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Abstract—Differential Fault Analysis is a powerful
cryptanalytic tool to reveal secret keys of cryptographic
algorithms. By corrupting the computation of an algo-
rithm, an attacker gets additional information about the
secret key. In 2012, several Differential Fault Analyses
on the AES cipher were analyzed from an information-
theoretic perspective. This analysis exposed whether or not
the leaked information was fully exploited. It revealed if an
analysis was already optimal or if it could still be improved.
We applied the same approach to all existing Differential
Fault Analyses on the CLEFIA cipher. We show that only
some of these attacks are already optimal. We improve
those analyses which did not exploit all information. With
one exception, all attacks against CLEFIA-128 reach the
theoretical limit after our improvement. Our improvement
of an attack against CLEFIA-192 and CLEFIA-256 re-
duces the number of fault injections to the lowest possible
number reached to date.
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I. INTRODUCTION

The security of cryptographic algorithms does not only
rely on their mathematical correctness. The implementa-
tion of an algorithm is also analyzed and even attacked
to break cryptographic systems. An attack which actively
alters the computation of an algorithm by inducing soft-
ware or hardware faults is called fault attack. A Differ-
ential Fault Analysis (DFA) is a specific form of a fault
attack. After inducing a fault into one or several com-
putations of a cryptographic algorithm, the secret key
of this algorithm is revealed by analyzing the difference
between correct and faulty results of the computation.
For symmetric algorithms, Differential Fault Analyses
were first described in 1997 [6]. Since then, they were
successfully applied to various symmetric ciphers and
their key schedule, e.g., DES [6], [14], AES [1], [12], and
CLEFIA. They were also applied to other cryptographic

algorithms, such as stream ciphers [4], [11], and hash
functions [10].

In 2012, Sakiyama et al. analyzed the optimality of
several Differential Fault Analyses on the Advanced En-
cryption Standard (AES) [15]. They developed a model
which quantifies the amount of information a certain
fault can deliver. Then, they analyzed attacks from seven
publications from an information-theoretic perspective.
The information-theoretic optimality does not imply that
such an attack is also optimal from other points of view,
e.g., a non-optimal attack might be easier to conduct
in practice. However, contrary to an optimal attack, an
attack which is not optimal can still be improved in
the given framework, i.e., the key space can be further
reduced or a key space with the same size can be
determined with less fault injections. Sakiyama et al.
found that some of the attacks were not optimal, and they
proposed improved attacks for AES-192 and AES-256
which reach the theoretical limits.

We applied the approach from Sakiyama et al. to
analyze the information-theoretic optimality of Differ-
ential Fault Analyses on CLEFIA. The CLEFIA cipher
is a 128-bit block cipher which was proposed by Sony
Corporation in 2007 [17]. Since then, several analyses
on the cipher and attacks against it have been published,
including side channel attacks which exploit cache ac-
cesses [13] and Impossible Differential Attacks [21].

For this paper, we analyzed six published Differential
Fault Analyses on CLEFIA [2], [3], [8], [19], [20], [22].
To the best of our knowledge, these are all DFAs on
CLEFIA to date. They cover attacks against CLEFIA
with all possible key lengths, which are 128, 192, and
256 bits. As it was the case for the AES analysis, we
identified some optimal attacks, while others did not
exploit all available information. With one exception,
we optimized all attacks against CLEFIA-128 which
were shown not to be optimal, so that they now reach
the theoretical limits. We also considerably improved an
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attack against CLEFIA with longer keys. The physical
realization of fault attacks [5], as well as countermea-
sures to prevent them, are not relevant for our analysis
and are thus out of scope of this work.

Our Contribution: We analyzed all published Differ-
ential Fault Analyses on CLEFIA from an information-
theoretic perspective with the techniques introduced in
[15]. Our results show that some of these attacks are
optimal, while others do not exploit all available infor-
mation. With one exception, we optimized all attacks
against CLEFIA-128 which proved not to be optimal.
The optimized attacks reach the theoretical limits and
thus exploit all available information. For longer keys,
all DFAs were shown not to be optimal in our analysis.
We considerably improved one of them. The improved
attack is the best known attack against CLEFIA-192 and
CLEFIA-256 to date. We validated our theoretical find-
ings by simulating the DFAs with software implemen-
tations using the original CLEFIA code [18]. In these
implementations, we reached the results as predicted.

Organization: The rest of this work is structured as
follows: in Section II, we explain the theory of Differen-
tial Fault Analyses and present the CLEFIA cipher. We
also give some background information on information
theory. In Section III, we describe the DFAs on CLEFIA
that we analyzed for this work. The methodology and
the results of our analysis are described in Section
IV. In Section V, we validate our analytical results.
We explain how we optimized the non-optimal attacks
against CLEFIA-128 and describe our improvement for
CLEFIA-192 and CLEFIA-256. Finally, we conclude in
Section VI.

II. BACKGROUND

We first explain Differential Fault Analysis. Then,
we present the CLEFIA cipher and provide background
knowledge on information theory.

A. Differential Fault Analysis

The first fault attack against a cryptographic algo-
rithm was presented in 1997, when Boneh, DeMillo and
Lipton published an attack against the RSA signature
scheme [7]. They showed that the RSA modulus can
be factorized if an attacker induces a fault into the
computation of one of the two parts of the signature
generation in case the RSA CRT version is used. With
a single faulty signature and a correct signature under
the same secret key, an attacker can thereby reveal the
secret key.

Inspired by this so-called Bellcore attack, still in 1997,
Biham and Shamir described the idea of these kinds of

attacks against symmetric cryptographic algorithms [6].
Such an attack is called Differential Fault Analysis
(DFA), or Differential Fault Attack [12]. For such an at-
tack, an attacker needs at least one correct ciphertext and
one faulty ciphertext. Thus, she has to have the ability to
induce faults on the cryptographic primitive level. These
faults can be described in detailed fault models, which
include the location and the timing of the fault, and the
number of bits and bytes which are affected by the fault.
A fault can, for example, affect one byte in the register
storing the first four bytes of the state (location) in the
penultimate round (timing). The assumed fault model
gives the attacker partial information about the difference
between certain states of the correct and the faulty
computations, although she will not know the concrete
value of the fault in most scenarios. Since the attacker
also knows the correct and faulty ciphertext, and thereby
their difference, she can deduce information about the
secret key. Small differences in the fault models might
crucially affect the capabilities and the complexity of the
attacks [6]. For the attacks analyzed in this work, the
attacker is assumed to have full control on the timing
and the location of the fault, and to be able to induce
not permanent, but transient faults.

