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Abstract

In 2000 Ko gave potential hard problem is proposed called the Markov
problem. We give an algorithm, for certain parameters, for solution of the
Markov problem. The Markov problem is related to the knot recognition
problem. Hence we also a new algorithm the knot recognition problem
. This knot recognition algorithm may be used for previously proposed
cryptosystem that uses knots.

1 Attack On the Markov Problem

1.1 The Markov Problem

The goal of this paper, is to show that the suggested hard problem [2] is solvable,
for certain parameters, and we describe probabilistic practical implementation of
this algorithm that may give a practical solution to it. There is no known, poly-
nomial complexity, algorithm to solve,for all parameters, the Markov problem.
As an aside to solving this problem we get a new knot recognition, algorithm.
Every knot can be represented as the closure of a braid. Two di¤erent braids
can represent the same knot. We know a knot is ambient isotopic to a closed
braid by Alexanders Theorem. A knot is transformed into an equivalent knot
by a chain of Reidemeister moves. A knot can be constructed from a braid.
Markov in the 1930�s discovered the closure of any two braids is equivalent if
they undergo a chain of his Markov moves. A full proof of his idea came later.
In 1961 [6] the �rst algorithm given to compare knots was given by Haken. A
cryptosystem based on knots was proposed in [5]. Our knot algorithm, given
in the section below, may be used with protocol based on knots, for example,
possibly with scheme in [5],or a variant of [5].
The Markov problem as stated in [2] is the following (and using the notation

of [2]):
Instance: y 2 Bn such that y is conjugate to a braid of the form w��1n�1 for

w 2 Bn�1
Objective: Find (z; w) 2 (Bn; Bn�1) such that we have the equation one.

zyz�1 = w�en�1 where e = 1 or e = �1 (1)
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As is mentioned in [2] the Markov problem is closely related to the study
of knots and links via braids and hence should be hard. In [3] it was described
how the DP can be transformed (in a polynomial number of steps) into a set of
conjugacy search equations, for any group. So the Markov problem is di¤erent
from the conjugacy search problem since w is unknown and y is conjugate to a
braid mostly in Bn�1. In 1969 Garside gave the �rst algorithm [1] to solve the
conjugacy search problem.
Since the algorithm in [3] only requires the presentation for one of A or B,

both presentations are known in the double coset problem, in the problem. So
this means if it was applied to a version of a DP problem, where one of the
presentation of the sets are not known, it can reveal information "for a hidden
subgroup" in the problem (if this subgroup may need to be found); but since
the de�nition of th DP [3] states "�nd elements f 2 A; g 2 B " we may say
that this implies a subset (or subgroup) membership to be used on the solutions
found. Following the notation in [3].
Public Information: G is a semigroup. A;B are subsets of G:x; y 2 G with

y = axb:

Secret Information: a is a element in A; b is an element in B:
Objective: �nd elements f 2 A; g 2 B such that fxg = y:

The solution to the decomposition problem (DP ) implies a solution to the
decision version of the DP problem. We may write � for the binary operation
of G. We refer to an instance of DP as the function DP ((G0; A0; B0; x0); (a0; b0))
(G0 means the group for G in the problem an so on) sometimes we write this as
DP when it is obvious what is meant in the context. The double coset problem
can be solved by considering decomposition problem (DP )-with the parameters
A;B are subgroups of the group G. Since once we have solved for f and g,
(if they exist), we test for if f 2 A, and g 2 B by using some method to
test for subgroup membership, we can decide that if its true or false that y is
equal to fxg in the problem, and so, for example, decide is a pair of elements
lie within the same double coset or not. We refer to an algorithm that solves
DP ((G;A;B; x); (a; b)) as

DP ((G;A;B; x); (a; b); (F;G))

means that DP ((G;A;B; x); (a; b); (F;G)) has solutions f 2 F; g 2 G in the
decomposition instance

DP ((G;A;B; x); (a; b))

Suppose we may know the generating set for x we refer to this asX = fx1; x2; ::::; xmag.
In this case we write DP ((G0; A0; B0; X 0; x0); (a0; b0)) or similarly again refer to
it as DP:
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1.2 A Partial Solution for the The Markov Problem

