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Abstract. We introduce a class of lattice-based digital signature schemes
based on modular properties of the coordinates of lattice vectors. We also
suggest a method of making such schemes transcript secure via a rejection
sampling technique of Lyubashevsky (2009). A particular instantiation
of this approach is given, using NTRU lattices. Although the scheme is
not supported by a formal security reduction, we present arguments for
its security and derive concrete parameters (first version) based on the
performance of state-of-the-art lattice reduction and enumeration tech-
niques. In the revision, we re-evaluate the security of first version of the
parameter sets, under the hybrid approach of lattice reduction attack
the meet-in-the-middle attack. We present new sets of parameters that
are robust against this attack, as well as all previous known attacks.

1 Introduction

In the GGH and NTRUSign signature schemes [8, Sections 7.4,7.5] a document
to be signed is thought of as a point m in Zn. A lattice L has a private basis,
known only to the signer, that is reasonably short and close to orthogonal. The
signer uses the private basis to solve a CVP and locate a point s ∈ L that
lies reasonably close to m. A verifier of the signature checks that s is indeed
a point in the lattice L, and that the Euclidean distance between s and m is
shorter than some pre-specified bound. The security assumption underlying the
acceptance of the signature is that it is hard to find a point in L that is close to
m unless one knows the private short basis for L.

A major difficulty with these signature schemes is the fact that when the
private basis is used to locate s, the difference s−m has the form

s−m =

n∑
i=1

εivi,



where v1, . . . ,vn is the private basis and where each |εi| ≤ 1/2. Thus s −m
is a point in the interior of the fundamental parallelepiped associated to the
private basis. If the signature is obtained by, say, Babai’s rounding approach,
the εi will be randomly and uniformly distributed in the interval (−1/2, 1/2).
A long transcript of signatures then corresponds to a large collection of points
randomly and uniformly distributed inside the parallelepiped, and a sufficiently
long transcript eventually reveals the vertices of the parallelepiped, and the
secret basis. This was demonstrated successfully in [15, 16, 3].

It has been proposed that such an attack could be thwarted by carefully
signing in such a way that the distribution of the εi was controlled, and it was
proved that using such methods it is possible to construct signing protocols
where the transcript contains no information pertaining to the private basis [4].
While effective at preventing information leakage, this process of controlling the
distribution of the εi is computationally expensive.

The present work introduces a similar technique which does not require sam-
pling complicated distributions.

Very roughly, the idea is as follows. Fix a public small prime p, and, rather
than taking m to be a point in Zn, consider it instead to be a point mp ∈
(Z/pZ)n. Fix also a specific public region R in Zn. The region R should be
sufficiently large that the volume of R, which we denote by |R|, satisfies

|R|
pn

> Cn,

for a sufficiently large C. Precise examples will be given below. A signature on
mp is a point s ∈ L ∩R, with s ≡mp (mod p).

Signing is accomplished as follows. To sign mp ∈ (Z/pZ)n, a random point
s0 ∈ L ∩R is chosen. Let M be a matrix whose rows are the private basis, and
let Mp be the reduction of this basis modulo p. Use Mp to find vp ∈ (Z/pZ)n

such that
s0 + vp ·Mp ≡mp (mod p).

Let v be the lift of vp to Zn with coefficients chosen from the interval (−p/2, p/2).
Then as M is a short basis and p is small, the vector v ·M will also be short,
and s = s0 +v ·M will satisfy s ≡mp (mod p). Also, as s0 was chosen to lie in
L∩R, and v ·M is short, there is a reasonable chance that s will also lie in L∩R.
The algorithm of choosing s0 and solving for s is repeated until s ∈ L ∩R.

Any lattice point s satisfying s ≡mp (mod p) is a valid signature, and such
points will be well distributed throughout R. Anyone can use a public basis to
find a point in L with the desired properties modulo p, and if R is sufficiently
large it is easy, using a short basis, to find points of L ∩ R, but if one does not
know a short basis, then it is hard to satisfy both criteria simultaneously.

To create a collection of s−s0, an attacker must also locate the nearby lattice
point s0, However, for any s ∈ L ∩ R, there will be many potential s′0 that are
close to s. In fact, if it is not only required that s ∈ L∩R, but also that s lies at
least a certain distance inside the boundary of R, then it can be shown that with
equal probability any s′0 within a fixed radius of s could have been the actual



s0 used in the signing process. This idea can be used to give a proof that the
transcript contains no information about the private basis. This aspect of the
approach is inspired by a rejection sampling technique of Lyubashevsky [11–13].

Another contribution of this paper is a particular, efficient, instantiation of
this idea using NTRU lattices. We make this choice for two reasons. First, there
is a natural dimension doubling: the dimension is n = 2N , where N is the
number of coordinates needed to determine a point. Second, the lattice can be
sufficiently well described using only half of a complete basis, and this half can be
made quite short and sufficiently orthogonal. We will refer to this new signature
scheme as an NTRU Modular Lattice Signature Scheme, or NTRUMLS for short.

1.1 Update on this revision

In this revision, we revisit the security of the proposed parameter sets of the
NTRUMLS scheme. The re-evaluation of the security is based on an analysis of
a hybrid attack on NTRU lattices in [5] and [6]. See Section 5.2 for more details.

