
The M3lcrypt Password Based Key Derivation
Function

Isaiah Makwakwa
imakwakwa@gmail.com

Abstract

M3lcrypt (canonical M3lcryptH) is a password based key derivation
function built around the Merkle-Damgard hash function H. It supports
large [pseudo]random salt values (≥ 128-bit) and password lengths.

1 Introduction

The user induced probability distribution, χu, on the password space, PW (e.g
a subset of strings from the 95 printable 7-bit ASCII characters) has inherent
low entropy [7, 12, 11, 14]. Therefore, PW as a source of cryptographic key
material is vulnerable to both brute force and dictionary attacks [6, 15, 5, 9].

Definition 1.1. A password-based key derivation function is a pseudorandom
function family, {PBKDFs}s∈S, such that for any salt value s ∈ S there exists
a pseudorandom function,

PBKDFs : PW → {0, 1}L,

that maps from χu into a distribution suitable for direct cryptographic use.

A pseudorandom function family is necessary, for since χu has low entropy
[14], a deterministic function as opposed to a pseudorandom function family,
allows precomputation of tables of cryptovariables for all or part of the password
space. Thus, it facilitates on the fly computation of pre-images.

However, high functional dependency on auxiliary randomness (often non-
secret), s ∈ S, from a large space increases the uncertainty associated with the
PBKDF. Indeed, with a large salt space, the space-time complexity for complete
or partial precomputation might be out of reach of even the most well resourced
of adversaries [5, 6, 9].

For a distribution suitable for direct cryptographic use, we assume computa-
tional (pseudorandom) rather than statistical closeness to uniform. It suffices,
therefore, to show that within feasible computational effort, the adversary’s dis-
tinguishing probability will remain below a certain [small] threshold [15, 3]. In
particular, we require this to hold even with adversarial control or knowledge
of part of the cryptovariable [4].

In turn, this may require certain assumptions on the underlying crypto-
graphic primitives such as the idealised assumptions of the random oracle model,
the combinatorial arguments of the universality of hash functions and equivalent
assumptions for symmetric key ciphers [14, 4, 3].

The expectation being that, apart from iterative calls to the PBKDF on
password dictionaries, taking pre-images and/or partial information on PBKDF
outputs should be computationally infeasible [2].

More subtly, however, entropy and complexity requirements on key material
for practical cryptosystems make certain elements of key stretching such as the
iterative application of some cryptographic primitives necessary. For example,
under the random oracle model, the above conditions would imply that a hash of
the password and some function of the salt value can be considered within cer-
tain computational parameters to be a secure PBKDF. Indeed many password
hashing implementations follow this approach.

However, in general, this lowers the complexity of key search attacks below
that designed for practical cryptosystems. On the other hand, it is known that
key stretching techniques, in the absence of design flaws such as narrow pipes
and reusable internal values, allow for a quantifiable increase in the complexity
of dictionary and brute force attacks [6, 15].

The above not withstanding, a moderately resourced adversary may build
special purpose key search machines (e.g. the Electronic Frontier Foundation’s
DES cracker [9], M. Wiener’s design for a DES cracker [11]) that dramatically
reduce the [area-time] cost of brute force attacks.

Indeed, by Moore’s law [11], [cryptographic] circuits not only become faster
but cheaper and smaller allowing for greater parallelism and dramatic growth in
the economies of scale available to the attacker. Therefore, hardware-frustrating
techniques such as memory and/or expensive operations may be necessary for
imposing cost constraints on custom circuits while ensuring efficiency of com-
putation on general purpose processors [6, 2].

In this paper a new password based key derivation function, M3lcrypt, with
the canonical name M3lcryptH is proposed. M3lcryptH is based on the iterative
application of a PRF construct based on the Merkle-Damgard function H. The
paper is organised as follows. Section 2 provides a detailed specification of the
scheme, security goals and usage scenarios are discussed in Section 3, design
choices are provided in Section 4, Section 5 provides an initial security analysis,
Section 6 motivates some efficiency considerations and a conclusion is given in
Section 7.

