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ABSTRACT
We generalize correlation-enhanced power analysis collision
attacks into moments-correlating DPA. The resulting dis-
tinguisher is applicable to the profiled and non-profiled (col-
lision) settings and is able to exploit information lying in
any statistical moment. It also benefits from a simple rule-
of-thumb to estimate its data complexity. Experimental re-
sults show that such a tool allows answering with confidence
to some important questions regarding the design of side-
channel countermeasures (e.g. what is the most informative
statistical moment in the leakages of a threshold implemen-
tation). We further argue that moments-correlating DPA
is a natural candidate for leakage detection tests, enjoying
the simplicity of correlation power analysis and advanced
features for the evaluation of higher-order attacks with an
easy-to-compute confidence level.

1. INTRODUCTION
Context. Correlation-Enhanced Power Analysis Collision
Attacks (CEPACA) have been introduced at CHES 2010 [23].
Such distinguishers bring an interesting alternative in the
side-channel analysis toolbox for two main reasons. First
(and as any collision attack - see [37] and the following
works), they trade the usual requirement of having a (suf-
ficiently accurate) leakage model for the assumption that
some of the operations performed in the target implementa-
tion leak according to a similar model. As a result, they may
work without a precise understanding of this target imple-
mentation, which is typically useful in a non-profiled attack
setting. Second, they naturally extend to advanced con-
texts, where the side-channel information to extract lies in
higher-order statistical moments [20]. As a result, CEPACA
have been applied in different scenarios, e.g. timing at-
tacks [25] or implementations protected with different coun-
termeasures [22, 24].

Yet, such attacks also suffer from some limitations. First
(and as any collision attack), the “similar leakage model”
requirement may not always be respected in practice, e.g.
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in the context of hardware implementations where the tar-
get operations are implemented with different physical re-
sources (possibly affected by variability [35]), or even in soft-
ware implementations, due to pipelining effects [12]. Second,
CEPACA essentially correlate statistical moments estimated
for different S-boxes. As a result (and if the similar leak-
age model requirement is fulfilled), the value of the corre-
lation coefficient estimated for the correct hypothesis grad-
ually reaches ‘1’ whenever enough samples are used in the
attack. While this is not a problem if the goal of the distin-
guisher is only to perform a key recovery, it implies that the
value of this correlation coefficient is not informative regard-
ing the complexity of the attacks. In other words, it cannot
be used as an evaluation metric, which is in contrast with
the “standard” use of Pearson’s correlation coefficient in [3].
The latter one can indeed be used as a worst-case metric un-
der certain conditions discussed in [17] (namely first-order
DPA with a perfect leakage model, essentially) and anyway
benefits from a simple rule-of-thumb to estimate its (not
worst-case) data complexity otherwise.

Our contribution. In this paper, we contribute to these
two issues by proposing a neat generalization of CEPACA,
next denoted as Moments-Correlating DPA (MC-DPA). For
this purpose, our starting observation is that the correla-
tion of statistical moments used in CEPACA has a natural
counterpart in the context of profiled attacks, where we can
correlate the moments corresponding to a single S-box es-
timated twice: first during profiling and then “on-the-fly”
during the attack. This brings us to distinguish between
Moments-Correlating Profiled DPA (MCP-DPA) which ex-
ploits this observation, and Moments-Correlating Collision
DPA (MCC-DPA), which works as in previous works, by
correlating the moments corresponding to two target oper-
ations estimated on-the-fly. Our second observation is that
one can tweak CEPACA in order to preserve the metric as-
pect of Pearson’s correlation coefficient as exploited in stan-
dard DPA. For this purpose, we simply have to replace the
correlation of “moments with moments” by the correlation
of “moments with samples”. That is, considering the pro-
filed estimation of the moments in MCP-DPA (resp. the
on-the-fly estimation of these moments for one of the target
operations in MCC-DPA) as a model, and then correlate
this model with samples obtained on-the-fly in the attack
phase of MCP-DPA (resp. with samples corresponding to
the other operation in MCC-DPA), possibly squared, cubed,
. . . in case of higher-order analyzes.

