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• This document is a PDF of the PowerPoint presentation 
that is to be presented where and when requested.
• It contains all information that can physically be included 

within this presentation document concerning this design.
• Other information can be furnished during a presentation 

that proves the methodology exists and produces what is 
claimed.
• This is a bona-fide modification/addition to an existing 

long-standing cryptographic algorithm combined, for the 
first time, with Algebraic law to produce a commercial 
version of a faster and more secure system than the AES.
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Introducing a significant improvement 
over the current AES Standard

1.At least a 4-fold performance improvement as compared to the AES.

2.Ability to decrypt individual characters of plaintext without having to decrypt an 
entire block.  When coupled with the performance improvement, this will vastly
improve data searching throughput of sensitive protected databases.

3.No loss of security – mathematical proof is provided in this presentation.

4.No more ‘Mode Of Operations’ – No external data, counter, table or extra data stream 
needed for an unpredictably changing output – all data needed to decrypt the 
unpredictable encryption is encrypted along with the plaintext contained within the 
ciphertext file using the same encryption methodology.

5.Requires access to an approved Random Number Generator for the first block only.

6.The only ‘mode’ this design has, produces a virtually endless number of almost 
completely different ciphertext files, even if it repeatedly encrypts the same plaintext.

7.Can produce 10 billion+ different ciphertext files from any single plaintext input with 
no external data, count or stream needed.
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What is the comparison of the
AES to this proposed cipher design?
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Point of Consideration 256-bit AES Proposed cipher design

Input Key size 256 bits 256 bits

Time to encrypt a 15.8 Mbyte file 62.8 seconds 12 seconds

Security The ‘Standard’

Mathematical proof is provided 

that it is at least equal to The 

‘Standard’

Additional data and/or information 

needed for proper encryption or 

decryption to occur for most Modes Of 

Operation

Provided/delivered 

external to the ciphertext, a 

possible security issue

No MOO, all data needed is 

encrypted within the ciphertext 

using the same encryption 

methodology

When the user needs 1 or more 

characters from the ciphertext when 

searching for an SS or credit #, how 

much work is involved?

The entire block has to be 

decrypted before access is 

provided for  one character

Individual characters from the 

ciphertext can be decrypted 

without processing the entire 

block



How can the speed increase 
with no loss of security?

• The AES relies on repeated mathematical processing of 
the entire block to provide the security required.  This 
results in an average of 245 computer steps executed per 
character (Visual Basic version of the AES). 
• The speed increase in this design is the result of using a 

combination of a well known cryptographic algorithm 
plus Algebraic law, involving only 2 steps per character as 
detailed in this presentation.  Repetitious processing bogs 
down the process and allows for possible attacks.
•With significantly fewer steps to take per character, there 

is a very significant improvement in execution speed.
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Key requirements and 
methodology for construction

• Key storage will be discussed later in this presentation.

• The AES’s ‘gkey’ function was expanded to produce a base array of 
2,097,184 (0 to 20001Fh) pseudo-random long words from the 
input 256-bit key.

• The 8,388,736 (0 to 80007Fh) byte main key this design uses is 
created by extracting 4 bytes from each base array long word.

• Two chain keys, 8,388,608 (0 to 7FFFFFh) long words each, are 
also created using the base array as the initializer and construction 
‘director’.

• The function of a chain key and the methodology used to construct 
this key is illustrated next.
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What is the makeup and 
function of a ‘chain key’?

• The key array contains all numbers within a stated range, 
access chained into a single loop pseudo-randomly.  An 
example of a chain key using 0 through 9:

chn(0)=4, chn(4)=7, chn(7)=3, chn(3)=9, chn(9)=2,

chn(2)=5, chn(5)=6, chn(6)=1, chn(1)=8, chn(8)=0

• The function of the key is to use all numbers only once 
within the effective range beginning anywhere when 
accessing all locations as above within the key array.  In 
the above case, 0 through 9, in pseudo-random order. 6



What is the second ‘chain key’?

• The second chain key is the first key in the reverse 
chain direction.  Here’s the ‘forward’ chain example from 
the previous slide:

chn(0)=4, chn(4)=7, chn(7)=3, chn(3)=9, chn(9)=2,
chn(2)=5, chn(5)=6, chn(6)=1, chn(1)=8, chn(8)=0

• Here is the same chain key in reverse:

chn(0)=8, chn(8)=1, chn(1)=6, chn(6)=5, chn(5)=2,
chn(2)=9, chn(9)=3, chn(3)=7, chn(7)=4, chn(4)=0

7



What are the sizes of the ‘chain keys’ 
and how are they used in this design?