2 The M3lcryptH PBKDF

Let h : {0, 1}m × {IV } → {0, 1}n be the compression function for the Merkle-
Damgard hash function H with initialisation vector IV , block length m and
digest size n.

2

Definition 2.1. A compression function family, {hk}k∈{0,1}n , is a function
family, such that for every k ∈ {0, 1}n, the compression function

hk : {0, 1}m × {k} → {0, 1}n

is derived from h by setting IV = k.

We denote by Hk the Merkle-Damgard hash function based on hk [1, 4].

Let M,N, c, L > 0 ∈ Z, p ∈ PW , s ∈ S = {0, 1}w, V,X ⊂ {0, 1}n and PRFk
be a pseudorandom function family based on {hk}k. The M3lcryptH PBKDF,
FN,M , is the algorithm (assuming little endian byte order):

Algorithm: FN,M(p,s,c,L)

require: w ≥ 128, N ≥ 215, M ≥ 24 and c ≥ 214.

l ← dLn e
r ← L% n

digest← s
for i = 0 to N − 1 do

digest ← PRFp(digest||c||i)
X[i] ← digest

end for
shash← PRFs(p||digest)
for i = 0 to c− 1 do

k ← digest % N
digest ← PRFshash(X[k]||digest||i)

V[i % M] ← digest
end for

y ← empty string
shash← PRFshash(p||s||digest||c)
thash← V [0]||V [1]|| · · · ||V [M − 1]

for i = 0 to l − 1 do
digest ← PRFshash(p||digest||thash)
if i = l − 1 and r! = 0 then

y ← y||digest|r
else

y ← y||digest
end if

end for
return y

where x|r is the least significant r bytes (little endian byte order) of x and
PRF is instantiated with HMAC. Note that the above requirements have been
designed and tested for SHA2 [8] only.

3

3 Design Goals

The following is a brief summary of the design goals for M3lcryptH .

Pseudorandomness: an output distribution indistinguishable from random
by adversaries with oracle access to PRF even with partial control or
knowledge of the cryptovariable.

Dual use: usable for both password hashing and cryptographic key derivation.

4 Design Rationale

We list and motivate some of the M3lcryptH design choices as follows.

4.1 Use of HMAC as PRF

Pseudorandomness: preserve randomness, independence and unpredictabil-
ity of output even with adversarial knowledge or control of part of the
cryptovariable.

Pre-image resistance: ensure resistance to non-trivial pre-image attacks (con-
ditional on instantiation with a secure hash function).

Random oracle modeling: admit random oracle modeling for PRF via ran-
dom oracle domain extension on the compression function, h [4].

4.2 Configurable Size Array X

Imposes memory constraints on any FN,M -computing circuits by the require-
ment of random access to X. Therefore, N determines the amount of random
access memory required to compute the cryptovariable and thus, the cost of
custom circuits.

4.3 Configurable Size Array V

Contains sufficient randomness per computation to effectively contribute to the
entropy of the cryptovariable. In particular, it reduces the incidence of narrow
pipes as well as short cut and meet-in-the-middle attacks. Specifically, given
initial outputs, it reduces the possibility of meet-in-the-middle attacks in the
computation of subsequent cryptovariables (i.e. using lines 20-27 only).

4.4 Mixed PRF Modes (Lines 8, 14 and 21)

Counter mode: reduces the possibility of rapid iteration through reuse of in-
ternal state (such as collision induced cycles) by forcing different inputs
into each successive call to PRF.

4

Feedback mode: provides non-adversarial controlled input randomisation which
contributes to the randomisation properties. It also reduces the impact of
parallelism by increasing dependency between successive hashing steps.

