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Abstract. We present a new method for building pairs of HFE polynomials of
high degree, such that the map constructed with such a pair is easy to invert.
The inversion is accomplished using a low degree polynomial of Hamming
weight three, which is derived from a special reduction via Hamming weight
three polynomials produced by these two HFE polynomials. This allows us
to build new candidates for multivariate trapdoor functions in which we use
the pair of HFE polynomials to fabricate the core map. We performed the
security analysis for the case where the base field is GF (2) and showed that
these new trapdoor functions have high degrees of regularity, and therefore
they are secure against the direct algebraic attack. We also give theoretical
arguments to show that these new trapdoor functions over GF (2) are secure
against the MinRank attack as well.
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1. Introduction

The public key cryptosystems currently used in practice are based on the diffi-
culty of factoring large integers or solving the Discrete Logarithm Problem. In
1996 P. Shor published an algorithm to solve both problems in polynomial time
on a quantum computer [17]. Some experts argue that it is possible to build in
the coming years a quantum computer, which is a threat to our modern com-
munication system. This leads to the recent fast development of Post-Quantum
Cryptography . Post-Quantum Cryptography refers to the study of cryptosys-
tems that have the potential to resist the possible future quantum computer
attacks [1].

Multivariate Public Key Cryptography (MPKC) is part of the Post-Quantum
Cryptography. In MPKC, the public key consists of a set of multivariate quadra-
tic polynomials over a finite field. One of the main cryptosystems in MPKC is
named Hidden Field Equations (HFE), proposed by Patarin in 1996 [16]. The
public key in HFE is formed by “hiding” a core polynomial F by two invertible
affine transformations, and using the vector space structure of a field extension
of the base field.
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A crucial part in HFE is the choice of the degree D of the core polynomial
F . The degree D cannot be too big, since otherwise the decryption process
would not be efficient. The main attacks against HFE, direct algebraic attack
([10, 5, 6, 14, 15]) and the Kipnis-Shamir MinRank attack (KS attack [13]),
exploit this fact. For characteristic 2, HFE is vulnerable to the direct algebraic
attack [10]. Recently, some authors improved the KS attack and were able to
break certain HFE systems, over both odd and even characteristic [2].

We propose a special reduction method to construct new candidates for
trapdoor functions using HFE polynomials of high degree. The use of these
high degree polynomials prevents the known attacks against HFE. This opens
the possibility to build a secure variant of the HFE cryptosystem.

The idea of the construction is inspired by the first steps of the Zhuang-
Zi algorithm [7]. Given a finite field k of size q and a field extension K of
degree n, we consider two high degree HFE polynomials over K of the form
F (X) =

∑
aijX

qi+qj +
∑
biX

qi + c and F̃ (X) =
∑
ãijX

qi+qj +
∑
b̃iX

qi + c̃,

where the coefficients aij , bi, c, ãij , b̃i, c̃ ∈ K are to be determined. The idea
behind the method is to construct a low degree polynomial Ψ of Hamming
weight three of the form

Ψ =X
(
α1F0 + · · ·+ αnFn−1 + β1F̃0 + · · ·+ βnF̃n−1

)
+

Xq
(
αn+1F0 + · · ·+ α2nFn−1 + βn+1F̃0 + · · ·+ β2nF̃n−1

)
,

where F0, F1, · · · , Fn−1 are the Frobenius powers of F , and F̃0, F̃1, · · · , F̃n−1
are the Frobenius powers of F̃ .

To obtain such a polynomial Ψ we need to determine the coefficients of F
and F̃ , also the scalars αi and βi, such that the degree of Ψ is less than or
equal to a fixed positive integer D0 (the integer D0 is such that we can easily
invert Ψ using Berlekamp’s algorithm). To achieve this, we derive a system of
equations from the vanishing coefficients of the terms in Ψ of degree higher
than D0. After randomly choosing in this system the scalars αi and βi, we get
a linear system with more variables than equations, and thus we can guarantee
nontrivial solutions for it. This linear system has about n3 variables and there-
fore we have to deal with huge matrices to reach large values of n. On the plus
side we have that these matrices are sparse, which is an advantage in terms of
efficiency.

