Vernam Two

The author’s email: dmilleville@Comcast.net

® This document is a PDF of the PowerPoint

presentation
that is to be presented where and when requested.
® It contains all information that can physically be included

within this presentation document concerning this design.

® Other information can be furnished during a presentation
trlwa_t prccl)ves the methodology exists and produces what is
claime

® This is a bona-fide modification/addition to an existing

long-standing cryptographic algorithm combined, for the
first time, with Algebraic law to produce a commercial

version of a faster and more secure system than the AES.

Introducing a significant improvement
over the current AES Standard

1At least a 4-fold performance improvement as compared to the AES.

2.Abi|ity to decrypt individual characters of plaintext without having to decrypt an
entire block. When coupled with the performance improvement, this will vastly
Improve data searching throughput of sensitive protected databases.

0 loss of security — mathematical proof is provided in this presentation.

more ‘Mode Of Operations’ — No external data, counter, table or extra data stream
d for an unpredictably changing output — all data needed to decrypt the

Ictable encryption is encrypted along with the plaintext contained within the
Ile using the same encryption methodology.

ss to an approved Random Number Generator for the first block only.

this design has, produces a virtually endless number of almost
t ciphertext files, even if it repeatedly encrypts the same plaintext.

+ different ciphertext files from any single plaintext input with
stream needed.

What is the comparison of the
AES to this proposed cipher design?

Point of Consideration 256-bit AES Proposed cipher design

Input Key size 256 bits 256 bits
Time to encrypt a 15.8 Mbyte file 62.8 seconds 12 seconds
Mathematical proof is provided
Security The ‘Standard’ that it is at least equal to The
‘Standard’
Additional data and/or information No MOQO, all data needed is

Provided/delivered
external to the ciphertext, a
possible security issue

needed for proper encryption or
decryption to occur for most Modes Of
Operation

encrypted within the ciphertext
using the same encryption
methodology

When the user needs 1 or more The entire block has to be Individual characters from the
characters from the ciphertext when ciphertext can be decrypted

searching for an SS or credit #, how decr'ypted VEIOITE EO0EES 2 without processing the entire
. provided for one character
much work is involved? block

A \ N

How can the speed increase
with no loss of security?

®* The AES relies on repeated mathematical processing of
the entire block to provide the security required. This
results in an average of 245 computer steps executed per
character (Visual Basic version of the AES).

®* The speed increase in this design is the result of using a
combination of a well known cryptographic algorithm
plus Algebraic law, involving only 2 steps per character as
detailed in this presentation. Repetitious processing bogs
down the process and allows for possible attacks.

* With significantly fewer steps to take per character, there
IS a very significant improvement in execution speed.

Key requirements and
methodology for construction

* Key storage will be discussed later in this presentation.

®* The AES's ‘gkey’ function was expanded to produce a of
2,097,184 (0 to 20001Fh) pseudo-random long words from the
input 256-bit key.

®* The 8,388,736 (0 to 80007Fh) byte main key this design uses is
created by extracting 4 bytes from each long word.

® Two chain keys, 8,388,608 (0 to 7/FFFFFh) long words each, are
also created using the as the initializer and construction
‘director’.

® The function of a chain key and the methodology used to construct
this key is illustrated next.

5

What is the makeup and
function of a ‘chain key"?

®* The key array contains all numbers within a stated range,
access chained into a single loop pseudo-randomly. An
example of a chain key using 0 through 9:

chn(0)=4, chn(4)=7, chn(7)=3, chn(3)=9, chn(9)=2,
chn(2)=5, chn(5)=6, chn(6)=1, chn(1)=8, chn(8)=0

® The function of the key is to use all numbers only once
within the effective range beginning anywhere when
accessing all locations as above within the key array. In
the above case, 0 through 9, in pseudo-random order. .

What is the second ‘chain key"?

® The second chain key is the first key in the reverse
chain direction. Here’s the ‘forward’ chain example from
the previous slide:

chn(0)=4, chn(4)=7, chn(7)=3, chn(3)=9, chn(9)=2,
chn(2)=5, chn(5)=6, chn(6)=1, chn(1)=8, chn(8)=0

® Here is the same chain key in reverse:

chn(0)=8, chn(8)=1, chn(1)=6, chn(6)=5, chn(5)=2,
chn(2)=9, chn(9)=3, chn(3)=7, chn(7)=4, chn(4)=0

What are the sizes of the ‘chain keys’
and how are they used in this design?

® Both of this cipher engine’s chain keys are 8,388,608 (0 to
/FFFFFh) long words.

® After 4 array pointers used in this methodology are randomly
initialized using the PRNG for the first block only, these
pointers are advanced for subsequent blocks using the first
chain key to change their reference into the main key.

® Because the pointers use the chain key, a total of 8,388,608
sets of non-repeated pointers are created for up to that number of
blocks. You will see why these pointers must not repeat later.

® The second chain key is used in the process to encrypt the
tarting pointers for the decrypt engine’s use. :

| 8| Forward Chained Key Table .dat - ... =] [E3

An actual chain table

® Pictured on the right is a randomly selected start and
end point of the 8+ million chain table used in the
current demonstration application, illustrating how the
chain is used, starting and ending at the randomly
selected point in the key, address 5,209,185.

® The file pictured is 270+ Mbytes in size so this is why
only the beginning and ending of the file are illustrated.
Searching for the starting address 5,209,185 is found in
only 2 places, the start and end as pictured. Notice the
scrél)ll bdars show the segments shown are at the start
and end.

® Searching for ANY other address results in only two
adjacent lines containing the address searched. For
example, searching for 6,914,872 occurs in only the two
adjacent lines indicated in the entire file.

File Edit Format “iew Help

HehainThl1¢7

chainThles,
chainThl1(7,
cha’inThld
chainThlg
cha’inThl{4,
chainThl(
chainTh1(s
chainThld4

chainTh1(2
chainTh1(s
chainTh1(l,
chainThl(l,
chainTh1(g,
chainThlia,
cha’inTh1{l,

chainThl1(s,

cha’inThl1(7,
chainThl(

HNehainTh1(3,
AchainTk1Cs
HNehainTh1(7,
chainTh1(z,
ichainTbW[E,

chainThl(s,
chainThl(a,
chainTh1l,

420,
, 532
330,

chainThl1(s
chainThl(4
chainTh1(7,
chainTh1(l,
chainTh1(8,
chainThl1a,
chainThld4,
chainThl12,
chainThl(a,
chainThl1(s,
chainThl1(a
chainTh1(s
chainThli

chainTh1(7,
chainTh1(7,
chainTh1(3
chainTh1(s

<

200,

063
108
523
045
234

193
, 090,
228
147,
L5817,
502,

953
914

843
114
780

264
073

424
120

Q57
117

, 2EGD
, 068,

615
603

» 155
, 209,

185

,035)
L2230
2025
L4187
s 987
794

515

,B47)

303)
229)
5513

s 045
257,

071

2872
035,
528,
FHE,
519,

4487
8710
D26
5547

»379)
L BOH,

503

»1359)
592,
L2582
647,

5520
073

2702
,B55)

SEED

2353

651

EEY
ETEY
771,
507,
551,

674]
064
2037

w1730
436])
, BEE]

738)

1017
028,

503

1373
e

G52

L TR B I R, U, e I RO S Y v el I S S s A R N FY R . W Y I I O U 0 o ST S I N I R R

7,

, 04

» 193
, 099,
228,
147

» 543
, 898,
,114
, 392,
, FB0,
847,
» 264
=
» 706

, 632
, 330,
424
s 129,
s fil,
, 007,
, 051,

0a3,
108,
523

234

LHLY,
, 202,
» 253
2297,
,214
, 039
» 028,
88,

519,

s 967,
o, 117,
, 989,
, 568,
, 101
s 28,
, 503
s 155
, 909,
, 209,

615

039

223

, 020
,418
, BT
=L

816
aavy

» 303

220
551

048

071

L8372
448

BYL
926
504

, 379

Lk

, 150

552
282
073

02
»855
e

, 353

651

s P33

443
6574
054
203
173
436
Q53
738

503

W 373
M

aE2
185

2

A reverse chain
table

® On the near right is a
reverse chain table
beginning at the last
address on the top
portion of the forward
chain table, address
1,973,655.

* If you follow it down, it
matches the reverse
sequence of the forward
table right through the
ending.

| rReverse Chained Key Table .dat - ... [H[=] [E3

View Help

File Edit Format

revcChaingl,373,655)
revChainia,264,7020
revChainia,847,073)
revChain(s,780,282)
revChaing3,592,552])
revChaing7,114,159])
rev_haings,895,953)
revChain(3,843,379)
revChaing 519,594
revChain(?,7858,926]
revChainia,528,871)
revChain(l,039,448)
revChainia,9ld , 8720
revChain(s,257,071)
revC_haingl,253,0458])
revChaingl,502,551)
revChain(s, 817 ,229)
revChainC? 147,303
revChain7,228,6867)
revChaingd ,09%,816)
revChainis,193,794]
revcChaing 234,987
revC_haingd ,04%,4187
revChaing 523,029
revChaing 108,223)
revChain(?,063,0359)
revChaings,209,185])
reviChain(s,a09,5682)
revChaing3,155,378)
revChaing?,603,373)
revChain(7,0258,503)
revChaing 615,101
reviChain(s,668,738)
revC_hainCs,989,95858])
revChaings,117,436])
rev_hainia,967,173)
revChaing2,551,203)
revcChaingd , 507,064
revChain(a,77l,6874)
revChain(8,129,443)
revChain(l,424,733)
revChain(7,330,651)
revChaingd ,632,353)
rev_haings,420,633)
revChainia,324,766])
revChaing 324 ,4100
revChainCs,784 ,126]
revChaing2,506,173)
revChain(3,658,558)
revChaing S01,9807
revChain(a,312,6897)
rev_haing?,525,779)
revChaing a7 ,529]

]

6,264,702 a

£,547,073
3,780,282
3,552,552
7,114,159
5,808,003
3,843,379
515G, 554
7,788,926
§,528,871
1,035,448
6,004,872
8,257,071
1,952,048
1,502,551
5,817,220
2.147,303
7,228,667
4,000,816
5,193,794
234,987
4,049,418
523,029
108,223
7,063,039
5,200,185
5,000,682
3,155,378
7,603,373
7,028,503
&15,101
5,668,738
5,580,068
5,117,436
6,067,173
2,551,203
4,507,064
6,771,674
5,129,443
1,424,733
7.330,651
4,632,353
5,420,633
6,324,766
324,410
5,784,126
2,506,173
3,658,558
801,960
6,312,657
2,525,779
597,529

