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Abstract In the last few years garbled circuits (GC) have been elevated from being merely a compo-
nent in Yao’s protocol for secure two-party computation, to a cryptographic primitive in its own right,
following the growing number of applications that use GCs. Zero-Knowledge (ZK) protocols is one of
these examples: In a recent paper Jawurek et al. [JKO13] showed that GCs can be used to construct
efficient ZK proofs for unstructured languages. In this work we show that due to the property of this
particular scenario (i.e., one of the parties knows all the secret input bits, and therefore all intermediate
values in the computation), we can construct more efficient garbling schemes specifically tailored to
this goal. As a highlight of our result, in one of our constructions only one ciphertext per gate needs to
be communicated and XOR gates never require any cryptographic operations. In addition to making
a step forward towards more practical ZK, we believe that our contribution is also interesting from a
conceptual point of view: in the terminology of Bellare et al. [BHR12] our garbling schemes achieve au-
thenticity, but no privacy nor obliviousness, therefore representing the first natural separation between
those notions.
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1 Introduction

A garbled circuit (GC) is a cryptographic tool that allows one to evaluate “encrypted” circuits on “en-
crypted” inputs. Garbled circuits were introduced by Yao in the 80’s in the context of secure two-party
computation [Yao86], and they owe their name to Beaver et al. [BMR90].

Since then, garbled circuits have been used in a number of different contexts such as two- and multi-
party secure computation [Yao86,GMW87], verifiable outsourcing of computation [GGP10], key-dependent
message security [BHHI10], efficient zero-knowledge [JKO13], functional encryption [SS10] etc. However, it
is not until recently that a formal treatment of garbled circuits appeared in the literature. The first proof of
security of Yao’s celebrated protocol for two-party computation, to the best of our knowledge, only appeared
a few years ago in [LP09], and it is not until [BHR12] that garbled circuits were elevated from a technique
to be used in other protocols, to a cryptographic primitive in their own right.

Different applications of GC often use different properties of the garbling scheme: In some applications we
need GCs to protect the privacy of encrypted inputs, in others we need GCs to hide partial information about
the encrypted function, while in yet others we ask GCs to ensure that even a malicious evaluator cannot
tamper with the output of the GC. In their foundational work, Bellare et al. [BHR12] formally defined the
different security properties that different applications require from GCs, showed separations between them,
and showed that the original garbling scheme proposed by Yao satisfies all of the above properties. This
raises a natural question:

Can we construct garbling schemes tailored to specific applications,
which are more efficient than Yao’s original construction?

In this work we give the first such example, namely a garbling scheme which only satisfies authenticity
(in the terminology of Bellare et al.) but not privacy: One of the main properties of Yao’s garbling scheme
is that the circuit evaluator cannot learn the values associated to the internal wires during the evaluation of
the garbled circuit. This implies that the evaluation of each garbled gate must be oblivious (it must be the
same for each input combination). In this work we give up on this property and we construct a scheme where
the evaluator learns the values associated which each wire in the circuit, and explicitly uses this knowledge
to perform non-oblivious garbled gate evaluation. This allows us to significantly reduce the size of a garbled
circuit and the computational overhead for the circuit constructor. We show that this does not have any
impact on authenticity, i.e., the only thing that a malicious evaluator can do with a garbled input and a
garbled circuit is to use them in the intended way, that is to evaluate the garbled circuit on the garbled input
and produce the (correct) garbled output.

Our new garbling schemes can be immediately plugged-in in Jawurek et al. [JKO13] efficient zero-
knowledge protocol for non-algebraic languages, and therefore we believe that our results have both practical
and conceptual value. It is an interesting future direction to investigate which other applications could benefit
significantly from our new garbling scheme (natural candidates include verifiable outsourcing of computation,
functional encryption etc.).