The algorithm may imply a rede�nition conguacy extractor function of [3]
sketched as follows. When constructing CE functions consider functions of
the form L(l)B(b)P�1(l) where L;B; P are some functions over G, may have
P = L; are functions over G and l; b 2 G.
Algorithm to Solve Decomposition Problem
Based on the algorithm in [3] for the DP , when we say based we mean

that if we did not use the ideas in the algorithm in [3] the algorithms presented
here would not be possible,algorithm there, we apply the ideas to the Markov
problem, and we give an algorithm here for solving the DP type problems (such
as the Markov, and double coset), we give a suggestions for the algorithm that
may speed up the algorithm. So this means if we have , for example, information
about commutativity condition of the set A and B , as the DP has in [2], we
could put down a system of equations to represent this. One reason the multiple
simultaneous conjugacy search problem, and hence this DP algorithm, is of
interest because the paper [4] and the follow up paper [3] show that the multiple
conjugacy search problem is the basis of security for a lot of non-commutative
group based protocols. So it an interesting question to research how hard the
multiple simultaneous conjugacy search problem is to solve. For example it
was shown in [3] that the Dehornoy�s authentication scheme based on shifted
conjugation, and braid-Di¢ e Hellman protocol in [2], and its generalisation, are
based on the multiple conjugacy search problem. We use this extra information,
along with a system of multiple conjugacy equation which we can always derive
with the parameters we use. We follow the notation in [3]. The minimal input
information we need for this algorithm to work includes a representation A0; B0

for one of the subgroup A or B:
We consider

DP ((G0; A0; B0; X 0; x0); (a0; b0)) = DP ((G;X;Z;A; a); (x; z))

refers to input to the algorithm that solves theDP , given (theDP equation)

u = xaz:

This attack reveals recovers z. So we use the version that tries to recover z. To
apply it to the Markov problem we would modify the algorithm in [3] means we
may know one or both of the representations X or Z.

X = fx1; x2; ::::; xmqg
mq is an integer for the number of generators of X:

Z = fz1; z2; ::::; zmwg
A = fa1; a2; ::::; amag
G = fg1; g2; ::::; gmgg

C(Z) = ff1; f2; ::::; fmzg
C(X) = fh1; h2; ::::; hmxg
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1. Given xazSIz�1a�1x�1 the attacker picks elements SI according to some
criteria relating to commutativity [3].
So for this condition we choose, to make it simply for more e¢ cient im-

plementation in multiplications, to select SI so that SI 2 C(z) \ C(a) so
xazSIz

�1a�1x�1 = xSIx
�1 and this choice reduces it to conjugacy search

problem in the relation SI~xSIx�1 , this equation represents the centraliser
of (C(x)). So this means SI 2 C(x) . Since we can express x�1ax = a $ x =
a�1SIa ! a�1xK1

aa�1xK2
a:::a�1xKL

a for some integer sequence Ki then (if
we knew the generators of C(z)\C(a)), this gives the choices for ei for the val-
ues in the system of equations below, or more generally any set that commutes
with a, such as ff21 ; f32 ; ::::; fmz

mz
g; for the choices (if we assume X commutes

with Z):
Or consider we are given in the problem that SI 2 C(z) this we can take ei

(below) to be the generating set of C(Z) . So the generators that compose the
word SI will commute with the generators of C(Z) .
In general we don�t know if x0 must commute with the generating set for

z:In most random instances of the Markov problem we would not expect it to.
Because in the problem w 2 Bn�1. For general values of n strings and general
subgroups, testing for membership of an arbitrary element braid subgroup, ig-
noring brute for membership test, is not usually possible easily. However in the
Markov problem, where we know the structure of the subgroup, its easy to see
that we have the expression for w0, we reduce this expression to its shortest form
in Artin generators, e.g. using the heuristic algorithm in [7], then by inspection
of the generators to see it it contains the generator unique to Bn, we can decide
if w 2 Bn�1.
As an aside,note if we were using the algorithm to solve the double coset

type problem, or related problems, in a generic G, we may choose to test the
relations, of if the solutions are members of the subgroup X , and if the other
solutions are members of the subgroup Z. The Markov problem requires the
solution to be from a certain subgroup. So in this aside, if G = Bn and we have
subgroups X = Bl and Z = Br, where