The new multivariate trapdoor function is built in a similar way to the HFE
scheme (composition with invertible affine transformations), except that now
the core map is replaced by the map G = (F, F̃ ). The main part of the inversion
of the trapdoor function is to invert the map G, which is achieved using the
low degree Hamming weight three polynomial Ψ and the scalars αi, βi.

To construct our new candidate for trapdoor function we use these high de-
gree HFE polynomials for the core map with the expectation that this trapdoor
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function has high degree of regularity, very different from what was observed
by Faugère and Joux [10] for a system of quadratic equations derived from a
single HFE polynomial with low degree. For the case of q = 2, our extensive
experiments confirmed that the new trapdoor function has high degree of re-
gularity (it increases as n increases). This high degree of regularity shows that
our new candidates for multivariate trapdoor functions are secure against the
direct algebraic attack.

Furthermore, for the case of q = 2, we can give a theoretical argument
to show why the MinRank attack does not work against the new trapdoor
functions, based on some results about the degree of regularity obtained by
Ding and Hodges [8]. From those results, we see that, for q = 2, it suffices
to make sure that our trapdoor function has a high degree of regularity to
conclude that both the direct algebraic and KS MinRank attacks do not work
against these new trapdoor functions. We show that this is indeed the case
and that our new trapdoor functions are secure against these two attacks. For
larger values of q, this argument cannot be used and the MinRank attack must
be directly performed against these new trapdoor functions.

The method described here was not our first attempt to reduce high degree
HFE polynomials along the same line. Among failed attempts, we considered
using a single polynomial F , but the linear systems we needed to solve had more
equations than variables and then we could not guarantee nontrivial solutions
for them. This lead us to use two HFE polynomials instead of one in order
to get a linear system with more variables than equations and this gives the
construction in this paper.

This paper is organized as follows. First, we present some background ma-
terial about HFE cryptosystems. Secondly, we describe the method for building
the new candidates for multivariate trapdoor functions. Next, we present a toy
example to explain step by step our method, and two big examples. Then, we
carry out a security analysis and discuss future work. In the appendix we show
some data about the generation of the new trapdoor function.

2. Background

The cryptosystem Hidden Field Equations (HFE) was proposed by Patarin
in 1996 [16]. The public key is formed by “hiding” a core polynomial F via
two invertible affine transformations, and taking advantage of the vector space
structure of an extension of the base field.

Let k be a finite field of size q. Fix n ∈ N and take an irreducible polynomial
g over k of degree n. Consider the field extension K = k[y]/ (g(y)). Then
K ∼= kn, via the isomorphism ϕ : K → kn defined by

ϕ
(
u1 + u2y + . . .+ uny

n−1) = (u1, u2, . . . , un) .

Notice that
{

1, y, · · · , yn−1
}

is a basis for K over k.



4 JAIBERTH PORRAS, JOHN B. BAENA & JINTAI DING

We say that a polynomial has Hamming weight W if the maximum of the
q-Hamming weights of all its exponents is W . The q-Hamming weight of a
non-negative integer is the sum of the q-digits of its q-nary expansion. Let
F : K → K be a Hamming weight two polynomial of the form

F (X) =

n−1∑
0≤j≤i

aijX
qi+qj +

n−1∑
i=0

biX
qi + c,

where the coefficients aij , bi, c are chosen randomly in K. Such a polynomial
F is called an HFE polynomial. If in addition, we require that deg(F ) ≤ D,
where D is a fixed positive integer, we say that F is an HFE polynomial with
bound D.

For a fixed D, an HFE cryptosystem is built as follows. First, we randomly
choose an HFE polynomial with bound D, say F : K → K. Then, we randomly
choose two invertible affine transformations S and T over kn. The public key
P is the composition of F with the transformations S and T , together with the
isomorphism ϕ, i.e.,

P = T ◦ ϕ ◦ F ◦ ϕ−1 ◦ S.
Notice that P is an n−tuple of the form

P = (P1(x1, . . . , xn), · · · , Pn(x1, . . . , xn)) ,

where each Pi is a multivariate quadratic polynomial. The private key consists
of the core map F together with the transformations S and T .

When constructing an HFE cryptosystem we need to be very careful with
the choice of the bound D. This bound cannot be too high, since this would
affect the decryption process, making it inefficient. Also, D cannot be too small,
because this would make the system vulnerable to the algebraic and KS attacks.