383,3§jjzj
Ll

| B Forward Chained Key Table .dat - ... [H=] E3

View Help

File Edit Formakt

chainTh1(5,208,185)
chainThl(7,063,035)
cha’inThlf 108,223)

chainThle 523,029
cha’inThldd ,04%9, 4187
chainThle 234,957

cha’inTh1(5,193,7947
chainThl(4 ,0595,816)
chainThl(7,228,867)
chainTh1(2,147,3030
chainThl1(s,5817,229)
chainTh1¢1,502,551)
chainTh1(1l,953,0458)
chainTh1(8,257,071)
chainThl(6,514 ,572)
chainTh1{l,03%,448)
chainThl(6,5258,5871)
chainThl1{7,788,9246]
chainThlf 51%,55%40
cha’inThl1(3,5843,379]
chainTh1(5,8958,5953)

chainTh1(7,114 ,159)

chainTh1(2,552,5520
chainThl1(3,7580,282)
chainThl(6,647,0730
chainThl(6,264 ,7020
chainTh1(1,573,655)

chainTh1(5,420,633)
chainThl(4,632,353)
chainTh1(7,330,651)
chainThl(l,424,733)
chainTh1(8,129,443)
chainTh1(a,771,674)
chainThl(d,507,0640
chainTh1(2,551,203)
chainThl(6,%587,173)
chainTh1(5,117,436)
chainTh1(5,5%585%,5%585)
chainTh1(5,668,738)
chainTh1f &15%,101)
chainTh1(7,0258,503)
chainThl1(7,803,373)
chainTh1(3,155,3758])
chainTh1(5,908,6582)

<

7,063,039 a

108,225

523,020
4,045,418

234 987
5,193,794
4,099,814
7,228,667
2,147,303
5,817,220
1,502,551
1,953,048
8,257,071
G,214 BTZ
1,059,448
6,528,871
7,788,924

519,594
3,843,379
5,898,903
7,114,155
3,592,552
3,780,282
6,547,073
G,264,702
1,573,655
5,756,438

4,632,353
7,330,651
1,424,733
8,129,443
6,771,674
4,507,064
2,551,203
6,967,173
5,117,436
5,989,068
5,568,738

615,101
7,028,503
7,803,373
3,155,378
5,909,682
5,209,185

Constructing an 8 million long word
chain key from only 2 million numbers

® The absolute value of a location is selected and
the value Mod 8,388,608 (800000h) is used as a 'start-
load-at’ number.

® A source array of 8,388,608 (0 to 7FFFFFh) long words is
loaded starting at position 0 loading the ‘start-load-at’
value and loading the locations with a round-robin
incremented value to complete the load.

® Within the source array, every value from 0 to 8,388,607
inclusive is recorded only once.

* The build function then loops through the

Constructing an 8 million long word chain
key from only 2 million humbers

* If the absolute number in the source array within this loop

at the pointer has not been useq, it is
transferred to the chain key array in the location ‘previous-
value’.

®* The number loaded becomes the new ‘previous value’
location, the number in the source array is flagged ‘used’.

® The location in the reverse chain key array is initialized by
using the address as the data and the data as the address.

® Every time the loop completes using the , the
source array is cleared of ‘used’ locations.

Constructing an 8 million long word chain
key from only 2 million humbers

®* The number of available values is used to Mod the value

from the during the next loop through the
source array.
°*The IS reused as many times as needed until the

chain key array is fully constructed.

®* When the chain key array has been completely loaded from

the source array, the saved ‘starting-initial-value’, set at the
start of construction, is transferred to the location indicated
in ‘previous-value’ to close the chain, and the reverse chain
k% array is also closed using the reverse set of data and
address.

Here's the AES Visual Basic Encryption
Code

® To calculate “Y(j), this code executes 70 steps.

For i = 1 To m Nr - 1
For j = 0 TomNb -1

m=3j * 3
Y(j) = m_ekey(k) Xor m etable(X(j) And &HFF&) Xor _
RotateLeft (m_etable (RShift(X(m_fi(m)), 8) And &HFF&), 8) Xor _
RotateLeft (m_etable (RShift(X(m fi(m + 1)), 16) And &HFF&), 16) Xor _
RotateLeft (m_etable (RShift(X(m fi(m + 2)), 24) And &HFF&), 24)
k=k +1
Next
t =X
X =Y
Y=+t

Next

* If you would like to see proof of the 70 steps, it can be
shown after this presentation.

Here's the AES Visual Basic
Encryption Code

® The inner loop executes 8 times. 70 x 8 = 560 steps

For i =1 TomNr -1
For j = 0 TomNb -1
m=j * 3
Y(j) = m_ekey(k) Xor m etable(X(j) And &HFF&) Xor _
RotateLeft (m_etable (RShift (X(m_fi(m)), 8) And &HFF&), 8) Xor _
RotateLeft (m_etable (RShift(X(m fi(m + 1)), 16) And &HFF&), 16) Xor _
RotateLeft (m_etable (RShift (X(m fi(m + 2)), 24) And &HFF&), 24)

k=k +1
Next
t =X
X Y

t

15

Here's the AES Visual Basic
Encryption Code

® The outer loop 13 times. 560 x 13 = 7,280 steps.

For i =1 TomNr -1
For] = 0 TomNb -1
m= j * 3
Y(j) = m_ekey(k) Xor m etable(X(j) And &HFF&) Xor _
RotateLeft (m_etable (RShift(X(m fi(m)), 8) And &HFF&), 8) Xor _
RotateLeft (m etable (RShift(X(m fi(m + 1)), 16) And &HFF&), 16) Xor _
RotateLeft (m etable (RShift(X(m fi(m + 2)), 24) And &HFF&), 24)
k=k +1
Next
X

16

Here's the AES Visual Basic
Encryption Code

® This 8-step loop executes once at the end of the
encryption sequence for the block.

* 7280 + (8 x 70)= 7,840

For j = 0 TomNb -1
m= 3j * 3
Y(j) = m_ekey(k) Xor m fbsub(X(j) And &HFF&) Xor _
RotateLeft (m fbsub (RShift(X(m fi(m)), 8) And &HFF&), 8) Xor _

RotateLeft (m fbsub (RShift(X(m fi(m + 2)), 24) And &HFF&), 24)
k=k +1

Next

RotateLeft (m fbsub (RShift(X(m fi(m + 1)), 16) And &HFF&), 16) Xor _

The proposed cipher processes
128 characters per block

® AES takes 7,840 steps to encrypt 32 characters

® This cipher design encrypts 128 characters per block or 4
blocks of AES plaintext.

* 4 x 7,840 = 31,360 steps to encrypt 128 characters of plaintext
for the AES.

® This is deliberately conservative as the single instructions in
blue either side of the main instruction are not counted.

This cryptographic engine’s
Visual Basic code

®* The ‘key’ is the 8,388,736 byte (0 to 80007Fh) key
constructed by the gkey function.

®* The ‘1" pointers are initially randomly set between 0 and
8,366,607 inclusive by the PRNG during block 1 and
modified by the chain key for each succeeding block.

®* The 'strl1’ is the string holder that will contain the
ciphertext or plaintext block characters.

®* The 'str2’ is the string holder that contains the plaintext or
ciphertext block characters.

This cryptographic engine’s
Visual Basic code

® This loop executes 2 steps for each of 128 characters:

For i = 0 To 127
strl = strl + chr$(Asc(Mid$(str2, i + 1, 1)) Xor _
(+ i) Xor (+ i) Xor _
(+ i) Xor (+ i))
Next i

® Notice there are only table references, not functions called,
to obtain the values to Xor together.

®* How does this compare to the 31,360 steps (245 steps for
each character) of the AES encryption for the same 128
plaintext characters?

What happens after the first block?

® After the first and subsequent blocks are processed and
the engine is about to encrypt the next block, each
pointer accesses the chain key. The pointers are all
reset to different reference points within the main key.

® Even if only one pointer was changed by 1, the EKS
would be almost entirely different — this can be
demonstrated.

® Since all 4 pointers will change to constantly pseudo-
different values, the EKS will be a non-repeating stream
through the 8 million+ block size of the chain key.

Does any attacker have any Possibility of
reconstructing the entire key?

® Unlike most other ciphers, it is impossible to
reconstruct the entire key if it were possible to
determine the key streams used for one block.

® 4 streams of 128 bytes used per block = 512 bytes of
the 8,388,736 byte key.

® Even if they could reconstruct the 512 bytes, they
would have less than 0.007% of the entire 8,388,736
byte key, not to mention a critical failure of where
those streams should be placed in the 8 Mbyte array.

What if the number of blocks exceeds
8,388,607 (1.73 Gbytes of plaintext)?

® The four pointers are Xor'ed together, result is then Mod 15.

® The result selects which set of 4 pointers, 1, 2, 3 or all 4, are
to be additionally advanced, 15 possible combinations.

® For each pointer being additionally advanced, the location at
the initial address of that pointer is Mod 8 + 1.

® Each pointer selected is then advanced using the chain key
that number of times.

® For subsequent encryptions of large files, the set of pointers
modified changes because the initial pointers are randomly set
and may never be the same.

