we
further ensure that the concatenation of the group counter
and the individual counter strictly increases, then the PRF
always receives new input. This is achieved by the following
modified remapping operation.

When remapping block a+ j, the ORAM controller first
increments its individual counter ICj . If the individual
counter overflows (becomes zero again), the ORAM controller
will increment the group counter GC. This will change
the leaf label for all the blocks in the group, so we have
to load all of them from their current paths, reset all the
individual counters and remap them to their new paths given
by PRFK(GC + 1 || 0 || a+ j) mod 2L. In the worst case
where the program always requests the same block in a group,
we need to reset all the χ individual counters in the group
every 2β accesses.

This would be very expensive in recursive ORAM In that
case, ORAM controller has to make χ full recursive ORAM
accesses to reset individual counters in a certain ORAM.
Otherwise, it reveals that individual counters have overflown
in that certain ORAM, which is related to the access pattern.
As in the case of PLB, unified ORAM helps by making an
access for resetting an individual counter indistinguishable
from an normal unified ORAM access. So the worse case
amortized cost to reset individual counters is χ/2β for unified
ORAM.

We note that each block in the ORAM tree or in the stash
also has its own leaf label stored beside itself. These leaf
labels will still be in the uncompressed format, because they
are used in path write-back, where the ORAM controller
does not have a chance to reference the PosMap.

5.2 Asymptotic Improvement
Compressed PosMap can lead to an asymptotic improve-

ment by reducing the levels of recursion needed. We choose
group counter width to be α = Θ(logN), the same length as
the counters for probabilistic encryption, and group counter
overflow can be handled in the same way. Let individual
counter width to be β = log logN , and χ = logN

log logN
. Then

PosMap block size is Bp = α+ χ · β = Θ(logN). Note that

such a compressed PosMap block contains χ = O
(

logN
log logN

)
leaf labels. Without compression, a PosMap block of size
O(logN) can only contain a constant number of leaf la-
bels. Such a parameter setting reduces the levels of recur-

sion H = O
(

logN
logχ

)
by a factor of logχ = O(log logN −

log log logN) = O(log logN), and only introduces a con-
stant amortized overhead of resetting individual counters as
χ/2β = O(1).

Now we study the asymptotic performance of unified
ORAM with compressed PosMap5. We start by examining a
simple case where data block size Bd = Bp = Θ(logN) = B.
Then we can have a unified Path ORAM with block size
B. For each ORAM access, we need to access the unified
ORAM H times (walk the PosMap), and each time transfers
O(B · logN) bits. So the asymptotic overhead is

2

B
(B · logN) ·H = O

(
log2N

log logN

)
.

5When analyzing asymptotic performance, we assume PLB
never hits, since there is no good way to model locality.

Table 3: Asymptotic overhead of unified Path ORAM and
previous ORAM schemes. N is the total number data blocks.
Bd is data block size. Bd = Ω(logN) is requried for Kushile-
vitz et al..

ORAM scheme Asymptotic

Kushilevitz et al. [18] O
(

log2 N
log logN

)
(Bd = Ω(log N))

Recursive Path ORAM [38] O
(

logN + log3 N
Bd

)
Unified Path ORAM O

(
logN + log3 N

Bd log logN

)

This bound outperforms that of recursive Path ORAM by a
factor of O(log logN), and breaks even with Kushilevitz et
al. [18] (currently the best ORAM scheme with small client
storage under small block size) for Bd = Θ(logN).

For the general case where Bd 6= Bp, we are faced with
the problem of choosing unified ORAM block size. Unified
ORAM should still use block size Bp, because a larger block
size for PosMap is suboptimal [31, 39]. Then we need to
break each data block into sub-blocks of size Bp and store
them in unified ORAM as independent blocks. However, we
let these sub-blocks share a single individual counter; the
uncompressed leaf for each sub-block is retrieved by including
sub-block index in the PRF input, PRFK(GC || ICj || a+
j || k) mod 2L. Now a full ORAM access involves H accesses
to unified ORAM to load the above PosMap block, and
another dBd/Bpe accesses to unified ORAM to load all the
sub-blocks of the data block. The asymptotic performance is

2

Bd
(Bp·logN)·

(⌈
Bd
Bp

⌉
+H

)
= O

(
logN +

log3N

Bd log logN

)
.