Many attempts have been made to build safe HFE variants for both digital
signatures and encryption schemes [12, 9, 4, 11]. However, most of them have
not been successful. One of the latest, Multi-HFE [11], proposes to use as core
map a system of multivariate polynomials over K, instead of a single HFE
polynomial. This cryptosystem was broken by means of a generalization of the
Kipnis-Shamir MinRank attack [2].

In the next section we present a procedure to generate a low degree polyno-
mial of Hamming weight three, which can be used to invert a map constructed
with two high degree HFE polynomials. This idea enables us to build candidates
for trapdoor functions using high degree HFE core polynomials, preventing the
attacks that we mentioned earlier.

3. Construction of new candidates for multivariate trapdoor
functions

The weakness of the HFE cryptosystem lies on the use of a low degree core
polynomial F . This polynomial is used for both encryption and decryption.
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The process of decryption involves inverting the map F (search of pre-images).
Therefore, if we take a polynomial of high degree the decryption could be
impossible, and if otherwise we take a polynomial of low degree the attacks
mentioned above would work.

To overcome this weakness, we developed a method for building pairs of
HFE polynomials of very high degree, and such that the map constructed with
such a pair is easy to invert, using a low degree polynomial derived from a spe-
cial reduction via Hamming weight three polynomials. This low degree polyno-
mial is easy to invert by means of Berlekamp’s algorithm. In this way, we are
able to use two HFE polynomials of high degree to construct a new candidate
for a trapdoor function, and a polynomial of small degree as the trapdoor used
to invert such trapdoor function.

3.1. The Reduction method

Let F : K → K and F̃ : K → K be two high degree HFE polynomials of the
form

F (X) =

n−1∑
0≤j≤i

aijX
qi+qj +

n−1∑
i=0

biX
qi + c,

F̃ (X) =

n−1∑
0≤j≤i

ãijX
qi+qj +

n−1∑
i=0

b̃iX
qi + c̃,

where the coefficients aij , bi, c, ãij , b̃i, c̃ ∈ K are to be determined. Next, let

F0, F1, · · · , Fn−1 be the Frobenius powers of F and let F̃0, F̃1, · · · , F̃n−1 be the
Frobenius powers of F̃ , i.e.,

Fi(X) = [F (X)]
qi

and F̃i(X) =
[
F̃ (X)

]qi
, for i = 0, 1, · · · , n− 1.

Let D0 be an upper bound for the degree of a univariate polynomial equation
that can be solved efficiently using Berlekamp’s algorithm.

The key part of this method is to construct a polynomial Ψ of the form

Ψ =X
(
α1F0 + · · ·+ αnFn−1 + β1F̃0 + · · ·+ βnF̃n−1

)
+

Xq
(
αn+1F0 + · · ·+ α2nFn−1 + βn+1F̃0 + · · ·+ β2nF̃n−1

)
,

such that deg(Ψ) ≤ D0. Notice that Ψ is a Hamming weight three polynomial.

To accomplish this, we need to determine the coefficients of F and F̃ , also
the scalars αi and βi, such that the coefficients of the terms in Ψ of degree
greater than D0 are equal to zero. We derive a system of equations from these
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vanishing coefficients in Ψ of degree higher than D0. This yields a system of
equations of the form

g1(z1, z2, · · · , zN ) = 0, · · · , gt(z1, z2, · · · , zN ) = 0,

where the variables z1, z2, · · · , zN are the coefficients of F and F̃ , together with
the scalars αi and βi.

The number t of equations of this system depends on how small we want
the degree bound D0 to be. More precisely, t is the number of different terms
in Ψ with degree higher than D0. To invert the trapdoor function, which we
will describe in Section 3.3, via the use of the polynomial Ψ, we require that
the polynomial Ψ has degree smaller than D0.