On the next 2 slides are examples of advancements done. -

An example of the
pointer advancements:

! ' transitions1.dat - Motepad M=l E3
File Edit Format Miew Help
bt hlock # 1, pointers are: Pl=4,684,515, P2= 705,725, P3=5,027,114 and P4=1,800,5674 -
AT hlock # 8,388,508, pointers are: Pl=4,584,513, P2= 705,725, P3=5,027,114 and P4=3,028,585 (#4 Tl —
AT hlock # 15,777,216, pointers are: P1=1,598,733, P2=4,519,858, P3=1,582,428 and P4=7,75858,800 (+1 Ix, #2 B, #3 G, #4 — 3x)
AT hlock # 25,165,824, pointers are: Pl=1,322,35%, P2=4,51%,858, P3=6,358,%1% and P4=3,818,818 (&1 Bx, #3 T, 2x
Ar block # 33,554,432, pointers are: Pl=1,322,35%, P2=7,707,445, P3=4,264,574 and P4=5,058,165 (#2 dx, #3 2%, #4 T
AT block # 41,945,040, pointers are: Pl=6,4%1,597, PZ=7,707,445, P3=1,734,4035 and P4=5,038,1a5 (#1 ax, #3 4x
AT block # 50,331,648, pointers are: pPl=&,4%1,5%7, P2=7,707,445, P3=F7,630,835 and P4=4,583,813 (#3 Sx, #4 Sx
At block # 58,720,256, pointers are: Pl=h,491,597, P2=7,707,445, P3=2,423,866 and P4=5,600,836 (43 3x, #4 2%
At block # 67,108,854, pointers are: Pl=7,724,258, P2=3,383,667, P3=4,1532,010 and P4=5,600,836 (#1 A, #2 3x, #3 1x]
At hlock # 75,457,472, pointers are: Pl=7,724,258, P2=8,318,34%, P3=5,234,518 and P4=2,510,561 (42 Tx, #3 dw, #4 3u
At hlock # 83,885,080, pointers are: Pl=2,415,421, P2=8,318,34%, P3=5,234,518 and P4=2,510,951 (#1 4%
AT hlock # 52,274,688, pointers are: Pl= 435,488, P2=8,318,34%9, P3=7,5845,753 and P4=5,6865,237 (#1 1x, #3 G, 4 Gl
at block # 100,663,296, pointers are: Pl=5,759,238, P2=3,986,517, P3=1,145,51%9 and P4=5,5655,237 (#1 Ix, #2 2%, #3 1x)
at block # 10%,051,%04, pointers are: Pl=5,412,168, P2=4,8587,195, P3=5,289%,109 and P4=5,6866,237 (#1 Sx, #2 3x, #3 2x
at block # 117,440,312, pointers are: pl=5,412,168, P2Z2=4,8467,1%5, P3=4,156,093 and P4=5,666,237 (43 4% |
at block # 125,829,120, pointers are: Pl=5,4670,572, P2=1,10/,98%, P3=2,348,81l3 and P4=1,5917,636 (&1 2%, #2 2%, #3 3w, #4 - Fx)
at hlock # 134,217,728, pointers are: Pl=3,167,%957, P2= 375,031, P3=2,348,81l3 and P4=6,536,545 (#L Tr, #2 2, #4 1x]
at block # 142,606,336, pointers are: Pl=1,9%2,587, P2= 375,031, P3=1,751,049 and P4=5,474,774 (#1 3x, #3 1w, #4 7r)
at block # 150,994 ,%44, pointers are: Pl=1,9%2,587, PZ2= 375,031, P3=A5,524,070 and P4=1,227,883 (43 2x, #4 G
at block # 159,383,552, pointers are: Pl=7,513,508, P2= 375,031, P3=2,038,560 and P4=5,853,540 (#1 Adw, #3 1w, #4 Gl
at block # 167,772,160, pointers are: Pl=7,728,253, P2=4,045,7958, P3=2,016,905 and P4=5,753,969 (&1 3In, #2 S, #3 3w, #4 - Sx)
at block # 175,160,788, pointers are: Pl=7,728,253, P2=1,236,076, P3=1,171,766 and P4= 671,183 (+#2 ax, #3 Aw, #4 G
at block # 184,549,374, pointers are: Pl=7,728,253, P2=0,990,812, P3=7,624,%3% and Pd4= 671,183 (#2 3x, #3 5x)
at block # 192,937,984, pointers are: Pl=7,04%9,387, P2=6,990,58l2, P3=7,624,939 and P4=5,505,420 (&1 1, #4 Gx)
at block # 201,326,392, pointers are: pl=7,102,106, P2=6,990,58l2, P3=7,624,939 and P4=5,505,420 (&l 2x
at hlock # 209,715,200, pointers are: Pl=7,102,106, PZ=5,757,545, P3=7,024,959 and P4=1,274,784 (#2 1w, #4 3x]
at block # 218,103,808, pointers are: Pl=7,479,264, P2=3,489,732, P3=7,624,939 and P4=1,274,784 (#1 T, #2 7r)
at block # 226,492,416, pointers are: Pl=7,479,264, P2=2,322,184, P3=7,624,%95% and P4=1,274,784 (#2 5x
at block # 234,881,024, pointers are: Pl=7,479,264, P2=3,082,303, P3=7,3%94,267 and P4=2,085,100 (42 1x, #3 3x, #4 T
block # 243,269,632, pointers are: Pl=7,470,264, P2=7,708,102, P3=8,185,070 and P4=1,570,470 (&2 1x, #3 4w, #4 Gl

24

A second example of the
pointer advancements:

JE| transitions2.dat - Notepad =]
File Edit Format Wiew Help
bt hlock # 1, pointers are: Pl=4,811,195, PZ=0,873,135, P3=2,554,100 and Pd4=5,292,260 -
AT block # 8,388,808, pointers are: Pl=4,511,1%5, PZ=7,589,035, P3=3,301,814 and P4=1,510,7350 C#2 Sk, #3 2x, #4 Bx —
AT block # 16,777,216, pointers are: Pl=7,802,498, P2=7,389,035, P3=3,301,814 and P4=1,510,730 (#l 4%
AT block # 25,165,824, pointers are: Pl=3,557,401, P2=4,570,665, P3=4,953,856 and P4=1,510,750 (a1l 3, #2 8x, #3 4x]
AT block # 33,594,432, pointers are: Pl=5,022,456, P2=45,570,665, P3=4,933,856 and Pd4= 330,189 (a1 T, #d Bx)
AT block # 41,945,040, pointers are: Pl=7,8%1,66%, pP2=5,429,516, P3=3,784,854 and P4= 330,169 (#l 3, #2 Sx, #3 7x
AT block # 50,331,848, pointers are: Pl=Z,825,200, P2=5,429,516, P3=3,784,8654 and P4=1,837,226 (#l1 1w, #4 1x]
AT block # 58,720,256, pointers are: Pl=Z,825,200, P2=3,586,888, P3=3,784,654 and P4=2,623,823 (#2 3x, #d 2%
AT block # 67,108,854, pointers are: Pl=2,825,200, PZ=6,582,624, P3=3,784,654 and P4=2,623,823 (#2 2x)
AT block # 75,497,472, pointers are: Pl=2,825,200, P2=7,752,870, P3=3,784,5854 and P4=2,623,823 (#2 G
AT block # 83,885,080, pointers are: Pl=2,825,200, P2=7,752,870, P3= 092,012 and P4=2,623,823 (#3 B
AT block # 092,274,588, pointers are: Pl=2,825,200, PZ= 606,231, P3= 850,483 and P4=5,820,088 (#2 3x, #3 Fa, #4 3x]
at block # 100,663,295, pointers are: Pl=2,825,200, P2=7,906,954, P3= 14,110 and P4=5,820,088 (#2 Sx, #3 8x)
at block # 109,051,904, pointers are: Pl=2,525,200, P2=7,906,954, P3= 14,110 and P4=1,9%17,402 (#4 47
at block # 117,440,512, pointers are: Pl=2,324,85%5, P2=7,906,954, P3= 14,110 and P4=6,715,550 (#L 2x, #4 G
at block # 125,829,120, pointers are: Pl=7,583,407, P2=5,450,044, P3=5,433,55% and P4=5,335,874 (41 Gx, #2 3x, #3 Bx, #4 - 1x)
at block # 134,217,728, pointers are: Pl= 962,858, P2=2,211,811, P3=5,433,551 and P4=5,336,874 (41 1w, #2 8x)
at block # 142,606,336, pointers are: Pl=6,379,238, P2=2,211,811, P3=5,433,551 and P4=1,554,956 (41 3x, #4 5]
at block # 150,994,844, pointers are: Pl=5,443,862, P2=5,002,993, P3=5,433,550 and Pd4=4,675,422 (41 1w, #2 Sx, #4 G
at block # 15%,383,552, pointers are: P1=1,7%1,526, P2=5,002,993, P3=5,433,55%0 and P4=2,6591,309 (41 Sx, #4 Bx)
at block # 167,772,160, pointers are: Pl=1,79%1,526, P2=5,002,9%3, P3=5,921,539 and Pd=2,6591,309 (43 4%
at block # 176,160,768, pointers are: Pl=1,79%1,526, P2=5,002,9%3, P3=5,921,539% and Pd4=3,860,2958 (#4 3%
at block # 184,549,376, pointers are: Pl=2,547,950, P2= 674,371, P3=5,921,53% and P4=4,259,757 (41 2%, #2 dw, #4 1x0
at block # 192,937,984, pointers are: Pl=4,477,477, P2=3,643,670, P3=5,921,53% and P4=3,491,832 (41 ox, #2 Sa, #4 1x0
at block # 201,326,592, pointers are: Pl=4,477,477, PZ2=3,677,08%, P3=5,921,53% and P4=7,906,531 (#2 ax, #4 2%
at block # 209,715,200, pointers are: Pl=4,477,477, PZ= 506,8%3, P3=5,921,53% and P4=7,5906,531 (42 5
at block # 218,103,808, pointers are: P1=1,31%9,535, P2=5,978,504, P3=5,614,04% and P4=7,366,973 (41 2, #2 Sx, #3 3w, # - 8x)
at block # 226,492,416, pointers are: P1=1,31%9,535, P2=5,978,504, P3= 218,103 and P4=1,5906,548 (43 2x, #d G
at block # 234,881,024, pointers are: P1=1,31%9,535, P2= 400,004, P3= 218,103 and Pd4=1,5906,548 (#2 50
bhlock # 243,269,532, pointers are: PLl=1,31%,535, P2= 400,004, P3=2,184,526 and Pd4=1,5906,5458 (#3 4%

25

Two important questions to answer
concerning this algorithm

®* What does Algebraic law say about anyone being able
to ever solve this one equation for the correct single
values of the 4 unknowns?

® Does this provide adequate protection for the values
within the fixed 8,388,736 byte key array ‘key™?

For i = 0 To 127
ctx = ctx + chr$(Asc(Mid$(ptx, i + 1, 1)) Xor _

key (Ptrl + i) Xor key(Ptr2 + 1) Xor _
key (Ptr3 + i) Xor key (Ptr4 + 1i))

Next 1

Two more important questions to
answer concerning this algorithm

® Suppose the 4 table values were Xor'ed together and the result
was loaded into , and this single location was Xor‘ed with
the plaintext ASCII number producing the ciphertext character.

®* What decades-old cipher algorithm is the second expression?

® Does this provide protection at least equal to the AES in
protecting the plaintext characters from discovery?

For i = 0 To 127
= key (Ptrl + i) Xor key(Ptr2 + i) Xor
key (Ptr3 + i) Xor key(Ptr4d + 1i)
ctx = ctx + chr$(Asc(Mid$(ptx, 1 + 1, 1)) Xor)

Next 1

One last question:

* What would be the mathematical process of obtaining the values
of Ptrl - Ptr4 used in this engine using only the plaintext and
ciphertext ASCII characters that any attacker would use?