• Both of this cipher engine’s chain keys are 8,388,608 (0 to 
7FFFFFh) long words.

• After 4 array pointers used in this methodology are randomly 
initialized using the PRNG for the first block only, these 
pointers are advanced for subsequent blocks using the first 
chain key to change their reference into the main key.

• Because the pointers use the chain key, a total of 8,388,608 
sets of non-repeated pointers are created for up to that number of 
blocks.  You will see why these pointers must not repeat later.

• The second chain key is used in the process to encrypt the 
starting pointers for the decrypt engine’s use. 8



An actual chain table

• Pictured on the right is a randomly selected start and 
end point of the 8+ million chain table used in the 
current demonstration application, illustrating how the 
chain is used, starting and ending at the randomly 
selected point in the key, address 5,209,185.

• The file pictured is 270+ Mbytes in size so this is why 
only the beginning and ending of the file are illustrated.  
Searching for the starting address 5,209,185 is found in 
only 2 places, the start and end as pictured. Notice the 
scroll bars show the segments shown are at the start 
and end.

• Searching for ANY other address results in only two 
adjacent lines containing the address searched.  For 
example, searching for 6,914,872 occurs in only the two 
adjacent lines indicated in the entire file.
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A reverse chain 
table

• On the near right is a 
reverse chain table 
beginning at the last 
address on the top 
portion of the forward 
chain table, address 
1,973,655.

• If you follow it down, it 
matches the reverse 
sequence of the forward 
table right through the 
ending. 10



Constructing an 8 million long word 
chain key from only 2 million numbers

• The absolute value of a base array location is selected and 
the value Mod 8,388,608 (800000h) is used as a ‘start-
load-at’ number.

• A source array of 8,388,608 (0 to 7FFFFFh) long words is 
loaded starting at position 0 loading the ‘start-load-at’ 
value and loading the locations with a round-robin 
incremented value to complete the load.

•Within the source array, every value from 0 to 8,388,607 
inclusive is recorded only once.

• The build function then loops through the base array.
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Constructing an 8 million long word chain 
key from only 2 million numbers

• If the absolute number in the source array within this loop 
at the base array pointer has not been used, it is 
transferred to the chain key array in the location ‘previous-
value’.

• The number loaded becomes the new ‘previous value’ 
location, the number in the source array is flagged ‘used’.

• The location in the reverse chain key array is initialized by 
using the address as the data and the data as the address.

• Every time the loop completes using the base array, the 
source array is cleared of ‘used’ locations.
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Constructing an 8 million long word chain 
key from only 2 million numbers

• The number of available values is used to Mod the value 
from the base array during the next loop through the 
source array. 

• The base array is reused as many times as needed until the 
chain key array is fully constructed.

•When the chain key array has been completely loaded from 
the source array, the saved ‘starting-initial-value’, set at the 
start of construction, is transferred to the location indicated 
in ‘previous-value’ to close the chain, and the reverse chain 
key array is also closed using the reverse set of data and 
address.
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Here’s the AES Visual Basic Encryption 
Code

• To calculate ‘Y(j)’, this code executes 70 steps.

For i = 1 To m_Nr - 1

For j = 0 To m_Nb - 1

m = j * 3

Y(j) = m_ekey(k) Xor m_etable(X(j) And &HFF&) Xor _

RotateLeft(m_etable(RShift(X(m_fi(m)), 8) And &HFF&), 8) Xor _

RotateLeft(m_etable(RShift(X(m_fi(m + 1)), 16) And &HFF&), 16) Xor _

RotateLeft(m_etable(RShift(X(m_fi(m + 2)), 24) And &HFF&), 24)

k = k + 1

Next

t = X

X = Y

Y = t

Next

• If you would like to see proof of the 70 steps, it can be 
shown after this presentation.
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Here’s the AES Visual Basic 
Encryption Code

• The inner loop executes 8 times.  70 x 8 = 560 steps

For i = 1 To m_Nr - 1

For j = 0 To m_Nb - 1

m = j * 3

Y(j) = m_ekey(k) Xor m_etable(X(j) And &HFF&) Xor _

RotateLeft(m_etable(RShift(X(m_fi(m)), 8) And &HFF&), 8) Xor _

RotateLeft(m_etable(RShift(X(m_fi(m + 1)), 16) And &HFF&), 16) Xor _

RotateLeft(m_etable(RShift(X(m_fi(m + 2)), 24) And &HFF&), 24)

k = k + 1

Next

t = X

X = Y

Y = t

Next
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Here’s the AES Visual Basic 
Encryption Code

• The outer loop 13 times.  560 x 13 = 7,280 steps.