We also propose a new set of parameters that are immune to the above
cryptanalysis. For a given security level, we increased the dimension of the NTRU
lattice, while reducing the modulus q. This gives us a very low acceptance rate
(between 2% to 8%) during the rejection sampling phase. This drawback can be
mitigated with parallel computation, such as [1].

2 Description of NTRUMLS

2.1 Notation

We work in the ring

R = RN =
Z[x]

〈xN − 1〉
.

We implicitly identify each element of R with the unique polynomial of degree
less than N in its congruence class. Having done this, we identify a polynomial
with its vector of coefficients in ZN . Writing an element f ∈ R as

f =

N−1∑
i=0

aix
i,

we set
‖f‖ = max

0≤i<N
|ai|,

and we define the restriction of R to the max-norm ball of radius k as

R(k) = {f ∈ R : ‖f‖ ≤ k}.

So that, for example, R(3/2) is the set of trinary polynomials.
We will frequently work in the quotient ring R/qR with q ∈ Z. We set the

convention that when lifting an element of R/qR to R(q/2) the lifted coefficients
are chosen to satisfy −q/2 ≤ ai < q/2 when q is even, and −bq/2c ≤ ai ≤ bq/2c
when q is odd.



2.2 System Parameters

N dimension parameter
p a small odd prime
q an integer larger, and relatively prime to, p

Bs, Bt norm constraints

The Bs and Bt parameters serve primarily to fine tune the balance between
security and performance. Reducing Bs and Bt may, for instance, allow one to
choose a smaller q, but this may come at the expense of making it difficult for
an honest party to compute a signature. Typical values of Bs and Bt satisfy
Bs = pBt, and

‖a ∗ b‖ ≤ Bt for all a, b ∈ R
(p

2

)
.

Smaller Bs and Bt may be used provided that the signer performs an additional
check during signature generation.

There will be further conditions on (N, p, q) to prevent search and lattice
attacks, while still making it possible to find valid signatures; see Sections 4
and 5 for details.

2.3 Private Key

Choose polynomials

f
$←− pR(3/2) and g

$←− R(p/2).

Writing f = pF , so F is trinary, check that both g and F are invertible modulo q
and modulo p. Sample a new pair if they are not. (We remark that the probability
of g and F being invertible is quite high if (xN − 1)/(x− 1) does not have low
degree factors when reduced modulo p and q.)

The private signing key is the pair (f , g).

2.4 Public Key

The public verification key is the polynomial

h ≡ f−1 ∗ g (mod q).

Also let

Lh =
{

(s, t) ∈ R2 : t ≡ h ∗ s (mod q)
}

be the usual NTRU lattice associated to h.
We will often consider subsets of Lh consisting of vectors of bounded norm.

This will be denoted by

Lh(k1, k2) = Lh ∩
(
R(k1)×R(k2)

)
.



2.5 Document Hashes and Valid Signatures

A document hash is a 2N -vector

(sp, tp) ∈ R(p/2)×R(p/2),

i.e., ∥∥(sp, tp)
∥∥ = max

{
‖sp‖, ‖tp‖

}
≤ p/2.

We fix a hash function

Hash : R(q/2)× {0, 1}∗ −→ R(p/2)×R(p/2).

A valid signature on the document hash (sp, tp) for the signing key h is a 2N -
vector (s, t) ∈ R2 satisfying:

(a) (s, t) ∈ Lh

(q
2
−Bs,

q

2
−Bt

)
.

(b) (s, t) ≡ (sp, tp) (mod p).

2.6 Algorithms

Algorithm 1 NTRUMLS Signature Algorithm

Input: (f , g,h, µ), where (f , g) is a private key, h is the corresponding public key,
and µ ∈ {0, 1}∗ is a document to be signed.

1: (sp, tp)←− Hash
(
h, µ

)
2: repeat

3: r
$←− R

(⌊
q

2p
+

1

2

⌋)
4: s0 ←− sp + pr
5: t0 ←− h ∗ s0 (mod q) with t0 ∈ R(q/2)
6: a←− g−1 ∗ (tp − t0) (mod p) with a ∈ R(p/2)
7: (s, t)←− (s0, t0) + (a ∗ f ,a ∗ g)

8: until
∥∥a ∗ f∥∥ ≤ Bs and

∥∥a ∗ g∥∥ ≤ Bt and
∥∥s∥∥ ≤ q

2
−Bs and

∥∥t∥∥ ≤ q

2
−Bt

Output: (s, t, µ)

Remark 1. Notice the rejection criterion in Step 8 of the signing algorithm. We
compute a potential signature (s, t), but then we reject it if it, or the cor-
rection (a ∗ f ,a ∗ g), is too big; specifically, we reject (s, t) if it falls outside
of Lh

(
q
2 −Bs,

q
2 −Bt

)
, or if (a ∗ f ,a ∗ g) falls outside Lh (Bs, Bt).

Remark 2. Since t ≡ h ∗ s (mod q) it does not need to be published explicitly.
Furthermore since s ≡ sp (mod p) and sp can be obtained by hashing h with
the message, the signer can simply publish (s − sp)/p as the signature. The
resulting signature is of length Ndlog2 q/pe bits.