® Keep in mind that for each individual value in this equation, there
are well over 32,000 locations within the 8,388,736 byte key with
that same value. So, is it possible?

For i = 0 To 127
ctx = ctx + chr$(Asc(Mid$(ptx, i + 1, 1)) Xor _

key (Ptrl + i) Xor key(Ptr2 + 1) Xor _
key (Ptr3 + 1) Xor key(Ptr4d + 1))Next i

Next i

Key table storage

® Since key changes will no longer be needed since there is no more
concern about potential future breeches or key table theft during new
key transport, key storage can be within the image itself.

®* The image is secure within the computer chip, so if the key is there
also, it too will be just as safe.

®* The 32 bytes are individually stored throughout the source file in
random locations.

® The key input function merely calls the 32 load subroutines and
wherever they are within the image, they are put in the proper order in
the 32-number key array.

How are the main pointers encrypted and
delivered to the decrypt cipher in the first block?

Actual extraction #1 from the demonstration output application:

out of the first 20 ciphertext characters, numbers 9 (9ph), 11 (5ph) and 2 (E1lh)
were mathematically combined forming 1,924,577 (1D5DElh). That address was
converted using the chain key to 7,843,272,

Referencing the main key at that address and uhtainninﬁ new positions between 1 and
20, ciphertext characters 1 (01h), 10 (0ah) and 17 (11h) were combined producing
68,113 (010a11h). That address was converted using the chain key to 6,281,019,
variable placement numbers were obtained where the 3 ciphertext characters that,
when their ASCII's are combined, produce the starting value for the 4 pointers to
encrypt the plaintext pointers. TEE first 3 numbers grum the main key starting

at that address making sure there were no duplicates: > 27, 82 and 37

These two sections are executed either side of the encrypt operation on the next slide, but shown together
here because the top sequence obtains data the bottom sequence needs to execute

THE ENCRYPTION OF THE PLAINTEXT POINTERS:

The pointers to encrypt the plaintext pointers were obrained from combining the ciphertext characters at
positions: 27 (78), 82 (123) and 37 (97), the AsSCII numbers of them are 78, 123 and 97 respectively
Mathematically combined, they formed the starting address 5,143,393. Using the REVERSE chain key, the
pointers were initialized as: 4,728,169, 3,260,142, 7,966,779 and 2,577,032

Pointers being encrypted: Pl = 757,173, P2 = 4,381,761, P3 = 5,734,046, P4 = 2,223,454
|pointerl] |pointer2]| |pointer3||pointerd|
OB BD BS 42 DC 41 5F FE 9E 21 ED BG6
IS T I I I I I T T I T O (O T (O I I O

4F 0Op 18 DC ED C2 F8 BD 4F

4 Pointers separated into 3 Hex Bytes esach - -

Pointer # = revChain(5,143,393) = 4,728,169 5B BC 6D
Pointer #2 = revcChain(4,728,169) = 2,260,142 20 2C DB 67 25 7O DF C5 FF 45 56 2B
Pointer #32 = revchain(2,260,142) = 7,966,770 DD 58 55 A4 61 27 20 07 94 74 1a B7
Pointer #4 = revchain(7,966_,779) = 2,577,032 ES D2 45 094 01 4A AC D5 14 A0 58 6C
0 1 T I N A (A I A I T I A N A
Pointer Ciphertext bytes - - - - — — — - — — 4p 96 10 5A 94 4p CO B4 A3 CB 74 00

The resulting encrypted pointer string to be fractured and placed in the ciphertext Tine > M—JZ"MAfET? <

Ciphertext will be inserted in locations: 128, 64, 97, 122, 70, 24, 111, 113, 106, 33, 46, 95

The plaintext encryption process

Actual extraction #1 from the demonstration output application:

Key Stream & 757,173
Key stream 84,381,761
Key straam 85,734,046
Key Stream 82,223,494

Effective Key Stream

are mathematica

Input Plaintext Text
Input Plaintext Hex

Effective Key Stream
output Ciphertext Hex

out Ciphertext Text
Ptr ctext overwrites

ASCII of the ciqhertext
1y combined in that order to

numbers are selected for the pointers to encrypt the plaintext pointers, and

where and in what order the pointer ciphertext will be placed within the ciphertext block.

THE ENCRYPTION OF THE PLAINTEXT:

The xXor'ing of the 4 key streams producing the Effective Key Stream:

A112000157ABAB3IBEGBEOES4ADIAD491FD5F32CFADBA 53 2CBB6..21F9BBAYBYAABL 9899 7A04AE223F92 2AFEDAF19F46B0EE4AC
32BEDBSCBOFCABABEBALICECIEADAFIAA4 FCCLSCE3750D7F1CH8D108565563831232603668DDE7SCF37CDBBOEDF5542E2D0
FAO1B11AB1903EEB1OB7ALB3IBGOFCH3407DCAOIFB2B7389831902BCCCOF77DAAFIGBEBENS23ADASBSEBDYBEADBL2CDBDES
CAQO0OYR7271F7326AFBETBL3EGATF1OBAALOCS SAFFFACIADALBZCOF7O706755B3790E2DC10B991FAOFO0BY2EEEGTFTESS.

FLELLELE PP e L LR e e e e b e e L EeE e e e e il
A3A45E3F24B6C714ABBC6DBBB3ICFO1712742955881509198982 70880664 7B886F BBDC20F Y0CEQ919EA4EL 267 76E746CFA0

of the plaintext f1agged with a '1', "2', '3' character
etermine where (position) and what

111111111122 2222222233333 33333444444444A 4
123456780012 3456780012345678001234560678901234567 809
—— yv-—--—-]-——-—-¥y—— 3
VERSION 5.00770bject = x " {FB1578x09-110A-49C1x-98
56455253404 F4E20352E30300D00A4F020A050374203D02078227B4636313537387830392D0313130412D034304331782D3038.
FERELEET et e e e et e e et e e e e e e e e e e e e e e et e e et r e ettt
AIAA SEZF24BOC714ABBCODBBEICFOL712742055881 5009198062 70BBD664 FTBBBOFBEBDC20F 50CEQO1SEAAEL 267 F6EF46CF40
FLOPLELELET L e e e e e e e er e et e e e e e e e e e e e e e e et e et e e e et
FYE1LOCOCHODFO893409D92 5DBBBECS4E134D27F02CAl160B1EOBDSCAERBSY 77 2BFBEBOBDFB2 201 FF395BC77AZB2447OFOBFOTH
da?”ITmo%d4] =22AN1M"0,; +£3a3"4YN:Wr XEe€ "ay9xgz+sGey¥ykoxl1l

Plaintext encryption After Block #1

Actual extraction #1 from the demonstration output application,
this functionality is repeated for all subsequent blocks:

Encrypting Block Number 2

For this block #2 encryption, the pointers are advanced as follows:

P1 = chainkey(757,173) = 871,433, P2 = chainkey(4,381,761) = 4,263,706, P3 = chainkey(5,734,046) = 1,312,823, P4 = chainkey(Z,223,4%94) = 4,080,940

THE ENCRYPTION OF THE PLAINTEXT:

The Xor'ing of the 4 key streams producing the Effective Key Stream:

Key stream @ 871,453
Key Stream 84,263,706
Key stream €1,312,823
Key Stream 84,080,040

Effective Key stream

Input Plaintext Text
Input Plaintext Hex

Effective Key Stream

output Ciphertext Hex
out Ciphertext Text

The ciphertext block:

E952CF1AAEBAEC21C7BAB/ 2EFFOB362ADF32709E1B3DBBEDF78BC5877353570B3DC65B12FCO10E20EQ/B65520782D0630AAF1F13F945FDCO10B2719E638746
CCATEAZ4DAAFGO3AAAEF SBDF2A01810109907E2B548553E3BDB1F251F08DOFFOS70ABSDABSCHDIAFEL7CRY72CBYDOGELS 2 7AE4 541A2F703006E4B26AEAGD
BFDA5SBFBLA7CA4DOEESLSOEB44D1A7500EF94EC24DD6OB2919E0A2B7OAF7AD1 2184834381001 0D06EEBBFE4BDCDAE440D33578D4F1EBZO0FBERO1]17E9038BCO
ADSOBSSAFCACDISYE2ADAZORA4BOL7FCO5093D0OF3D14DFA5EGEAL1S5FB2A04CESBBICOABO2ECZOBL207EROCO07IECAEQFBASCIEIFADCCIAFSESE2 B4 AGLEBEY

CLEEPELCREREE R e e e e e e e e e et e e e e e e e e et e e e e e e e e e e e e e e e e i
377B139C1CF5144266EDD62D5C36D54 E3CAB4300B014738A2D7B08441885C50346FDA7EAABFBB66F23B4 5289577EC5C369DCCOABOB33EASOBBA7I1ACFESS

111111111122222222223333333333444444444455555555556686
1234567850123 4567800123456789012345678001234567890123456780012
ckcolor = LHOOFFABABS&?? Borderstyle = 1 "Fixe
636B436F6CHF72202020202020203D02020202648303046464138413826000A202020426F726465725374706C6520202020203D02020203120202746697865
LELLRRLEREEEEE e e et eyl
377B139C1CF5144266EDD62D5C36DYME3ICABA 3008014 738A2D7B08441885C50346FDAZEAABFBBO6F 2384 5280577EC5C369DCCOABGEBI3EADOBBAYI1ACFESS
CEPLREERREEEEE e e et e i e e e e e e e e e e e e e e e el
541050F3709A666246CDF60D7C16EBGELCBEG6548802435CCHC43497C3IERBCF2366DDESSBDASCE3LIDZ0CO2BES325EESE340FCFDEB4B13DEBOABEBOS7CH5863D
TIPopifbFIo?]|8n "eHeE€YSYIT1ICcI|>»"1T#FYa«0eed pAh+a2riadarTidy " kKrld'«€whit-="

[TiPOp3TbFIo? | 2n"eHESSITCT | > "T#F YA <Oeaph+A2ARAT0Y " KID" «EWAT="KC]EFAENE-S | », AHOLS™ OAMIEY320E{+2 0205 T< I TIE7dRZP? 7ELVN " DIMIGW]