1.1 Other Garbling Schemes

Since the introduction of GCs by Yao, a number of optimizations have been proposed to increase their
efficiency. Some of the most significant optimizations include point-and-permute [Rog91,MNPS04] (which
reduces the work of the circuit evaluator from 4 to 1 decryption per garbled gate) the row-reduction tech-
nique [NPS99,PSSW09] (which reduces the number of ciphertexts per garbled gate, by fixing some of them to
be constant values), the free-XOR and fleXOR techniques [KS08,KMR14] (which allows to garble/evaluate
XOR gates using none/less cryptographic operations). In [BHR12,BHKR13] efficient garbling schemes, which
only use one call to a block-cipher for each row in a garbled gate, are presented. Information theoretic gar-
bling schemes can efficiently be constructed [IK02,Kol05,KK12] for low-depth circuits. All these techniques
lead to very efficient garbling schemes that are used today in practical implementation of secure two-party
computation. Our optimization is conceptually different from all of the above, as our schemes are not “general
purpose” since they do not satisfy privacy.
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LEGO GCs [NO09, FJN+13] are different from Yao GCs as they allow one to generate garbled gates
independently of each other and then, at a later time, to solder them together into a functional garbled
circuit. LEGO GCs can be used for secure two-party computation in the presence of active corruptions.

The size of garbled input in Yao-style GCs grows linearly in the security parameter. In [AIKW13] a
garbling scheme where the garbled input grows only by a constant factor is presented at the price of using
public-key primitives (traditional GCs only use symmetric key operations). Traditional GCs only work on
Boolean circuits, while [AIK11] presents a way of garbling arithmetic circuits directly.

All previously discussed garbling schemes are one-time, meaning that no security is guaranteed against an
adversary that receives the garbling of two different inputs for the same garbled circuit. A recent line of work
considers reusable garbled circuits [GKP+13] and their (asymptotic) overhead [GGH+13]. While the concept
of reusable garbled circuits has numerous applications in establishing important theoretical feasibility result,
their use of heavy crypto machinery makes them (still) far from being practical. Finally, there exist garbling
schemes tailored for other models of computation [KW13] including RAM programs [LO13,GHL+14].

Independently from us Ishai and Wee [IW14] defined the notion of partial garbling: like us, they noticed
that in some applications one of the parties controls all the inputs and therefore it is possible to construct
garbling schemes which are more efficient than traditional ones. However they develop this observation in
a very different direction compared to us: the two works use different abstraction models (garbling schemes
vs. randomized encodings), are useful for different tasks, and use completely different techniques.

1.2 Our Contributions

We propose some novel garbling schemes which satisfy authenticity only and are more efficient than general
purpose garbling schemes1:

Privacy Free GRR1 with cheap XOR: In this garbling scheme we only send one ciphertext for each
encrypted gate (both XOR and non-XOR). The circuit evaluator uses 3 calls to a Key Derivation Function
(KDF) for each non-XOR gate, and none for each XOR gate (so from a computational point of view XOR
gates are free). The scheme combines the row reduction technique with non-oblivious gate evaluation.

Privacy Free GRR2 with free-XOR: In this garbling scheme we send two ciphertexts for each encrypted
non-XOR gate, and XOR gates are “for free”. The circuit evaluator uses 3 calls to a KDF for each
non-XOR gate (and none for XOR gates). The scheme is similar to GRR1, but using the free-XOR
technique reduces the degrees of freedom we have in choosing the output keys and therefore require
higher communication complexity for non-XOR gates.

Privacy Free fleXOR: In this garbling scheme we combine either our GRR1 or GRR2 scheme with the
fleXOR technique of [KMR14]. The cost of non-XOR gates is unchanged from the previous scheme, i.e.
one or two ciphertexts per gate respectively, but now the cost of XOR gate depends on the structure of
the circuit: XOR gates require no cryptographic operations, while for communication, depending on the
circuit structure, XOR gates require communication of 2, 1 or 0 ciphertexts. Also note that our fleXOR
variant, being tailored for privacy-free garbled circuits, performs better than the original.

Furthermore, we present a formal generalization of garbling schemes with gates with arbitrary fan-in and
show how to construct each of our privacy-free schemes in such a setting. It turns our that all types of our
privacy-free garbled gates yield even more significant improvements in computation (and in some settings
also communication) over general garbled garbles when fan-in is larger than two.

1.3 Overview of Our Schemes

In a nutshell, our garbling schemes work as follows: Consider a NAND gate, with associate input keys
L0, L1, R0, R1 for the left and right wire respectively, and output keys O0, O1. The circuit constructor needs
to provide the evaluator with a cryptographic gadget that, on input La, Rb, outputs the corresponding output
key Oa∧̄b. Remember that our goal is not privacy, but only authenticity, meaning that the evaluator is allowed
1 The naming convention here follows [PSSW09], where GRR stands for garbled row reductions.
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to learn a and b but even a corrupted evaluator should not learn O1−(a∧̄b). In particular, this means that the
evaluator should learn O0 if and only if (iff) he holds both L1 and R1. This can be ensured by encrypting
O0 under both L1 and R1.