Algorithm 2 NTRUMLS Verification Algorithm

Input: (s, t, µ,h)
1: valid←− yes
2: (sp, tp)←− Hash(h, µ)
3: if t 6≡ h ∗ s (mod q) then
4: valid←− no
5: end if
6: if ‖s‖ > q

2
−Bs or ‖t‖ > q

2
−Bt then

7: valid←− no
8: end if
9: if (s, t) 6≡ (sp, tp) (mod p) then

10: valid←− no
11: end if
Output: valid

Proposition 1. The Signing Algorithm produces signatures that are verified as
valid by the Verification Algorithm.

Proof. This is an easy exercise.

3 Transcript Security

In this section we prove that, under a reasonable assumption, a transcript of
signatures created using the signing algorithm contains no information that is
not already available to someone who knows the public verification key h. We
do this by showing that an honest signer produces signatures that are uniformly
distributed on Lh

(
q
2 −Bs,

q
2 −Bt

)
. We are able to show that for any document

hash, (sp, tp), the signer’s distribution is precisely the uniform distribution on
the subset of signature points in (sp, tp) + pZ2N (proposition 2). For uniformity
on the entire signature region we must assume that each coset of pZ2N contains
roughly the same number of signature points (assumption 1).

We further show that a party who knows h alone can produce a transcript
of pairs

(Valid Signaturei,Document Hashi)i=1,2,3,...

that is statistically indistinguishable from an analogous transcript produced us-
ing the signing algorithm and the private key (f , g). Specifically, the signature
points produced by such a party are uniform on Lh

(
q
2 −Bs,

q
2 −Bt

)
, and the

document hashes (obtained by reducing the signature coefficients modulo p), are
uniform on R(p/2).

We start by analyzing the transcript created using the signing algorithm
and (f , g). We note that the rejection sampling condition is what allows us to
prove that the resulting signatures are uniformly distributed in a certain space
of allowable signatures.



We assume that our hash function outputs document hashes

(sp, tp) ∈ R(p/2)2

that are uniformly distributed on R(p/2)2. We use Steps 3 through 7 of the
Signing Algorithm to define a signing function

(s, t) = σ′(f , g, sp, tp, r).

Thus σ′ is a map

σ′ :

private key (f , g)︷ ︸︸ ︷
pR
(

3

2

)
×R

(p
2

)
×

document hash (sp, tp)︷ ︸︸ ︷
R
(p

2

)
×R

(p
2

)
×

random element r︷ ︸︸ ︷
R
(⌊

q

2p
− 1

2

⌋)
−→ Lh

(q
2

+Bs,
q

2
+Bt

)
︸ ︷︷ ︸
potential signature (s, t)

given explicitly by

σ′(f , g, sp, tp, r) = (s0 + a ∗ f , t0 + a ∗ g), (1)

where

s0 = sp + pr, (2)

t0 ≡ h ∗ s0 (mod q) with t0 ∈ R(q/2), (3)

a ≡ g−1 ∗ (tp − t0) (mod p) with a ∈ R(p/2). (4)

We will write

Ω′ = pR
(

3

2

)
×R

(p
2

)
×R

(p
2

)
×R

(p
2

)
×R

(⌊
q

2p
− 1

2

⌋)
for the domain of σ′.

We now introduce rejection sampling by defining

ΩBs,Bt =

(f , g, sp, tp, r) ∈ Ω′ :

(s, t) := σ′(f , g, sp, tp, r)
= (s0 + a ∗ f , t0 + a ∗ g),∥∥s∥∥ ≤ q
2 −Bs,

∥∥t∥∥ ≤ q
2 −Bt,∥∥a ∗ f∥∥ ≤ Bs,∥∥a ∗ g∥∥ ≤ Bt

 .

The restriction of σ′ to ΩBs,Bt
, which we denote by σ, is then a map

σ : ΩBs,Bt −→ Lh

(q
2
−Bs,

q

2
−Bt

)
.

To ease notation, we let

A =

⌊
q

2p
+

1

2

⌋
,



so by Step 3 of the Signing Algorithm, the random element r used to generate a
signature is chosen uniformly from the set R(A). The following proposition says
that every signature that is valid for the document hash (sp, tp) has the same
number of preimages in R(A).

Proposition 2. The signature function σ has the following property : For a
given

private key (f , g) ∈ pR×R,

document hash (sp, tp) ∈ R
(p

2

)
×R

(p
2

)
,

the output of σ, when queried on uniformly random r ∈ R(A), is uniformly
distributed over the set{

(s, t) ∈ Lh
(q

2
−Bs,

q

2
−Bt

)
: (s, t) ≡ (sp, tp) (mod p)

}
.

of valid signatures for (sp, tp). Equivalently, the size of the set

{r ∈ R(A) : σ(f , g, sp, tp, r) = (s, t)}

is the same for all

(s, t) ∈ Lh

(q
2
−Bs,

q

2
−Bt

)
satisfying (s, t) ≡ (sp, tp) (mod p).