If we write each variable zj in terms of the basis
{

1, y, · · · , yn−1
}

, we obtain
a system of quadratic equations. More precisely, each variable zj in this system
can be written in the form

zj = u1j + u2jy + · · ·+ unjy
n−1, (1)

where u1j , · · · , unj are n new variables. Next, by the linearity of the Frobenius
powers, we get

zq
i

j = u1j + u2jy
qi + · · ·+ unjy

(n−1)qi . (2)

After we write each power ym as a linear combination of the elements of the
basis 1, y, · · · , yn−1 with coefficients in k, and group like terms, we get that

zq
i

j = h1j (u1j , · · · , unj) + h2j (u1j , · · · , unj) y2 + · · ·+ hnj (u1j , · · · , unj) yn−1,
(3)

where each hij is a linear function with coefficients in k.

We now write each variable of the system g1 = 0, · · · , gt = 0 in the form (1),
and proceed like in (2) and (3). By comparing the coefficients of the elements of
the basis

{
1, y, y2, · · · , yn−1

}
we obtain a system of nt quadratic equations in

n [n(n+ 1) + 6n+ 2] = n3 + 7n2 + 2n variables over k. These equations are in
fact bilinear, i.e., each term of these equations has the product of a variable that
comes from the coefficients and a variable that comes from the scalars. Thus,
if we randomly fix the variables associated to the scalars we obtain a sparse
linear system coming from the coefficients of F and F̃ . Due to its construction,
this linear system has more variables than equations, i.e., nt < n3 + 7n2 + 2n,
and hence we can always get nontrivial solutions. We then randomly choose
one of those solutions to build the high degree polynomials F and F̃ and the
reduced polynomial Ψ of degree less than or equal to D0, as explained above.

One could be tempted to randomly choose the variables coming from the
coefficients of F and F̃ , and then try to solve the linear system for the variables
coming from the scalars, with the purpose of having generic core polynomials
F and F̃ . However, this approach leads to a linear system with more equations
than variables, and thus, in general, this system has no nontrivial solutions.
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3.2. Complexity of the reduction method and dimension of the so-
lution space

The described method leads to a sparse linear system over the small field k
with more variables than equations. This system has about n3 variables and
thus the complexity of the reduction method is polynomial: O

((
n3
)ω)

, where
ω is a constant that depends on the elimination algorithm used to solve the
sparse linear system.

On the other hand, after we choose the 4n scalars αi and βi in the system
{gi(z1, z2, · · · , zN ) = 0 : i = 1, · · · , t}, we get a new system over the big field K
with t equations and N −4n variables (the coefficients of F and F̃ ). Therefore,
in this new system the number of variables exceeds the number of equations
by (N − 4n) − t. Hence the final linear system over the small field k has at
least n ((N − 4n)− t) free variables. Then we have at least qn((N−4n)−t) > qn

possible choices for the coefficients of the polynomials F and F̃ . Thus, if we
choose large parameters q and n, and if we randomly choose a solution from the
solution space, it is impossible for anyone to guess correctly the polynomials
we will use. The large dimension of the solution space also ensures that there
are sufficiently many choices for the core map.

3.3. How to build and invert the trapdoor function

For building a new candidate for multivariate trapdoor function, we make use
of a map of the form G = (F, F̃ ) : K → K ×K, in which F and F̃ have been
constructed by the method described in Section 3.1. We select two invertible
affine transformations S : kn → kn and T : k2n → k2n. Similar to HFE, the
multivariate trapdoor function will be the composition from kn to k2n given
by P = T ◦ (ϕ× ϕ) ◦G ◦ ϕ−1 ◦ S (see Figure 1).

K
G // K ×K

ϕ×ϕ
��

kn
S //

P

55kn //

ϕ−1

OO

k2n
T // k2n

Figure 1. New candidate for multivariate trapdoor function.

The crucial part to invert the trapdoor function is to invert the core map
G = (F, F̃ ), since the transformations S and T , and the isomorphism ϕ, are easy
to invert. In what follows we explain how to invert G. Consider an element X0 ∈
K and let (Y1, Y2) = G(X0) = (F (X0), F̃ (X0)). We show how to recover X0

from (Y1, Y2). Let F0, · · · , Fn−1 be the Frobenius powers of F and F̃0, · · · , F̃n−1
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be the Frobenius powers of F̃ . By the construction of F and F̃ , there exist
scalars α1, · · · , α2n, β1, · · · , β2n such that the polynomial

Ψ =

2∑
j=1

Xqj−1
n∑

i=1

αi+n(j−1)Fi−1 + βi+n(j−1)F̃i−1

has degree less than or equal to D0.