Bl = f�1; �2; :::; �b(n�1)=2c�2g; Br = f�b(n�1)=2c ; �2; :::; �n�1g
or

Bl = f�1; �2; :::; �d1g; Br = f�d2 ; �2; :::; �n�1g
with 0 < d1 � b(n� 1)=2c � 2 and b(n� 1)=2c < d2 � n� 1

, then as the remark above mentions, given the shortest expression of a word, the
membership problem can be solved for some n > 3, by computing the shortest
expression in Artin generators then inspecting the elements, this works because
the subgroups have disjoint strings,so this algorithm can be used to solve the
double coset problem in this case. Back to the Markov problem.
In the Markov problem if we assume we know the representation of the

subgroup that correspond to Z , then in the braid group, there are ways to cal-
culate commuting subgroups for a given subgroup,using a centraliser algorithm,
to compute C(Z). So this can be computed if we do not know some or all of
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C(Z) directly..Since we require that the solution commutes with elements of
Z (which we do know the representation to in general), in the DP , then we
compute the generators of C(Z) to create the elements SI . Then we have the
system of equation 2 .However if we are looking at certain subgroups of Bn
,such as in the Markov, problem we would then of course know the generators
x0; where x0 is a solution that can be used in place of x or is x.
2. Then for 1 � I � M for a sequence of integers 1; 2; :::;K where K is

known there are choices for ei such that ei = a�1eia .

ei = x
0�1eix

0 for 1 � i � K : : fi = x
0�1fix

0 for 1 � i � my (2)

The above equation would be as below if we had the extra information, as
the DP problem, as it does in the cryptosystem [2], that X commutes with Z.
So for [2] we would have two sets of equations like this.

ei = x
0�1eix

0 for 1 � i � K : : hi = x
0�1zix

0 for 1 � i � mz

.(trivially ei can be the identity).
So if we have the generators fi and zi and they are expressed as "short

words" then it maybe faster to compute the above equation, as in the braid
group multiplication and the word algorithm depend on the length of the braid,
Now instead we if we generic SI . we have the following

CE(SI ; u) = uSIu
�1 = xazSIz

�1a�1x�1 = x0aSIa
�1x0�1for 1 � i � K (3)

.

CE(fI ; u) = u(fI)u
�1 = xaz(fI)z

�1a�1x�1 = xa(fi)Ia
�1x�1, (4)

1 � I � mz

CE(SI ; u) = u(SI)u
�1 = xaz(SI)z

�1a�1x�1 = xa(Si)Ia
�1x�1, (5)

mz < I � L

.
3. So the DP is deterministically reduced to solving the system of conjugacy

equations using a combination of some or all of the sets of conjugacy equations
2,3,4,5 solving for the sets of values for the sets F and G. for the solution z
we can get it by z0 = ((xaz�1)�1x0az). There maybe other ways to simplify
identities 2,3,4,5 and so make a more e¢ cient implementation , e.g. maybe
su¢ cient to use 5 in some cases. Hence we construct the sets F and G when we
try to solve for value for x or another value that can be used in place of x that
also satis�es the DP .
Or instead of computing z in above way we can derive a system of conjugacy

equations for z ,like we did for x,then test if the DP relation f 0xg0 =? u (for
all f 0 2 F; g0 2 G) using a word algorithm. So solving for (x0; z0) gives a "dual"
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version of the algorithm, because we are in a way, using algorithm 8.2 of [3]
twice, which may result in a more e¢ cient implementation:
Also some of the factors,(e.g. powers of the fundamental braid), for the

recovered z0 and x0 may cancel out it in the CE functions, it can be shown,
these factors can be recovered in the braid group in �nite time.
The sketch of the proof that the DP can reduced a system of conjugacy