32

How are the main pointers encrypted and

delivered to the decrypt cipher in the first block?
Actual extraction #2 from the demonstration output application:

out of the first 20 ciphertext characters, numbers 9 (7ph), 11 (B6h) and 2 (Alh)
were mathematically combined forming 8,238,753 (7DB6Alh). That address was
converted using the chain key to 1,067,295,

referencing the main key at that address and obtainning new positions between 1 and
20, ciphertext characters 11 (0Bh), 7 (07h) and 14 (DEE) were combined producing
722,702 (0BO70Eh). That address was converted using the chain key to 1,892,936,
variable placement numbers were obtained where the 3 ciphertext characters that,
when their AsSCII's are combined, ﬁruduce the starting value for the 4 pointers to
Encrﬁpt the plaintext pointers. The first 3 numbers from the main key starting

at that address making sure there were no duplicates: > 113, 127 and 100

These two sections are executed either side of the encrypt operation on the next slide, but shown together here because the

top sequence obtains data the bottom sequence needs to execute
THE ENCRYPTION OF THE PLAINTEXT POINTERS:|

The pointers to encrypt the plaintext pointers were obtained from combining the ciphertext characters at
positions: 113 (43), 127 (8) and 100 (1053), the AsSCII numbers of them are 43, 8 and 105 respectively
[Mathematically combined, they formed the starting address 2,820,201. Using the REVERSE chain key, the
pointers were initialized as: 4,712,161, 4,561,151, 2,558,867 and 5,755,520

Pointers being encrypted: P1 = 106,191, P2 = 1,937,651, P2 = 3,1BB,872, P4 = B,034,248

|pointerl| |pointer2]| |pointer3]||pointerd]|
4 Pointers separated into 3 Hex Bytes each — - 01 9E ?T }? ?? T? 30 T? 8 Fh ?T CB
4,712,161 cC 06 72 10 3B 13 EQ D3 AS AR 46 CO
4.561.,151 EC 04 1F C6 03 56 A7 57 E6 3C CB FB
2,558,867 EC 05 B3 3F AA A6 19 DO 81 1F 2B BY
5,755,520 D6 2B A7 TII"? ?? 91 29 74 62 DF ED OB

1 I 1 I B I Y
Pointer Ciphertext bytes - - - - - - — — — — 1B B2 B6 BD DA Bl 47 BB 28 2C DF 4F

PoiIinter #1
PoiInter #2
PoiIinter #3
Pointer #4

revChain(2,820,201)
revChainf4,712.,161)
revChainf4,561,151)
revChain(2?2,558,867)

The resulting encrypted pointer string to be fractured and placed in the ciphertext Tine > ?=10c7(,B0 <«

Ciphertext will be inserted in locations: 64, BB, 70, 106, 108, 43, 24, 79, 118, 1109, 56, 60

The plaintext encryption process

Actual extraction #2 from the demonstration output application:

Key stream & 106,191
Key Stream 81,937,651
Key Stream 83,188,872
Key straam 88,034,248

Effective Key Stream

are mathematica

Input Plaintext Text
Input Plaintext Hex

Effective Key Stream
output Ciphertext Hex

out Ciphertext Text
Ptr ctext overwrites

ASCII of the ci?hertext
1y combined in that order to

numbers are selected for the pointers to encrypt the plaintext pointers, and

where and in what order the pointer ciphertext will be placed within the ciphertext block.

|ITHE ENCRYPTION OF THE PLAINTEXT:

The xor'ing of the 4 key streams producing the Effective Key Stream:

1BCC7FIEADBFIZEZCEBASIOACFSEFLICAIAFZIDZAEFQODI0OBICH5ADDA 76D0O0625FF1ABB/ 668095 57ABCOCO3FOFB129232C
BOECCOCHS552B1AF4 7ABDCAABFFA4ADFB26334FB254434B026E1B000B033CR432D4A24RFERIFO99F1COBE4 SDBCOCEDBIF16F
037174BECYB548689398A2D76955B27C5201143C08DC4972C70B1C5908299DB69BSAEFO800EDAFG043CIFD0O72CO964F7B7A
66B598FAFCO9AF17961D2B3CEEABELIOED 20603 DE1ICBEEQACES9EQLO6C]S4EF3SCTIFO965ABCDI AR 2 2ACTAADAFEAFS4EQDE

CEEREREERR R e e e e e e e e e e e e e et e e e e e e e e e b el
64E4 5D9FC58B90074 84DB6DBB3E29BOF52F2A2 7ACA7660AAACAE 565869C24 DASFF76A5F1D4530259AA76CCEE21ESB140E7

of the plaintext f1agged with a '1', '2', '3' character
etermine where (position) and what

111111111122 22222222333333333344444444144
1234507809012 34507809012 3456067800123456780012345678240
__ U_____________________________________'IJ_____________
VERSION 5.007??20bject = x " {F6157800-110A-49xC1-98PD
56455253404 F4E20352E30300D0A4F626A656374203D02078227B463631353738303020313130412034397843312D0393844
CERELELETE Rttt e e et e et e et e ettt et e e et et e e e e e e e e el
04 E4 5DOFC58B90074 B4 DBODBB3EZOBOF S 2F2A2 FACAFOO0AAACAESGSBOOC24DASFFFOASFIDA530250AAFOCCRBEZLESB140EY
FEEELEREL PR e et e e e e e e e e e et e e e e e e e e e et e e bbbt
32A10FCCBCCADEZ 77 DOG3BOEBBEEBDA 6D3B9YC10EEA4 B4 ODZ2 BEDS10GESBF77AODCFAFBRCOESG343749E4FB4CD1OCERER7RBAS
2 i ?71EAp ' }c1EXEOmB-A?EKEDZ0nXKx2 TO AAdcCctzo I }ET x E,

G

34

Plaintext encryption After Block #1

Actual extraction #2 from the demonstration output application, this
functionality is repeated for all subsequent blocks:

Encrypting Block Number 2
For this block #2 encryption, the pointers are advanced as follows:

Pl = chainkey(106,191) = 8,090,328, P2 = chainkey(1,937,651) = 5,151,617, P3 = chainkey(3,188,872) = 6,833,190, P4 = chainkey(8,034,248) = 2,729,144

THE ENCRYPTION OF THE PLAINTEXT:
The Xor'ing of the 4 key streams producing the Effective Key stream:

Key Stream 88,000,328 - D3I6445F25AAB706BAEBCH7A23IBDFIDAAFBE2B1COB2A0DICFDADAACAAEZBOEBOCIOCCADFEZCFFCFIABBDDBOIDFBREOBFEOZFC273BA1A0013BAEYEALIC2BE2E
Key stream €5,151,617 - 9508622FFEOBS6335629A0B0F9CCA792BBADOEBOS013401CFA58A24EVC30E1IEZEEDGS2F23D0CYC3BECLS6COFI4EYOBIAD6B3 BABACOAZCAAFIFG7102BCBER
Key stream 6,833,190 - EGAOQCBAG55600C6B4364379864D42F54726FA20489F3B6CA0OA3IA4CEBO4ETOS0AS4CEI434B327D2BBB504CEEBDAOLEII24AFAC3TODS4FAODO7O75733874F0
Key stream 82,729,144 - FAEC2960006D932F931DEB3AB34112C203AA89F0COAZBB1E3D79F74F1086DFOBFO6AFO6BF6056544FD5FE1B24E2091704DB61AB0B418929881F101898F75

] COEEEEEEEEE e e e et e e e e e e e e e e e b e il
effective Key Stream - 5A20C51BFLAD73F35DFB65AE3C109D5D669FB6C8BA2A756DB011B5A0BFEID3EF7AFS1D5354D104FE1CF39A2BFB567180938D7444365560DFA69D23588843

111111111122 222222223333333333444444444455555555556686

1234567890123 456780012345678901234567890123456780012345678001°72

Input Plaintext Text —-ck Color = &HOOFFABABS&?? Borderstyle = 1 "Fixe
Input Plaintext Hex - 636B436F6CHF72202020202020203D020202026483030464641384138260D0A202020426F726465725374709606520202020203D2020203120202746697865
. CEEELLTEREEEEEEE e e et e e e e e e et e e e e e e et et il
Effective Key Stream - 5A20C51BF1AD73F35DFB65AE3C109D5D669F86CBB42A756DB011B5A0BFELID3EF7AFBIDS354D104FELCF39A2ZBFB567180038D7444365560DFA60D23588843
. CEEELTTEREEECEEE e e e e et e e e e et e e e e et e e e e e e e e e e e e e e et e e e e e e e et e e e e e
output Ciphertext Hex - 394B86749DCZ201D37DDB4 5BELC30A07D4 6BFAOBOB41A332BF129F4 9BAOECDOCF SADBSF3C26B5618CAFE7E3479E7651A0B3ADA964167551FFB6BAGS531F026
out Ciphertext Text - 9 Kt t A Y 0OEZ O T1Fée €,73+n)d " ©1i0IzZ26_<&PWaEOFaGZIVQ *-I1d;uQy¥teelde&y.

The ciphertext block:
[9ktth OYOEZ0 }F; €,73+0)067010126_<&uaw®0o}aczvg *-IduQit®eld&VAUAE |2Z->;=T8,1"]" ,ifTmPeavA&eB’ 'N|Cr»+»fw]SOI 1A¥A<ED "uGd7AT]

35

How are the main pointers obtained by the decrypt cipher?
Actual extraction #1 from the demonstration output application:

out of the first 20 ciphertext characters, numbers 9 (9ph), 11 (5ph) and 2 (Elh)
were mathematically combined forming 1,924,577 (1Dp5pEl1Lh). That address was
converted using the chain key to 7,843 ,272.