We define F ′ = F − Y1 and F̃ ′ = F̃ − Y2, and

Ψ′ =

2∑
j=1

Xqj−1
n∑

i=1

αi+n(j−1)F
′
i−1 + βi+n(j−1)F̃

′
i−1.

Clearly, F ′ (X0) = 0 and F̃ ′ (X0) = 0, and therefore Ψ′ (X0) = 0. Given that

F ′i = (F − Y1)q
i

= F qi − Y qi

1 = Fi − Y qi

1 and F̃ ′i = (F̃ − Y2)q
i

= F̃ qi − Y qi

2 =

F̃i − Y qi

2 , the polynomial Ψ′, just like Ψ, has degree less than or equal to
D0, when we choose D0 ≥ q. Thus, we can find the roots of Ψ′ by means of
Berlekamp’s algorithm and therefore we can recover the common root X0 of
the polynomials F ′ and F̃ ′.

We now discuss the complexity of the trapdoor function inversion. The
isomorphism ϕ and its inverse ϕ−1 can be represented in matrix form [2].
Thus, except for the inversion of the core map G, the computational cost of
each step of the algorithm to invert the trapdoor function is the cost of a
matrix multiplication. The degrees of the polynomials F and F̃ , which are
the components of the map G, are extremely high (usually close to qn−1),
which makes impossible to invert G directly for practical values of n. However,
as noted above, the inversion of the map G can be reduced to finding the
roots of the low degree polynomial Ψ′, which can be done efficiently using
Berlekamp’s algorithm. For the particular case of q = 2, in all the computations
that we performed we were able to obtain a function Ψ′ of degree less than 500,
whose roots can be found very quickly using Berlekamp’s algorithm. Therefore,
inverting the trapdoor function is a very efficient process.

4. Examples

We now show some examples built by the method described in Section 3.1.
We begin by presenting a toy example in which we explain step by step the
procedure. We next show two large scale cases.

Example 1. Let q = 2 and n = 2, and consider the field with two elements
k = GF (2). We select the irreducible polynomial g(y) = y2 + y + 1 ∈ k[y]. A
degree n extension field of k is K = k[y]/ (g(y)). We choose a generator b ∈ K
of the multiplicative group of K such that g(b) = 0. Two HFE polynomials in
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the ring K[X]/
(
Xqn −X

)
are of the form

F (X) = a01X
3 + b0X + b1X

2 + c,

F̃ (X) = ã01X
3 + b̃0X + b̃1X

2 + c̃,

where a01, b0, b1, c, ã01, b̃0, b̃1, c̃ ∈ K.

The Frobenius powers of F and F̃ , in that order, are:

F0 = a01X
3 + b0X + b1X

2 + c,

F1 = a201X
3 + b20X

2 + b21X + c2,

F̃0 = ã01X
3 + b̃0X + b̃1X

2 + c̃,

F̃1 = ã201X
3 + b̃20X

2 + b̃21X + c̃2.

We now multiply the Frobenius powers by X and Xq and we obtain

XF0 = a01X + b0X
2 + b1X

3 + cX,

XF1 = a201X + b20X
3 + b21X

2 + c2X,

X2F0 = a01X
2 + b0X

3 + b1X + cX2,

X2F1 = a201X
2 + b20X + b21X

3 + c2X2,

XF̃0 = ã01X + b̃0X
2 + b̃1X

3 + c̃X,

XF̃1 = ã201X + b̃20X
3 + b̃21X

2 + c̃2X,

X2F̃0 = ã01X
2 + b̃0X

3 + b̃1X + c̃X2,

X2F̃1 = ã201X
2 + b̃20X + b̃21X

3 + c̃2X2.

Then we form the polynomial Ψ = X(α1F0+α2F1+β1F̃0+β2F̃1)+X2(α3F0+
α4F1 + β3F̃0 + β4F̃1). In this example we want to determine the coefficients
aij , bi, c, ãij , b̃i, c̃ and the scalars αi, βi such that the terms of degree ≥ 2 in Ψ
vanish. In order to do that, we have to solve the following two equations

α1b0 + α2b
2
1 + α3 (a01 + c) +α4

(
a201 + c2

)
+ β1b̃0 + β2b̃

2
1

+ β3 (ã01 + c̃) + β4
(
ã201 + c̃2

)
= 0,

α1b1 + α2b
2
0 + α3b0 + α4b

2
1+β1b̃1 + β2b̃

2
0 + β3b̃0 + β4b̃

2
1 = 0.