This bound is also asymptotically better than that of re-
cursive Path ORAM when Bd = o(log2N). When we have
large data block size Bd = Ω(log2N), recursive and unified
ORAM both achieve O(logN) asymptotic performance—the
ORAM lower bound [10]—and outperform Kushilevitz et al.
[18].

The above results are summerized in Table 3. Unified
Path ORAM has the best asymptotic overhead under any
Ω(logN) data block size among ORAMs with small client
storage.

5.3 Practical Improvement
Currently, ORAMs in secure processors or other appli-

cations is usually not large enough to see the performance
improvement of our theoretical contruction above. But com-
pressed PosMap still has benefits in practice. First, it reduces
the final on-chip PosMap size. Second, it allows us to cache
more leaf labels in PLB, and to bring more leaf labels on
every PosMap block access. The latter helps increase PLB
hit rate and reduces data movement.

Concretely, we will choose α = 64 (the same as CounterSize
and never overflows), β = 14, χ = 32 forming a 64-Byte block.
With the above parameters, we are able to fit 32 leaf labels in
each 64-Byte PosMap block. Effectively, each leaf label is now
only 16-bit, and the overhead of resetting individual counters
is at most χ/2β = 0.2%. Originally, each leaf label in the
uncompressed format must be at least logN bits (≈ 26).

The compressed PosMap does not lower the security level
of Path ORAM or add additional hardware. Even without
compressed PosMap, a PRF will be used to generate the fresh
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Table 4: Processor Configuration

Core, cache and DRAM
number of cores 4
core model in order, single issue, 1GHZ
add/sub/mul/div 1/1/3/18 cycles
fadd/fsub/fmul/fdiv 3/3/5/6 cycles
L1 I/D cache 32 KB per core, 4-way, LRU
L1 data + tag access time 1 + 1 cycles
shared L2 Cache 512KB per core, 8-way, LRU
L2 data + tag access time 8 + 3 cycles
cacheline size 64 B
DRAM latency 50 cycles
DRAM bandwidth 20 GB/s

Path ORAM configuration
data ORAM capacity 4 GB
data block size 64 B
blocks per bucket (Z) 3
ORAM latency model See Section 6.1
on-chip storage See Table 2

Recursive Path ORAM
PosMap block size 32 B
number of ORAMs (H) 5 (4)
latency 1728 (1524) cycles

Unified Path ORAM
PosMap block size 64 B
number of logical ORAMs (H) 4
latency (1 access) 632 cycles
PLB 32 KB, 4-way, LRU

Table 5: Input and Argument for SPLASH-2 Benchmarks

Bench Input Set A Input Set B
barnes 16K particles 256K particles
fmm 16K particles 256K particles
cholesky tk29.O tk29.O
fft 220 complex numbers 224 complex numbers
lu c 1024 × 1024 matrices 2048 × 2048 matrices
lu nc 768 × 768 matrices 1024 × 1024 matrices
ocean * 258 × 258 grid 514 × 514 grid
radix 4M keys, radix = 4K 64M keys, radix = 4K
raytrace Car Balls4, -a2
volrend head, Rotate Step = 8 head, Rotate Step = 50
water-ns 83 particles 153 particles
water-s 83 particles 323 particles

leaf labels. In practice, we will use AES as PRF. Compressed
PosMap, however, does add an additional AES latency to
the critical path. In the PosMap lookup step, the ORAM
controller has to perform an AES operation (evaluate the
PRF) to get the uncompressed random leaf. This overhead
is small compared with the hundreds of cycles data latency.

6. EVALUATION

6.1 Methodology
We evaluate our unified ORAM using the Graphite simu-

lator [27]. The processor configurations are listed in Table 4.
The core and cache model remain the same in all experiments.

We use SPLASH-2 [34] and a representative subset of
SPEC06 integer [16] benchmarks. For SPLASH-2 bench-
marks, we have two sets of inputs and arguments listed in
Table 5. For SPEC benchmarks, we use their reference inputs.
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Figure 3: Completion time on SPLASH-2 benchmarks with
input set A. Results are normalized to the insecure baseline.