5 Security Analysis

5.1 Security Model

Our security model assumes the adversary is a polynomial-time algorithm A
with knowledge of N,M, c ∈ Z, s ∈ S and which can make any number of
[PRF] oracle queries in distinguishing the PBKDF output from a random bit
string of the same length. The number of oracle queries the adversary can
feasibly make constitutes its computational power [15, 4, 3].

Random oracle modeling for PRF is motivated by adversarial difference to
structural over PRF attacks (which in the specific case of HMAC reduces to
hash function attacks [1, 13]). In any case, many PRFs (including HMAC)
support module dropin which reduces the impact of attacks on individual hash
functions [1, 15].

For security, we demand that within feasible computational effort, the ad-
versary’s distinguishing probability will remain below a certain [small] threshold
even with adversarial control or knowledge of part of the cryptovariable (Defi-
nition 1.1).

For brevity, we limit our analysis to the n-bit output, y = FN,M (p, s, c, n),
since the inclusion of shash and V in the output transformation at line 21
ensures equivalent analysis for further outputs.

We assume, therefore, that A has oracle access to PRF that on input (k, x)
returns PRFk(x) and that A does not repeat an oracle query. Effectively, A
mirrors Experiment Eb in Figure 1 [10, 15].

Essentially, A guesses how y0 was arrived at by making queries to PRF. It
outputs a 1 to guess FN,M or 0 otherwise. A wins the game if it guesses correctly
with probability greater than 0.5.

The adversary’s advantage, denoted AdvA, is its probability of guessing right,
normalised to a [−1, 1] scale where -1 indicates the strategy of always guessing
wrong and 1 indicates the strategy of always guessing correct. Guessing at
random or always guessing the same way will give an advantage of 0.

Therefore, A’s success probability is defined by

AdvA(t) = PrE0
[A = 1]− PrE1

[A = 1]

where t denotes the maximum number of queries to PRF [3, 10]. The maximum
success probability achievable by any adversary A is denoted Adv(t) [3, 10].

On the other hand, the requirement of random oracle modeling for PRF im-
poses constraints on our choices for PRF. For example, constructs vulnerable to
extension attacks (such a the key-prepend construct) may not be used for PRF.
Fortunately, the HMAC construction admits random oracle modeling through
random oracle domain extension for the compression function [4].

5

Therefore, the rest of the document assumes random oracle modeling for
PRF and may invariably refer to PRF as the random oracle.

Figure 1: Experiment Eb

b
r←− {0, 1} // Bit b is selected at random

// independent of A

p0
χu←−− PW // Password is selected

// according to distribution χu
h

r←− {f | f : {0, 1}m → {0, 1}n} // Compression function
// is generated at random

s0 ← S // Known fixed value
c0 ← Z, N ← Z,M ← Z // Known fixed integers

if b = 0 then
y0 ← FN,M (p0, s0, c0, L)

else

y0
r←− {0, 1}n // y0 is selected at random

i← 0
repeat

i← i+ 1
A chooses k and xi. It then makes the oracle query (k, xi), receiving the
oracle response PRFk(xi). This process repeats until the maximum no.
of queries is reached.

A outputs either 0 or 1
Figure 1: Experiment Eb

5.2 Analysis of Probabilities

Consider Game R and Game K in Figure 2 and Figure 3 respectively.
Note that Game R and Game K are similar except for the underlined step

in Game K. Further, note that flag bad1 signals all instances of collisions in
oracle responses and not just those within PRFk for fixed k. Flag bad2 is used
to signal that y0 = FN,M (p0, s0, c0, n) has been computed.

The set Y is initialised with y0 to ensure that collisions with this value are
properly signaled.

Let BAD1 be the event that the flag bad1 and BAD2 be the event that the
flag bad2 get set respectively. Define BAD = BAD1 ∪ BAD2, the event that
either flag is set.