On the other hand, it is enough that one of the inputs is 0 for the output to be 1, so it “should be
enough” to hold L0 or R0 to learn O1. In standard Yao GCs we do not want the evaluator to learn which of
the three possible combinations of input keys he owns (nor the output of the gate) and therefore we encrypt
O1 under all the three possibilities in the same way as we encrypt the 0 key. But if the evaluator is allowed
to know which bits keys correspond to, we can simply encrypt O1 separately under L0 and R0, thus saving
one encryption.

Note that, using the row-reduction technique, we can instead derive O0 as O0 = KDF(L1, R1) and
therefore we can remove one ciphertext from the garbled table. We now have two-choices:

– If we want to be compatible with the free-XOR technique the value O1 is already determined by O0 and
the global difference ∆, and thus no more row-reduction is possible.

– Alternatively we can decide to give up on free-XOR and derive O1 as O1 = KDF(L0), thus removing yet
another ciphertext from the garbled table, that now contains only the ciphertext C = O1 ⊕ KDF(R0).

“Almost” free-XOR. If we choose the second path, we need an efficient way of garbling the XOR gates:
we do so by defining the output keys O0 and O1 respectively as O0 = L0 ⊕ R0 and O1 = L0 ⊕ R1. Of
course, it might be that at evaluation time the evaluator holds L1 instead of L0, and thus we provide him
with an “advice” to compute the correct output key in this case. It turns out that it suffices to reveal the
value C = L0 ⊕R0 ⊕ L1 ⊕R1. Due to the symmetry of the XOR gate, now the evaluator can always derive
the correct output key. Note that now XOR gates do not require any cryptographic operation but only the
communication of a k-bit string (k being the security parameter), and therefore are “almost” for free.

The paranoid reader might now worry on whether revealing the XOR of all input keys affects the security
of our scheme, and the impatient reader might not want to wait for the formal proof, which appears later
in the paper: Intuitively revealing C does not represent a problem because, if it did, then the free-XOR
technique would be insecure as well: In (standard) free-XOR the value C is always 0, as L0⊕L1 = R0⊕R1,
and therefore known to the adversary already.

Privacy free fleXOR. Finally we combine our technique with the recent fleXOR garbling scheme [KMR14].
A central concept in fleXOR is to look, for each wire, at the XOR between the two keys associated to that
wire, or the offset of that wire. While in freeXOR the offset is a constant for the whole circuit (therefore
fixing half of the keys in the circuit), in fleXOR wires are ordered in a way to maximize the number of offsets
which are the same, while at the same time leaving the circuit garbler the ability to choose freely the output
keys for the non-XOR gates.

The fleXOR wire ordering induces a partitioning of the wires for each XOR gates. In particular, each
XOR gates is assigned a parameter t which denotes how many input wires have offset different than the
output wire. Then a 0-XOR gate can be garbled exactly like in free-XOR, while for t-XORs (with t > 0)
the garbler sends t ciphertexts to the evaluator, which are used to “adjust” the offsets of those input wires.
In the privacy-free case, exploiting non-oblivious gate evaluation, we can simply reveal the XOR of the
offsets instead, exactly like in our GRR1 scheme. So, while the original fleXOR requires the garbler and the
evaluator to perform 2t and t calls respectively to the KDF, we do not require any cryptographic operations
for fleXOR gates.

Garbling XORs. To conclude this technical introduction, we would like to present the reader with a recap
of the different ways in which XOR gates are garbled in this paper. Like before, let L0, L1, R0, R1, and
O0, O1 be the keys for the left, right and output wire, and let ∆L, ∆R and ∆O be their differences, the
offsets associated to the wires. Now, the “baseline” garbling of a XOR gate is done as follows: the garbler
sets O0 = L0 ⊕R0, then computes and send to the evaluator the following values:

CL = ∆L ⊕∆O and CR = ∆R ⊕∆O
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Now, on input keys La, Rb, the evaluator retrieves
Oa⊕b = La ⊕Rb ⊕ a · CL ⊕ b · CR

The baseline garbling transmits 2 ciphertexts, but in most cases we can do better.
GRR1: In this case the garbler can freely choose both ∆O, which is set to be equal to ∆L (so that O1 =

L1 ⊕R0) and therefore we do not need to communicate CL, saving one ciphertexts w.r.t. the baseline.
free-XOR: Here it holds that ∆L = ∆R = ∆O, therefore both CL = CR = 0 and no ciphertexts need to be

transfered.
fleXOR: a t-XOR gate is garbled like in the baseline garbling when t = 2, like in GRR1 when t = 1 and

like free-XOR when t = 0.