Referencing the main key at that address and uhtainninﬁ new positions between 1 and
20, ciphertext characters 1 (01lh), 10 (0ah) and 17 (11h) were combined producing
68,113 (010A11h). That address was converted using the chain key to 6,281,019,
wvariable placement numbers were obtained where the 3 ciphertext characters that,
when their ASCITI's are combined, ﬁruduce Tthe starting value for the 4 pointers to
Encrﬁpt the plaintext pointers. The first 2 numbers from the main key starting

at that address making sure there were no duplicates: > 27, B2 and 37

THE DECRYPTION OF THE PLAINTEXT POINTERS:
Ciphertext will be obtained from locations: 128, 64, 9F, 122, 70, 24, 111, 113, 106, 33, 46, 9%

Those 3 ciphertext characters in ositions 27, 82 and 37 (4eEh, 7Bh, 61h) formed 5,143,393 (4E7B61h)
Using pointer ciphertext string: M—}Z"MA_ FELt>]:

|pointerl] |pointer?2]|pointer3]|pointer4]
4D 96 10 A O4 AD C0O B4 A3 8 74 09

11 11 1111l 111l il
4 . F28.169 5B BC 4F ODp 18 DC ED C2 FH BD 4F

Pointer Ciphertext bytes - — -
11
6D

3,260,142 29 2C D8 asr 25 79 DFf C5 FF 45 56 Z2B
55
5
|
5

revChain(s,143,393)
revChain4 ,728,169)
revChain(3,260,142)
revChain(7,966,779)

Pointer #1
PoiInter #2
Pointer #3
Pointer #4

F,966,779 DD 58 Ad 651 27 30 OF 94 F4 1a 87
2,077,032 E9 D3 4 94 01 4A aAC DY 14 A 58 aC

L I [e I O Y O (Y O O Y |
4 Pointers separated into 3 Hex Bytes esach - — 0B 8D B 42 pC 41 57 FE 9E 21 ED Ba

Pointers decrypted: Pl = 757,173, P2 = 4,381,761, P3 = 5,734,046, P4 = 2,223,404

36

The plaintext decryption process

Actual extraction #1 from the demonstration output application:

THE DECRYPTION OF THE CIPHERTEXT:
The xor'ing of the 4 key streams producing the Effective Key Stream:

Key Stream & 757,173 - Al120D0157ABAB3BOBEQES4ADIAN491FDIF32CFAOBA532CBE6221FO9BBA9BOAAB]1OBO07A04E223F922AFEDAF19F46B6EE4CB79A1BD1F4AR
Key Stream €4,381,76]1 - 32BEDBSCBOFCAGAGBALICECIEADAFO4AAFCCLSCRI750D7FLICO6BDI0R5655B38312326D36BBDDEFSCF37CDBEBOEDFS542E2D030392AEVB0OEE
Key Stream 85,734,046 - FAO1B11AB1903EBB1OB7AIBIBOOFCH3407DCAOIFE2B7380831002BCCCOF77D4AF16BEREQS23ADASBSEED7BEADBL2CDEDBBEBRIBBOG5ABS
Key Stream @2,223,494 - CAO9097R7Z271F7320AFBEFBLIEOA7710BAALOCS SAFFFACIADALBZCOF7O706755B3796E2DC108901FAOFO0RY 2EEEGFFFES4477B46363D37

] FERELERRER TR e e e e e ee e e e b e e e e e e e e e e e e e el
Effective Key Stream - A3A45E3F24B6C714ABBC6DBBB3CF017127429558815091989B2708BD664 7BEB6F8BDC20F50CE0919EA4E126776E746CF40285DCC0613C2

The input being xor'ed with the Effective Key Stream producing the output:

Input Ciphertext Text - 6 A ? Tmu%4 "] »2ZANIM" 06, | M\ N«<Wwr %E 0 ayo9xgz+3$ecgtrtkax11ae$ dcgsg
Input Ciphertext Hex - FSE1QC6C6DF989349D925DBBBECS4EL34D27F62CAL60B14DB9S5CAEBBY772B8FBECBBDFEZ261FF3058BC77A2B2447746BFO7B0COCEL4224F4
. FEERLREERE et et e e e e e e e e e e et e e e e e e e et e e et e e e e e e e e et e ettt einnn
Effective Key Stream - A3A45E3FZ4B6C714ABBC6DEBBICFO17127429558815091989B62708BD664 FBEB6FBBDC20F50CEQYISEA4E]1 267 76EFAGCFA0285DCCO613C2
. CEERLRERTR et e e et et e e et r e et e e e e et e e e e et e e e e et e e e e e et rretinnl

output Plaintext Hex — 56455253404F4E20352E30300D00A4AF626A656374203D20D5227B64636313537383030392p313130412p34304331932D0393844312D443736
output Plaintext Text - VE R S I O N 5.007?7?0bject = 6"{F61578009-110A-49Cc1*“-9598Dp1-D7E6

Raw plaintext prior to extraction of the 12 pointer ciphertext digits:
[VERSION 5.0077?0bject = 6"{F61578009-110A-49C1“-98D1-D76CEB39B7B7CE#1.00#0"; "QWONG.d11"??Begin® RVB.Form OnTitsaEnium 7?7 §& BaM!]
Plaintext after extraction of the 12 pointer ciphertext digits:

[VERSION 5.0077?0bject = "{F6157800-110A-49C1-9801-D76C839B7B78}11. 0#0"; "QwoNG.d11"??Begin VB.Form nTitanium 2?7 BaM]

»or'ed all Ascii of this plaintext block, it equaled 0, it pPassed - eliminated the last character that made the xXor value 0.

37

Plaintext decryption After Block #1

Actual extraction #1 from the demonstration output application, this
functionality is repeated for all subsequent blocks:

pecrypting Block Number 2

For this block #2 decryption, the pointers are advanced as follows:

P1 = chainkey(757,173) = 871,453, P2 = chainKey(4,381,761) = 4,263,706, P3 = chainkey(5,734,046) = 1,312,823, P4 = chainkey(2,223,494) = 4,080,040

THE DECRYPTION OF THE CIPHERTEXT:
The Xor'ing of the 4 key streams producing the Effective Key Stream:

Key Stream @ 871,453 - E952C71AAEBAEC21CYBABY2EFFOB362ADF32700E183DBBEDF7BCSBY7353576B3DC65B12FCO10E20EQ7BO5520782D630AAF1F13F94 5FDCO16B2710EGIBY.
Key stream 84,263,706 - CCAFEAZ4D4AFGO3AAAEFSBDF2A0181919907E2B548553E3BD5B1F251F0BDOFFO570ABSD485CSD3IAFELI7CRBS72CE7D06EL527AE4541A2F703906E4826AEA
Key stream 81,312,823 - BFDB3BFBLAVCADOEE9159EBA4D1A7 S09EFY4EC24DD682919E9AZB79AFFA9121848343810010006EEEEFEABDCDAEA40D33578D4F1EB2OFBEBN117BO03 BB
Key Stream 4,080,940 - ADY6655AFCACD3S7E2ADAFGOR44B617FCO5093D0OF3D14DF4 SEGE415FB2A04CESBBSCOAROZEC20B]1207EROCO07IECAEOFBAOCIESFADCCIAFSEIEZSBA4AG1R

] CLELTELTEREE el
Effective Key stream - 377B139C1CF5144266EDD62D5C36D54E3CAB4300B014738A2D7B0B441885C50346FDATEAABFBB66F23B4 528957 7ECHC369DCCOABOBI3EA99BBA711ACFE

The input being Xor'ed with the Effective Key stream producing the output:

|[Input Ciphertext Text -T4POp5S5fbFIdo?|,én "eH€§511CI|>»"T#FYac<O0ed pA+taziriadrioy KilD'«€whAi-=
Input Ciphertext Hex - 541050F3709A666246CDF60D7C16EBGE1CEB654B802435CCHCA3497C3EBBCF2366DDESBEDAYCES1D7OCO2BES325EESE349FCFDBBAB13DEBYABBOS7C5BG
. CLLEELEEREEEr e il
Effective Key Stream - 377Bl39CLCF3144266EDD62D5C36D54E3CABA300B014738A2D7B0B441883C50346FDAJE4ABFEBO6F23645289577EC5C369DCCOABOE3I3EASOBBA7IIACFE
. CLELLIRREEEER et el
output Plaintext Hex - 636B436F6CHF72202020202020203020202026483030464641384138260D0A202020426F726465725374796C6520202020203020202031202027466978
output Plaintext Text - ckColor = &HOOFFABABS&?? Borderstyle = 1 "F1x
'[Plaintext: [ckcolor = &HOOFFABAB&?? Borderstyle = 1 'Fixed single?? cCaption = "wvernam Two Algorithm"?? Client]

How are the main pointers obtained by the decrypt cipher?
Actual extraction #2 from the demonstration output application:

out of the first 20 ciphertext characters, numbers 9 (7ph), 11 (B6h) and 2 (Aalh)
were mathematically combined forming 8,238,753 (7pB6Alh). That address was
converted using the chain key to 1,067,295,

referencing the main key at that address and uhtainninﬁ new positions between 1 and
20, ciphertext characters 11 (0Bh), 7 (07h) and 14 (0Eh) were combined producing
722,702 (O0BOFOEh). That address was converted using the chain key to 1,892,936,
variable placement numbers were obtained where the 3 ciphertext characters that,
when their ASCII's are combined, ﬁruduce the starting value for the 4 pointers to
Encrﬁpt the plaintext pointers. The First 2 numbers from the main key starting

at that address making sure there were no duplicates: > 113, 127 and 100

THE DECRYPTIONW OF THE PLAINTEXT POINTERS:
Ciphertext will be obtained from locations: 64, BE, 70, 106, 108, 42, 24, 79, 118, 110, 56, &0

Those 2 ciphertext characters in positions 113, 127 and 100 ({(2Bh, 0Bh, 6%h) formed 2,820,201 (Z2B0869h)
Using pointer ciphertext string: ?7=q0c7,BO]:

|pointerl]|pointer2||pointer3]||pointer4]
1B BZ2 BG HD DA B1 47 BE /28 2C DF 4F

1L O [I T I R I (O I I O N A
4,712,161 CC 06 72 10 2B 13 EOQ D3 A5 AA 46 CO
4.5%61,151 EC 04 1F co 03 56 A7 57 EG 3C CB F8
2,558,867 EC 05 B3 2F AR AG 19 pOo B1 1F 2B BY
5,755,520 DG 2B AT 79 p8 91 29 F4 62 DF ED OH

L L O e I e O O O I N N
4 Pointers separated into 3 Hex Bytes each - - 01 9 CcF 1D 90 F3 320 AB BB 7Aa 97 C8B

Pointer Ciphertext bytes - - - - - - — — — —

PoIinter #1
Pointer #2
‘Pujnter #£3
PoInter #4

revChain(2,820,201)
revChain(4,712,161)
revChain(4,561,151)
revChain(z,558,867)

Pointers decrypted: P1 = 106,191, P2 = 1,937,651, P3 = 3,188,872, P4 = E,034,248
39

The plaintext decryption process

Actual extraction #2 from the demonstration output application:

THE DECRYPTION OF THE CIPHERTEXT:
The Xor'ing of the 4 key streams producing the Effective kKey stream:

Key Stream & 106,191 - 1BCC771EAOBF3I3EZCEBASIOACYFOEFLCAZAZFIDZAEFOODIOBICHSADDA7OD60625FF1ABBY660B00557ARCOCH3FOFB1 2923 2CBOBAY70B1OBT
Key Stream €1,937,651 - 89ECCO6CH552B1lAF474BDCAABFFAADFE26334FE254434B026E18000B033CR432D4AZ4BYESIFO99F1CO6BB4 5DECOCBDEIF1G6F2 5SACEBSC17F1C
Key Stream @3 ,188,872 - 937174BECSBI4B68930BAZD70055B27C5201143COBDCA972C70B1CHR0B290DB6OBSAEFORBG0EDATGO43CIFDO/2CO0AF7B7AD75B477E4B12
Key Stream @8,034,248 - 66BYOBFAFCOAF1Y961D2B3CEEABRBIOED20603DB1CEBEES4CEZOEQLOGCLISA4EF3ISCTIFO65AGCDIVAFY22ACTAMAOAFEAFS4EQDE2FOF581ACIFD

. EELLLLREREL LR eee e eee e e gl
Effective Key Stream - 64E45D9FC5BBY9007484DB6DBB3E29B0F52F2A2 7ACA7660AAACAES65869C24DASFF76ASF1D4530259AA76CCEBE2LESB140E/1D2283338F44

The input being Xor'ed with the Effective Key stream producing the output:

Input Ciphertext Text

-2 i 7 +n =z Io AMacctzo 1T 4+E " x££, ?2C1"«BL

Input Ciphertext Hex - 32A10FCCECC4DE2??DGEBGEBBEEBD4GD3BQ?ClOEEAAB404?BED5106E58F??A9DCF4FEECOE56343?49E4FElCDlOCEEE?EAB2COFC?04B90?
. PLEELEREEE et e e e e b e e et e e e b e e e e b e e b e e e e e e e e e e e e e e e e e et
Effective Key Stream - 64E45D9FC5BBO9007484DB6DBBIEZOBOFS2F2A2 FACA7GE0AAACAESGSBEOC2ADASFF7OASFIDA 530259 AA76CCEEZ1ESB140E71D2283338F44
. II

output Plaintext Hex - 56455253404F4E20352E30300D0A4F626A656374203D 20ED22?B463631353?3330392D313130412D34394D43312D393E44312D443?3643
output Plaintext Text - VE R S I ON 5. 0077 h ject = i {F615780595-110A-49MC1-98BD1-D76C

Raw plaintext prior to extraction of the 12 pointer ciphertext digits:
[VERSION 5.00770bject = i"{F6157809-110A-49MC1-98D1-D/6CEB3I90B7Bf78}#1. 04#0"; "UQWONG.dT+1"7?7Beqin V¥B.FormU En?Titaniu™m 77 BaM]
Plaintext after extraction of the 12 pointer ciphertext digits:

[VERSION 5.00770bject = "{F6157809-110A-49C1-98D1-D76CE39B7E7EB}1 . 0#0"; "OowQNG.d11"??7Beqgin VvB.Form nTitanium 2?7 BaM]

xor'ed all asciI of this plaintext block, it equaled 0, it Passed - eliminated the last character that made the xor value 0.

40

Plaintext decryption After Block #1

Actual extraction #2 from the demonstration output application, this
functionality is repeated for all subsequent blocks:

pecrypting Block Number 2
For this block #2 decryption, the pointers are advanced as follows:

Pl = chainkey(106,191) = 8,000,328, P2 = chainkey(1,937,651) = 5,151,617, P3 = chainkey(3,188,872) = 6,833,190, P4 = chainKey(8,034,248) = 2,729,144

THE DECRYPTION OF THE CIPHERTEXT:
The xor'ing of the 4 key streams producing the Effective Key stream:

Key stream 88,090,328 - D36445F25AAB706BAEBCS7A23BDF3D4AFE62B1COB2ZAODICFDAOAACA AEYBOEBOCI6CCADFE2ZCFFCFIABBDDBO1DFBOEYBFBO2FC2738A1A091384E7E41C2BRB2E
Key stream 85,151,617 - 9508622FFE0B56335629A0B0F9CCA792B8ADYEBOS013401CF4 58A24E7C30ELIEZEESGS2F23D0CTCIBECIY6CHFI4E99B3A06B3 BABACOAZCAAFIFG67102BCBESR
Key stream 86,833,190 - E6AOCBAG5560C684364379864D42F54726FA204809F3B6CAGA33ACEBO4EFOS0AS4CR1434B327D2B885604CEEBDADLIEI324A74C376DYAFAIDO7O75733874F0
Key Stream 82,729,144 - FAEC2960006D932F931DEB3AB34112C203AAB9F0C9A288183D79F74F1086DF0BFOOAFO6BFO056544FD5FB1B24E2091704DB01AB08418920881F101898F75

] COLLELPLERELEELE e it
Effective key Stream - 3A20C51BF1AD73F33DFB65AE3CL09D5D669FB6CEE4 2A7 56DB011B5A0BFELD3EF7AFB1D5354D104FELCF39A2BFB567180938D7444365960DFA6OD23 588843

The input being Xor'ed with the Effective Key stream producing the output:

Input Ciphertext Text - 9Kttt A O6}0EZ 0 }F;. €,?73+0n)0 " 010126 _<«<&pa€oficgzvg *-Id,uqyt°°eldsy,
Input Ciphertext Hex - 394BB67490C201D370DB4 SBE1C30A07DA6BFAOBOB41A332BF129F40BASECDOCFSADBSF3C26B5618CAFB7E3479E7651A0B3AD4 964167 551FFBOBAGS31F026
. CELEELREERTER el
Effective Key Stream - 5AZ20CY1BF1AD73F335DFBOSAE3C109D5D660FB6CEE42A756DB011BSA0BFELDSEF7AFBLDA3 Y D104FELICF39A2BFB567180938D7444365560DFA60D23 588843
. CECEELDREETER e e e e e e e e ee el
output Plaintext Hex - 636B436F6C6F72202020202020203020202026483030464641384138260D00A202020426F726465725374796C652020202020302020203120202746697865
output Plaintext Text - ckColor = &HOOFFABABL&??? Borderstyle = 1 "Fixe
Plaintext: [ckcolor = &HOOFFABAB&?? Borderstyle = 1 'Fixed single?? Caption = "vernam Two Algorithm"?? Client]

41

What about a non-repeating key to Xor with the
plaintext, required for the Vernam algorithm?

® 4 pseudo-randomly selected key streams from the fixed 8,388,608
byte key are Xor'ed together. The pointers are changed for each
block using the chain key array, producing up to 8,388,608 non-
repeating Effective Key Streams.

® There are 6 sets of 65,536 files to prove this methodology produces
non-repeating key streams ready for examination.

®* The EKS streams were sorted so that the contents of each file
contains streams with the same first 4 hex digits.

® After this presentation, proof is available that any of the 100 million
entries in any of these files was produced with this single 8 Mbyte

What about a non-repeating key to Xor with the
plaintext, required for the Vernam algorithm?

® This test created 6 sets of 65,536 files for 100 million blocks of
Effective Key Streams, needed to encrypt 12.8 Gigabytes of
plaintext, created using the 8,388,608 byte key and chain keys.

® With each pointer having a possibility between 0 and 8,388,607
inclusive, there are 8,388,608% = 4.951 x 1027 sets of non-repeating
Effective Key Streams of virtually any size that could be produced.

® These 6 sets of 65,536 files were produced using only six of the
possible 4.951 x 1027 sets of 4 starting pointers. This should
indicate how many possible strings of 100 million non-repetitive
Effective Key Streams this methodology could produce, satisfying
the requirement for the Vernam algorithm. s

What about a non-repeating key to Xor with the
plaintext, required for a Vernam algorithm?

® Even if a potential attacker could find two ciphertext files
with blocks that have the same Effective Key Stream (EKS),
Algebraic law prohibits the correct determination of the
content of the 4 key streams used to create that EKS.

® The app that produced these files used the first 25 Effective
Key Stream hex numbers creating the 50-digit strings, plus
the pointers used, recorded in each of the 65,536 files,
about 140 Kbytes for each file.

® At the end of creating the files, it then opened each file and
compared each EKS with every other EKS within the file.

What about a non-repeating key to Xor with the
plaintext, required for a Vernam algorithm?

® It did not find any duplicates in any of the 65,536 files in
any of the 6 example sets.

® Each example produced 256 files in each of 256
subdirectories. 128 subdirectories are available on each of
2 data DVD’s for each example for your examination, along
with the app to prove they are correct.

® They will be shown and demonstrated later in this
presentation.

® A test showed that no duplicates were encountered after 2
Billion blocks.

Demonstration Application in Demo mode,
actual encryption example

1] B3

W Yernam Two - Internal Data and Methodology Display

Write this entire window to an output file | Encrypt the Sample Text |

Backup | Show a sample pointer advancement sequence |

Demonstration Text:

- Close |

IThis is =sample text to demonstrate these steps of the 'Vernam Two' methodology using new UNATTACKABLE Algebraic law for security

To provide pointers, input here:

Load Them |

To duplicate this display, use these values:l

745441,1250749,3654186,5133026

Plaintext ASCIT Hex - hd

1
2| =|[key Stream 3745,441 - 1F
2l zl|Key Stream @1,250,749- 95
2|=|[Key Stream @3,654,186- BA
2| =|lkey Stream 25,133,026- EF

1
Ciphertext Out Block - 8B

Effective Key Stream - DF

Hide the MMake
Eey Bogus Eey

i

I
15
Fi
Fo
cl

I
B4

DC

69
1
3D
ic
o8
6c
1
DC

BS

13

I
a7
45
FE
h2

I
Fi

8B

Create Random
Ciphertext

20

I
DE
Fh
T2
99

I
EQ

co

69

1
DC
Fa
F3
08

1
B

D1

13

I
ch
44
1B
D4

I
a0

13

20
I
89
B&
20
Ly}

I
D

F

73 61
ol
BO 11
8a CB
88 7D
FF T8
ol
3E BD

4D DC

6D
11
F1
BB
5
07

11
12

1F

T0
11
i ¥:3
69
T4
1c
11
3B

4B

ac
]
1B
5E
Ab
Co
]
2n

46

6h
11
Bl
DB
E2
90

11
Th

10

20
11
8E
05
4Cc
8c
11
6B

4B

Show just the Original Key Streams

T4
11
Db
28
41
17

11
8F

FB

6h 18
(NI
39 4E
38 BE
08 95b
06 15
(NI
en 08

0OF 70

Select EKS

T4
11
F1
1C
6o
Bb

11
46

32

128 character Ciphertext Block:

20
11
D2
Bb
94
D7

11
07

277

T4
11
81
03
3F
o
11
BE

2A

aF
]
50
Fo
E8
CF

]
El

8E

20
11
8o
4A
Th
D1
11
48

6B

64
11
06
FO
6D
29

11
Do

B2

6h

I
BY
8F
Az
86

I
11

12

6D

I
gc
12
13
20

I
co

AD

aF

1
EB
ac
BO
FE

1
AB

co

6E

I
aF
LB
D8
T6

I
F?