Proof. Since we know from Proposition 1 that σ(f , g, sp, tp, r) is congruent
to (sp, tp) modulo p, it is clear that there is zero probability of generating the
signature (s, t) if (s, t) 6≡ (sp, tp) (mod p). So we assume henceforth that

(s, t) ≡ (sp, tp) (mod p). (5)

The random element r used to generate a signature is chosen uniformly from
the set R(A), so there are (2A+1)N possible choices for r. Hence the probability
of obtaining (s, t) as a signature on (sp, tp) is equal to (2A + 1)−N times the
number of elements in the set

Σ(f , g, s, t) =
{
r ∈ R(A) : σ(f , g, sp, tp, r) = (s, t)

}
. (6)

The key to counting the size of the set Σ(f , g, s, t) is the bijection described in
the following lemma.

Lemma 1. Let

C =
{
b ∈ R

(p
2

)
:
∥∥b ∗ f∥∥ ≤ Bs and

∥∥b ∗ g∥∥ ≤ Bt} ,
and let

(s, t) ∈ Lh

(q
2
−Bs,

q

2
−Bt

)
satisfy (s, t) ≡ (sp, tp) (mod p).

Then there is a well-defined bijection of sets

φ : C −→ Σ(f , g, s, t),

b 7−→ s− sp
p
− b ∗ f

p
. (7)



Proof. First, since the coefficients of s− sp are multiples of p, and similarly f ∈
pR(3/2) has coefficients divisible by p, we see that the polynomial on the right-
hand side of (7) has coefficients in Z.

We next need to show that φ(b) ∈ Σ(f , g, s, t), which by the definition of
Σ(f , g, s, t) means showing that φ(b) ∈ R(A) and

σ
(
f , g, sp, tp, φ(b)

)
= (s, t).

First note that because s ∈ R
(
q
2 −Bs

)
, sp ∈ R

(
p
2

)
, and b ∈ C, the triangle

inequality gives∥∥φ(b)
∥∥ =

∥∥∥∥1

p
(s− sp − b ∗ f)

∥∥∥∥ ≤ ⌊ q2 −Bs + p
2 +Bs

p

⌋
= A.

The use of the floor function is justified by noting that φ(b) has integer coeffi-
cients. This establishes that φ(b) ∈ R (A).

Next we use the four formulas (1)–(4) to compute the signature σ
(
f , g, sp, tp, φ(b)

)
:

s0 = sp + pφ(b)

= sp + p

(
s− sp
p
− b ∗ f

p

)
= s− b ∗ f , (8)

t0 ≡ h ∗ s0 (mod q)

≡ h ∗ (s− b ∗ f) (mod q)

≡ h ∗ s− b ∗ g (mod q) since h ≡ f−1 ∗ g (mod q),

≡ t− b ∗ g (mod q) since (s, t) ∈ Lh. (9)

Since (s, t) ∈ Lh

(
q
2 −Bs,

q
2 −Bt

)
and b ∈ C, we have∥∥s0∥∥ ≤ ∥∥s∥∥+

∥∥b ∗ f∥∥ =
q

2
−Bs +Bs =

q

2
,∥∥t0∥∥ ≤ ∥∥t∥∥+

∥∥b ∗ g∥∥ =
q

2
−Bt +Bt =

q

2
,

i.e. (9), similar to (8), is an equality, not just a congruence. Continuing with the
computation of σ

(
f , g, sp, tp, φ(b)

)
, we use (5) to compute

a ≡ g−1 ∗ (tp − t0) ≡ b (mod p).

(Note that t ≡ tp (mod p) from (4).) Since both a and b are in R(p/2), this
tells us that a = b.

We now use (1) to compute the signature

σ
(
f , g, sp, tp, φ(b)

)
= (s0 + a ∗ f , t0 + a ∗ g) definition of σ,

= (s− b ∗ f + a ∗ f , t− b ∗ g + a ∗ g)

from (8) and (9),

= (s, t) since a = b.



Hence directly from the definition (6) of the set Σ(f , g, s, t), we see that

φ(b) ∈ Σ(f , g, s, t).

We next fix an r ∈ Σ(f , g, s, t) and compute how many b ∈ C satisfy φ(b) =
r. Since all coefficients of the polyomials s− sp and f are divisible by p, to ease
notation we write

s− sp = pS and f = pF .

We recall that by assumption, the polynomial F is invertible modulo p. We have

φ(b) = r ⇐⇒ S − b ∗ F = r

⇐⇒ b ≡ F−1 ∗ (S − r) (mod p) and ‖b‖ ≤ p

2
.

There is thus exactly one value of b in C satisfying φ(b) = r, namely the unique
element of C that is congruent modulo p to F−1 ∗ (S − r). This shows that φ is
bijective, which concludes the proof of Lemma 1.

Resuming the proof of Proposition 2, we have, for all (s, t) ≡ (sp, tp) (mod p),

Probr←R(A)

(
signature
is (s, t)

∣∣∣ private key is (f , g) and
document hash is (sp, tp)

)
=

#Σ(f , g, s, t)

#R(A)
=

#C
#R(A)

,

where the penultimate equality follows from Lemma 1. This completes the proof
of Proposition 2.