B. CLEFIA

The 128-bit block cipher CLEFIA was developed by
Sony Corporation and presented in 2007 [17]1. To be
compatible with AES, CLEFIA supports key lengths of
128, 192, and 256 bits. Contrary to AES, however, CLE-
FIA is a Feistel cipher with four 32-bit data lines which
are used during r rounds throughout the encryption
and decryption process. Depending on the key lengths,
the number of rounds is 18, 22, and 26, respectively.
According to the four data lines, Pi ∈ {0, 1}32, i ∈
{0, . . . , 3} denote the four 32-bit parts of the plaintext
P , so that P = P0|P1|P2|P3. Similarly, the state is
denoted by T = T0|T1|T2|T3 and the ciphertext by
C = C0|C1|C2|C3.

As shown in Figure 1, CLEFIA uses 2r round keys
during the encryption. In the kth round, RK2k and
RK2k+1 are used for k ∈ {0, . . . , r − 1}. Moreover,
four whitening keys are used, from which WK0 and
WK1 are XORed with P1 and P3 at the beginning
of the encryption process, while WK2 and WK3 are
XORed to the final T1 and T3 as last step of the
encryption. The 4-branch, r-round generalized Feistel
structure, that the encryption algorithm uses after the
initial and before the final key whitening phases, is
usually referred to as GFN4,r. Its inverse function,

1All figures in this section are taken from [17].
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Figure 1: CLEFIA Encryption algorithm

GFN−1
4,r , is used during decryption, where the order of

the round keys, the whitening keys and the direction of
the Feistel mechanism are reversed.

In every round, two 32-bit F-functions F0 and F1 are
used. They are shown in Figure 2. Both these F-functions
first XOR the input with the round key and then make use
of the 8-bit S-boxes S0 and S1. Afterwards, F0 and F1

contain a diffusion layer provided by the corresponding
diffusion matrices M0 and M1. Here, the transpose of
the state T is split into 8-bit vectors which are multiplied
with the respective matrix in GF (28). These matrices are
self-invertible, i.e., their inverses are themselves.

M0 =


1 2 4 6
2 1 6 4
4 6 1 2
6 4 2 1

 M1 =


1 8 2 10
8 1 10 2
2 10 1 8
10 2 8 1

 .

Figure 2: F-functions F0 and F1

Figure 3: DoubleSwap function Σ

The whitening keys WKi, i ∈ {0, . . . ,3} and the
round keys RKi, i ∈ {0, . . . , 2r − 1} are calculated
from the initial secret key K during a key schedule
procedure, cf. Algorithm 1. The key scheduling
algorithm for CLEFIA-128 first generates a 128-bit
intermediate key L. For this process, the original secret
key K and twenty-four 32-bit constant values CONi(32),
i ∈ {0, . . . ,23}, are used as input to the 4-branch Feistel
structure GFN4,12, which is used through 12 rounds.
After that, for the generation of the round keys and the
whitening keys, the intermediate key L is used together
with thirty-six additional 32-bit constants CONi(32),
i ∈ {24, . . . ,59}, and the original secret key K, cf.
Algorithm 1. The so-called DoubleSwap function
Σ : {0,1}128 → {0,1}128 is shown in Figure 3.
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Algorithm 1 Key-Schedule for CLEFIA-128
L← GFN4,12(CON128

0(32), . . . ,CON128
23(32),K0, . . . ,K3)

WK0|WK1|WK2|WK3 ← K
for i = 0 to 8 do

T ← L⊕ (CON128
24+4i(32)|CON128

24+4i+1(32)|
CON128

24+4i+2(32)|CON128
24+4i+3(32))

L← Σ(L)
if i is odd then

T ← T ⊕K
end if
RK4i|RK4i+1|RK4i+2|RK4i+3 ← T

end for

For CLEFIA-192 and CLEFIA-256, two 128-bit val-
ues KL and KR are generated from K and by means
of these, intermediate keys LL and LR are calculated
using fourty 32-bit constant values and GFN8,10, the 8-
branch Feistel structure with 10 rounds. Then, the round
keys and whitening keys are generated from LL, LR,
KL and KR by means of another fourty-four 32-bit
constants. The key scheduling process of CLEFIA-192
and CLEFIA-256 is described in detail in [17].

C. Information Theory

The foundations of information theory have been laid
by Claude E. Shannon in 1948 [16]. The Shannon
entropy for a discrete random variable X with p(X =
xi) = pi, i = 1, . . . , n and {x1, . . . , xn} ( {0, 1}∗, is

H(X) := −
n∑

i=1

pi log2(pi). (1)

It quantifies the uncertainty when the value of the
random variable X is to be predicted.

For two discrete random variables X and Y , their
joint entropy can be defined as well as the respective
conditional entropies. The joint entropy of X and Y ,
H(XY ) or H(X,Y ), is

H(XY ) :=

−
n∑

i=1

m∑
j=1

p(X = xi, Y = yj) log2(p(X = xi, Y = yj)).

(2)

We have H(XY ) ≤ H(X) + H(Y ), while for stochas-
tically independent X and Y , equality holds.

Following the definition by Shannon, the conditional
entropy of X is the average of the entropy of X for
each value of Y , weighted according to the probability
of getting that particular Y [16]. Thus, the entropy

of X conditioned on Y , i.e., the conditional entropy
H(X | Y ), is defined as

H(X | Y ) :=

m∑
j=1

p(Y = yj)H(X | Y = yj), (3)

with

H(X | Y = yj) :=

−
n∑

i=1

p(X = xi|Y = yj) log2(p(X = xi|Y = yj)).

(4)

Using the definition of the conditional probability [9],
Equation 3 can be transformed to

H(X | Y ) = H(XY )−H(Y ). (5)

III. DIFFERENTIAL FAULT ANALYSES ON CLEFIA

For this work, we analyzed six Differential Fault
Analyses on CLEFIA. They were published between
2007 and 2013. They are, to the best of our knowledge,
all published DFAs on CLEFIA.

The first DFA was presented already in 2007 [8]. The
attack against CLEFIA-128 uses independent random
byte faults at six different positions of the algorithm.
These are induced in T0 and T2 in rounds 15, 16 and
17 and help to reveal RK30, RK31, RK32 ⊕ WK3,
RK33⊕WK2, RK34 and RK35. Thus, the attack needs
at least 6 faulty encryptions. However, the authors state
that the fault inductions have to be repeated until all
bytes are recovered. They had to induce at least 18 faults
in their simulations. Based on the recovered round keys,
the original secret key can be revealed by analyzing the
key scheduling algorithm. If the key size is 192 or 256,
the same procedure has to be applied in rounds r− 9 to
r−1. Here, the simulated attacks needed 54 faults to be
successful.

One year later, these results were improved [19].
Takahashi and Fukunaga encrypt a random plaintext,
which does not have to be known, with the same secret
key three times for CLEFIA-128. They insert four-byte
faults in the 16th round in two of these encryptions, one
into F0 and one into F1. The authors use the fact that

”a fault corrupts the intermediate values of the fault-
injection round and the subsequent rounds“. Thus, they
obtain more information out of a single fault, since they
also analyze how the differences propagate through the
next two rounds. After analyzing rounds 16 to 18, 219

candidates for the round keys are left. By applying the
inverse of the DoubleSwap function and GFN−1

4,12 to
all round key candidates, the 128-bit secret key can
be uniquely identified. In 2010, the authors adapted the
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same attack to keys with 192 and 256 bits, where 10.78
faults are needed on average [20].