Do we care? MC-DPA can be viewed as a variant of
CEPACA, extended to the two main side-channel attack set-



tings (namely profiled and non-profiled). Before entering the
details of its instantiation, we want to shortly motivate why
such a variant brings interesting insights for security evalu-
ations, and solves open problems. We will take the applica-
tion of CEPACA to the PRESENT threshold implementa-
tion of [31] to illustrate our claims. In [20], CEPACA is used
to argue that this threshold implementation is “first-order
secure” as expected by the proofs in [29]. But this argument
still depends on the similar leakage model requirement. The
application of MCP-DPA allows getting rid of this assump-
tion. Hence, by comparing MCP-DPA with MCC-DPA, we
can also quantify how much information is lost if the target
operations of a collision attack do not leak according to sim-
ilar models. Next, an important question regarding thresh-
old implementations relates to the most informative statisti-
cal moment in their leakage distributions. Being glitch-free,
there should be no information in the first-order moments.
But it is unclear whether the best adversarial strategy is
to focus on second- or third-order moments.1 As will be
shown in Section 3, answering this question with the infor-
mation theoretic analysis proposed in [39] turns out to be
uneasy. The metric feature of MC-DPA directly brings a
simple answer, with the most informative moment leading
to a higher correlation. Admittedly, an alternative solution
to this problem can be found in the work of Bilgin et al. [1],
where (standard DPA and collision-based) attacks of differ-
ent orders were launched against a threshold implementa-
tion of AES. But this leads to the last interesting property of
MC-DPA. Namely, security evaluations against side-channel
attacks should ideally be based on the repetition of multiple
experiments to gain statistical confidence. Yet, the estima-
tion of (e.g.) a success rate in this context can become too
expensive when the attacks’ data complexity increases (e.g.
neither [1] nor [26] computed such a success rate for their
> 1, 000, 000-trace attacks). Thanks to the metric feature
of MC-DPA, we can also use the rule-of-thumb proposed
in [16, 38] to approximate the data complexity based on
the squared inverse of Pearson’s correlation estimated for a
single attack (i.e. with much less sampling than by direct
estimation).

Wrapping up. MC-DPA brings an interesting complement
to the existing literature on side-channel distinguishers, by
extending the applicability of CEPACA to profiled attacks
and evaluation metrics. As a result, we obtain an easy to
manipulate and interpret tool, that directly applies to higher
orders and for which we can estimate the data complexity
with limited sampling (without having to compute a suc-
cess rate explicitly), i.e. some of the reasons that have made
Correlation Power Analysis (CPA) so popular. In the follow-
ing, we illustrate these useful qualities by confirming previ-
ous results on threshold implementations. Namely, we show
that the claim of first-order security that was obtained us-
ing CEPACA in [20] extends to a profiled evaluation (with a
limited loss of information, hence confirming that the simi-
lar leakage model requirement reasonably holds in this case).
We also observe that attacks focusing on second-order mo-
ments are more efficient than attacks focusing on third-order
ones for this implementation (as already found in [1]), and

1 Especially in the context of hardware implementations ma-
nipulating the three shares in parallel as we consider next,
since finding the points-of-interest will be equally difficult
(in terms of time complexity) for second- and third-order
attacks in this case.

provide a more confident and quantitative analysis of this
fact, thanks to the metric feature of MC-DPA. We then con-
clude by showing that MC-DPA is a promising candidate for
efficient leakage detection tests [19], with easy-to-compute
confidence level indicators.

Quite naturally, the following discussion also has strong
connections with first- and higher-order CPA. In particular,
MCP-DPA can be viewed as a profiled higher-order CPA
(see, e.g. [33]). In this sense, our work should be viewed as a
consolidating one, bridging the gap between the use of Pear-
son’s correlation in various relevant scenarios (namely non-
profiled with a-priori models as in [3], non-profiled collision-
based as in [23], profiled and higher-order).