All the SPLASH-2 benchmarks are run to completion, and
all the SPEC benchmarks are run for 5 billion instructions.
SPLASH-2 with input set B and 5 billion instructions for
SPEC are the limit of our simulation capability. Thus we
will only report results for them in Section 6.2 to show the
benefit of unified ORAM generalizes to larger problem size
and diverse benchmarks. For all the other studies, we use
SPLASH-2 with input set A.

We evaluate the four ORAMs in Table 2, and report bench-
mark slowdown compared with a conventional system that
uses DRAM. Recursive ORAMs use 32-Byte PosMap block
size following [31], but we changed data block size from 128-
Byte to 64-Byte to be more close to current processors. The
one with H = 5 uses the same amount of on-chip storage as
our unified ORAM with compressed PosMap, so we will take
it as the baseline recursive Path ORAM.

We assume ORAM latency consists of data latency and
a 50-cycle encryption latency following [31]. The memory
layout [31] enables data to be transferred at over 93% of
DRAM peak bandwidth between the ORAM controller and
the ORAM tree. We assume an effective bandwidth BW = 20
GB/s, which is roughly the bandwidth of two DDR3 memory
channels.

6.2 Performance Improvement
Figure 3 shows the performance improvement of unified

Path ORAM over recursive Path ORAM on SPLASH-2
benchmarks with input set A. The performance in the figure
is normalized to the insecure baseline, which uses DRAM.
On average (geometric mean), unified Path ORAM without
compressed PosMap improves performance by 53% com-
pared with the baseline recursive Path ORAM with H = 5.
Compressed PosMap leads to another 6% performance im-
provement, achieving 1.61× speedup over the baseline re-
cursive Path ORAM. Compared with recursive ORAM with
H = 4, which uses about 100 KB more on-chip storage,
unified ORAM still has 42% performance gain.

Figure 4 demonstrates that unified ORAM also has a
significant improvement on SPLASH-2 with input set B and
SPEC benchmarks. The speedup over recursive ORAM is
1.48× and 1.57×, respectively.

6.3 PLB Hit Rate and Energy Improvement
As mentioned in Section 2.3, Path ORAM latency and

energy overhead is linear in the amount of data transferred
between the ORAM controller and the ORAM tree. We now
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Figure 4: Completion time on SPLASH-2 with input set B
and SPEC with reference inputs. Results are normalized to
the insecure baseline.

analyze the average data movement of unified ORAM and
compare it with the recursive ORAM.

We make the unified ORAM tree have the same parameters
as the data ORAM tree in recursive ORAM. So PathLen of
the unified ORAM tree is equal to that of the data ORAM
tree in recursive ORAM, both being 5.7 KBytes. Let wi
(1 ≤ i ≤ H) be the probability that we need to access unified
ORAM i times on an access. The average data movement of
the unified ORAM per access isDMU = 2×PathLen·ΣHi=1i·wi.
The coefficient 2 comes from the fact we have to read and
write the path on each access. Figure 5 shows the dsitribution
of wi. The number on top of each bar is the weighted sum
ΣHi=1i · wi.

As expected, the benchmarks with good locality (e.g.,
cholesky, ocean contiguous and lu contiguous) are the ones
that benefit most from unified ORAM. For them, unified
ORAM with PLB almost eliminates all the accesses to
PosMap blocks (weighted sum close to 1). Most of the
benchmarks already have very few accesses to PosMap blocks,
which is why the improvement of compressed PosMap is small
across all benchmarks. FFT and radix have relatively worse
locality with w1 ≈ 0.6, and compressed PosMap improves
their performance by over 10%. Though water * also have
good locality, they rarely access main memory, so they have
almost the same performance with unified ORAM, recursive
ORAM and even DRAM. No benchmark in our experiments
has too poor locality that makes unified ORAM worse than
recursive ORAM.

On average, without compressed PosMap, DMU = 2.78×
PathLen; with compressed PosMap DMU = 2.54× PathLen.
Compared with the baseline recursive Path ORAM where
DMR = 2 × 14.4 KBytes ≈ 5 × PathLen, unified ORAM
with compressed PosMap reduces data movement by 49%.
The almost 2× saving on data movement also means a nearly
2× reduction in ORAM energy comsumption.