Claim 5.1. PrR[A = 1] = PrE1 [A = 1]

Claim 5.2. PrK [A = 1] = PrE0
[A = 1]

Claim 5.3. PrR[A = 1 | BAD] = PrK [A = 1 | BAD]

6

Claim 5.4. PrR[BAD] = PrK [BAD]

Proof. Same as arguments of Lemma 1, 2 and 3 in [15]

Therefore, AdvA(t) = PrK [A = 1] − PrR[A = 1] and thus, by Claim 3.5 in
[10], AdvA(t) < PrR[BAD].

Lemma 5.1. Let H(PW) be the entropy of PW with respect to χu, then

bt/(c0 +N + 3)c
2H(PW)

≤ AdvA(t) <
t2 + 2t

2n
+
bt/(c0 +N + 3)c

2H(PW)
.

Proof. Without loss of generality, we may assume the brute force attacker treats
PW as a uniformly distributed H(PW)-bit entropy source [11, 6, 4].

PrR[BAD] = PrR[BAD1 ∪BAD2]

= PrR[BAD1] + PrR[BAD2 | BAD1]

×PrR[BAD1]

≤ PrR[BAD1] + PrR[BAD2 | BAD1]

Clearly, since the probability of collisions among t queries is upper bounded

by t(t+1)
2n+1 < t2+t

2n and that of collisions with y0 by t
2n , PrR[BAD1] < t2+2t

2n .
On the other hand, if event BAD1 does not occur, oracle responses form

b t
c0+N+3c disjoint sets of length c0 + N + 3. The probability that any one of

these sets coincides with the set generated in the computation of y0 from p0 is
b t
c0+N+3 c
2H(PW) .

Therefore, PrR[BAD2 | BAD1] ≤ bt/(c0+N+3)c
2H(PW) , proving

AdvA(t) <
t2 + 2t

2n
+
bt/(c0 +N + 3)c

2H(PW)
.

The lower bound is achieved by generating b t
c0+N+3c disjoint sets of length

c0 +N + 3 corresponding to b t
c0+N+3c distinct passwords.

We make the following observation concerning the inclusion of digest length n
in the expression for AdvA(t). IfH(PW) > 2n, the bound is not tight. However,
substituting for hash functions with longer digest lengths may substantially
reduce the impact of increasing PrR[BAD1] values.

Moreover, Section 5.3 shows that whenever H(PW) ≥ 5n there exists a
meet-in-the-middle attack with complexity less than exhaustive search.

The foregoing notwithstanding, and assuming security for n-bit hash func-
tions, Lemma 5.1 shows that password security derives from the user induced
distribution χu. In short, within the confines of our security model, FN,M is as
”secure as the passwords users choose” [9].

7

Figure 2: Game R

PRF(.)(.) is undefined.

Choose p0
χu←−− PW and y0

r←− {0, 1}n.
Set V ← []; X ← []; digest← s0; i← 0; j ← 0; sh← empty string
Y ← {y0}.

On oracle query PRF(k)(x)

1. Choose y
r←− {0, 1}n

if y ∈ Y then
set bad1

else
Y ← Y ∪ {y}

end if
2. if k = p0 and i < N − 1 and j = 0 then

if x = (digest||c0||i) then
digest← y; X[i]← y; i← i+ 1

end if
3. else if k = s0 and i = N − 1 and j = 0 then

if x = (p0||digest) then
sh← y; j ← j + 1

end if
4. else if k = sh and i = N − 1 and j > 0 and j <= c0 then

if x = (X[digest%N]||digest||j − 1) then
V [j − 1 %M]← y; digest← y; j ← j + 1

end if
5. else if k = sh and i = N − 1 and j = c0 + 1 then

if x = (p0||s0||digest||c0) then
sh← y; j ← j + 1

end if
6. else if k = sh and i = N − 1 and j = c0 + 2 then

thash← V [0]||V [1]||V [2]|| · · · ||V [M − 1]
if x = (p0||digest||thash) then

set bad2
end if

end if
7. define PRF(k)(x) = y and return y

Figure 2: Game R

8

Figure 3: Game K

Initial declarations just as in Game R.