Still in 2010, multiple-byte Differential Fault Analy-
ses were described for CLEFIA-128 [22]. The authors
propose three attack models, including the first attack
which exploits fault injections in the final round. This
attack exploits faults in the inputs of F0 and F1 in
rounds 18, 17, and 16. The authors consider multiple-
byte faults, so that each single fault can affect up to
four bytes, i.e., 32 bits. The second attack builds on [8]
and induces faults into the inputs of F0 and F1 in both
the 15th and 17th round, but extends their fault model
to multiple bytes. The third attack also builds upon a
previous one. For this attack, which targets the 16th

round, however, the strict four-byte fault model of [19]
has been loosened to a one-to-four-byte model, so that
the attack presented in [19] can be seen as a special case
of this more general attack description. According to the
authors, the minimum amount of faulty ciphertexts for
these three attacks to be successful is 5 to 6, 6 to 8 and
2. These faults help to reveal the secret key completely
for the first two attacks, while in the third attack, 219

candidates for the secret key remain. Unfortunately, the
description of these three attacks is not always easy to
follow, and several statements in [22] are inconsistent
with one another. The description of these attacks in the
work at hand is to the best of our knowledge.

Since all previous attacks targeted the last four rounds
of the algorithm, in 2012 it was analyzed if protecting
the last four rounds of CLEFIA-128 would counter
Differential Fault Analyses [2]. The authors show that
it is sufficient to induce two random byte-faults in the
computation of F0 and F1 in round 14. It is assumed that
the faults are induced before the diffusion operation of
the F-functions, cf. Figure 3 in [2]. These two faults are
enough to uniquely reveal the secret key by exploiting
the propagation of the faults in the final four rounds.
Thus, it is not sufficient to protect the last four rounds
of CLEFIA against such attacks.

One year later, the same authors presented attacks on
CLEFIA with all possible key lengths [3]. Here, they
also start to scrutinize how much information a certain
fault can provide. Regarding the presented attacks, they
first describe their attack against CLEFIA-128 [2]. Af-
terwards, they describe how to uniquely reveal the secret
key in case of CLEFIA-192 and CLEFIA-256. Here, they
induce two random faults each in the computation of F0

and F1, in rounds r−4 and r−8. Thus, they induce eight
faults altogether and their attack can not be prevented by
protecting only the last four rounds. They can reveal the
whole secret key, no matter if it has 192 or 256 bits.

z 6n

k

6n

x
S y6n

Figure 4: General cipher model using an n-bit S-box S.

IV. INFORMATION-THEORETIC ANALYSIS OF DFAS

ON CLEFIA

In this section, we first explain the methodology we
used to analyze the optimality of Differential Fault
Analyses on CLEFIA. The approach is based on [15]
and was adapted to the CLEFIA algorithm. Afterwards,
we evaluate the optimality of all published DFAs against
CLEFIA from an information-theoretic perspective.

A. General Methodology

Similar to [15], we utilize a simple general cipher
model using an n-bit S-box in order to explain the idea of
estimating the amount of information that is leaked from
the injection of a fault. Let S be a bijective n-bit S-box,
x the n-bit input and y the n-bit output of S. Let z be the
n-bit value that the n-bit key k is added to and x = z⊕k.
Figure 4 shows the model with its inputs and outputs.
Let k, x1, x2, y1, y2, z1, z2 ∈ {0, 1}n be the values that
occur in two executions of the encryption algorithm
under the same key and ∆x,∆y,∆z ∈ {0, 1}n the re-
spective differences. We assume that the attacker can ob-
serve the values y1 and y2 and calculate ∆y, x1, x2,∆x
and ∆z from them and from her knowledge of S.
However, z1 and z2 can not be derived from those
values. Furthermore, let K,X1, X2, Y1, Y2,∆X,∆Y be
discrete random variables with possible values of
k, x1, x2, y1, y2,∆x,∆y ∈ {0, 1}n.

Due to the bijectivity of the S-box S, there is a one-to-
one correspondence between (x1, x2, k) and (y1, y2, k)
and it follows that

H (X1X2K) = H (Y1Y2K) . (6)

Furthermore, ∆Y is uniquely determined from X1 and
X2, since

∆y = S (x1)⊕ S (x2) . (7)

As K is stochastically independent of X1 and X2, we
have

H (X1X2K)

(2)
= H (X1X2) + H (K)

(7)
= H (X1X2∆Y ) + H (K)

(5)
= H (X1X2 | ∆Y ) + H (∆Y ) + H (K) .

(8)
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∆Y is uniquely determined from Y1 and Y2, and Y2 is
uniquely determined from Y1 and ∆Y . It follows that

H (Y1Y2K)

= H (KY1Y2)

(5)
= H (K | Y1Y2) + H (Y1Y2)

= H (K | Y1Y2) + H (Y1∆Y )

(5)
= H (K | Y1Y2) + H (Y1 | ∆Y ) + H (∆Y ) .

(9)

Now we estimate H (Y1 | ∆Y ). We have

H (Y1 | ∆Y ) ≤ log2 (2n) = n = H (K) . (10)

Furthermore, X1 and Y1 are uniquely determined from
each other, since

y1 = S (x1) . (11)

As K can be calculated from Z1 and K ⊕Z1, and K is
stochastically independent of Z1 and ∆Y , we have

0 ≤ H (Y1 | ∆Y )−H (Y1 | Z1∆Y )

(11)
= H (Y1 | ∆Y )−H (X1 | Z1∆Y )

= H (Y1 | ∆Y )−H (K ⊕ Z1 | Z1∆Y )

= H (Y1 | ∆Y )−H (K | Z1∆Y )

= H (Y1 | ∆Y )−H (K) .

(12)

From Equations 10 and 12 it follows that

H (Y1 | ∆Y ) = H (K) , (13)

and therefore

H (X1X2 | ∆Y )

(8)
= H (X1X2K)−H (∆Y )−H (K)

(6), (13)
= H (Y1Y2K)−H (∆Y )−H (Y1 | ∆Y )

(9)
= H (K | Y1Y2) .

(14)

∆X is uniquely determined from X1 and X2, and X2 is
uniquely determined from X1 and ∆X . Thus, we have

H (K | Y1Y2)

(14)
= H (X1X2 | ∆Y )

= H (X1∆X | ∆Y )

(5)
= H (X1 | ∆X∆Y ) + H (∆X | ∆Y ) .