To give a complete proof of transcript security we need a slightly stronger
version of Proposition 2 to be true:

Proposition 3. The distribution of signatures produced by querying σ on uni-
formly random (sp, tp) ∈ R(p/2)2 and uniformly random r ∈ R(A) is indistin-
guishable from the uniform distribution on Lh

(
q
2 −Bs,

q
2 −Bt

)
.

Proposition 3 is an immediate consequence of proposition 2 under the as-
sumption that, for any given h, the number of lattice vectors of bounded norm
in each coset of pZ2N is essentially constant. This certainly fails to be the case for
some lattices, for instance h = 1 has vectors in only pN distinct cosets. However,
it seems likely that assumption 1 holds for the lattices used in NTRUMLS.

Assumption 1 There are constants C, ε such that ε = 1/poly(N) and for all
(sp, tp) ∈ R(p/2)

(1− ε)C ≤
∣∣∣Lh

(q
2
−Bs,

q

2
−Bt

)
∩ ((sp, tp) + pZ2N ))

∣∣∣ ≤ (1 + ε)C.



We conclude this section by noting that any party with access to h can
sample the uniform distribution on Lh

(
q
2 −Bs,

q
2 −Bt

)
. One simply generates

random s ∈ R( q2 −Bs) until h∗s ∈ R( q2 −Bt). Since the signing region contains
a large fraction of Lh

(
q
2 ,

q
2

)
(at least 30% for the parameter sets we consider),

this suceeds after a small number of iterations. A transcript of

((s, t)i, (sp, tp)i)i=1,2,3,...

where (s, t)i is produced in this manner and (sp, tp)i = (s, t)i (mod p) is uni-
formly distributed on Lh

(
q
2 −Bs,

q
2 −Bt

)
×R(p/2) by assumption 1. By propo-

sition 3, and the assumption that the output of Hash is uniform on R(p/2)2, this
transcript is indistinguishable from one produced by an honest signer. The only
difference between the two transcripts is that the party who used h alone does
not know messages, µi, such that Hash(h, µi) = (sp, tp)i.

4 Probability of Generating a Valid Signature

To simplify our analysis we let B = dp2N/4e and take

Bs = Bt = B.

With this assumption there is zero probability of rejecting a candidate signature
due to

∥∥a ∗ s∥∥ > Bs or
∥∥a ∗ t∥∥ > Bt, but the probability of rejection due to

non-inclusion in R(q/2−B)×R(q/2−B) is significant. Regardless, we can show
that the probability of generating a valid signature is approximately e−8/k, which
is still practical. Further, the probability of rejection can be made significantly
lower by fine-tuning Bs and Bt; our proposed parameters in section 6 reflect this
optimization.

For this section we assume that the various parameters satisfy the conditions
given in Table 1.

N a moderate sized prime, say 200 < N < 5000
p a small prime chosen so that N log2(p) is greater

than the desired bit security
B ≤ dp2N/4e
k a small constant, say 2 ≤ k ≤ 50
q an integer coprime with p and satisfying

q ≈ kNB ≈ kp2N2/4

Table 1. Parameter guidelines

The rejection criterion says that we only accept signatures whose norm is
smaller than q/2 − B, so we want q to be a lot larger than B, or it will be too



hard to find an acceptable signature. We consider the sup norm of a potential
signature

(s, t) = (s0, t0) + (a ∗ f ,a ∗ g)

produced in Step 7 of the signing algorithm. The coefficients of s0 and t0 are
in R(q/2), the coefficents of a ∗ f are in R(p2N/4), and the coefficients of a ∗ g
are inR(pN/2). Hence the coefficients of an (s, t) pair produced by Step 7 satisfy∥∥(s, t)

∥∥ ≤ q

2
+B. (10)

We will make the simplifying assumption4 that the coefficients of s and t are
equally likely to take on each of the values in the interval (10). The rejection
criterion says that we only accept signatures whose coefficents are at most q/2−
B. Since we need all 2N of the coefficients of (s, t) to satisfy this condition, we
find that

Prob
(
(s, t) is accepted

)
≈
(
q/2−B
q/2 +B

)2N

.

Using the chosen value

q ≈ kp2N2

4
≈ kNB

from Table 1, we find that

Prob
(
(s, t) is accepted

)
≈
(

1− 2B/q

1 + 2B/q

)2N

≈
(

1− 2/kN

1 + 2/kN

)2N

≈ e−8/k,

where for the last equality we use the estimate (1 + t/n)n ≈ et, valid when t is
small and n is large.

5 Lattice Problems Associated to NTRUMLS

We consider both lattice based forgery attacks and key recovery attacks. For all
of the proposed parameter sets in Section 6, the parameters have been chosen
so that the difficulty of the private key lattice problem is roughly equal to that
of the lattice forgery problem, taking into account the heuristic fact that solving
unique-SVP tends to be a bit easier in practice than it is in theory.

4 In actuality, the coefficients of the products a ∗ f and a ∗ g tend to cluster more
towards 0, since they are more-or-less hypergeometrically distributed.



5.1 Forgery attack

In this section we consider the lattice problems underlying signature keys and
signature forgery. We note that shortest and closest vector problems (SVP and
CVP) are analysed using the L2-norm, not the L∞-norm. We write

‖v‖2 =
√
v21 + v22 + · · ·

for the L2-norm of the vector v = (v1, v2, . . .).
We will use the following elementary lattice result, whose proof we defer to

Section A of the appendix.