On oracle query PRF(k)(x)

1. Choose y
r←− {0, 1}n

if y ∈ Y then
set bad1

else
Y ← Y ∪ {y}

end if
2. if k = p0 and i < N − 1 and j = 0 then

if x = (digest||c0||i) then
digest← y; X[i]← y; i← i+ 1

end if
3. else if k = s0 and i = N − 1 and j = 0 then

if x = (p0||digest) then
sh← y; j ← j + 1

end if
4. else if k = sh and i = N − 1 and j > 0 and j <= c0 then

if x = (X[digest%N]||digest||j − 1) then
V [j − 1 %M]← y; digest← y; j ← j + 1

end if
5. else if k = sh and i = N − 1 and j = c0 + 1 then

if x = (p0||s0||digest||c0) then
sh← y; j ← j + 1

end if
6. else if k = sh and i = N − 1 and j = c0 + 2 then

thash← V [0]||V [1]||V [2]|| · · · ||V [M − 1]
if x = (p0||digest||thash) then

set y = y0; set bad2
end if

end if
7. define PRF(k)(x) = y and return y

Figure 3: Game K

5.3 Meet-in-the-middle Attack

The following meet-in-the-middle attack based on [4] recovers the password with
effort less than exhaustive search whenever H(PW) ≥ 5n.

We assume that PW consists of strings of length greater than the block
length of the underlying hash function. For brevity, we also assume that length

9

appending in hash computations is omitted (the attack holds in either case).
Let PW be anm-entropy source (m ≥ 5n) and assume adversarial knowledge

of, y = y0y1 · · · ym−1 (|yi| = n, ∀i), the FN,M output for p ∈ PW .

1. Find m1,m2 ∈ Z such that PW can be expressed as the cartesian product
of sources M1 and M2 of entropy m1 and m2 respectively.

2. For each p2 ∈M2 and K1,K2,K3,K4 ∈ {0, 1}n

(a.) Compute

k ← HK1(p2).

(b.) For 0 ≤ i < N , compute

digest ← HMACk(digest||c||i),
X[i] ← digest.

(c.) Compute

shash0 ← HIV (s+ ⊕ opad||HK2
(p2||digest)) ,

where x+ is the string x zero padded to block length and opad is the
HMAC binary constant.

(d.) For 0 ≤ i < c, compute

digest ← HMACshash0
(X[digest%N]||digest||i),

V [i%M] ← digest.

(e.) Compute

shash1 ← HIV

(
shash+0 ⊕ opad||HK3

(p2||s||digest||c)
)
.

(f.) Finally, compute

y
′

0 ← HIV

(
shash+1 ⊕ opad||HK4

(p2||digest||thash)
)
,

where thash = V [0]||V [1]|| · · · ||V [M − 1].

(g.) Create a table T of values

(K1,K2,K3,K4, shash0, shash1, p2)

for which y0 = y
′

0.

3. For each p1 ∈M1

(a.) Check if the tuple

(HIV (p1), HIV (s+ ⊕ ipad||p1),K3,K4, shash0, shash1, p2)

for some K3,K4, shash0, shash1, p2 are in T . If so,

10

(b.) Check if

K3 = HIV

(
shash+0 ⊕ ipad||p1

)
.

where ipad is the HMAC binary constant.

(c.) If (b.) holds, check if

K4 = HIV

(
shash+1 ⊕ ipad||p1

)
.

(d.) If (c.) holds, check if p
′

= p1||p2 [under FN,M] produces the substring
y1y2 · · · ym−1 of the string y (corresponding to p). If so, output p =
p1||p2.

For a random hash function the probability of producing the string y =
y0y1y2 · · · ym−1 is 2−m. Therefore, with high probability a single password p
will be returned in step 3(d.).