(15)

The term H (X1 | ∆X∆Y ) depends on the differ-
ential property of the S-box S and is not affected by
the type of the attack and its underlying fault model.
On the other hand, the term H (∆X | ∆Y ) depends on
the difference ∆X . If the adversary has information on
∆X from the fault model of the attack, she can reduce
H (∆X | ∆Y ).

z 68

k

68

x
S0 (S1) y68

Figure 5: Simple cipher model using an 8-bit CLEFIA
S-box S0 (S1).

B. General Methodology Adapted to CLEFIA

Now we refine the described general model by setting
n = 8 and plugging in the S-boxes S0 and S1 of the
cipher CLEFIA in place of the S-box S. The refined
model is shown in Figure 5. It shows the XORing of the
round key and the application of the S-boxes S0 and S1

within the F-functions F0 and F1 of the cipher CLEFIA,
as shown in Figure 2.

To analyze the values of H (X1 | ∆X∆Y ) and
H (∆X | ∆Y ), we take a look at the number of possible
solutions for x1 that satisfy

∆y = Si (x1)⊕ Si (x1 ⊕∆x) (16)

for Si ∈ {S0, S1}. The number of possible solutions
to Equation 16 for x1 when ∆x and ∆y are given
can be derived from the values of Table 1 in [19]: we
divide the values by 256 since we do not regard the
values for the 8-bit part k of the round key but solve
the equation for x1 instead. Furthermore, we discard the
values for ∆x,∆y = 0 since we assume them to be
nonzero. Hence, we discard 510 occurrences of 0 and
one occurrence of 256 possible values for x1. For the
S-box S0, the amount of occurrences of 0 to 10 possible
solutions can be found in Table I. For the S-box S1, for
every ∆y we obtain 0 for 128 values of ∆x, 2 for 126
values of ∆x and 4 for one value of ∆x. Note that the
numbers for S1 equal the numbers for the AES S-box
analyzed in [15].

Solutions for x1 Occurrences
0 39511
2 19501
4 5037
6 848
8 119
10 9

Total 65025 (= 2552)

Table I: Solutions to Equation 16 for S0 and x1 with
fixed ∆x and ∆y.

Now we calculate H (K | Y1Y2) for the case that we
have no information on the fault model, i.e., X1,∆X ,
and K are independent and identically distributed. Then,
we calculate H (K | Y1Y2) again with additional infor-
mation on the fault model.
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For S0, we have

HS0
(∆X | ∆Y )

=

255∑
i=1

P (∆Y = ∆yi)HS0
(∆X | ∆Y = ∆yi)

=
1

255
·
(
−19501 · 2

256
· log2

(
2

256

)
− 5037 · 4

256
· log2

(
4

256

)
− 848 · 6

256
· log2

(
6

256

)
− 119 · 8

256
· log2

(
8

256

)
− 9 · 10

256
· log2

(
10

256

))
≈ 6.535,

(17)
HS0

(X1 | ∆X∆Y )

=

255∑
i=1

P (∆Y = ∆yi)HS0
(X1 | ∆X∆Y = ∆yi)

=
1

255
·
(

19501 · 2

256
· 1 + 5037 · 4

256
· 2

+ 848 · 6

256
· log2 (6) + 119 · 8

256
· 3

+ 9 · 10

256
· log2 (10)

)
≈ 1.465,

(18)

HS0
(K | Y1Y2)

(9)
= 6.535 + 1.465 = 8 = H (K) . (19)

For S1, since its differential property is equal to the
one of the AES S-box, the calculations are analogous to
the calculations 5 and 6 from [15] and are thus omitted
in the present work. We have

HS1
(∆X | ∆Y ) =

447

64
, (20)

HS1
(X1 | ∆X∆Y ) =

65

64
, (21)

HS1
(K | Y1Y2)

(9)
=

447

64
+

65

64
= 8 = H (K) . (22)

Since HS0
(K | Y1Y2) = HS1

(K | Y1Y2) = H (K),
no information on K can be obtained without informa-
tion on the fault model.

We repeat the calculation using some assumptions on
the fault model. Let X ⊆ {0, 1}n be the set of values
that ∆X can take in the employed fault model.

As a coarse estimate for HS0
(∆X∆Y ), we consider

only the values for ∆x and ∆y that allow at least one
possible solution for x1, i.e., 19501+5037+848+119+
9 = 25514 of 2552 = 65025 values. Let X1 and ∆X
be independent and identically distributed over {0, 1}n
and X , and ∆Y identically distributed over {0, 1}n. We

have

HS0
(∆X∆Y ) ≈ log2

(
25514 · |X | · 2n

65025

)
,

HS0
(∆Y ) ≈ n,

(23)

and therefore

HS0
(∆X | ∆Y )

(23)
≈ log2 (|X |)− 1.349. (24)

Furthermore, we have

HS0
(X1 | ∆X∆Y )

=
∑

∆x∈X
∆y∈{0,1}n

[
P (∆X = ∆x | ∆Y = ∆y) ·

HS0
(X1 | ∆X = ∆x ∆Y = ∆y)

]
=

19501 · 2n

65280
· 2

2n
· 1 +

5037 · 2n

65280
· 4

2n
· 2

+
848 · 2n

65280
· 6

2n
· log2 (6) +

119 · 2n

65280
· 8

2n
· 3

+
9 · 2n

65280
· 10

2n
· log2 (10)

≈ 1.465,

(25)

so from Equation 9 we find

HS0
(K | Y1Y2)

(9)
≈ log2 (|X |) + 0.115 (26)

as an upper bound for HS0
(K | Y1Y2). Without infor-

mation on the fault model we have X = {0, 1}n, so
maximally HS0

(∆X | ∆Y ) ≈ n − 1.349. Hence, we
define

mS0
:= (n− 1.349)−HS0

(∆X | ∆Y )

(24)
≈ n− log2 (|X |) (27)

as the amount of information leaked from a fault in-
jected before the application of the S-box S0. Thus,
the amount of information a certain fault can yield
from an information-theoretic perspective depends on the
amount of values the fault can attain. For S1, again the
calculation is analogous to the one from [15] and we use
the definition

mS1
:= (n− 1)−HS1

(∆X | ∆Y )

≈ n− log2 (|X |) (28)

for the amount of information leaked from a fault in-
jected before the application of the S-box S1. Since the
estimations for both S0 and S1 lead to the same definition
for the amount of leaked information, we define

m ≈ n− log2 (|X |) . (29)
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Differential Fault Attack Location Timing m t |K| Optimality
Chen, Wu, Feng [8] 1 random byte 15, 16, 17 118.006 18 1 2 faults suffice

Takahashi, Fukunaga [19], [20] 4 known bytes 16 96.023 2 1 optimal

Zhao, Wang, Gao [22]
4 known bytes 16, 17, 18 96.023 12 1 2 faults suffice
4 known bytes 15, 17 96.023 8 1 2 faults suffice
4 known bytes 16 96.023 2 219 |K| can be 1

Ali, Mukhopadhyay [2], [3] 1 known byte 14 120.006 2 1 optimal
Proposed improvement on [8] 1 random byte 15 118.006 2 1 optimal
Proposed improvement on [22] 4 known bytes 16 96.023 2 1 optimal

Table II: Information-theoretic optimality of DFAs against CLEFIA-128. The fault model is described by the location
and the timing of the faults. The number of key bits that can be learned from a single fault is denoted with m, and
t denotes the number of faults that the respective authors use to reduce the key space to |K| candidates.