Proposition 4. Let L1 ⊂ Zr and L2 ⊂ Zr be lattices of rank r, let t1, t2 ∈ Zr
be arbitrary vectors, and let

M = (L1 + t1) ∩ (L2 + t2)

be the intersection of the indicated translations of L1 and L2. We make the
following assumptions:

(i) gcd
(
det(L1),det(L2)

)
= 1.

(ii) Either t1 /∈ L1 or t2 /∈ L2 (or both), so in particular M 6= L1 ∩ L2.

Then the following are true:

(a) det(L1 ∩ L2) = det(L1) · det(L2).
(b) M 6= ∅.
(c) For every w0 ∈M , the map

L1 ∩ L2 −→M, v 7−→ v + w0 (11)

is a bijection.
(d) Let w0 ∈ M , and let w′ ∈ M be a shortest non-zero vector in M .

Then w0 − w′ solves the the closest vector problem in L1 ∩ L2 for the
vector w0. (This is true for any norm on Zr, so in particular it is true
for both the L∞ norm and the L2 norm.)

We recall two key quantities associated to lattice problems.

Heuristic 1 The Gaussian heuristic says that the likely L2-size of a solution to
SVP or CVP in a “random” lattice L of reasonably large dimension is approxi-
mately

γ(L) =

√
dimL

2πe
· det(L)1/ dim(L).

In other words, for “most” lattices L and “most” target vectors v0,

min
v∈Lr0

‖v‖2 ≈ γ(L) and min
v∈L
‖v − v0‖2 ≈ γ(L).



Heuristic 2 Let L ⊂ Zn be a lattice for which we want to solve either τ -appr-
SVP or τ -appr-CVP. In other words, let v0 ∈ Zn, and suppose that we want to
find a vector v ∈ L satisfying either

0 < ‖v‖2 ≤ τ or ‖v − v0‖2 ≤ τ.

We call τ the target length of the problem. The Gaussian defect of the problem
is the ratio

ρ(L, τ) =
τ

γ(L)
.

Let 0 < δ < 2. The δ-LLL heuristic, which has been confirmed in numerous
experiments, says that solving the τ -appr-SVP or τ -appr-CVP problem is (expo-
nentially) hard as a function of dim(L), provided that the Gaussian defect ρ(L, τ)
is no more than a small multiple of dim(L)δ.

We consider the problem of forging a signature. The forger needs to find a
vector (s, t) ∈ Lh satisfying:

Congruence Condition : (s, t) = (sp, tp) (mod p). (12)

Norm Condition :
∥∥s∥∥ ≤ q

2
−Bs (13)∥∥t∥∥ ≤ q

2
−Bt. (14)

N.B. The norm condition (13) is an L∞-norm condition.
The vectors sp, tp ∈ R(p/2) are given, so the congruence condition (12) may

be rephrased as saying that the target vector (s, t) is in the translation of the
lattice pZ2N by the vector (sp, tp). Thus the forger is looking for an L∞-short
vector in the intersection

(s, t) ∈ Lh ∩
(
pZ2N + (sp, tp)

)
.

The determinants

det(Lh) = qN and det(pZ2N ) = p2N

are relatively prime, so we can use Proposition 4(a) to conclude that

det(Lh ∩ pZ2N ) = p2NqN .

Then Proposition 4(d) tells us that finding a short vector in the intersection
Lh ∩

(
pZ2N + (sp, tp)

)
is equivalent to solving an appr-CVP problem in the

lattice Lh ∩ pZ2N . Since the Gaussian heuristic of Lh ∩ pZ2N is

γ(Lh ∩ pZ2N ) =

√
N

πe
(p2NqN )1/2N =

√
p2qN

πe
,

it only remains to estimate the target length.



The rejection criterion in the signature algorithm says that a valid signa-
ture (s, t) has sup norm at most q/2−min(Bs, Bt). Hence in particular a valid
signature satisfies the L2-norm bound∥∥(s, t)

∥∥
2
≤
(q

2
−min(Bs, Bt)

)√
2N, (15)

but not every vector in Lh satisfying the L2-norm condition (15) and the con-
gruence condition (12) will be a valid signature. We are going to simplify the
life of a potential forger and assume that she only needs to satisfy the L2-norm
condition (15), rather than the more stringent L∞-norm condition (13). Fur-
thermore we will assume, again in the forger’s favor, that Bs = Bt = 0, so that
the she need only find a vector in R( q2 )×R( q2 ). This gives a target length

τ = q
√
N/2.

Hence the Gaussian defect for our appr-CVP problem is

ρ =
q
√
N/2√

p2qN/2πe
,

and using the relations in Table 1 between the various parameters, a little bit of
algebra yields

ρ = N

√
kπe

8
.

Thus ρ is a small multiple of dim(Lh ∩ pZ2N ), so the LLL-heuristic says that
solving the associated appr-CVP is a hard problem provided that the dimension
is chosen appropriately. Of course, in practice one needs to do experiments with
current LLL technology to obtain extrapolated estimates for the actual running
time when N is moderately large, say in the range from 500 to 5000.