1.4 Efficiency Improvements
Our garbling schemes offer different performances in terms of communication and computation overhead. It
is natural to ask which one is the most efficient one. Like most interesting questions, the answer is not as
simple as one might want, and to answer which garbling scheme offers the best performances one must define
the price of communication vs. computation. The ultimate answer depends on the actual hardware setting
(CPU, network) on which the protocol is to be run and can only be determined empirically.

Communication
(amortized # of ciphertexts per gate)

Circuit
# of Gates Private Privacy-free

Saving
AND XOR GRR2 free-XOR fleXOR GRR1 free-XOR fleXOR

DES 18124 1340 2.0 2.79 1.89 1.0 1.86 0.96 49%
AES 6800 25124 2.0 0.64 0.72 1.0 0.43 0.51 33%
SHA-1 37300 24166 2.0 1.82 1.39 1.0 1.21 0.78 44%
SHA-256 90825 42029 2.0 2.05 1.56 1.0 1.37 0.87 44%

Table 1. Comparison with other garbling schemes on some circuit examples from [ST12] in terms of communi-
cation complexity. The fleXOR scheme used is based on GRR1 and thus a “safe” topological ordering is assumed
(see [KMR14]). The number in each cell shows the amortized number of ciphertext per gate that need to be sent.
We ignore the inversion gates, as they can be pulled inside other kind of gates. The “Saving” column is computed
against the previously best solution.

In Table 1 and Table 2 we benchmark our garbling scheme against the best previous garbling schemes,
on a number of circuits that we believe relevant for the zero-knowledge application that we have in mind
e.g., proving “I know a secret x s.t., y = SHA(x)” for a y known to both the prover and the verifier.

The circuits used are due to Smart and Tillich and are publicly available [ST12]. Note however that the
numbers in our tables depend on the actual circuits being used, meaning that it might be possible to find
different circuits that compute the same functions but that are more favorable to one or another garbling
scheme. Finding such circuits requires non-trivial heuristics and manual work (e.g., [BP12]), as there is
evidence that finding such circuits is computationally hard [Fin14,KMR14].

Still, no previous garbling scheme performs better than all of our proposed schemes, therefore while the
actual saving factor might change, one of our schemes will always outperforms the rest.

2 Preliminaries and Definitions
To keep the paper self-contained, we include the definitions for garbling schemes from [BHR12,BHKR13]A
description of the zero-knowledge protocol can be found in Appendix A.
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Computation
(amortized # of encryptions per gate for garbler/evaluator)

Circuit
# of Gates Private Privacy-free

Saving
AND XOR GRR2 free-XOR fleXOR GRR1/free-XOR/fleXOR

DES 18124 1340 4.0/1.0 3.72/0.93 3.78/0.96 2.79/0.93 25%/0%
AES 6800 25124 4.0/1.0 0.85/0.21 1.44/0.51 0.64/0.21 25%/0%
SHA-1 37300 24166 4.0/1.0 2.43/0.61 2.78/0.78 1.82/0.61 25%/0%
SHA-256 90825 42029 4.0/1.0 2.73/0.68 3.11/0.87 2.05/0.68 25%/0%

Table 2. Comparison with other garbling schemes on some circuit examples from [ST12] in terms of computational
overhead. The fleXOR scheme used is based on a “safe” topological ordering (see [KMR14]). The number in each
cell shows the amortized number of calls to a KDF per gate that the constructor/evaluator need to perform. (The
evaluator always performs 1 KDF evaluation for non-free gates.) Note that we do not count the non cryptographic
operations in this table (polynomial interpolation in GRR2, XOR of strings in all others). The “Saving” column is
computed against the previously best solution.

2.1 Notation

Let N = {1, 2, . . . } be the natural numbers, excluding 0. We write [x, y] (with x < y ∈ N) for {x, x+1, . . . , y}
and [x] for [1, x]. We use | · | as a shorthand for the cardinality of a set or amount of bits in a string. If S is
a set we use x ∈R S to denote that x is a uniformly random sampled element from S. We let poly(·) denote
any polynomial of the argument.