2. MOMENTS-CORRELATING DPA
Notations. We illustrate the attack with the key addition
and S-box operations found in most block ciphers. For this
purpose, let us denote a plaintext byte as x, a key byte
as k, a key addition as y = x ⊕ k, the execution of a b-
bit S-box S as z = S(x ⊕ k), and the leakage trace gen-
erated by this S-box computation as z = S(x ⊕ k)  lz.
We further use E(.) for the expectation operator. MC-DPA
makes use of statistical moments that we specify as follows.
Let X be a (univariate) random variable. The dth-order
raw statistical moments are defined as Md

x = E(Xd), with
µx = E(X) the mean. The dth-order central moments are

defined as CMd
x = E

(
(X − µ)d

)
, with σ2

x = E
(
(X − µ)2)

the variance. The dth-order standardized moments are de-
fined as SMd

x = E
((

X−µ
σ

)d)
, with γx = E

((
X−µ
σ

)3)
the

skewness and δx = E
((

X−µ
σ

)4)
the kurtosis. Eventually,

we use ρ(X,Y ) for Pearson’s correlation coefficient, add the
hat operator for estimations.

2.1 Moments-Correlating Profiled DPA
Let lx,k be an N -element vector of leakage traces cor-

responding to N intermediate values z = S(x ⊕ k)  lz,
e.g. [l0, l16, l51, . . .], µ̄x,k be the N -element vector of the cor-
responding (estimated) mean values, e.g. [µ̂0, µ̂16, µ̂51, . . .],
σ̄2
x,k, γ̄x,k, δ̄x,k and Md

x,k, CMd
x,k, SMd

x,k be similar vectors
for the variance, skewness, kurtosis and dth-order (raw, cen-
tral, standardized) moments. We denote the estimation of
one of those vectors from an Np-element vector of profiling
leakage traces lpx,k as (e.g. for the dth-order raw moments):

M̂d
x,k ← lpx,k. MCP-DPA will select the key candidate ac-

cording to (again for the raw moments):

k̃ = argmax
k∗

ρ̂(M̂d
x,k∗ , (l

t
x,k)d),

where M̂d
x,k∗ is the dth-order (estimated) statistical moment

vector permuted according to a key hypothesis k∗, and ltx,k is
an Nt-element vector of test traces. If a central or standard-
ized moment is used, the second argument in the correlation

coefficient will be replaced by (ltx,k−µ̄x,k)d and (
ltx,k−µ̄x,k

σ̄x,k
)d,

respectively (which is then similar to [33]).

2.2 Moments-Correlating Collision DPA
The previous attack requires a profiling step to estimate

the 2b statistical moments corresponding to the leakage of
the target intermediate values z = S(x ⊕ k). In a non-
profiled scenario, an alternative is to target a pair of S-box



computations, e.g. z0 = S(x0 ⊕ k0)  lz0 and z1 = S(x1 ⊕
k1)  lz1 , to estimate these 2b moments for the first S-

box “on-the-fly”, i.e. M̂d
x0,k0

← ltx0,k0 , and to correlate the
moment vector with the leakage samples corresponding to
the second S-box permuted according to a value ∆ added to
the key, i.e. ltx1,k1⊕∆. MCC-DPA will select the value of ∆
according to (again for the raw moments):

∆̃ = argmax
∆

ρ̂(M̂d
x0,k0 , (l

t
x1,k1⊕∆)d).

As mentioned in introduction, this attack can be viewed
as a tweaked CEPACA, where the adversary would com-
pute the correlation between two vectors of statistical mo-
ments, i.e. ρ̂(M̂d

x0,k0
, M̂d

x1,k1⊕∆). The main advantage of
this tweak is that while the value of the correlation coef-
ficient in CEPACA gradually tends to ‘1’ when the num-
ber of test traces increases (if the S-boxes leak according
to the same leakage function), it is now dependent on the
“informativeness” of the statistical moment exploited in the
attack (essentially because we correlate moments with sam-
ples, rather than moments with moments). As a result (and
compared to CEPACA), the MCC-DPA described in this
subsection additionally provides a metric to quantify the
number of measurements needed to perform a key recovery
with a given success rate (directly derived from [16, 17, 38]):

Nsr = c · 1

(ρ̂(M̂d
x0,k0

, (ltx1,k1⊕∆)d)2
, (1)

where c is a constant that depends on the number of hy-
potheses in the attack (i.e. 2b) and the target success rate.2

A similar formula can be used for MCP-DPA. By running
such tools for different orders d, cryptographic designers di-
rectly get insights about the origin of the weaknesses in their
implementations.