C. Results of the Information-Theoretic Analysis

Using these formulas which we just derived, we will
now present the results of our information-theoretic
analysis regarding the optimality of all existing Differ-
ential Fault Attacks against CLEFIA. We start with the
attacks against CLEFIA-128 and present the results of
the attacks against CLEFIA with longer keys afterwards.
The results of our analysis are summarized in Table II
for CLEFIA-128 and in Table III for CLEFIA-192 and
CLEFIA-256.

Attacks against CLEFIA-128

The first Differential Fault Attack against
CLEFIA-128 was published in 2007 by Chen et
al. [8]. It uses 18 faults that are injected in one random
byte of a four-byte register, so we have 28 − 1 possible
faults in four possible locations and the size of the
set of possible values for ∆X is |X | =

(
28 − 1

)
· 4.

With the formula for the amount of leaked information
derived in the previous section, we have

m
(29)
≈ 128− log2

((
28 − 1

)
· 4
)
≈ 118.006, (30)

so in theory, one fault is sufficient to reduce the key
space to 210 and two faults leak enough information to
uniquely identify the key. Since the attack needs 18 faults
to identify the key, it is not optimal from an information-
theoretic point of view.

In 2008 Takahashi and Fukunaga published the second
Differential Fault Attack against CLEFIA-128 [19]. It is
identical to the attack against CLEFIA-128 from their
2010 paper [20], in which they adapt the attack to
CLEFIA-192 and CLEFIA-256. Their attack uses two
faults that are injected in four bytes with known position
to reduce the key space to 219.02 in the first step. Then the
key is recovered through an exhaustive search utilizing
the key schedule, but no plaintexts. From the fault model
we have |X | =

(
28 − 1

)4, so

m
(29)
≈ 128− log2

((
28 − 1

)4) ≈ 96.023 (31)

is the amount of information leaked from one fault.
Therefore, two faults are needed to uniquely identify the
key. As the attack uses only two faults we consider it
optimal.

The next three Differential Fault Attacks by Zhao
et al. [22] from 2010 are described for multiple-byte
faults that affect one-to-four known bytes in the calcula-
tion. For these fault models, we have |X | =

(
28 − 1

)i
,

i ∈ {1, . . . , 4}, so for the amount of leaked information
we get

m
(29)
≈ 128− log2

((
28 − 1

)1) ≈ 120.006, (32)

m
(29)
≈ 128− log2

((
28 − 1

)2) ≈ 112.011, (33)

m
(29)
≈ 128− log2

((
28 − 1

)3) ≈ 104.017, (34)

m
(29)
≈ 128− log2

((
28 − 1

)4) ≈ 96.023 (35)

in the cases of one-to-four affected bytes. The authors
give results only for the case of four-byte faults. Hence,
we included only this case in Table II. The authors state
in their Section 6 that their first attack uses six faults
that affect eight bytes, but since the faults are injected
in four-byte registers and their description of the attack
in their Section 3 also mentions one-to-four-byte faults,
we assume four-byte faults. In case they really simulated
eight-byte faults, these would have been two independent
four-byte faults during one computation. Thus, their six
faults count as twelve faults in our model, cf. Table II.
However, from Equation 35 we find that only two faults
are needed to recover the secret key. As the attack
needs more faults, it is not optimal from an information-
theoretic perspective. The second attack from [22] uses
eight faults. Again, from Equation 35 we know that
two faults leak enough information to uniquely identify
the key, so this attack is not optimal either. The third
proposed attack equates to the attack from Takahashi
and Fukunaga in the case of four-byte faults. Zhao et
al. state that with two faults the attack reduces the key
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space to 219. Since in theory two faults are enough to
uniquely identify the key, this attack is not optimal.

In 2012 another Differential Fault Attack against
CLEFIA-128 was described by Ali and Mukhopad-
hyay [2]. It is identical to the attack against CLEFIA-128
from their 2013 paper [3], in which they adapt the attack
to CLEFIA-192 and CLEFIA-256. The attack works
with faults that affect one known byte, so we have
|X | = 28 − 1. They need two faults to recover the key.
Since we have

m
(29)
≈ 128− log2

(
28 − 1

)
≈ 120.006, (36)

two faults are needed to leak enough information to
uniquely identify the key. As the attack succeeds with
only two faults, it optimally exploits the information
leaked from the faults.

Attacks against CLEFIA-192 and CLEFIA-256

As it was the case for the DFAs against AES-192 and
AES-256 in [15], we observed that all previous results
against CLEFIA-192 and CLEFIA-256 are not optimal
from the information-theoretic perspective.

The first Differential Fault Attack against
CLEFIA-192 and CLEFIA-256 by Chen et al. [8]
from 2007 uses 54 faults to recover the 192-bit or
256-bit key. The fault model is the same as in their
attack against CLEFIA-128: the faults are injected in
one random byte in a four-byte register. Thus, we have
28 − 1 possible faults in four possible locations and
|X | =

(
28 − 1

)
· 4. We have

m
(29)
≈ 128− log2

((
28 − 1

)
· 4
)
≈ 118.006, (37)

so in theory two and three faults are sufficient to uniquely
identify the 192-bit and 256-bit key, respectively. As the
attack needs 54 faults, it is not optimal.

In 2010 Takahashi and Fukunaga adapted their Dif-
ferential Fault Attack against CLEFIA-128 to longer
keys [20]. Their attack needs on average 10.78 faults
that affect four known bytes, so the fault model gives
|X | =

(
28 − 1

)4. The amount of information leaked
from one fault is

m
(29)
≈ 128− log2

((
28 − 1

)4) ≈ 96.023, (38)

so in theory two and three faults are enough to recover
the 192-bit and 256-bit key, respectively. However, since
2 · 96 = 192, an attack with only two faults will
most probably not succeed in revealing a 192-bit key.
Nevertheless, since the attack needs 10.78 faults on
average, it is not optimal.

The most recent Differential Fault Attack against
CLEFIA-192 and CLEFIA-256 was published in 2013

by Ali and Mukhopadhyay [3]. Analogously to their
attack against CLEFIA-128, it works with faults that
affect one known byte, so we have |X | = 28 − 1. The
attack needs eight faults to recover the key. We have

m
(29)
≈ 128− log2

(
28 − 1

)
≈ 120.006, (39)

so again two and three faults leak enough informa-
tion to uniquely identify the 192-bit and 256-bit key,
respectively. Since the attack needs eight faults, it is
not optimal, but still the best known DFA against
CLEFIA-192 and CLEFIA-256 from an information-
theoretic perspective.