We randomly choose the scalars (α1, · · · , α4) = (0, 0, b, 1) and (β1, · · · , β4) =
(0, b, b2, b2). Then we write the variables a01, b0, b1, c, ã01, b̃0, b̃1, c̃ in terms of
the basis 1, y, · · · , yn−1, as follows:

a01 = u1 + u2y, · · · , c̃ = u15 + u16y.
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Proceeding as explained in Section 3.1, we get the linear equations

u1 + u7 + u10 + u14 + u16 = 0,

u1 + u7 + u10 + u13 + u16 = 0,

u4 + u5 + u6 + u11 + u13 = 0,

u3 + u4 + u6 + u13 + u14 = 0.

One of the solutions of this system is

(u1, · · · , u16) = (0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1) .

This solution leads to the coefficients

(a01, b0, b1, c, ã01, b̃0, b̃1, c̃) =
(
0, b2, 1, b2, b, b2, b2, b

)
.

With these coefficients we get the polynomials F = X2 + b2X + b2 and F̃ =
bX3 + b2X2 + b2X + b. Then, we use the scalars αi and βi to form the reduced
polynomial Ψ = b2X.

Example 2. In this example, for convenience in the presentation, we consider
the coefficients and the scalars in the small field k = GF (2) so we can nicely
present the polynomials here. Of course, a realistic example would require the
coefficients to be taken in the big field K and then the coefficients would not
only be ones and zeros. Let q = 2 and n = 17, and consider the field with two
elements k = GF (2). We select the irreducible polynomial y17 + y3 + 1 ∈ k[y].
A degree n extension field of k is K = k[y]/ (g(y)). We choose a generator
b ∈ K of the multiplicative group of K such that g(b) = 0. We require the
terms of degree ≥ 40 in Ψ to vanish. Following the same procedure explained
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in the previous example, we obtain the polynomials

F =X98304 +X81920 +X67584 +X66560 +X66048 +X65664 +X65568+

X65552 +X65540 +X49152 +X40960 +X33792 +X32896 +X32832+

X32800 +X32772 +X32770 +X32769 +X18432 +X16896 +X16640+

X16416 +X16400 +X16392 +X16388 +X16386 +X10240 +X8208+

X8192 +X6144 +X4608 +X4352 +X4112 +X4104 +X3072 +X2080+

X2064 +X2049 +X1536 +X1152 +X1056 +X1040 +X1028 +X1025+

X768 +X640 +X520 +X384 +X320 +X288 +X272 +X258 +X257+

X192 +X136 +X132 +X130 +X96 +X68 +X66 +X36 +X34+

X18 +X12 +X10 +X8 +X5 +X3,

F̃ =X131072 +X98304 +X81920 +X66560 +X65664 +X65568 +X65552+

X65544 +X65540 +X65538 +X33280 +X32832 +X32784 +X32776+

X32770 +X17408 +X16896 +X16640 +X16512 +X16400 +X16392+

X16384 +X12288 +X10240 +X9216 +X8704 +X8256 +X8208 +X8200+

X8194 +X8193 +X8192 +X4224 +X4160 +X4112 +X4100 +X4097+

X2304 +X2176 +X2080 +X2052 +X2049 +X1280 +X1088 +X1056+

X1028 +X1025 +X768 +X576 +X544 +X528 +X520 +X514 +X512+

X384 +X258 +X257 +X256 +X136 +X132 +X130 +X128 +X96+

X68 +X66 +X48 +X40 +X36 +X34 +X32 +X20 +X18 +X10+

X6 +X3 +X2.

The scalars (α1, · · · , α34) are

(1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1) ,

and the scalars (β1, · · · , β34) are

(1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0) .

These values, together with the polynomials F and F̃ , lead to the reduced
polynomial

Ψ = X36 +X35 +X33 +X26 +X25 +X22 +X19 +X12 +X11 +X8.