3. SIMULATED EXPERIMENTS
One of the goals of MC-DPA is to provide an easy-to-

manipulate tool for the detection of the most informative
statistical moments, e.g. in threshold implementations. In
this section, we take advantage of a simulated case-study
to analyze this problem in a well-controlled environment,
and detail why it is challenging. For this purpose, we will
consider the following three types of leakage samples:

lu1
z = HW(z) +N,

lm2
z = HW(z ⊕m) + HW(m) +N,

lmf
z = HW(z ⊕m) + HW(m) + f × HW(z) +N,

where HW is the Hamming weight function and N is a Gaus-
sian random noise with variance σ2

n. lu1
z typically corre-

sponds to the (first-order) leakage of an unprotected imple-
mentation. lm2

z typically corresponds to the (second-order)
leakage of a masked implementation. lmf

z typically corre-
spond to the (first- and second-order) leakage of a masked
implementation with a first-order flaw (e.g. due to glitches
as in [18]). We additionally use a parameter f to capture the
fact that this first-order flaw may have a smaller amplitude
than the second-order signal. Note that we do not claim that
this setting strictly corresponds to any physical implementa-
tion. We just use it to put forward intuitions regarding the

2 This formula has been refined by Fei et al. [11] and Thillard
et al. [41], at CHES 2012 and CHES 2013, respectively. We
keep its older version for simplicity.

Figure 1: Information theoretic analysis of unpro-
tected, masked and flawed masked implementation.

most informative moments in side-channel attacks. In order
to analyze these different leakage scenarios, we will perform
the information theoretic analysis put forward in [39] and
first applied to masked implementations in [40]. This im-
plies computing the following mutual information metric:

I(K;L,X) = H[K]−
∑
k∈K

Pr[k]
∑
x∈X

·Pr[x]

·
∑
l∈L

Pr[l|k, x] · log2 Pr[k|x, l], (2)

where L is the random variable corresponding to leakage
samples l, that we replace by Lu1

z , Lm2
z or Lmf

z depending
on whether we consider an unprotected, masked or flawed
masked simulated implementation.3 We ran this informa-
tion theoretic analysis (for b = 8, f = 0.2) in function of
the noise variance and report our results in Figure 1, from
which we observe that:

1. All curves start by a plateau region, where the noise is
small compared to the difference between the leakage
values (here, Hamming weights).

2. As the noise increases, the slope of the curves reveals
the security order of the implementations, e.g. -1 (resp.
-2) for the unprotected (resp. masked) one.

3. For the masked S-box with first-order flaw, the infor-
mation theoretic curve first follows the masked one,
and then becomes parallel to the unprotected one for
large noise levels. This indicates that second-order
(resp. first-order) moments are more informative for
low (resp. large) noise levels.

These experiments recall the fundamental masking equation
“order of the statistical moment to estimate + measurement
noise variance = security level”, first hinted by Chari et
al. [4]. While they indeed put forward that (depending on
the noise level), one or another statistical moment may be

3 In our simulated setting, we assume that the adversary’s
model exactly corresponds to the true leakage function. In
the case of masked implementations, it implies summing
over all the m’s and computing Pr[k|x, l] as

∑
m Pr[l|x, l,m]·

Pr[m]. Hence this metric strictly corresponds to the (worst-
case) mutual information (vs. the perceived information
when this condition does not hold, as discussed in [35]).



Figure 2: MCP-DPA metric for the flawed masked
implementations.

more informative, such information theoretic curves are still
limited in exhibiting exactly the noise threshold where the
most informative moment changes. This is because an infor-
mation theoretic analysis captures the worst-case adversary
exploiting all the statistical moments jointly (i.e. the full
distribution). As a result, the intuition regarding the or-
ders is only revealed in the slopes of these curves. So while
we can reasonably assume that the noise threshold we are
looking for lies approximately where the dashed (red) and
dotted (black) curves in the left part of Figure 1 separate
(i.e. close to σ2

n = 101), a strict decision is hard to make
here. Besides, and maybe more importantly, any analysis of
an actual chip will be done for a single noise level (i.e. corre-
sponds to a single point in the information theoretic curves),
and therefore will not exhibit any slope. Interestingly, this
is exactly where MC-DPA will come in handy. Indeed, by
launching such attacks for different statistical moments, we
can obtain intuition about their respective informativeness.
For illustration, we launched such attacks against the flawed
masked implementations, with first- and (central) second-
order moments. The results in Figure 2 now clearly allow
distinguishing for which noise level the first-order moments
become more informative, and indeed confirm the previous
intuitions (i.e. the threshold is close to σ2

n = 101). Further-
more, this information is obtained by comparing the corre-
lation coefficient values for each noise level independently,
so could be applied to an actual chip as well.