Assuming the hash function can be computed in unit time, the complexity
of the attack is as follows. We require time 24n+m2+log2c+log2N+1 for step 2.
Since |T | = 23n+m2 (there are 24n+m2 possible tuples,

(K1,K2,K3,K4, shash0, shash1, p2)

and y0 can be produced with prob. 2−n for random H), sorting T for step 3.
requires negligible time relative to 24n+m2+log2c+log2N+1. Finally, each of the
2m1 checks in step 3(a.) requires a table lookup with time complexity of order
log2|T | = 3n+m2.

Therefore, all together the attack requires time

24n+m2+log2c+log2N+1 + 2m1(3n+m2).

For example, for m = 5n, setting m1 = 4.5n and m2 = 0.5n we get complexity
≈ 24.5n+log2c+log2N+2 less than the 25n required for exhaustive search.

However, the attack can be made prohibitive relatively easily. Consider the
effect of substituting

digest← PRFdigest(p||c||i).

for line 8 of the algorithm. Clearly, the above attack now requires effort of the
order 24n+Nn+m2+log2c+log2N+1+2m1(3n+Nn+m2) which is all but practically
out of reach of even the most well resourced of adversaries even for relatively
small values of N (assuming enough storage for intermediate values).

On the other hand, the significant computation time differences among pass-
words with varying lengths outweighs the perceived benefits (esp. when n-bit
hashes are considered secure).

5.4 Effect of V

Suppose the output step in FN,M (line 21) was replaced by

digest← PRFshash(p||digest),

11

then the computation of shash at line 17 represents a narrow pipe.
Therefore, an adversary with oracle access to an oracle that guesses the

value of shash at line 17 with significant probability can compute the final
cryptovariable with much less complexity. However, on average, by our idealised
assumptions on PRF the adversary is liable to expending more effort than in a
straight forward exhaustive search.

However, assuming that PW consists of strings of length greater than block
length and H(PW) ≥ 5n, the adversary can do better. The following meet-
in-the-middle attack based on [4] can recover the password in time less than
exhaustive search.

In short, the adversary tries to compute successive outputs (e.g. y1 the lvalue
of 2(a.)) based on partially known values (e.g. y0 in the rvalue of 2(a.)) using
line 21 only.

Let H(PW) = m ≥ 5n and y = y0y1y2 · · · ym (|yi| = n, ∀i) be the initial
output of FN,M for p ∈ PW .

1. Let m1,m2 ∈ Z be such that PW can be expressed as the cartesian
product of sources M1 and M2 of entropy m1 and m2 respectively.

2. For each p2 ∈M2 and K1,K2 ∈ {0, 1}n

(a.) Compute

y
′

1 = HIV

(
K+

1 ⊕ opad||HK2
(p2||y0)

)
.

(b.) Create a table T of values

(K1,K2, p2)

for which y1 = y
′

1.

3. For each p1 ∈M1 and K3 ∈ {0, 1}n

(a.) Check if the tuple (
K3, HIV (K+

3 ⊕ ipad||p1), p2
)

for some p2 is in T .

(b.) If (a.) holds, use line 21 of the algorithm (and values yi) to check if
p

′
= p1||p2 produces the substring y2y3 · · · ym of the string y (corre-

sponding to p). If so, output p = p1||p2.

For a random hash function the probability of producing the substring
y1y2 · · · ym of y is 2−m. Therefore, with high probability a single password
p will be returned in step 3(b.).

The complexity of the attack is as follows. We require time 22n+m2 for step
2. Since |T | = 2n+m2 (there are 22n+m2 possible tuples, (K1,K2, p2) and y1
can be produced with prob. 2−n for random H), sorting T for step 3. requires
negligible time relative to 22n+m2 . Finally, each of the 2n+m1 checks in step
3(a.) requires a table lookup with time complexity of order log2|T | = n+m2.

12

Therefore, all together the attack requires time 22n+m2 + 2n+m1(n + m2).
For example, for m = 5n, setting m1 = 3n and m2 = 2n we get complexity at
most 24n(4n) less than the 25n required for exhaustive search.