The high degrees of F and F̃ prevent us to invert G = (F, F̃ ) directly, but
we can invert G using Ψ as explained in Section 3.3. To show how to in-
vert G, we randomly choose X0 = b51298 ∈ K. Then we calculate (Y1, Y2) =
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(F (X0), F̃ (X0)) = (b114562, b126611). We now show how to recover X0 from
(Y1, Y2). First we put F ′ = F −Y1 and F̃ ′ = F̃ −Y2 and use the scalars αi and
βi to form the low degree polynomial

Ψ′ = X36 +X35 +X33 +X26+X25 +X22 +X19 +X12 +X11+

X8 +X5 + b117898X2 + b101296X.

The set of roots of the polynomial Ψ′, found very quickly by Berlekamp’s al-
gorithm, is

{
0, b51298

}
. Notice that X0 is one of these roots.

Example 3. With q = 2 and n = 60, and taking the coefficients and the
scalars in the big field K, we found a pair of polynomials F and F̃ with the
same degree D and

⌊
logqD

⌋
= 59. The reduced polynomial Ψ that we found

has degree 386. Hence, we can invert easily the map G = (F, F̃ ) via the low
degree polynomial Ψ using Berlekamp’s algorithm. These polynomials are too
big to be displayed here. In this example we needed to deal with a sparse matrix
of size 208080× 226800 and the time and memory used were 4.6 days and 52.7
GB, respectively.

5. Security analysis

As we noted before, there are two attacks that have threatened the security of
HFE schemes: direct algebraic attack and Kipnis-Shamir MinRank attack. Here
we analyze these attacks against the new candidates for multivariate trapdoor
functions in the special case q = 2.

We would like to recall the recent result on the degree of regularity of Ding
and Hodges [8]. We know that for an HFE system P the degree of regularity
is bounded by

(q − 1) Q-Rank(P )

2
+ 2,

where Q-Rank(P ) is the quadratic rank for the quadratic operator P . So for
q = 2 we have that this degree of regularity is bounded by

Q-Rank(P )

2
+ 2.

Since the corresponding quadratic rank used in the Kipnis-Shamir MinRank
attack is given by Q-Rank(P ), we see that if an HFE system has a high degree
of regularity, this HFE system must have a high quadratic rank for the Kipnis-
Shamir attack. From this we conclude that it suffices to show that our new
trapdoor functions have high degree of regularity, in order to demonstrate that
the MinRank attack will not work against these new trapdoor functions. We
dedicate the rest of this section to discuss the algebraic attack against the new
trapdoor functions.

Suppose that someone, who does not know the private trapdoor informa-
tion, wants to invert the multivariate trapdoor function P : kn → k2n, P =
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n Average time
[s]

Minimum time
[s]

Maximum time
[s]

⌊
logqD

⌋
18 0.100 0.100 0.100 17

20 0.205 0.200 0.210 19

22 0.434 0.420 0.440 21

24 0.849 0.840 0.860 23

26 7.981 7.950 8.020 25

28 32.046 31.550 32.690 27

30 90.770 76.430 110.250 29

32 225.557 221.310 230.720 31

Table 1. Algebraic attack against the new trapdoor function for q = 2.

(P1, . . . , P2n), i.e., she wants to find a pre-image of an element (y1, . . . , y2n) ∈
ImP ⊆ k2n. This person only has access to the trapdoor function P . Attempt-
ing to solve directly the system of equations

P1(x1, . . . , xn)− y1 = 0

P2(x1, . . . , xn)− y2 = 0

...

P2n(x1, . . . , xn)− y2n = 0,

(4)

is what we call the direct algebraic attack. One way to do this is with the help
of a Gröbner basis. We ran extensive experiments using the F4 algorithm of
MAGMA, [3], to perform the direct algebraic attack for q = 2 and several values
of n, on a Sun X4440 server, with four Quad-Core AMD OpteronTM Processor
8356 CPUs and 128 GB of main memory (each CPU is running at 2.3 GHz).
For the trapdoor functions used in these experiments we utilized D0 = 500.
The results of our experiments are shown in Table 1 and 2, and Figure 2, 3
and 4. The F4 function of MAGMA is the most efficient implementation of the
Gröbner F4 algorithm that is currently available.