Summarizing, these simulated experiments show that MC-
DPA provide an easy answer to the question of what is the
most informative moment in a leaking implementation. To
the best of our knowledge, it could not be obtained with
previous distinguishers or metrics (the only known alterna-
tive would have been to compute success rates directly, i.e.
a significantly more intensive task).

4. MEASURED EXPERIMENTS
For the practical experiments, we considered a threshold

implementation of the PRESENT cipher [2]. Our design is
the same as Profile 2 in [31] which is based on a serialized ar-
chitecture. Following the minimum settings of threshold im-
plementations, all intermediate values of the cipher are rep-
resented by three Boolean shares, and we exploit the 2-stage
masked S-box described in [29]. As described in Figure 3,

3 2 141516 state register 1

3 2 141516 state register 2

3 2 141516 state register 3

G F

3 2 141920 key register

PLayer

PLayer

PLayer

y1

y2

y3

z1

z3

z2

Figure 3: Architecture of the target design of
PRESENT threshold implementation.

the shared S-box input (y1, y2, y3) – where y = y1⊕y2⊕y3 –
is first given to the G function, stored in the middle registers
and then given to the F function which makes the shared S-
box output as (z1, z2, z3) – where z1 ⊕ z2 ⊕ z3 = z := S(y).
This process is repeated for the 16 S-boxes as represented on
the figure, where the state is stored in shift registers which
provide the S-box inputs nibble-by-nibble. We have also
taken the same implementation platform as the one of [20]
and [23], i.e. a Xilinx Virtex-II Pro FPGA embedded on
SASEBO [28]. The leakage traces are collected by means of
a LeCroy digital oscilloscope and a differential probe moni-
toring the voltage drop by a 1 Ω resistor placed at internal
Vdd path of the target FPGA. The sampling rate was set to
1 GS/s and the target FPGA clock was driven at a frequency
of 3 MHz.

4.1 PRNG off
As a preliminary, we analyzed a setting where the PRNG

was switched off (i.e. with all the masks stuck to ‘0’ dur-
ing the measurements). We expect first-order leakages to
be detectable by both MCP-DPA and MCC-DPA in this
case. For this purpose, we collected 100, 000 traces, one of
which is shown in the top part of Figure 4, where we can
observe that each trace covers 6 clock cycles linked to the
full computation of 5 S-boxes on 5 key-whitened plaintext
nibbles.

Starting with MCP-DPA, we targeted the 7th nibble cor-
responding to plaintext x7 and key k7, and used Np =

50, 000 traces for profiling the first-order moments M̂1
x7,k7

.
Since the PRESENT S-box is bijective and the initial key
whitening is linear, by permuting the vector M̂1

x7,k7
we ob-

tain the estimated moments M̂1
x7,k

∗
7

for all other possible

key nibbles k∗7 . Then, we used another Nt = 50, 000 traces
to compute their correlation with the samples ltx7,k7 , and ap-
plied this process to each time sample independently. Since
b = 4 in this case, we obtained 16 correlation curves depicted
in the middle part of Figure 4, where the curve correspond-
ing to the correct key hypothesis is plotted in black.

A similar treatment was applied to MCC-DPA, for which
we targeted the 7th and 8th nibbles. In this case, we esti-
mated the moments for the first nibble, used the samples of
the second one to compute the correlation, and targeted the
difference ∆7,8 = k7 ⊕ k8. The corresponding S-box compu-
tations are computed consecutively in our implementation,
with an interval of one clock cycle, i.e. 333 sample points.
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Figure 4: Experiments with PRNG off (Np=Nt=50k
traces). Top: leakage trace. Middle: MCP-DPA
with first-order moments. Bottom: MCC-DPA with
first-order moments.