equation, in polynomial time, is as follows. To solve for a or b in polynomial
time, note this requires the conjugacy search problem to be solved in polynomial
(space and time) complexity, on for any G (where G may be a group), is to
show that the number of group operations in the transformation is polynomially
bounded, and than K can be computed in polynomial time. Then applying a
deterministic algorithm to solve the system of conjugacy equations, then noting
the groups operation such as inverses can be done in polynomial time If one
of the operations is not in polynomial time then this still of course shows a
deterministic reduction from the DP to solving conjugacy equation in �nite
,non-polynomial, time (when we mean non-polynomial it means it depends on
a type of algorithm used for some G). This implies generically of course that
the DP , and related hard problems, are solvable in any group when we have an
algorithm to solve the conjugacy search problem in G, the more general problem
of recovering one representation for a coset and solving the DP .
In braid groups (and related groups) the group inverse operation can be done

polynomial complexity. So polynomial time reduction in braid groups. So this
detailed sketch proves in the worst case the DP can be reduced to a system of
conjugacy equations in �nite time. By applying the DP algorithm repeatedly
we can solve decomposition problems in more than two unknowns. Now we will
use this algorithm to derive a new solution to know problem. The author of [3]
seems to prefer when the generating set of X, as de�ned in the previous section,
is known, but it should be possible to modify the algorithm in [3], for a similar
algorithm to above depending on properties of X; and it does appear that the
algorithm of [3] will work when the generating set of X is not known-if that is
what the author there did mean.

1.3 An Attack The Markov Problem

We now sketch an algorithm for the Markov problem (there is some reuse of
notation in this paper, e.g. since we copy the problem as stated in [2] following
the notation there in this section). There is enough description of the algorithm
to do an implementation or a variant implementation of them. We may consider
using the above algorithm or a variant mentioned at step 3 that build systems
of conjugacy equation for both x and z. Again from now we use the notation
in [2].
1. For the Markov equation given in [2] we have y 2 Y ,z 2 Z,w 2W .

zyz�1 = w��1n�1 ! zyz�1w�1 = �1n�1 or zyz
�1w�1 = ��1n�1

so the Markov problem can be considered as a DP problem and applying
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the algorithm above will give a new way to solve it. This can be thought of
as a triple decomposition type problem [4] .In [4] a solution to solve the triple
decomposition problem was given. Hence we can use the ideas that solve the
TDP to solve the Markov problem; we outline a few algorithms here with enough
detail so to do an implementation. Suppose we know one or more of the three
generating sets W;Z; Y . Minimally the subgroup Z needs to be known as a
generating set for the Markov attack.
Note we are not solving the Markov problem completely because we are

assuming the element z comes from a certain subgroup; as we also do in our
knot recognition algorithms are partial recognition algorithms.

W = fw1; w2; ::::; wmw
g

Z = fz1; z2; ::::; zmz
g

Y = fa1; a2; ::::; amy
g

G = Bn

Suppose to begin with we only know the generator set for Z: So

DP ((Bn; Z;W; y); (z; wyz
�1w�1); (F;G))

so the algorithm return the answer (z0; z0�1w�10) for elements of z0 2 F and
z0�1w�10 2 G . But we can rewrite solution as

z0�1w0�1 = �;w0z0 = ��1

2. Solve the multiple conjugacy search problem again now select di¤erent
ri from C(z) we have (using our sketched de�nition of conjugacy extractor
function)

��1ri� = w
0�1riw

0

Because one of the values z0 will be equal to the actual value of z used in
the DP , this means we would recover the actual value z,w (along with all the
values that can be used in place of it) at some. at some point. So at this point
we have a set of possible solutions (size of set are bounded in O(n!) follows from
Garside algorithm in [1]) for z and a set of possible solutions for w.
.At this point we need a method to test for if the solution is a member of

some subgroup. Then rewriting w in its minimal length expression, e.g. using
heuristic algorithm in [7], and inspecting the generators that compose w, decide
w 2 Bn�1 ,we put these set of values into the Markov equation 1 and use a word
algorithm, to �nd the solution to Markov�s equation. Hence we have two sets
of elements,of some braids , which do satisfy the Markov equation. So now we
have described how to solved Markov�s problem as described [2]. The Markov�s
problem above is closely related to the equality of knots. There is a similar
proof starting with

zyz�1w�1 = ��1n�1 ! rizyz
�1w�1 = ri�

�1
n�1 !