In Table 1 and Figure 2 we can observe that the time needed to solve the
equations by F4 has an exponential growth in n. We can also see this behaviour
with the memory used by the F4 algorithm. This situation is different from the
one observed by Faugere and Joux in [10]. The difference lies on the fact that
in [10] the quadratic equations are produced using a polynomial of fixed low
degree as core map in the HFE cryptosystem, and in our new trapdoor function
the quadratic equations are generated via two high degree polynomials. In
our experiments, in general, these two high degree polynomials have the same
degree D and this degree increases as n increases (see Table 1). This is the
fundamental security improvement of our new method.
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Figure 2. Algebraic attack against the new trapdoor function for q = 2.
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Figure 3. Degree of regularity for the algebraic attack against the new trapdoor
function.

Another evidence that the complexity of the algebraic attack against the
new trapdoor functions is exponential, is that the degree of regularity of the
trapdoor function increases as n increases. This behaviour can be observed
in Figure 3. As we mentioned earlier, the fact that this degree of regularity
increases as n increases, not only says that the direct algebraic does not work
against the new trapdoor functions, but also that the Kipnis-Shamir MinRank
attack is not successful against these new trapdoor functions.

We also chose random quadratic equations of the same dimensions (kn →
k2n) and found that the time needed to solve such equations using Gröbner
bases is essentially the same that is needed to solve the quadratic equations
from the new trapdoor function. Table 2 and Figure 4 show this comparison
between the new trapdoor functions and random equations for different values
of n.
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(a) New trapdoor function

n Average time
[s]

Memory
[MB]

Degree of
regularity

14 0.019 3 3

16 0.142 5 4

18 0.100 8 4

20 0.205 13 4

22 0.434 20 4

24 0.849 33 4

26 7.981 118 4

28 32.046 1121 5

30 90.770 2769 5

32 225.557 5610 5

(b) Random equations

n Average time
[s]

Memory
[MB]

Degree of
regularity

14 0.040 12 3

16 0.060 13 4

18 0.100 16 4

20 0.200 21 4

22 0.440 31 4

24 0.830 46 4

26 7.800 105 4

28 34.700 1087 5

30 87.810 2725 5

32 239.260 5549 5

Table 2. Algebraic attack comparison between the new trapdoor function and ran-
dom equations for q = 2.

In Table 2 we can notice that the degree of regularity of the new trapdoor
function is the same as the degree of regularity of the set of random equations.
In both cases we observe that the degree of regularity increases as n increases.
From all the information we collected with our experiments, it seems that the
F4 algorithm is no more efficient in solving the equations from the new trapdoor
function than a set of random equations of the same dimensions. In other words,
with respect to the direct algebraic attack, the new trapdoor function behaves
as if it were a system of random quadratic equations.

6. Conclusions and future work

We have created a procedure to build candidates for multivariate trapdoor
functions using pairs of HFE polynomials of high degree. The way to invert
these trapdoor functions is through a low degree polynomial of Hamming weight
three. We have shown how the main attacks against HFE do not work for these
new trapdoor functions for the particular case of q = 2.

The next step in our research is to use the ideas of this paper to construct
candidates for multivariate trapdoor functions for larger values of q. The benefit
of doing this is that the larger the value of q is, the smaller the value of n is,
and so the smaller the sizes of the matrices needed to construct the trapdoor
functions are. This would significantly reduce the time and memory needed to
construct the multivariate trapdoor functions. It would also be important to
study the effect that the matrix sparsity has on the complexity of the algorithm
used to construct the new trapdoor functions.

In Section 5 we saw that for q = 2 it suffices to show that the new trapdoor
functions have high degree of regularity to conclude that the Kipnis-Shamir
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Figure 4. Algebraic attack comparison between the new trapdoor function and ran-
dom equations.

MinRank attack does not work against these trapdoor functions. However, for
larger values of q this argument cannot be used and the MinRank attack must
be directly performed against these new trapdoor functions. We are currently
starting to work these cases and we will publish the results in an upcoming
paper.

We believe that these ideas have great potential to construct new variants
of the HFE cryptosystem that are resistant against the direct algebraic and
MinRank attacks.
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