Therefore, the leakage traces lt8,k8 are shifted by 333 sample
points to the left in order to be aligned with the estimated
moments M̂1

x7,k7
. This time we used a single set of 50, 000

traces to estimate the moments M̂1
x7,k7

and their correla-
tion with ltx8,k8 . By permuting ltx8,k8 according to ∆7,8 and

estimating the correlation coefficient between M̂1
x7,k7

and
ltx8,k8⊕∆7,8

for each sample point independently, we obtained
the results shown in bottom part of Figure 4.

These results lead to the following observations. First,
both MCP-DPA and MCC-DPA are successful in recovering
k7 and ∆7,8, respectively. It indicates that (as expected)
the threshold implementation has well identified first-order
leakages when masks are stuck to ‘0’. Next, the leakages
are spread over three clock cycles for MCP-DPA, which can
be explained by the architecture of Figure 3. Namely, when
the plaintext nibble x7 appears at the last stage of the state
shift register, it is XORed with the corresponding key nib-
ble and given to the G function. This happens at the second
clock cycle of the trace shown in the top of Figure 4. At
the next clock cycle, the middle register stores G(x7 ⊕ k7)
which then appears at the input of the F function. Eventu-
ally, F(G(x7⊕k7)) is saved in the first stage of the state shift
register during the third clock cycle, at the same time the F
function’s input changes to G(x8⊕k8). Since the leakages of
sequential circuits usually depend on the transition between
two consecutive states, observing some key dependencies in
three states in a row is reasonable. Interestingly, we see that
the situation slightly differs in the case of MCC-DPA. But
this can also be explained by the target design. Namely,
although there is a single S-box implemented, the key addi-
tion corresponding to plaintext nibbles x7 and x8 are not the
same. Moreover, the controlling signals at the correspond-
ing two clock cycles are not exactly the same either. The
combination of these effects justifies the difference between
the MCP-DPA and MCC-DPA curves.

One last question remains to investigate. That is, MCP-
DPA theoretically allows to select different values for Np
and Nt. It leads to the problem of choosing these values
adequately. We answered this question by running MCP-
DPA and MCC-DPA in function of Nt and Np according
to two strategies.4 In the balanced strategy, we always use
Np = Nt. In the unbalanced strategy, we set Np to some ar-
bitrary values. As illustrated in Appendix, Figures 6 and 7,
the balanced strategy is usually sufficient to obtain well es-
timated moments (which was expected since the estimation
of these moments is essentially what will be done in the on-
line phase as well, by correlating them with samples raised
to some power d). Besides, the figures confirm the rule-of-
thumb for estimating the attacks data complexity (since the
data complexities of MCP-DPA and MCC-DPA are similar,
as the value of their correlation coefficient in Figure 4).

4.2 PRNG on
Quite naturally, the most interesting setting for thresh-

old implementations is when the PRNG outputs uniformly
random shares. This time we collected 20, 000, 000 traces
for our experiments to examine the efficiency of our pro-
posed attacks. Similar to the case of PRNG off, we used the
first half of the traces for moment estimation and the next
10, 000, 000 traces for correlation estimation in MCP-DPA,
and a single set of 10, 000, 000 traces to perform both tasks in
MCC-DPA. We started by running a first-order MCP-DPA
for which the result is shown in the top part of Figure 5. As
expected – theoretically proven by [29] and confirmed by [20]
– the attack is not successful supporting the effectiveness of
the threshold implementation scheme to prevent first-order
leakages.

We then performed MCP-DPA and MCC-DPA with second-
order central moments and third-order standardized mo-
ments. As illustrated on the figure, we observe that the
investigated leakages contain information in both moments.
Yet, a number of interesting additional observations can be
made. First, and compared to the previous section, we see
that MCP-DPA is slightly more efficient than MCC-DPA
in exploiting them. While a precise reasoning about this
fact seems uneasy, we conjecture that it relates to the simi-
lar leakage model requirement that becomes more sensitive
as the order of the statistical moment exploited increases.
Next, we can confirm that second-order moments are more
informative, as previously reported in [1]. Compared to this
reference, we gain a more quantitative statement about the
respective informativeness of these moments, since the cor-
responding correlation coefficients obtained (e.g. for MCP-
DPA) are respectively worth 4·10−3 and 1.5·10−3. This cor-
responds to a ratio between the data complexity of the cor-
responding attacks of approximatively ( 4