V. IMPROVEMENT OF THE NON-OPTIMAL DFAS

We will now present improvements of those Dif-
ferential Fault Analysis methods which were shown
not to be optimal and thereby validate the results of
Section IV. We will show that with one exception, all
previously non-optimal attacks against CLEFIA-128 can
be improved to be optimal from an information-theoretic
perspective in their own fault models. For CLEFIA-192
and CLEFIA-256, we achieve a considerable improve-
ment in one of the algorithms. The improved version
requires significantly less fault injections than before. In
Section V-C, we validate our findings by simulating as
well the existing as our proposed attacks. The simulation
results are presented in Table V and Table VI.

Throughout this section, improving an attack from an
information-theoretic perspective means using less faults
or reducing the key space. For the non-optimal attacks,
we seeked for an improved DFA in the same fault model,
i.e, we used only a subset of the faults injected in the
original attack in order to reveal the secret key.

Before presenting our improvements, we describe the
basic idea of Differential Fault Analysis methods on
CLEFIA that is used in order to reveal the round keys and
thereafter the secret key K. Analyzing the jth round, the
attacker calculates the input Zj

k of the F-function, where
k ∈ {0, 1} denotes whether F0 or F1 is considered. It
can be calculated by means of the correct ciphertext and
some of the round keys of later rounds. The difference
∆Zj

k of the inputs of the F-function is calculated with a
correct and a faulty ciphertext. ∆Zj

k,i with i ∈ {0, . . . , 3}
denotes as well the input difference of one of the
four S-boxes used in Fk. In order to obtain the output
differences ∆Y j

k,i of the S-boxes, the inverse of the
corresponding diffusion matrix Mk is applied to the 32-
bit output difference of Fk. This way we retrieve the
input-output differences for the S-boxes, using which we
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Differential Fault Attack Location Timing m t |K| Optimality
Chen, Wu, Feng [8] 1 random byte r − 9, . . . ,r − 1 118.006 54 1 2/3 faults suffice

Takahashi, Fukunaga [20] 4 known bytes r − 8, r − 5, r − 2 96.023 10.78 1 2/3 faults suffice
Ali, Mukhopadhyay [3] 1 known byte r − 8, r − 4 120.006 8 1 2/3 faults suffice

Proposed improvement on [8] 1 random byte r− 7, r− 4 118.006 8 1 2/3 faults suffice

Table III: Information-theoretic optimality of DFAs against CLEFIA-192/256. The fault model is described by the
location and the timing of the faults. The number of key bits that can be learned from a single fault is denoted with
m, and t denotes the number of faults that the respective authors use to reduce the key space to |K| candidates.

can deduce differential equations for all 8-bit states:

∆Y j
k,i = S(Zj

k,i ⊕RK2j−2+k,i ⊕∆Zj
k,i)

⊕ S(Zj
k,i ⊕RK2j−2+k,i)

(40)

Here, we have i ∈ {0, . . . , 3} and S denotes the S-box
used in the certain state in case of Fk, as shown in
Figure 2. The difference distribution table of an S-box
stores all the values of Zj

k,i⊕RK2j−2+k,i corresponding
to a choice (∆Zj

k,i,∆Y j
k,i). Table I shows the possible

numbers of solutions for Zj
k,i ⊕ RK2j−2+k,i in case of

S0, and we described the case of S1 in Section IV. If
j is odd, the corresponding whitening key according
to the Feistel structure is also XORed to this value.
Therefore, after using the difference distribution tables,
a limited number of candidates remains for each of the
four 8-bit parts of the round key in case the input-output
differences are nonzero values, because the fault affected
the round. After recovering the necessary round keys, the
original secret key K can be deduced by analyzing the
key scheduling of CLEFIA.

A. Improvements on CLEFIA-128

Two of the analyzed six attacks against CLEFIA-
128 are already optimal, and we improved three of the
remaining four. In Table II we see the attacks already
existing along with our proposed improvements. Since
the two attacks of [22] that we improved are improved
with the same technique, they are subsumed in Table II

For the deduction of the secret 128-bit key K, in case
of CLEFIA-128, the most efficient algorithm uses the
values of RK30, RK31, RK32 ⊕WK3, RK33 ⊕WK2,
RK34 and RK35. Thus, we need to recover these, by
examining the input-output differences in the last three
rounds.

1) Optimization of the Attack by Chen, Wu and Feng:
The fault model used by Chen et al. is the byte-oriented
model of random faults [8]. A one-byte fault is induced
into the register composed of four bytes in an intermedi-
ate step. The attacker knows the register into which the
fault is injected, but does not have any knowledge of the
concrete location or the value of the fault. Each fault is

15th

16th

Figure 6: Fault injection and propagation area in the
attack against CLEFIA-128 from [19], [20].2

injected before a diffusion matrix in a certain round, so
that a single random byte fault causes four-byte faults in
the next round. In their original attack, they inject three
faults into each of six locations in the 15th, 16th, and 17th

round.
To make this attack optimal, we will show that only

two of the six faults induced in the 15th round are enough
to uniquely reveal the secret key. In this fault model,
the analysis presented by Takahashi and Fukunaga in
Section 6 of their paper [19] can be borrowed. Taka-
hashi and Fukunaga claim that in their attack, the fault
injection area can be chosen from two possible areas.
One is the area in the 15th round within the dashed
rectangle in Figure 6. Here, any bit in any byte can be
corrupted. The other area is a total of four bytes in the
region after the diffusion matrix of round 15, denoted
by a bold line in Figure 6. Afterwards, they only use
the fact that on the bold line of the 16th round, all four
bytes are corrupted due to the fault propagation. Thus,
during the information-theoretic analysis, we examined
the latter injection area. The first injection area is the
same as the one used by Chen et al. in [8], which means
that if we use the two random byte faults injected into the
15th round, we can borrow the technique of Takahashi
and Fukunaga shown in Algorithm 2.

As shown in Figure 6 in [19], the fault propagates
through the last three rounds. It has an effect on the

2Figure taken from [19].
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input-output differences starting from round 16. Thus,
an attacker can recover a limited number of round key
candidates for the round keys. By means of each com-
bination of round key candidates, a possible secret key
can be calculated. Then, among these 219.02 candidates,
the original secret key is verified uniquely through a
verification process.