For i = 1 To m_Nr - 1

For j = 0 To m_Nb - 1

m = j * 3

Y(j) = m_ekey(k) Xor m_etable(X(j) And &HFF&) Xor _

RotateLeft(m_etable(RShift(X(m_fi(m)), 8) And &HFF&), 8) Xor _

RotateLeft(m_etable(RShift(X(m_fi(m + 1)), 16) And &HFF&), 16) Xor _

RotateLeft(m_etable(RShift(X(m_fi(m + 2)), 24) And &HFF&), 24)

k = k + 1

Next

t = X

X = Y

Y = t

Next 16



• This 8-step loop executes once at the end of the 
encryption sequence for the block.

• 7,280 + (8 x 70)= 7,840

For j = 0 To m_Nb - 1

m = j * 3

Y(j) = m_ekey(k) Xor m_fbsub(X(j) And &HFF&) Xor _

RotateLeft(m_fbsub(RShift(X(m_fi(m)), 8) And &HFF&), 8) Xor _

RotateLeft(m_fbsub(RShift(X(m_fi(m + 1)), 16) And &HFF&), 16) Xor _

RotateLeft(m_fbsub(RShift(X(m_fi(m + 2)), 24) And &HFF&), 24)

k = k + 1

Next
17
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The proposed cipher processes 
128 characters per block

• AES takes 7,840 steps to encrypt 32 characters

• This cipher design encrypts 128 characters per block or 4 
blocks of AES plaintext.

• 4 x 7,840 = 31,360 steps to encrypt 128 characters of plaintext 
for the AES.

• This is deliberately conservative as the single instructions in 
blue either side of the main instruction are not counted.
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This cryptographic engine’s 
Visual Basic code

• The ‘key’ is the 8,388,736 byte (0 to 80007Fh) key 
constructed by the gkey function.

• The ‘Ptrx’ pointers are initially randomly set between 0 and 
8,366,607 inclusive by the PRNG during block 1 and 
modified by the chain key for each succeeding block.

• The ‘str1’ is the string holder that will contain the 
ciphertext or plaintext block characters.

• The ‘str2’ is the string holder that contains the plaintext or 
ciphertext block characters.
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• This loop executes 2 steps for each of 128 characters:

• Notice there are only table references, not functions called, 
to obtain the values to Xor together.

• How does this compare to the 31,360 steps (245 steps for 
each character) of the AES encryption for the same 128 
plaintext characters? 20

For i = 0 To 127

str1 = str1 + chr$(Asc(Mid$(str2, i + 1, 1)) Xor _

key(Ptr1 + i) Xor key(Ptr2 + i) Xor _

key(Ptr3 + i) Xor key(Ptr4 + i))

Next i

This cryptographic engine’s 
Visual Basic code



What happens after the first block?

• After the first and subsequent blocks are processed and 
the engine is about to encrypt the next block, each 
pointer accesses the chain key.  The pointers are all 
reset to different reference points within the main key.

• Even if only one pointer was changed by 1, the EKS 
would be almost entirely different – this can be 
demonstrated.

• Since all 4 pointers will change to constantly pseudo-
different values, the EKS will be a non-repeating stream 
through the 8 million+ block size of the chain key. 21



Does any attacker have any Possibility of 
reconstructing the entire key?

• Unlike most other ciphers, it is impossible to 
reconstruct the entire key if it were possible to 
determine the key streams used for one block.

• 4 streams of 128 bytes used per block = 512 bytes of 
the 8,388,736 byte key.

• Even if they could reconstruct the 512 bytes, they 
would have less than 0.007% of the entire 8,388,736 
byte key, not to mention a critical failure of where 
those streams should be placed in the 8 Mbyte array. 22



What if the number of blocks exceeds 
8,388,607 (1.73 Gbytes of plaintext)?

• The four pointers are Xor’ed together, result is then Mod 15.