1.5
)2 ≈ 7.11. This

result is also well in line with our simulated analyzes, since
lower-order moments should always become more informa-
tive as the noise increases – and FPGAs are noisy platforms
in general. Eventually, we see that only a single clock cycle
leads to significant information when the PRNG is running,
which means that the leakage related to the G function dom-
inates in this case. We confirmed these observations by run-

4 Of course, the experiment is artificial for MCC-DPA, since
the same number of Nt traces is used for moment estima-
tion and correlation estimation in this case. We just ran
experiments with Np traces for the moment estimation for
completeness.



ning the attacks according to the balanced and unbalanced
strategies in Appendix, Figures 8 to 11.

5. DISCUSSION: RECYCLING CEPACA TO
GAIN CONFIDENCE

The previous sections put forward that MC-DPA is a nat-
ural extension of CEPACA, which can deal with profiled and
non-profiled (collision-based) attack scenarios, and preserves
the “metric” feature of CPA. By exploiting these potential-
ities, we could confirm previous results on threshold imple-
mentations and make our analyzes more precise. In this
section, we want to conclude by arguing why MC-DPA con-
sequently makes an interesting candidate for leakage detec-
tion tests, such as the T-test and MI-tests discussed in [19].

In this context, the usual tradeoff is between the efficiency
and the genericity of the tests. For example, T-tests are
primarily designed for the detection of univariate leakages
in unprotected devices, and are extremely efficient in such
cases. By contrast, MI-tests are able to capture more gen-
eral dependencies, but are usually more data consuming. In
this respect, we first observe that a moment-based approach
as we suggest brings a possible compromise between these
two solutions. Admittedly, T-tests could also be applied to
squared, cubed, . . . traces – which makes them viable op-
tions to capture the leakage of protected implementations
as well. Yet, MC-DPA brings two additional advantages,
as we now detail. First, it naturally applies to the detec-
tion of multi-class leakages (while T-tests primarily focus on
the two-class cases). Second, a fundamental question when-
ever performing a leakage detection is to determine whether
the conclusions were obtained with sufficient confidence. A
standard approach for answering this question is to perform
cross-validation, which was recently suggested as an impor-
tant part of leakage certification procedures [7]. Yet, this
comes at the cost of additional data and time requirements.
Interestingly, we show next that CEPACA can be recycled
in order to efficiently gain some easy-to-compute confidence
level. For this purpose, we just observe that while the
value of the correlation coefficient produced by such attacks
should gradually tend to ‘1’ as the number of samples used
in the attack/evaluation increases, the fact that this corre-
lation is close to ‘1’ indeed indicates that the estimations
are confident. As a result, we can simply complement the
previous MCP-DPA and MCC-DPA by computing the Mo-
ments against Moments Profiled Correlation (MMPC) and
Moments against Moments Collision Correlation (MMCC),
defined as follows:

MMPC = ρ̂(M̂d
x,k∗ , M̂

d
x,k), MMCC = ρ̂(M̂d

x0,k0 , M̂
d
x1,k1⊕∆).

In the case of a collision-based attack, a low MMCC value
could still indicate that the similar leakage model require-
ment is not fulfilled. But when applied to MCP-DPA, a large
value of the MMPC criteria ensures that the estimates used
in the evaluation are good. For illustration and in order to
confirm our experiments, we computed this criteria for our
MCP-DPA evaluations of Figure 5 and observed that both
for the second- and third-order moments, it was larger than
90% (hence confirming that our evaluations were confident).
In general, and since this criteria shares the same meaning
for any order d, it could be set as a goal to reach if compar-
isons between different evaluations have to be performed.
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Figure 5: Experiments with PRNG on
(Np=Nt=10M traces). Top: MCP-DPA with
first-order moments. Middle Up: MCP-DPA
with 2nd-order central moments. Middle: MCC-
DPA with 2nd-order central moments. Middle
Down: MCP-DPA with 3rd-order standardized
moments. Bottom: MCC-DPA with 3rd-order
standardized moments.