5.2 Key recovery attack

To recover the secret key (f , g) from the public key h is a well known problem
associated with NTRU lattices. It has previously been studied intensively, such
as in [7, 5, 6]. In this subsection, we analyse the key strength against best known
attack, namely, the hybrid approach [5] of a lattice reduction attack and a meet-
in-the-middle search. The results presented in this subsection follows a recent
analysis of NTRU lattice in [6].

Recall the problem of finding the private key (f , g) in an isomorphic module
from the public key h can be seen as finding a short vector with in the lattice(

qIN 0
H IN

)
.

Indeed, there exists N unique shortest vectors with in the lattice, namely (f , g),
and its cyclic rotations. Recovering any of them, or a small linear combination



of them, allows the attacker to break the system. For simplicity, we assume the
task for the attacker is to find (f , g). Also note the attacker knows that f = pF ,
and standard methods allow him to reduce to the problem of finding the shorter
vector (F ,g).

The hybrid attack works as follows: one first chooses r1, r2 such that 1 ≤
r1 < r2 < N and defines m = r2− r1 and N1 = N − r1. One then extracts an m
by m block of coefficients from the center of L and calls this L2. Equivalently,
one partitions the original matrix as:

(
qIN 0
H IN

)
=

 qIr1 0 0
∗ L2 0
∗ ∗ I2N−r2

 . (16)

This yields L2 of the form: (
qIN1 0
H2 Ir2−N

)
. (17)

Here H2 is a truncated piece of the circulant matrix H corresponding to h.
Let us suppose that an attacker must use a minimum of k1 bits of effort

to reduce L2 until all N1 of the q-vectors are removed. When this is done and
L2 is put in lower triangular form the entries on the diagonal will have values
{qα1 , qα2 , . . . , qα2N1}, where α1 + · · · + α2N1

= N1, and the αi will come very
close to decreasing linearly, with

1 ≈ α1 > · · · > α2N1 ≈ 0.

That is to say, L2 will roughly obey the geometric series assumption, or GSA.
This reduction will translate back to a corresponding reduction of L, which when
reduced to lower triangular form will have a diagonal of the form

{q, q, . . . , q, qα1 , qα2 , . . . , qα2N1 , 1, 1, . . . , 1}.

The attacker can mount a brute force attack in a block of size K = 2N − r2.
The attacker guesses the coefficients of f that fall into the K block and then
uses the reduced basis for L to check if his guess is correct. Standard meet-in-
the-middle techniques can be used to effectively square-root the running time
of the algorithm. The optimum approach for the attacker is when the effort of
lattice reduction is approximately the same as the effort to search via meet-in-
the-middle attack5.

For typical NTRU instantiations, the preprocessing for the hybrid attack
requires lattice reduction that achieves a root Hermite factor, δ, satisfying:

det(L2)1/r2 · δr2 ≤ q (18)

5 Following [6], for simplicity we assume that if a guess is correct, the attacker will be
able to confirm it with a probability Ps = 100%. Note that this is not a guaranteed
event due to unavoidable inaccuracies in the lattice reduction process. In fact this
will give the attacker several bits of advantage.



Set #1 Set #2 Set #3 Set #4

N 401 439 593 743

p 3 3 3 3

log2 q 18 19 19 20

Bs 240 264 300 336

Bt 80 88 100 112

d1, d2, d3 8,8,6 9, 8, 5 10, 10, 8 11, 11, 15

Key & signature
size (bytes)

853 988 1335 1765

≈ Prob[accept] 38% 55% 41% 53%

≈ orig. bit security 112 128 192 256

≈ rev. bit security 65 70 110 146

The original parameter sets are vulnerable to the hybrid attack in Section 5.2. See
Table 4 for new parameter sets that are robust against those attacks.

Table 2. Original NTRUMLS Parameters

det(L2)1/r2 · δ−r2 ≥ 2 (19)

To achieve optimal attack, we estimate the cost of BKZ 2.0 to achieve the
required δ using BKZ 2.0 simulator [2]. In the meantime, we require the cost
of lattice reduction with BKZ 2.0 is the same as MITM attack on the last K
coefficients. The revised bit security given in Table 2 and bit security of new
parameter sets given in Table 4 are derived from this approach.

6 Proposed Parameter Sets and Implementation

We have implemented NTRUMLS and made it available at https://github.

com/NTRUOpenSourceProject/NTRUMLS. The parameter sets we have implemented
are listed in Tables 2 and 3.

The only feature of our implementation not documented above is the use of
product form polynomials for f and g. Precisely we specify three small integers
d1, d2, and d3 and take

f = p(F 1 ∗ F 2 + F 3 + 1), and

g = G1 ∗G2 + G3 + 1

where the polynomials F i and Gi have exactly di coefficients equal to +1 and di
coefficients equal to −1. The extra constant terms are to ensure that f(1) 6= 0
and g(1) 6= 0. Product form keys were introduced to NTRUEncrypt in [10].

6.1 Revised parameter sets

As noted in Section 5.2, the original parameter sets {#1,#2,#3,#4} are vul-
nerable to the hybrid attack. We present a new version of the parameter sets
{#5,#6,#7,#8,#9} that are robust against those attacks.