99

13
I
0B
o8
B4
E1
I
Bb

Co

T4
1
3a
D&
Al
B2
1
B

FF

Freeze Display | Return | MNext | Bax:kl

< ‘Uga, @rhr; *ukjQFe alHiwi | sp« } b TAGIAEL ~>1 3) * IEPi9FEA? ZVansH00—o (6Uis5y . E afiongyyU??7h/ -8 +iQaloun” Sy, bgp0oZg2llxw o f jWwix? A

46

Demonstration Application in Demo mode,

bogus key encryption example

1] B3

W Yernam Two - Internal Data and Methodology Display

Write this entire window to an output file | Encrypt the Sample Text |

Backup | Show a sample pointer advancement sequence |

Demonstration Text:

- Close |

IThis is =ample text to demonstrate these steps of the 'Vernam Two' methodology

To provide pointers, input here:

Load Them |

using new UHNATTACKABLE Algebraic law for security

Plaintext ASCITI Hex - 54

Il
Key Stream @7,77??,7?7- 49
Key Stream 687,777, ?7?7?- EA

EES
E1ES
2|=|[Key Stream @?,???,???- AC
=)=l

Key Stream @%,??%2,?%7?- D0
Il
Ciphertext Out Block - 8B

Xor of Bogus Key #'s - DF

Display

éBugus Keyé Correct Key

i
I
64
13
14
DF
I
B4

DC

69
I
Th
Th
3rF
8a
I
DC

BS

Create Random
Ciphertext

13

I
F2
ho
95
B5S

I
Fi

8B

20 69 73 20 73 61 6D 70 6C 6h 20
10 I T I T T I T I O I O
BD OB 93 EE 10 Z?F AT E1 58 FE 70
23 24 E1 BT BD 42 44 4B 6C F& D2
06 D1 &2 45 39 925 21 FA bB DC TC
K8 2F 08 E4 D9 24 DD 1B 29 C4 95
10 I T I T T I T I O I O
E0 B 60 DB 3E BD 72 3B 2A 7H 6B

C0 D1 13 F8 4D DC 1F 4B 46 10 4B

Show just the Original Key Streams

T4
11
1B
39
BE
02

11
8F

FB

6h
11
34
3E
T1
T4
11
6Rn

OF

78
]
DA
ch
FF
90
]
08

T0

Select EKS

T4
11
0E
99
05
AOD

11
46

32

128 character Ciphertext Block:

20
]
0E
BC
48
DD

]
07

277

T4
11
0E
EB
89
45

11
BE

2A

6F
11
086
94
16
LY |
11
E1l

8E

20
11
EZ2
ED
Th
16

11
48

6B

64
]
5A
BE
AF
19
]
D6

B2

6h
I
92
LA
19
cC
I
11

12

6D
1
oA
DE
2c
ch
1
co

AD

aF
1
Ad
0a
B4
DF
1
AB

co

6E 13
oIl
9C aE
BE &B
CF 97
71 54
oIl
F1 BS

99 Ca

T4

I
99
33
F2
Al

I
8B

FF

Freeze Display | Return | MNext | Bax:kl

< ‘Uga, @rhr; *ukjQFe alHiwi | sp« } b TAGIAEL ~>1 3) * IEPi9FEA? ZVansH00—o (6Uis5y . E afiongyyU??7h/ -8 +iQaloun” Sy, bgp0oZg2llxw o f jWwix? A

47

Demonstration Application in Demo mode,
bogus key encryption example

1] B3

W Yernam Two - Internal Data and Methodology Display

Write this entire window to an output file | Encrypt the Sample Text |

- Close |

Backup | Show a sample pointer advancement sequence |

Demonstration Text:

IThis is =ample text to demonstrate these steps of the 'Vernam Two' methodology

To provide pointers, input here:

Load Them |

using new UHNATTACKABLE Algebraic law for security

Plaintext ASCITI Hex - 54

Il
Key Stream G@7,7?7??,7?7- 4B
Key Stream d@°%,??%,?2%7- &C

EES
E1ES
2|=|[Key Stream @?,???,???- &F
=)=l

Key Stream @%,?%?7?,29??- 67
Il
Ciphertext Out Block - 8B

Xor of Bogus Key #'s - DF

Display

éBugus Keyé Correct Key

i
I
T3
heC
62
21
I
B4

DC

69
1
1F
¥
15
Fh
1
DC

BS

Create Random
Ciphertext

T3
1
1D
3B
32
FF
1
Fa

8B

20 69 73 20 73 61 6D 70 6C 6h 20
10 I T I T T I T I O I O
AD 3A C4 2D 52 CF 15 1B BH 4E 44
49 24 BA AS A4 FB 45 ET 17 FC Ad
BD 76 26 41 90 F1 CE 19 DF 32 BZ
99 B9 4B 31 2B 19 81 AE hB 20 19
10 I T I T T I T I O I O
E0 B 60 DB 3E BD 72 3B 2A 7H 6B

C0 D1 13 F8 4D DC 1F 4B 46 10 4B

Show just the Original Key Streams

T4 65 78 74 20 74 6F 20 64 65 6D 6F 6E 73 74
I I I T N T T U T I I I I A N
2n 53 HE 6D EA 0D 8C E7 9B 9E E& 88 64 40 DB
49 02 A3 4E 05 4% BE 96 51 D3 84 03 A6 AOD 20
0C D7 75 DD 2C 5A OE C9 bBE C7 E4 4F 0E 0A 31
94 89 F8 2C 54 34 BT DO 26 98 2B 0D bhh 2C 3C
I I I T N T T U T I I I I A N
8F 6A 08 46 07 5E E1 48 D6 77 C0 A6 F! BbH 8B

FB OF 70 32 27 2A BE 68 B2 12 AD C9 299 Cb FF

Freeze Display | Return | MNext | Bax:kl

Select EKS

128 character Ciphertext Block:

< ‘Uga, @rhr; *ukjQFe alHiwi | sp« } b TAGIAEL ~>1 3) * IEPi9FEA? ZVansH00—o (6Uis5y . E afiongyyU??7h/ -8 +iQaloun” Sy, bgp0oZg2llxw o f jWwix? A

48

Demonstration Application in Demo mode,

bogus ciphertext encryption example

1] B3

W Yernam Two - Internal Data and Methodology Display

Write this entire window to an output file | Encrypt the Sample Text |

Backup | Show a sample pointer advancement sequence |

Demonstration Text:

- Close |

To provide pointers, input here:

IThis is =ample text to demonstrate these steps of the 'Vernam Two' methodology

Load Them |

using new UHNATTACKABLE Algebraic law for security

Plaintext ASCITI Hex 54 68 69 73

e i

2| zllkey Stream @?,???,???- 26 1B GE B5
2| zl|Key Stream @?,???,???- E6 62 EA 2F
2l|=|[Key Stream @?,???,???- OB 5C 51 82
2| z|llkey Stream @%?,2?2%,22?- C9 TC 23 &0
e i

Ciphertext Out Block - 56 31 9F 0B

Xor of Bogus Key #'s — 02 59 F& T8

Hide the MMake Drisplay
KEey Bogus Key Correct Key Ciphertext

20
1
3A
2E
6h
CB
1
o5

BS

69

1
21
AD
27
7D

1
BF

D&

T3

1
ccC
4E
14
CF

1
L]

2B

20
1
1A
ac
CA
FA
1
Fé

D&

13

I
T3
0B
Fi
22

I
D1

AZ

6l

I
c4d
99
Ad
CD

I
h1

30

6D

]
62
4c
F5
B

]
0E

63

70
]
F4
1B
0A
38
]
CD

BD

6c

11
DF
06
0D
21

11
99

Fb

6h
11
30
13
B7
BA
11
4B

2E

20

11
4F
AD
13
B4

11
6bh

45

Show just the Original Key Streams

T4 65
(NI
94 C7
6h F1
A3 27
1F 32
(NI
39 46

4D 23

18
11
1c
6l
37
g2
11
Bb&

CE

Select EKS

T4
11
23
F8
oA
27
11
12

66

128 character Ciphertext Block:

20
11
TE
Eb
2A
36
11
Al

87

T4

11
EO
5F
Th
6h

11
DB

AF

6F

11
25
2D
03
F1

11
93

FC

20

11
22
90
Db
Ab

11
EZ2

c2

64
11
80
TE
41
oA
11
41

25

6h
I
B1
6o
Al
28
I
30

b5

6D

I
6o
18
94
87

I
aF

0z

aF

1
D4
oc
aF
pd

1
FE

91

6E
1
51
FD
B5
6Aa
1
1D

13

13

I
47
o8
00
FC

I
L0

23

T4
I
6l
41
B2
DB
I
38

4c

Freeze Display | Return | MNext | Bax:kl

V1¥7e,;X0HQ? IPKePF IS0 4R00bP Bm OV eEE251a0E i£® 0 [OUI20+<WlRix|[iT«dTy 851 U=B2 YUC], %~69U]HTh78" =D O£t tK* gEAOMEMTaH#7? *B 7kl

49

Is this a cryptography first?

® The first 3 bogus key streams were randomly created and the
4th stream was calculated to provide the needed results.

® Therefore, in any vertical column, 3 of the numbers can have
any value from 0 to 255. There are 2562 = 16,777,216
possible sets of 4 key stream numbers for each column.

® With 128 columns per block, there are 16,777,216*%8 possible
key streams that will result in the plaintext to ciphertext
conversion. Attackers have no single key goal.

®* How many keys will correctly translate an AES ciphertext to
e plaintext? Do attackers have a one key goal to reach? =

What should be the conclusions
of this new design?

® The fixed key is protected from discovery by Algebraic law.
® The plaintext is protected from discovery by the Vernam Algorithm.
® The values of the pointers are protected by simple mathematics.

® There is no mathematical process available that could ever
distinguish the plaintext ciphertext from the pointer ciphertext
because both processes use the same methodology of encryption.

® The pointer ciphertext characters are pseudo-randomly mixed
together with the plaintext ciphertext characters in different
positions in different orders in different ciphertext files.

° The two processes (plaintext and pointer processing) use different
ts of 4 pseudo-randomly set pointers.

51