Putting things together, we see that MC-DPA combines
several advantages for side-channel leakage-detection and
evaluation. Namely, it applies to any order d and can be
implemented very efficiently, enjoying an intuitive rule-of-
thumb to estimate the attacks data complexity with limited
sampling. Furthermore, it directly comes with a way to
quantify the confidence in the analyzes performed. Summa-
rizing, it combines the advantages that have made CPA one
of the most popular side-channel distinguishers and extends
their applicability to new settings (namely profiled attacks,
non-profiled attacks and leakage detection). Admittedly, its
profiled version remains suboptimal compared to template
attacks [5], but we believe it brings an interesting comple-
ment to such standard tools, either to be launched as a pre-
liminary experiment, or in order to answer questions that
template attacks cannot (e.g. the “most informative mo-
ment” question that we investigated for our threshold im-
plementation in Section 4). Besides, MCP-DPA could be



as efficient as template attacks in certain conditions (e.g.
information lying in a single statistical moment). Note fi-
nally that the experiments in this work considered univari-
ate side-channel attacks as a meaningful case-study. But the
proposed tools could naturally be extended to the multivari-
ate setting as well, by using mixed statistical moments [14].

6. FOLLOW UP WORKS
This work on MC-DPA has been online on ePrint for a

couple of years already. To conclude this paper, we there-
fore list its applications that confirm its relevance. First
from a methodological point of view, MC-DPA has been a
building block to improve recent works on leakage detec-
tion/assessment [10, 9, 36] and for leakage certification [8]
(to appear at CHES 2016). It is also a useful tool to discuss
independence issues in masking proofs [6]. Second, from a
practical point-of-view, it has been used in various concrete
security evaluations of threshold implementations, but also
other hardware countermeasures [21, 13, 27, 32].
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Kaya Koç, and Christof Paar, editors, CHES, volume
2523 of Lecture Notes in Computer Science, pages
13–28. Springer, 2002.

[6] Alexandre Duc, Sebastian Faust, and François-Xavier
Standaert. Making masking security proofs concrete -
or how to evaluate the security of any leaking device.
In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology - EUROCRYPT 2015 - 34th
Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part I,

volume 9056 of Lecture Notes in Computer Science,
pages 401–429. Springer, 2015.

[7] François Durvaux, François-Xavier Standaert, and
Nicolas Veyrat-Charvillon. How to certify the leakage
of a chip? In Phong Q. Nguyen and Elisabeth Oswald,
editors, EUROCRYPT, volume 8441 of Lecture Notes
in Computer Science, pages 459–476. Springer, 2014.

[8] François Durvaux and François-Xavier Standaert.
Towards easy leakage certification. IACR Cryptology
ePrint Archive, 2015:537, 2015.

[9] François Durvaux and François-Xavier Standaert.
From improved leakage detection to the detection of
points of interests in leakage traces. In Marc Fischlin
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and Handschuh [15], pages 453–474.

[28] Morita Tech. Side-channel Attack Standard
Evaluation Board (SASEBO). http:
//www.morita-tech.co.jp/SAKURA/en/index.html.

[29] Svetla Nikova, Vincent Rijmen, and Martin Schläffer.
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APPENDIX
A. ADDITIONAL FIGURES

0 12 2 4 6 8 10

−0.1

0

0.1

Number of Traces × 103

C
or

re
la

tio
n

(a) Balanced

0 12 2 4 6 8 10

−0.1

0

0.1

Number of Traces × 103

C
or

re
la

tio
n

(b) Unb. (M̂1 ← 10k traces)

0 12 2 4 6 8 10

−0.1

0

0.1

Number of Traces × 103

C
or

re
la

tio
n

(c) Unb. (M̂1 ← 5k traces)

0 10 20 30 40 50 
−0.1

0

0.1

Number of Traces × 103

C
or

re
la

tio
n

(d) Unb. (M̂1 ← 1k traces)

Figure 6: PRNG off: MCP-DPA with first-order
moments.
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Figure 7: PRNG off: MCC-DPA with first-order
moments.
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Figure 8: PRNG on: MCP-DPA with second-order
central moments.
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Figure 9: PRNG on: MCC-DPA with second-order
central moments.
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Figure 10: PRNG on: MCP-DPA with third-order
normalized moments.
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Figure 11: PRNG on: MCC-DPA with third-order
normalized moments.