Regarding variable names we let k ∈ N be the security parameter and call a function negl : N → R+

negligible if for a big enough k it holds that negl(k) < 1/ poly(k). In general we use negl(·) to denote any
negligible function.

We let L ⊂ {0, 1}∗ be an arbitrary language in NP and ML be the language verification function, i.e.,
for all y ∈ L there exists a string x ∈ {0, 1}poly(|y|) s.t. ML(x, y) = accept and for all y 6∈ L and x ∈ {0, 1}∗
we have ML(x, y) = reject.

2.2 Defining Our Garbling Scheme

We start by considering a plain description of a Boolean circuit with a single output bit, consisting of Boolean
gates having arbitrary fan-in. This can be used to compute a Boolean function. The description is closely
related to the ones in [BHR12, JKO13], but generalized to support gates with arbitrary fan-in along with
non-oblivious gate evaluation.

Let f be a description of such a circuit, taking n ∈ N bits as input and consisting of q ∈ N internal gates.
We let r = n+q be the number of wires in the circuit and specifically define inputWires = [n], Wires = [n+q],
outputWire = n+ q and Gates = [n+ 1, n+ q], where inputWires represent the set of input wires, outputWire
represents the output wire, Gates represents the set of Boolean gates of arbitrary fan-in and Wires the set of
all wires in the circuit.

Next we let I be a function mapping each element of Gates to an integer describing the fan-in of that
gate, i.e., I : Gates → N. We let W be a function mapping an element of Gates, along with an integer
i (representing a gate’s i’th input wire) to an element in Wires. When calling W on some g ∈ Gates we
require that the i’th input wire is in [I(g)], otherwise we return ⊥. Thus, the signature for the method is
W : Gates × N → {Wires\outputWire}∗ ∪ {⊥}. We further require that W (g, i) < W (g, i + 1) < g for all
g ∈ Gates and i ∈ [I(g)− 1] in order to avoid circularities in the circuit description.

Finally, we let G be a function taking as input an element of Gates along with an array of bits and
returning a single bit or ⊥. That is, G : Gates × {0, 1}∗ → {0, 1} ∪ {⊥}. Specifically G is a description of
the functionality of each gate in the circuit along with a short-circuit features such that ⊥ is returned if the
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amount of elements in the binary input vector is not equal to the integer returned by I when queried on
the same gate index. More formally G

(
g, {bi}i∈[I(g)]

)
∈ {0, 1} for all g ∈ Gates, bi ∈ {0, 1} and ⊥ otherwise.

Sometimes we abuse notation and simply write G(g, b) if g ∈ Gates and b ∈ {0, 1}m when I(g) = m. We also
say G(g, ·) = NAND or G(g, ·) = XOR if the truth table constructed from G is the truth table of a NAND,
respectively, XOR gate.

Finally we combine all these functions and variables in f by letting f = (n, q, I,W,G). However, we
sometimes abuse notation and view f as a black box Boolean function, i.e., f : {0, 1}n → {0, 1}.

With this plain description of a Boolean circuit in hand we define a verifiable projective garbling scheme
by a tuple

G = (Gb,En,De,Ev, ev,Ve)
such that:

– Gb(1k, f) → (F, e, d) is the garbling function, a randomized algorithm that takes as input a security
parameter 1k and a description of a Boolean function (n, q, I,W,G) ← f under the constraint that
n = poly(k), n ≥ k and |f | = poly(k). The function outputs a triple (F, e, d) representing a garbled
circuit (F ), input encoding information (e) and output decoding information (d).

– En(e, x)→ X is the encoding function, a deterministic function that uses the input encoding information
e to map an input x to a garbled input X. We say a scheme is projective if e =

({
X0

i , X
1
i

}
i∈[n]

)
and

the garbled input X is simply {Xxi
i }i∈[n]. In this paper we are only interested in projective schemes and

therefore we do not use the En function explicitly.
– Ev(F,X, x) → Z is the evaluation function, a deterministic functionality that produces an encoded

output Z by evaluating a garbled circuit F on an encoded input X. We assume that for fixed F , the
evaluation can output at most two values Z0 and Z1.

– De(d, Z)→ z is the decoding function, a deterministic functionality that, using the string d, decodes the
encoded output Z into a plaintext bit, z. We are only interested in whether z = 1 (e.g., the NP relation
accepts in the ZK setting), therefore we let d = Z1 and De(d, Z) outputs z = 1 if Z ?= Z1 and z = 0
otherwise.