Thus, V can be considered as an entropy buffer auxiliary to the computation
of the final output(s).

5.5 Effect of Salt

The persistent cryptovariable shash is designed to transition the non-degenerate
(through primary computation) salt dependency into successive computations
through PRF keying. This ensures greater salt dependency for the final cryp-
tovariable.

Therefore, since S = {0, 1}k k ≥ 128, we expect that the space-time com-
plexity for complete or partial precomputation should be out of reach of even
the most well resourced of adversaries.

On the other hand, we observe that high dependency on salt allows for
multiple independent instances of FN,M . This allows FN,M to be used for key
derivation for multiple independent applications, settings, sessions etc. even
with minimal rekeying [4, 5].

5.6 Various Observations

In this section we discuss various elements of the design of FN,M and their
impact on security.

We start by discussing the effect of variably rekeying PRF as follows. Since
HMACp = HMACk =HIV (p) for all p ∈ PW such that |p| > block length, the
entropy of the source is distilled into the n-bit cryptovariable, k. Therefore,
if all instances of PRF were based on HMACp, the attack complexity for a
variant of the meet-in-the-middle attack in Section 5.3 for all sources PW with
string lengths beyond block length andH(PW) > 2n would be below exhaustive
search.

The use of counter mode in PRF calls of line 8 and line 14 forces different
inputs into each successive call. This reduces the incidence of collision induced
cycles essential for the short cut attacks in the proofs of [6] and [15]. Therefore,
it ensures FN,M minimally suffers from effects of reuse of internal values.

The requirement for random access to X in line 14 of the algorithm imposes
memory constraints on FN,M -computing circuits. Thus, it impacts on the cost
of special purpose key search circuits while ensuring efficiency of computation
on general purpose computers [6].

Finally, we note that the inclusion of iteration count c and salt s in lines 8, 11
and 17 (variously) should allow us to make a stronger claim of security than set
out in Section 3. Indeed, assuming a random H, we expect the FN,M (p, si, ci, n)
queries for 0 ≤ i ≤ q (for some threshold value q and pairs (si, ci)) to portray
some random behaviour.

In particular, allowing for the argument of degeneracy of the salt effect
[5], we expect at the bare minimum the value of shash in line 11 to not only

13

be pseudorandom but dependent on both s (directly) and c (via digest) - an
argument extensible to values in V (via the PRF key and elements of X). A
similar argument can be made for the final cryptovariable (via PRF key shash
from line 17).

Therefore, we believe the adversary can gain little traction by making sup-
plementary queries to the oracle, FN,M (p0, (.), (.), n).

6 Efficiency analysis

6.1 Software Implementations

The feedback mode in the time critical PRF calls of line 8 and line 14 im-
pose dependency constraints on parallel implementations. Therefore, efficient
implementation on all platforms including those with modern features such as
multicore CPUs is dependent on the state of the art in PRF implementation.

In particular, while multiple calls to HMACk for fixed k can be optimized
by precomputing [12]

k0 = HIV (k+ ⊕ ipad)

k1 = HIV (k+ ⊕ opad)

(a computation with inherent parallelism), subsequent and time critical calls

HMACk(data) = Hk1(Hk0(data))

retain high levels of dependency (based on both the structure of data in both
lines and the design of Merkle-Damgard hash functions).

On the other hand, computing the moduli in line 13 and line 15 each require
one clock cycle for all values of N and M that are powers of 2. Therefore,
independent of the compression function for H, there is little room for software
optimisation.

For completion, an example implementation (e.g. the reference implemen-
tation in the submission package) on a 1.6 GHZ Intel Core 2 Duo Processor
running the GCC compiler can compute M3lcryptSHA256 (using the minimum
parameters for the algorithm) in 203 milliseconds which translates to 4.923 eval-
uations of the PBKDF per second. In comparison, at creation in 1977, crypt
could be evaluated about 3.6 times per second on a VAX-11/780 [9].