(zyz�1w�1)�1(rizyz
�1w�1) = (��1n�1)

�1ri�
�1
n�1
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Algorithm: Knot equality Test
Markov�s Theorem

y 2 Bn and z 2 Bm respectively. Then the links (closures of the braids y
and z) Are ambient isotopic if and only if �
z can be obtained from y by a series of
1. Given a braid group., equivalences of it
2. given braid group, conjugation in it.
3. Markov Moves: replacing y 2 Bn by y��1n 2 Bn+1 or the inverse of this

operation, replacing y��1n 2 Bn+1by y��1n 2 Bn if y if has no occurrences of n.
In general this we see theorem be expressed as, for given braids y and z,

with y 6= z

ym = (�
�1
m ��1m�1:::�

�1
n�2:::�

�1
n )z(�n�

�1
n �n+1�

�1
n+1�n+2�

�1
n+2:::�m�2�

�1
m�1�m�1�

�1
m�1�m�

�1
m )

(8)
we are not considering replacing

y��1n 2 Bn+1by y��1n 2 Bn

but the idea is similar if we did, prove that M is expressed as above. So to
prove that two knots are equivalent is reduced to the problem of, given z and
ym, prove ym has the above decomposition. We write yn for the nth of Markov
moves on z. y = ym. Select z as identity element it test y to be the trivial knot.
Use another algorithm to convert the knots into the braid form for z and y. Or
if we can prove they do not have the above decomposition then they are not the
same knot.
Suppose we have a function M(d) that takes a braid d and returns p where

p 2 C(d) in �nite time. In other words M will recover central factors that
cancel out in the CE functions. So the following algorithm can be used, note
that its not a complete knot equality test because Z is a subgroup of Bn and
not Z = Bn .
Write �n 2 Tn � Bn, where is it assumed that that we know a presentation

for Tn, so this means each �n is selected from a subgroup Tn on n strings. In
Markov�s theorem [locate ref] we do not know Tn as subgroups. We can express
6 as

yn = IzH =

ym = (��1m ��1m�1:::�
�1
n�2:::�

�1
n )z(�n�

�1
n �n+1�

�1
n+1�n+2�

�1
n+2:::�m�2�

�1
m�1�m�1�

�1
m�1�m�

�1
m )

Where I = ��1m ��1m�1:::�
�1
n�2:::�

�1
n

H = (�n�
�1
n �n+1�

�1
n+1�n+2�

�1
n+2:::�m�2�

�1
m�1�m�1�

�1
m�1�m�

�1
m )

So this is a DP which we can use the DP algorithm to solve for. Now to
�nd I we can select and ri 2 C(�n) \ C(�n+1)::: \ C(�m).and ri =2 C(z); i � 1:
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Compute

CE(ri; y
�1
m ) = y�1riy = (9)

= ((��1m ��1m�1:::�
�1
n�2:::�

�1
n )z �

(�n�
�1
n �n+1�

�1
n+1�n+2�

�1
n+2:::�m�2�

�1
m�1�m�1�

�1
m�1�m�

�1
m ))�1

�ri �
(��1m ��1m�1:::�

�1
n�2:::�

�1
n )z �

(�n�
�1
n �n+1�

�1
n+1�n+2�

�1
n+2:::�m�2�

�1
m�1�m�1�

�1
m�1�m�

�1
m )

= (z(�n�
�1
n �n+1�

�1
n+1�n+2�

�1
n+2:::�m�2�

�1
m�1�m�1�

�1
m�1�m�

�1
m ))�1

�riz �
(�n�

�1
n �n+1�

�1
n+1�n+2�

�1
n+2:::�m�2�

�1
m�1�m�1�

�1
m�1�m�

�1
m )