• The result selects which set of 4 pointers, 1, 2, 3 or all 4, are 
to be additionally advanced, 15 possible combinations.

• For each pointer being additionally advanced, the location at 
the initial address of that pointer is Mod 8 + 1.

• Each pointer selected is then advanced using the chain key 
that number of times.

• For subsequent encryptions of large files, the set of pointers 
modified changes because the initial pointers are randomly set 
and may never be the same.

• On the next 2 slides are examples of advancements done. 23



An example of the
pointer advancements:
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A second example of the 
pointer advancements:
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Two important questions to answer 
concerning this algorithm

•What does Algebraic law say about anyone being able 
to ever solve this one equation for the correct single
values of the 4 unknowns?

• Does this provide adequate protection for the values 
within the fixed 8,388,736 byte key array ‘key’?

For i = 0 To 127

ctx = ctx + chr$(Asc(Mid$(ptx, i + 1, 1)) Xor _

key(Ptr1 + i) Xor key(Ptr2 + i) Xor _

key(Ptr3 + i) Xor key(Ptr4 + i))

Next i
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Two more important questions to 
answer concerning this algorithm

• Suppose the 4 table values were Xor’ed together and the result 
was loaded into temp, and this single location was Xor’ed with 
the plaintext ASCII number producing the ciphertext character.

• What decades-old cipher algorithm is the second expression?

• Does this provide protection at least equal to the AES in 
protecting the plaintext characters from discovery?

For i = 0 To 127

temp = key(Ptr1 + i) Xor key(Ptr2 + i) Xor _

key(Ptr3 + i) Xor key(Ptr4 + i)

ctx = ctx + chr$(Asc(Mid$(ptx, i + 1, 1)) Xor temp)

Next i
27



One last question:

• What would be the mathematical process of obtaining the values 
of Ptr1 - Ptr4 used in this engine using only the plaintext and 
ciphertext ASCII characters that any attacker would use?

• Keep in mind that for each individual value in this equation, there 
are well over 32,000 locations within the 8,388,736 byte key with 
that same value.  So, is it possible?

For i = 0 To 127

ctx = ctx + chr$(Asc(Mid$(ptx, i + 1, 1)) Xor _

key(Ptr1 + i) Xor key(Ptr2 + i) Xor _

key(Ptr3 + i) Xor key(Ptr4 + i))Next i

Next i
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Key table storage

• Since key changes will no longer be needed since there is no more 
concern about potential future breeches or key table theft during new 
key transport, key storage can be within the image itself.

• The image is secure within the computer chip, so if the key is there 
also, it too will be just as safe.

• The 32 bytes are individually stored throughout the source file in 
random locations.

• The key input function merely calls the 32 load subroutines and 
wherever they are within the image, they are put in the proper order in 
the 32-number key array.
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How are the main pointers encrypted and
delivered to the decrypt cipher in the first block?

Actual extraction #1 from the demonstration output application:
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• These two sections are executed either side of the encrypt operation on the next slide, but shown together 
here because the top sequence obtains data the bottom sequence needs to execute



The plaintext encryption process
Actual extraction #1 from the demonstration output application:
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Plaintext encryption After Block #1
Actual extraction #1 from the demonstration output application, 

this functionality is repeated for all subsequent blocks:
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How are the main pointers encrypted and
delivered to the decrypt cipher in the first block?

Actual extraction #2 from the demonstration output application:

• These two sections are executed either side of the encrypt operation on the next slide, but shown together here because the 
top sequence obtains data the bottom sequence needs to execute

• These two sections are executed either side of the encrypt operation on the next slide, but shown together here because 
the top sequence obtains data the bottom sequence needs to execute
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The plaintext encryption process
Actual extraction #2 from the demonstration output application:
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Plaintext encryption After Block #1
Actual extraction #2 from the demonstration output application, this 

functionality is repeated for all subsequent blocks:
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How are the main pointers obtained by the decrypt cipher?
Actual extraction #1 from the demonstration output application:
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The plaintext decryption process
Actual extraction #1 from the demonstration output application:
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Plaintext decryption After Block #1
Actual extraction #1 from the demonstration output application, this 

functionality is repeated for all subsequent blocks:

38



How are the main pointers obtained by the decrypt cipher?
Actual extraction #2 from the demonstration output application:
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The plaintext decryption process
Actual extraction #2 from the demonstration output application:
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Plaintext decryption After Block #1
Actual extraction #2 from the demonstration output application, this 

functionality is repeated for all subsequent blocks:

41



What about a non-repeating key to Xor with the 
plaintext, required for the Vernam algorithm?