– ev(f, x) → b is the plaintext evaluation function, a deterministic functionality that evaluates the plain
function described by f on some input x, i.e., ev(f, x) = f(x).

– Ve(F, f, e) → b is the verification function, a deterministic functionality that on input a garbled circuit
F , a description of a Boolean function f and the input encoding information e =

{
X0

i , X
1
i

}
i∈[n] outputs

1 if the garbled circuit F computes the functionality f . Otherwise the functionality outputs 0.

We now list a number of properties that we require from a garbling scheme and refer to [BHR12,JKO13]
for a detailed explanation of these definitions.

The following definition says that a correct evaluation of a correct garbling gives the right output.
Definition 1 (Correctness). Let G be a verifiable projective garbling scheme described as above. We say
that G enjoys correctness if for all n = poly(k), f : {0, 1}n → {0, 1} and all x ∈ {0, 1}n s.t. f(x) = 1 the
following probability

Pr
(

Ev
(
F, {Xxi

i }i∈[n] , x
)
6= Z1 :

(
F,
{
X0

i , X
1
i

}
i∈[n] , Z

1
)
← Gb

(
1k, f

))
is negligible in k.

The following definition says that from a correct garbling of an input and a function outputting 0 on that
input, you cannot find the decoding information for output 1, i.e., Z1.
Definition 2 (Authenticity). Let G be a verifiable projective garbling scheme described as above. We say
that G enjoys authenticity if for all n = poly(k), f : {0, 1}n → {0, 1} and all inputs x ∈ {0, 1}n s.t. f(x) = 0
and for any probabilistic polynomial time (PPT) A, the following probability:

Pr
(
A
(
f, x, F, {Xxi

i }i∈[n]

)
= Z1 :

(
F,
{
X0

i , X
1
i

}
i∈[n] , Z

1
)
← Gb

(
1k, f

))
is negligible in k.
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The following definition says that there is a unique garbled outputs corresponding to the output value
1, and that this unique value can be efficiently extracted given all the input labels. This holds also for
maliciously generated circuits, as long as they pass the verification procedure. This implies that the garbled
output value Z1 leaks no information about the original input x except for the fact that f(x) = 1.

Definition 3 (Verifiability). Let G be a verifiable projective garbling scheme described as above. We say
that G enjoys verifiability if for all n = poly(k), f : {0, 1}n → {0, 1} and all x ∈ {0, 1}n with f(x) = 1 and
for all PPT A there exists an expected polynomial time algorithm Ext such that

Pr
(

Ext
(
F,
{
X0

i , X
1
i

}
i∈[n]

)
= Ev

(
F, {Xxi

i }i∈[n] , x
))

> 1− negl(k)

when Ve
(
F, f,

{
X0

i , X
1
i

}
i∈[n]

)
= 1 and

(
F,
{
X0

i , X
1
i

}
i∈[n]

)
← A(1k, f) .

Finally, combining these definitions we get a definition of a secure verifiable, projective and privacy-free
garbling scheme.

Definition 4 (Privacy-free Garbling Scheme). Let G be a verifiable projective garbling scheme described
as above. If this scheme enjoys correctness, authenticity and verifiability in accordance with Def. 1, Def. 2
and Def. 3 respectively, then G is a secure privacy-free garbling scheme.

2.3 Key Derivation Function

We are going to use a “compressing” key derivation function KDF : {0, 1}∗ → {0, 1}k mapping an arbitrary
binary string to a pseudorandom string of k bits. The applications of the function will be of the form
K = KDF (K1, . . . ,Km; id) for some m ∈ N, where Ki ∈ {0, 1}k is a wire key and id ∈ {0, 1}∗ is a unique
label or tweak.

We need a notion of security where the adversary cannot compute the output of the key derivation
function except if he can do so trivially because he knows the entire input. Specifically we let keys be fresh
uniformly random values, derived or linear combinations of other keys, and id be publicly known. We require
that the adversary cannot guess a key derived from at least one uniformly random key, “uncompromised”
derived key or linear combination of keys where at least one is “uncompromised”. An uncompromised derived
key is one that was derived from at least one uniformly random key, uncompromised derived key or linear
combination where at least one key in the combination was uncompromised. We allow the adversary to
compromise keys by leaking them and construct new keys through linear combinations or key derivations.
Furthermore, we call a (potential) key compromised if the leaked keys allow to determine the key, in which
case the adversary can trivially compute it. More precisely:

Definition 5 (Game KDF). Let A be any PPT adversary and consider the following game:

Initialize: Let ID← ∅ be a set of identifiers used by the adversary and let LEAK← ∅ be the set of identifiers
that should be leaked.