Algorithm 2 Algorithm of Takahashi and Fukunaga

Input: C,C,C
Output: K
obtain {RK35, RK34}
for candidates in {RK35, RK34} do

obtain {RK33 ⊕WK2, RK32 ⊕WK3}
for candidates in {RK33 ⊕WK2, RK32 ⊕WK3} do

obtain {RK30, RK31}
calculate K
if ((WK2|WK3) = (K2|K3)) then

return K
end if

end for
end for

2) Optimization of the Attacks by Zhao, Wang and
Gao: Zhao et al. use a different fault model in [22],
exploiting multiple-byte faults. They inject one to four
random byte-faults into an intermediate register. The
attacker does not have any knowledge of the concrete
location or the value of the faults. With these looser
conditions the authors claim their attacks to be more
practical. Despite this, throughout Section 6 of their
paper, they analyze their attack only with four-byte
faults. Though these are only minimal values, we also
use these results in Table II. When injecting multiple-
byte faults in practice, much more faults are necessary to
succeed, since less bytes are affected by a fault injection
and thus less bytes of the input difference are nonzero.

The authors present three attacks in their paper. The
difference between these are the distances between the
rounds where faults are injected: the first attack uses
faults in the last three rounds, while the second attack
uses faults in the penultimate round and two rounds
above, and the third attack uses faults only in the round
before the penultimate round. Since the third attack uses
the least numbers of faults, we start by optimizing that.

The third attack presented by Zhao et al. already
uses at least two faults, injected into the 16th round. As
before, after identifying candidates for the round keys,
they deduce the corresponding secret key candidates and
verify one of them as the original secret key. Since this
verification process is not described, we assume that they
do a brute-force search on a known plaintext-ciphertext
pair. As shown before, this type of exhaustive search is

not necessary, since the verification process from some
of the other attacks can be used [2], [8], [19]. It exploits
the property of the CLEFIA key schedule procedure that
two of the whitening keys (WK2, WK3) store the last
two words of the original secret key (K2, K3), and by
means of this, it uniquely verifies the original secret key.
If we use this technique, our attack will be optimal from
the information-theoretic perspective, since we do not
perform any encryptions on plaintexts.

In case of their first attack, they inject at least 12
faults into the 18th, 17th and 16th rounds altogether, and
by means of these faults, they identify the secret key
uniquely. If we use the analysis from the above described
and improved third attack, we use only two of these
faults, the ones injected into the 16th round. Therefore,
we reduced the number of faults injected to two, which
is claimed in Table II in order to achieve optimality for
this attack.

The second attack presented by Zhao et al. injects
faults in two rounds. First, they induce at most four
faults into two locations in the 17th round, by means of
which they deduce the four round keys of the last two
rounds. After this, they inject faults the same way into
the 15th round and compute the remaining two round
keys necessary to reveal the secret key. By examining
these four injection points, no existing algorithm can
reveal the secret key using only two of the faults.
The faults injected in the 17th round can only recover
the last four round keys, since they do not affect the
16th round input-output differences. On the other hand,
an analysis with two four-byte faults injected in the
15th round is not possible with the existing techniques
lacking the knowledge on the value of the fault. If the
value of the fault was known, the method by Ali and
Mukhopadhyay [2] could be used with the fault value
instead of the fault pattern.

Therefore, we did not improve the second attack of
Zhao et al., but optimized the first and third attack.

B. Improvements on CLEFIA-192 and CLEFIA-256

In case of the analysis on the attacks against CLEFIA
with longer keys, we can see in Table III that there
is no existing algorithm which is optimal from the
information-theoretic perspective.

In order to deduce the secret 192- or 256-bit key, the
most efficient algorithm needs to recover RK30, RK31,
RK32 ⊕WK3, RK33 ⊕WK2, RK34, RK35, RK36 ⊕
WK2, RK37 ⊕ WK3, RK38, RK39, RK40 ⊕ WK3,
RK41 ⊕ WK2, RK42 and RK43. Thus, a successful
attack needs to calculate the input-output differences of
at least the last seven rounds.
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The first attack was presented by Chen et al. in 2007
and uses 54 byte faults [8]. The next attack was proposed
three years later by Takahashi and Fukunaga and makes
use of only 10.78 faults on average [20]. The attack
which has the least fault number was presented by Ali
and Mukhopadhyay [3]. They inject 8 faults in order to
retrieve the 192-bit or 256-bit secret keys.

All these attacks identify the secret key uniquely, yet
the best attack from an information-theoretic perspective
is the last proposed method by Ali and Mukhopadhyay.
Unfortunately, their technique can not be generalized to
the other fault models in a simple way because it uses
the value of the faults they inject strictly into the first
byte of a given register. This register is found before
the diffusion matrix of round r − 4 and r − 8, so the
fault propagates with a given fault pattern shown in
Figure 5 of [3]. The attack uses this fault pattern during
the calculations of eight round keys. However, we can
improve the analysis described by Chen et al [8].

1) Improvement of the Attack by Chen, Wu and Feng:
Chen et al. inject the faults in the same area of a round
as Ali and Mukhopadhyay in [3], though not strictly
in the first, but randomly into one of the four bytes
of the register. They induce altogether 54 faults into
rounds r − 9 to r − 1, i.e., 6 faults are induced in each
round. Half of the faults are induced in T0, and half
of the faults are induced in T2. We, instead, mix the
analyses of Ali and Mukhopadhyay [3] and Takahashi
and Fukunaga [20], and we apply this mixed technique
to the fault model of Chen et al.

Firstly, we use four faults injected only into round
r − 4 (two into T0, two into T2). An injected fault f
will imply one of four different fault patterns in case of
both diffusion matrices M0 and M1, depending on which
byte the fault was induced into. After calculating the fault
patterns summarized in Table IV, the algorithm from [3]
can be borrowed. Whenever we use the fault pattern for
calculating the input-output differences of the S-boxes,
we go through all the four possible patterns for both
the fault injections, which means two times 16 checks
altogether.

Byte disturbed Pattern with M0 Pattern with M1

1st {f, 2f, 4f, 6f} {f, 8f, 2f, 10f}
2nd {2f, f, 6f, 4f} {8f, f, 10f, 2f}
3rd {4f, 6f, f, 2f} {2f, 10f, f, 8f}
4th {6f, 4f, 2f, f} {10f, 2f, 8f, f}

Table IV: Fault patterns after injection of a byte fault

After determining the first eight necessary round keys,
we use another four faults. We do not inject them four,
but three rounds earlier, into round r − 7. Here, we use

the analysis technique from [20] to recover the rest of
the necessary round keys. In Section V-A, it is explained
why this attack can be directly applied to the fault model
of Chen et al.

Originally, Chen et al. injected 6 faults in 9 rounds
each, altogether 54 faults. After using only 8 of these
faults injected into rounds r − 4 and r − 7, we have
all the necessary information to calculate the secret key.
This way we reduced the number of fault injections to the
lowest possible number reached to date for CLEFIA-192
and CLEFIA-256. Our attack cannot be prevented by
protecting only the last four rounds of the algorithm. As
we will show in Section V-C, it shows a better succes
rate than the DFA from [3].