6.4 PLB Capacity and Ways
Figure 6 gives the average performance of SPLASH-2
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Figure 5: Distribution of the number of accesses in unified
ORAM with and without compressed PosMap.
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Figure 6: SPLASH-2 performance (geometric mean) on input
set A with different PLB capacity and ways.

benchmark on input set A with different PLB capacity and
set-associativity. A smaller PLB (8KB) hurts performance
by 5% on average, but on some benchmarks the performance
loss is over 10% (not shown in the figure). Increasing PLB
set-associativity does not bring observable benefits.

7. EXTENSIONS

7.1 Extending the Threat Model
We now discuss the techniques to defend against timing

attacks or active adversaries and show that unified ORAM
outperforms recursive ORAM under different threat models.

Integrity requires that adversary cannot tamper with the
data in ORAM. In other words, the program always gets
from memory what it wrote to that location last time. We
use the scheme in [30], which is a variant of a Merkle tree
[26] that efficiently takes advantage of the Path ORAM tree
structure. The overhead is that 2 hashes per bucket need
to be stored in the ORAM tree and read/updated on each
access. We assume a SHA-1 hash [4], which is 20 Bytes is
added to each bucket in Path ORAM tree.

The timing of memory accesses can also leak the access
pattern. For the most simple example, the better locality
an access pattern has, the more it hits in on-chip cache, and
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Figure 7: Normalized SPLASH-2 benchmark performance on
input set A (geometric mean) under different threat models.

the less infrequently it accesses ORAM. Ascend proposed
periodically accessing the main memory to protect the timing
channel [5, 6]. In their proposal, the ORAM controller serves
the next ORAM request OInt cycles after the previous one
finishes. If no real request comes within OInt cycles after the
previous one, the ORAM controller makes a dummy access
(to a reserved block that contains no useful data). We use
OInt = 100.6

Figure 7 compares the average slowdown on SPLASH-2
with input set A when using recursive and unified Path
ORAM under different threat models. From left to right are
the original ORAM threat model, with integrity verification
alone, with periodicity alone and with both. Unified Path
ORAM has significant performance gains over recursive Path
ORAM in all the four cases, with the speedup being 61%,
68%, 54% and 71%, respectively.

7.2 Not Storing Leaf Labels with Cachelines
Both previous work [31] and this paper thus far assumed

that when a block is evicted to the ORAM controller, it
can be directly appended to the stash without accessing any
path. A block in the stash must have its leaf label with it;
otherwise, the ORAM controller does not know which path
it should put this block to. So the above assumption requires
adding a leaf label field to every block in PLB and on-chip
cache. Assuming 64-Byte blocks and 4-Byte leaf labels, it
introduces 1/16 storage overhead. While this may be fine
for PLB (since PLB is small), it is a significant overhead
to on-chip cache (128KB for a 2MB cache). In addition to
the extra storage, it also requries modification to the current
cache design, making it more difficult to integrate ORAM
with processors.

If leaf labels are not stored in on-chip cache, then for
every data block evicted from last-level cache, the ORAM
controller has to access the PosMap ORAMs to retrieve its
current leaf label. In recursive ORAM, data ORAM must
be accessed as well for security, resulting in up to 2× data
movement. Again, PLB and unified ORAM come to help
in this case. Figure 8 shows that the performance penalty
of not storing each cacheline’s leaf label on-chip is 60% for
recursive ORAM, and only 15% for unified ORAM.

7.3 Relation to Virtual Memory and TLB
Position map and PLBs in Path ORAM are similar to page

6The ORAM controller is idle for OInt cycles after each
access. Since a unified ORAM access takes less time than a
recursive ORAM access, unified ORAM consumes less power
than recursive ORAM under the same OInt.
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Figure 8: The performance penalty (geometric mean) on
SPLASH-2 benchmarks with input set A of not storing cache-
line’s leaf label on-chip.

tables and TLBs in conventional virtual memory systems. A
page table converts virtual addresses to physical addresses,
while a PosMap associates program addresses with leaf labels,
which represent a set of (randomized) physical addresses
which contains the data of interest. A PLB caches PosMap,
in the similar way a TLB caches page tables.