Query: Let A make an arbitrary amount of calls, in any combination, to the following methods:
Fresh key: If A outputs (fresh key, id 6∈ ID), then sample Kid ∈R {0, 1}k and store (id,Kid) and let

ID← ID ∪ {id}.
Linear: If A outputs (linear, id0 6∈ ID, id1, . . . , idm) where idi ∈ ID for all i ∈ [m], then compute

Kid0 ←
⊕m

i=1Kidi
, store (id0,Kid0), and let ID← ID ∪ {id0}.

Derive: If A outputs (derive, id0 6∈ ID, id1, . . . , idm) where idi ∈ ID for all i ∈ [m], then compute
Kid0 ← KDF(Kid1 , . . . ,Kidm

; id0), store (id0,Kid0) and let ID← ID ∪ {id0}.
Leak: If A outputs (leak, id ∈ ID) set LEAK = LEAK ∪ {id}.

End: When A outputs (end) then return the set {Ki}i∈LEAK to A.
Guess: When A outputs (guess, id∗,K∗) for id∗ ∈ ID, then the adversary wins if K∗ = Kid∗ and id∗ was

not compromised, i.e., if id∗ 6∈ COMP, see below.
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We define the set COMP of IDs of compromised keys iteratively as follows: Define a linear system LIN over
formal variables cid for id ∈ ID. For each For each leakage command (leak, id ∈ ID), add the equation cid

to LIN. In the following we call an identifier id∗ determined in LIN if the linear system LIN allows to write
cid∗ as a linear combination of the variables cid for id ∈ ID. We use Det(LIN) to denote the set of identifiers
that are determined in LIN. We call id∗ derivable in LIN if there was a command (derive, id∗, id1, . . . , idm)
and idi ∈ Det(LIN) for each i ∈ [m]. We use Der(LIN) to denote the set of identifiers that are derivable in
LIN. We define an extension LIN′ = Ext(LIN) by letting LIN′ be LIN but with the equation cid∗ added for each
id∗ ∈ Det(LIN) and id∗ ∈ Der(LIN). Define LIN0 = LIN and LINi+1 = Ext(LINi). There are finitely many
variables, so this has a fixed index j such that LINj+1 = Ext(LINj). We let COMP denote the set of id’s in
LINj.

See that we use COMP to denote the set of IDs of compromised keys. The set is defined from a set of linear
equations, LINj , representing the compromised keys. The set LINj is recursively defined. First we define
an initial system LIN = LIN0 consisting only of a system of equations corresponding to the keys with IDs
in the leaked set LEAK. Each update consists of first adding the linear equations of the keys which have
been constructed using the linear command, that can be computed as a linear equations of the current
elements in the system. Using this new system we add the equations consisting of the keys which have
been constructed using the derive command on a subset of the already updated system. The system is
continuously updated until no new equations are added. Finally the IDs are taken to be the IDs of each of
the keys that is represented as an equation in the system.

We use GuessKDF,A(1k) to denote the probability that A wins the game. Using this game we define the
notion of a secure key derivation function.

Definition 6 (Secure Key Derivation Function). We say that a KDF(·) is secure if the advantage of
any PPT adversary A playing the KDF game is negligible in k, i.e.

GuessKDF,A(1k) ≤ negl(k)

for some negligible function negl(·).

It can be proven using standard techniques that a (non-programmable, non-extractable) random oracle
is a secure KDF in the above sense. More precisely:

Theorem 1. If KDF(·) is modeled by a non-programmable, non- extractable random oracle with k bits output
then for any PPT A it holds that GuessKDF,A(1k) ≤ negl(k) for some negligible function negl(·).

The proof of this theorem can be found in Appendix B.
We leave as future work the investigation of which exact computational assumptions are required for

implementing our different garbling schemes: while it is clear that the freeXOR and fleXOR variant require
strong notion of security (security under related-key attack and a flavor of circular security), it seems that
the GRR1 variant could be instantiated using standard security notions.