C. Validation of Our Results

We simulated the existing and improved algorithms
for CLEFIA-128 and CLEFIA-192. We checked for each
method whether it can reveal the secret key with the
claimed minimal number of faults. Even though our
results show that in a significant number of cases, the
analyses succeed with the claimed number of faults, the
probability for success varies according to the different
algorithms. Nevertheless, we showed that the results
presented in Table II are valid and also verified our
improvement from Table III. Table V and VI summarize
our findings.

1) Methodology: We validated our results on the
information-theoretic analysis of the DFAs on the CLE-
FIA block cipher by means of implementing the analyzed
DFA methods and our improvements. As a basis, we
used the existing Reference ANSI C code provided by
Sony Corporation in 2008 [18]. This reference code does
not include any optimizations for high-speed or low-cost
implementations. Since our aim was to show that our
theoretical results work in practice, we did not need these
properties. Thus, this reference code provides a sufficient
base for our work.

All our code is written in C. It was executed on
a personal computer (Intel CoreTM i5-4200U 2.3 GHz
CPU and 4GB RAM). Firstly, we implemented the
fault injection procedures for the different fault models
by modifying the encryption algorithm of the original
CLEFIA code. For injecting random faults, we used
the built-in pseudorandom number generator of the C
language, rand() which returns an integer value be-
tween 0 and RAND_MAX. The value of RAND_MAX is
constant and is specified in the standard library of C.
The random values what we used are ranging between
0 and 255, therefore we used the remainder of the
generated random number divided by 256. Secondly,
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Differential Fault Attack Timing t |K| Experiments Success
Chen, Wu, Feng [8] 15, 16, 17 18 1 2,000 99.1%

Takahashi, Fukunaga [19], [20] 16 2 1 100 97%

Zhao, Wang, Gao [22]
16,17,18 12 1 2,000 81.3%
15, 17 8 1 2,000 68.7%

16 2 219 100 97%
Ali, Mukhopadhyay [2], [3] 14 2 1 2,000 91.45%

Proposed improvement on [8] 15 2 1 100 97%
Proposed improvement on [22] 16 2 1 100 97%

Table V: Experimental results on existing and proposed Differential Fault Analyses on CLEFIA-128. With t faults,
we obtained the reduced key space K in 100 or 2,000 simulation experiments with the given success rate.

we implemented all key recovery procedures from the
different DFA methods. Depending on the DFA, during
the first phase, they recover either the necessary round
keys uniquely or the possible candidates for each round
key. Then, during the second phase, they recover the
secret key by means of these round keys. In case we
only have possible round keys, the identification of the
secret key among its candidates also takes place in the
second phase of these analyses.

2) Simulation Results for CLEFIA-128: We note that
in case of the attacks by Zhao et al. [22], we analyzed
them with strictly four-byte faults injected, since the
authors only gave fault numbers for this case as well.
With the looser multiple-byte fault model, they need
much more faults to recover the key, since each of the
four bytes has to be affected by a fault at least twice by
these fault injections.

Our results verify the trade-off between the probability
for success and the number of faults injected: Chen
et al. use three faults in order to recover a round key
uniquely [8], while other attacks use only two for the
same purpose. Thus, their attack needs 18 faults for
the six necessary round keys, while the first attack by
Zhao et al. uses only 12 [22]. The second attack by the
same authors uses 8 faults injected into two rounds only,
thus recovering all round keys with less faults. In our
simulations, these attacks needed around 0.25 seconds
on average, and we executed 2,000 experiments.

The optimal attack by Takahashi and Fukunaga [19]
uses only two faults. We used this attack to improve oth-
ers. Since the 19.02-bit brute-force search needs around
9.5 minutes on average in our setup, we mounted only
100 experiments. The third attack by Zhao et al. [22]
with four-byte faults differs from the attack by Takahashi
and Fukunaga only in the secret key verification process.
Despite the difference from an information-theoretic
perspective, they succeed in case of the same samples.
The two optimized attacks based on Chen et al. [8]
and on Zhao et al. [22] are identical with the attack
by Takahashi and Fukunaga: the former uses the dashed

rectangle of Figure 6 as fault injection area, and the latter
uses the bold line on the same figure.

In case of the attack by Ali and Mukhopadhyay [2],
[3] we experimented the probability of success in prac-
tice by using the code with known fault values, thus
avoiding the brute force search concerning these. Ali
and Mukhopadhyay state in Section V-C of [3] that the
value of the fault may cancel out during some of the
round key calculations. Compared to the other methods
using the same amount of faults, this makes the attack
less successful as well in our experiments.

3) Simulation Results for CLEFIA-192/256: Taka-
hashi and Fukunaga adapted their attack against
CLEFIA-128, but since the brute-force search space
would grow to more than 250 otherwise, they identify the
round keys of the last six rounds uniquely by injecting
at least two faults in each of four location. Then, to
identify the remaining necessary round keys, they use
Algorithm 2 with two more faults. On average they inject
10.78 faults, and the least fault number is 10 using their
method. Thus, we mounted 100 experiments with 10
faults injected.

The attack by Ali and Mukhopadhyay [3] uses only 8
faults, but they succeed with less probability due to the
facts that only two faults are used to recover one round
key uniquely, and that these faults may cancel out as it
happened in case of their analysis on CLEFIA-128.

For our improved method based on the attack by
Chen et al. [8], we used both the other two analyses.
First, we used the method by Ali and Mukhopadhyay
to calculate the round keys of the last four rounds.
Afterwards, we calculated the remaining six round keys
by injecting faults three rounds earlier and using the
method of Takahashi and Fukunaga. This way the value
of the fault cancels out less often in our attack than in
case of the attack by Ali and Mukhopadhyay, which in
practice means around 8% improvement in Table VI.
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Differential Fault Attack Timing t |K| Experiments Success
Chen, Wu, Feng [8] r − 9, . . . ,r − 1 54 1 2,000 98.3%

Takahashi, Fukunaga [20] r − 8, r − 5, r − 2 10 1 100 51%
Ali, Mukhopadhyay [3] r − 8, r − 4 8 1 2,000 43.4%

Proposed improvement on [8] r − 7,r − 4 8 1 2,000 51.2%

Table VI: Experimental results on existing and proposed Differential Fault Analyses on CLEFIA-192/256. With t
faults, we obtained the reduced key space K in 100 or 2,000 simulation experiments with the given success rate.

VI. CONCLUSION

The information-theoretic approach allowed us to de-
termine whether or not the existing Differential Fault
Analyses on CLEFIA are optimal. The analysis shows
that an attacker needs at least two faults to reveal the se-
cret 128-bit key. Based on these findings, we successfully
improved all but one attack against CLEFIA-128. Now,
from an information-theoretic perspective, the improved
Differential Fault Analyses on CLEFIA-128 all reach
the theoretical limit. For longer keys, we considerably
improved one of the existing attacks. Our proposed
attack reaches the lowest number of faults to date.
However, Differential Fault Analyses on CLEFIA-192
and CLEFIA-256 can still be improved theoretically and
an optimal attack still needs to be discovered.
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