= H�1z�1rizH

G is the set of solution in the DP composed of the elements w0.
So we can solve, for multiple solutions w0 ,for H; the terms that contains the

stabilisers, and hence ymw0�1 = Iz. At this point we have three choices one is
to use length function, to test if knots are equal, 1,2,3 as follows.
1) Assume l(p),p 2 Bn is a length function- which means it gives a real value

relating to length, in Artin generators of some braid p. When computing the
solution we may need to recover the cancelled factors using the function M . If

l(ynw
0�1) < l(yn); l(ynw

0�1) t l(yn)� l(w0�1)

and
l(ynw

0�1z�1) t l(ynw0�1)� l(z); l(ynw0�1z�1) < l(ynw0�1):
2) For each w0 select si 2 C(z)

CE(si; (Iz)
�1) = (Iz)si(Iz)

�1 =

= IsiI
�1

F is the set of solution in the DP composed of the elements v0.
So we can solve, for multiple solutions v0 ,for I. This means we can �nd

v0; w0; if they exist in F and G, through F;G until we �nd

v0�1ynw
0�1 = z

hence the knots are equal if the above is shown to be true with a word
algorithm. If the search cannot �nd such solution then the knots are unequal.
3) Test the relation

CE(ri; y
�1
n ) s z�1riz =

H�1z�1rizH s z�1riz
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using an algorithm that solves the conjugacy decision problem. For example
this can be done with a knot invariant such as Jones polynomial. So it may be
useful to detect collision in knot invariant polynomials. If the conjugacy decision
problem decides the relation as true, for i � 1, then it is concluded that the
knots are equal; of course id the solution to conjugacy decision problem was
probabilistic then so is this answer This equation of course represents a knot, if
ri is a knot.
As mentioned above, this method does not recognise knots generally because

it requires knowledge of Tn � Bn for di¤erent n. So if this is not known , it
may be known by computing

C(y) = C(��1m ��1m�1:::�
�1
n�2:::�

�1
n )z(�n�

�1
n �n+1�

�1
n+1�n+2�

�1
n+2:::�m�2�

�1
m�1�m�1�

�1
m�1�m�

�1
m )

� C(�m) \ C(�m�1) \ :::C(�n�2) \ C(�n):
If Tn are generated by known types of knots, such as prime knots, then Tn is

known. If �i are selected from disjoin subsets then its easy to �nd elements that
commute with them; so in this case it may be that the knot can be recognised
in polynomial time.
Consider 9 again, there is a similar knot algorithms that can be derived

solving for I to begin, so there is an iterative variant version that involves
computing CE(wi; yn) = ynriy

�1
n ri 2 C(�i) \ C(��1i ) , recovering the factors

�i and �
�1
i , this can be done heuristically using length functions to "peel o¤"

the factors �i, or deterministically by solving the multiple conjugacy search
problem (and keep all solutions for �i), until the factor z is reached in the
last iteration. If not the variant algorithm will converge, in �nite time,to a
di¤erent set of values, from solving the conjugacy search problems, branching
out from each solution each step, which is an exponential number of time, to
solutions that do not contain z. So in this case the knot would be unequal. So
in this variant algorithm the actual values of �i used in the Markov conjugation
move. The maximum number of iterations required can be estimated from the
input length,L ; in Artin generators. We may have to append a stabiliser term
to standardise inputs to this variant algorithm; and this can be decided by
computing a CE function. The worst case,complexity of the sketched variant
algorithm is roughly O(n!O(Ln!)) We note that we can derive variants of the
above and the algorithm to solve Markov�s problem in lots of ways.

1.4 Conclusion

This paper is a work in progress but we have presented some new results. Fur-
ther work would be to show the implementation results, we have done,of our
new attack. We gave an attack for the Markov problem. The Markov problem
in [2] was proposed as a hard problem. As an aside we showed how to implement
di¤erent algorithms to solve the knot recognition problem with certain parame-
ters. So we gave a partial knot recognition algorithm which may be used with
knot based protocols. If a protocol was designed using the Markov algorithm
then it should resist the attack presented here.
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