Set #1 Set #2 Set #3 Set #4

KeyGen (µs) 2431 2928 5183 7855

Sign (µs) 575 436 1033 1000

Verify (µs) 92 102 179 231

Table 3. Performance results. Average time for each operation, in microseconds, over
10000 iterations. Code was run on an Intel Core i7-2640M. More extensive benchmarks
on a variety of machines are available at http://bench.cr.yp.to/.

Set #5 Set #6 Set #7 Set #8 Set #9

N 401 443 563 743 907

p 3 3 3 3 3

log2 q 15 16 16 17 17

Bs 138 138 174 186 225

Bt 46 46 58 62 75

d1, d2, d3 8, 8, 6 9, 8, 5 10, 9, 8 11, 11, 6 13, 12, 7

Public Key
size (bytes)

752 886 1126 1579 1927

Signature
size (bytes)

702 831 1056 1486 1814

≈ Prob[accept] 1% 8% 2% 6% 2%

≈ bit security 82 88 126 179 269

Table 4. Revised NTRUMLS Parameters

In addition, in those new parameter sets, we uses a smaller modulus (i.e,
q = 216 for N = 563 in #7 while q = 219 for N = 593 in #3). This allows for a
smaller signature size. In the meantime, smaller q makes it harder for an attacker
to find short vectors within the lattices of a same dimension, which increase the
overall security of the scheme.

However, as q getting smaller, it also becomes harder to generate a valid sig-
nature (the probability of vectors satisfying Eq. 10 is reduced). Therefore, a more
aggressive approach is adopted during the rejection sampling. A larger number
of candidate signatures (over 90%) are rejected. A recent work [1] shows that
due to the highly parallelism during rejection sampling process, the performance
can be improved drastically using GPU acceleration.
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A Short Vectors in Intersections of Translated Lattices

In this appendix we prove Proposition 4, which relates the problem of finding
short vectors in intersections of translated lattices to the problem of finding
close vectors in the associated intersection of lattices. We applied this result in
Section 5 to the intersection of an NTRU lattice Lh and the lattice pZ2N .

Proof (Proof of Propostion 4). (a) The fact that the determinants multiply is a
standard fact from the theory of lattices.
(b) We let Di = det(Li) for i = 1, 2. We use the fact that for any lattice L ⊂ Zr
of determinant D, we have DZr ⊂ L. The assumption that gcd(D1, D2) = 1
means that we can find (x, y) ∈ Z such that

xD1 + yD2 = 1.

We let
e1 = yD2 = 1− xD1, e2 = xD1 = 1− yD2.

We now consider the vector

t = e1t1 + e2t2.

Then

t− t1 = (e1 − 1)t1 + e2t2 = −xD1t1 + xD1t2 ∈ D1Zr ⊂ L1,

and similarly,

t− t2 = e1t1 + (e2 − 1)t2 = yD2t1 − yD2t2 ∈ D2Zr ⊂ L2.

Hence t is in M , so M 6= ∅.
(c) In order to prove that (11) is a bijection, we will show that

v ∈ L1 ∩ L2 =⇒ v + w0 ∈M (20)

and
w ∈M =⇒ w −w0 ∈ L1 ∩ L2. (21)

For (20), we know that w0 ∈M , so by definition of M ,

w0 = v1 + t1 = v2 + t2 with vi ∈ L1 and v2 ∈ L2.

Then
v + w0 = (v + v1)︸ ︷︷ ︸

in L1

+t1 = (v + v2)︸ ︷︷ ︸
in L2

+t2,

so v + w0 ∈M . For (21), we write the given w ∈M as

w = v′1 + t1 = v′2 + t2 with v′i ∈ L1 and v′2 ∈ L2.



Then
w −w0 = v′1 − v1︸ ︷︷ ︸

in L1

= v′2 − v2︸ ︷︷ ︸
in L2

,

so w −w0 ∈ L1 ∩ L2.
(d) We are given that w0,w

′ ∈M and that

‖w′‖2 = min
w∈Mr0

‖w‖2.

To ease notation, we set
v′ = w0 −w′.

We know from (c) that w′−w0 ∈ L1∩L2, and L1∩L2 is a lattice, so v′ ∈ L1∩L2.
We estimate

‖v′ −w0‖2
= ‖w′‖2 by definition of v′,

= min
w∈Mr0

‖w‖2 by definition of w′,

= min
v∈(L1∩L2)rw0

‖ − v + w0‖2 since (c) says M = (L1 ∩ L2) + w0.

Hence if w0 /∈ L1 ∩ L2, then we have shown that

‖v′ −w0‖2 = min
v∈(L1∩L2)

‖v −w0‖2,

which is the desired result.
Finally, suppose that w0 ∈ L1 ∩ L2. Since also

w0 ∈M = (L1 + t1) + (L2 + t2),

we can write

w0 = v1 + t1 and w0 = v2 + t2 with v1 ∈ L1 and v2 ∈ L2.

But then t1 = w0 − v1 ∈ L1 and t2 = w0 − v2 ∈ L2, contradicting the initial
assumption on t1 and t2. Hence w0 /∈ L1 ∩ L2, which completes the proof of
Proposition 4.