However, PosMap in unified or recursive ORAM is still
very different from the virtual memory system. The primary
motivation of virtual memory is to provide program memory
separation and to allow programs to use more memory than
what is physically available (through paging). Were it not
for these two reasons—consider a machine that runs only one
program at a time and has no disk—virtual memory has no
reason to exist. Yet even in that case, PosMap is a necessary
module of Path ORAM. In addition, virtual memory and
page tables (and TLB in some systems) are managed by the
operating system (OS). In contrast, a PLB is accessible only
to the unified ORAM controller, and is transparent to any
software (including the OS).

Virtual memory and page tables can be added on top of
unified ORAM. In such a system, a virtual address is first
translated into a real address via the page table; the real
address is then translated into a set of randomized physical
addresses (represented by a random leaf) via the PosMap.
The entire virtual memory space including the page tables
have to reside in data ORAM address space [0, N). TLBs
can be added to cache page tables (note again page tables
are part of the data ORAM). ORAM address space beyond
N is reserved for PosMap ORAMs and is cached in PLBs. If
we have ”oblivious disk”, we can also support paging securely,
but that is outside the scope of this paper.

8. RELATED WORK

8.1 ORAM Algorithms
Since ORAM’s first proposal in 1987 [8], there has been

significant follow-up work that has resulted in more efficient
ORAM schemes [28, 10, 29, 13, 18, 43, 11, 12, 33, 37].

Though we focused on Path ORAM [38] in this paper,
our ideas also apply to some other ORAM constructions [33,
37, 7] that have large client-side storage, proportional to
the size of the memory. If these ORAMs are to be used in
secure processors, they all need recursion to reduce client-side
storage, and unified ORAM applies to them as well.

8.2 ORAM Optimization and Implementation
Ren et al. [31] explored the (recursive) Path ORAM design

space and proposed several optimizations to (recursive) Path
ORAM. We use their optimized recursive Path ORAM as the
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baseline in our work and significantly improve performance
and energy consumption.

Lorch et al. [23] exploited the parallelism in ORAM op-
erations and used multiple trusted coprocessors to speedup
ORAM accesses. Our work is orthogonal to theirs. We try
to reduce the total amount of work an ORAM has to do,
while they parallelized the ORAM operations. Our unified
ORAM also has substantial parallelism, and can adopt their
techniques. For the same reason, we can also saturate much
higher bandwidth than what we assumed in this work like
previous works [23, 31, 25].

Phantom [25] is the first hardware implementation of
ORAM. The authors implemented a single Path ORAM
without recursion on an FPGA, partly due to the additional
complexity of recursive Path ORAM. As a result, the design
is not scalable, and it had to use a very large block size (4KB)
to reduce the total number of blocks (and hence PosMap
size). Our unified ORAM can easily support any realistic
block size and memory capacity. Compared with recursive
ORAM, unified ORAM is easier to implement, consumes less
area and provides much better performance.

8.3 Virtual Memory and TLB
Virtual memory may have first been proposed by Fritz-

Rudolf Güntsch in his PhD thesis, and was later used in Atlas
computer [17]. Hatfield and Gerald [15] identified locality
in page table accesses, which inspired the use of TLBs [32,
3]. We do get some inspiration from TLBs, and we use the
name PLB in tribute to the early contributors of virtual
memory and TLBs. In a sense, we borrow well-established
architectural ideas and apply them to improve Path ORAM,
a state-of-the-art cryptographic primitive. We hope that our
work is viewed as an example of classical architectural ideas
continuing to contribute in new frontiers.

9. CONCLUSION
This paper identifies locality in position map of Path

ORAM, and proposes compressing the position map with
pseudorandom functions. Both techniques require the use of
unified ORAM, where all the logical ORAMs are stored in
the same Path ORAM tree. Our optimizations achieve both
asymptotic and empirical improvement. Experiments show
that unified ORAM with compressed position map reduces
ORAM data movement by half and improves SPLASH-2 and
SPEC performance by 61% and 57%, respectively.

We are currently building a processor with unified Path
ORAM and PLB. Compared with previous work, we expect
our unified ORAM to have similar hardware complexity, but
be able to support any reasonable block size and memory
capacity, and at the same time significantly reduce ORAM
latency and energy overhead.
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