6.2 Hardware Implementations

The availability of large random access memory (RAM) in software implementa-
tions shift the implementation bottleneck from random access memory (RAM)
to optimal implementation of the PRF.

On the contrary, we can assume that efficient hardware for the hash function
exists (e.g. for standardised functions such as the SHA2/3 family). Possibili-
ties for further customisation (e.g. external pipelining and/or other extensive
parallelism) are contingent on the availability and cost of RAM.

14

For example, there exist a myriad of time/memory trade-offs (see [2] for
example). However, since X has [pseudo]random, independent and unpre-
dictable values [for any polynomial time algorithm] any successive non-trivial
time/memory trade-offs increase the number of auxiliary computations required
to process ”random” values X[k] for line 14 of the algorithm.

In particular, any values X[k] (for some k = digest % N) at line 13 not
in memory will either have to be computed from scratch or from some point
further down (if in RAM) the computation chain.

Therefore, assuming large memory requirement for X, massively parallel key
search machines may be [area-time] costly.

7 Conclusion

We have described a new password based key derivation function, M3lcrypt
(canonical M3lcryptH) which is secure from adversaries with oracle access to
PRF (the pseudorandom function family based on H). Further, we conjec-
ture security from adversaries with oracle access to both PRF and the function
instance itself (also called parameter modifying adversaries in [15]).

In practice, however, the key derivation function, though essential, may not
eliminate the effect of χu. User choice and management of passwords (along with
other cryptographic key material) remain by far the greatest security threat in
password based cryptography. Therefore, password policies (rules that define
the organisational χu) play a critical role in the provision of secure password
based services [14].

References

[1] M. Bellare, R. Canetti and H. Krawczyk, Keyed Hash Functions for Mes-
sage Authentication, Advances in Cryptology Crypto 96, Springer-Verlag,
1996.

[2] C. Percival and S. Josefsson, The Scrypt Password-Based Key Derivation
Function, IETF Internet Draft, 2012.

[3] S. Goldwasser and M. Bellare, Lecture Notes on Cryptography, July 2008.

[4] H. Krawczyk, Cryptographic Extraction and Key Derivation: The HKDF
Scheme, Crypto’2010, LNCS 6223, 2010.

[5] B. Kaliski, PKCS #5: Password-Based Cryptography Specification Version
2.0, RFC 2898, 2000.

[6] J. Kelsey, B. Schneier, C. Hall and D. Wagner, Secure Applications of Low-
Entropy Keys, Proceedings of the First International Workshop ISW 97,
Springer-Verlag, 1998.

15

[7] D. Klein. Foiling the Cracker: A Survey of and Improvements to Password
Security, Proceedings, UNIX Security Workshop II, August 1990.

[8] National Institute of Standards and Technology (NIST), Federal Informa-
tion Processing Standards Publication 180-2, FIPS PUB 180-2, August
2002.

[9] N. Provos and D. Mazieres. A Future-Adaptable Password Scheme,
USENIX Annual Technical Conference, USENIX 99, The Advanced Com-
puting Systems Association, 1999.

[10] J. Killian and P. Rogaway, How To Protect DES Against Exhaustive Key
Search Attacks, Advances in Cryptology - CRYPTO 96, Springer-Verlag,
1996.

[11] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source
Code in C, John Wiley & Sons, Second Edition, 1996.

[12] W. Stallings. Cryptography and Network Security: Principles and Practice,
Prentice Hall, Second Edition, 1998.

[13] D.R. Stinson, Cryptography: Theory and Practice, Second Edition, Chap-
man & Hall, 2002.

[14] D. Wagner and I. Goldberg, Proofs of Security For The UNIX Password
Hashing Algorithm, Advances in Cryptology - Asiacrypt ’00, Springer-
Verlag, 2000.

[15] F.F. Yao and Y.L. Yin, Design and Analysis of Password-Based Key Deriva-
tion Functions, CT-RSA 2005.

16