• 4 pseudo-randomly selected key streams from the fixed 8,388,608 
byte key are Xor’ed together.  The pointers are changed for each 
block using the chain key array, producing up to 8,388,608 non-
repeating Effective Key Streams.

• There are 6 sets of 65,536 files to prove this methodology produces 
non-repeating key streams ready for examination.

• The EKS streams were sorted so that the contents of each file 
contains streams with the same first 4 hex digits.

• After this presentation, proof is available that any of the 100 million 
entries in any of these files was produced with this single 8 Mbyte 
key. 42



What about a non-repeating key to Xor with the
plaintext, required for the Vernam algorithm?

• This test created 6 sets of 65,536 files for 100 million blocks of 
Effective Key Streams, needed to encrypt 12.8 Gigabytes of 
plaintext, created using the 8,388,608 byte key and chain keys.

• With each pointer having a possibility between 0 and 8,388,607 
inclusive, there are 8,388,6084 = 4.951 x 1027 sets of non-repeating 
Effective Key Streams of virtually any size that could be produced.

• These 6 sets of 65,536 files were produced using only six of the 
possible 4.951 x 1027 sets of 4 starting pointers.  This should 
indicate how many possible strings of 100 million non-repetitive 
Effective Key Streams this methodology could produce, satisfying 
the requirement for the Vernam algorithm. 43



What about a non-repeating key to Xor with the 
plaintext, required for a Vernam algorithm?

• Even if a potential attacker could find two ciphertext files 
with blocks that have the same Effective Key Stream (EKS), 
Algebraic law prohibits the correct determination of the 
content of the 4 key streams used to create that EKS.

• The app that produced these files used the first 25 Effective 
Key Stream hex numbers creating the 50-digit strings, plus 
the pointers used, recorded in each of the 65,536 files, 
about 140 Kbytes for each file.  

• At the end of creating the files, it then opened each file and 
compared each EKS with every other EKS within the file. 44



What about a non-repeating key to Xor with the 
plaintext, required for a Vernam algorithm?

• It did not find any duplicates in any of the 65,536 files in 
any of the 6 example sets.

• Each example produced 256 files in each of 256 
subdirectories.  128 subdirectories are available on each of 
2 data DVD’s for each example for your examination, along 
with the app to prove they are correct.

• They will be shown and demonstrated later in this 
presentation.

• A test showed that no duplicates were encountered after 2 
Billion blocks. 45



Demonstration Application in Demo mode, 
actual encryption example

The Effective Key Stream (yellow line) is the Xor of all 4 key streams
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Demonstration Application in Demo mode, 
bogus key encryption example

The Effective Key Stream (yellow line) is the Xor of all 4 key streams
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Demonstration Application in Demo mode, 
bogus key encryption example

The Effective Key Stream (yellow line) is the Xor of all 4 key streams
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Demonstration Application in Demo mode, 
bogus ciphertext encryption example

The Effective Key Stream (yellow line) is the Xor of all 4 key streams
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Is this a cryptography first?

• The first 3 bogus key streams were randomly created and the 
4th stream was calculated to provide the needed results.

• Therefore, in any vertical column, 3 of the numbers can have 
any value from 0 to 255.  There are 2563 = 16,777,216 
possible sets of 4 key stream numbers for each column.

• With 128 columns per block, there are 16,777,216128 possible 
key streams that will result in the plaintext to ciphertext 
conversion.  Attackers have no single key goal.

• How many keys will correctly translate an AES ciphertext to 
the plaintext?  Do attackers have a one key goal to reach? 50



What should be the conclusions
of this new design?

• The fixed key is protected from discovery by Algebraic law.

• The plaintext is protected from discovery by the Vernam Algorithm.

• The values of the pointers are protected by simple mathematics.

• There is no mathematical process available that could ever
distinguish the plaintext ciphertext from the pointer ciphertext 
because both processes use the same methodology of encryption.

• The pointer ciphertext characters are pseudo-randomly mixed 
together with the plaintext ciphertext characters in different 
positions in different orders in different ciphertext files.

• The two processes (plaintext and pointer processing) use different 
sets of 4 pseudo-randomly set pointers.
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