3 Our Privacy-free Garbling Schemes

In this section we present our novel garbling schemes. Our schemes support gates with arbitrary fan-in,
but as a warm-up we first present the garbling schemes for gates with fan-in 2 using GRR1 or GRR2 with
free-XOR. Both allow to garble every Boolean gate with fan-in 2 using only 3 calls to the KDF for non-XOR
gates and require no calls to the KDF for XOR gates.

Our first scheme has communication complexity of k bits per gate while our second garbling scheme is
compatible with “free-XOR”, but requires communication complexity of 2k bits for non-XOR gates.

Afterwards we present our two schemes for gates with arbitrary fan-in and in Section 4 a scheme that
supports the recent fleXOR approach [KMR14].
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Garb. Eval. Size

GRR1
NAND m+ 1 1 k(m− 1)
XOR 0 0 k(m− 1)

Free-XOR
NAND m+ 1 1 km

XOR 0 0 0

FleXOR
NAND m+ 1 1 k(m− 1)
t-XOR 0 0 kt

Table 3. Exact performances of our privacy-free garbling scheme. The “Garb.” and “Eval.” column state the number
of calls to a KDF required for garbling and evaluation respectively, as a function of the gate fan-in m. The column
“Size” states the number of bits added to the garbled circuit for each gate. We only report the fleXOR variant based
on “Safe” wire ordering.

3.1 Warm-up

To simplify notation and give the intuition of our scheme we here only describe how to garble/evaluate a
single NAND or XOR gate. We call the input keys to the left wire of a gate L0, L1, the input keys to the
right wire R0, R1 and the output keys O0, O1. All these values are elements of {0, 1}k.

Again we point out that in contrast with general garbled circuits, in our case if the circuit evaluator has
two keys La, Rb, he knows the corresponding bits a, b.

First consider a NAND gate with GRR1:

Garbling a GRR1 NAND Gate: LetO0 = KDF
(
L1, R1) andO1 = KDF

(
L0). Compute C = KDF

(
R0)⊕

O1 and output C.
Evaluating a GRR1 NAND Gate: To evaluate on input La, Rb, if a = b = 1 then output O0 =

KDF
(
L1, R1) otherwise, if a = 0 compute O1 = KDF

(
L0). Otherwise, if b = 0 compute O1 =

C ⊕ KDF
(
R0).

It should be clear that the scheme is correct. The intuition of authenticity is that if the evaluator only knows
one input key for each wire, he can only learn one output key unless he can guess the output of KDF on an
input he does not know. Next consider a XOR gate:

Garbling a GRR1 XOR Gate: Let O0 = L0 ⊕ R0 along with O1 = L0 ⊕ R1. Finally output C =
L0 ⊕ L1 ⊕R0 ⊕R1.

Evaluating a GRR1 XOR Gate: On input La, Rb if a = 0 then output Oa⊕b = La ⊕ Rb. Otherwise
compute and return Oa⊕b = C ⊕ La ⊕Rb.

Again, it should be clear that the scheme is correct. The authenticity intuitively follows from the fact
that the evaluator can only learn the XOR of two unknown keys which will not help decrypting the next
gate.

Now consider how to achieve the same, while allowing support for free-XOR gates (and in turn GRR2).
In this scheme there is a global difference ∆ s.t., for all wires w in a garbled circuit, the key pair X0

w, X
1
w

satisfies X0
w ⊕X1

w = ∆.

Garbling a GRR2 NAND Gate: Let O0 = KDF
(
L1, R1). This defines O1 = O0 ⊕∆ as well. Let CL =

KDF
(
L0)⊕O1 and CR = KDF

(
R0)⊕O1. Finally output {CL, CR}.

Evaluating a GRR2 NAND Gate: To evaluate on input La, Rb, if a = b = 1 then output O0 =
KDF

(
L1, R1) otherwise, if a = 0 output O1 = KDF

(
L0)⊕ CL otherwise output O1 = KDF(R0)⊕ CR.

Next consider a XOR gate:

Garbling a free-XOR Gate: Let O0 = L0 ⊕R0. This defines O1 = O0 ⊕∆ as well. Output nothing.

11



Evaluating a free-XOR Gate: On input La, Rb, output Oa⊕b = La ⊕Rb.

Again correctness should be clear and authenticity for NAND gates follow from the same argument as for
GRR1 NAND gates, whereas authenticity follows from the security of free-XOR, i.e. that it is hard to learn
∆, unless one is given both keys on some wire.

3.2 Generalization Intuition

We now consider how our approaches generalizes to gates with arbitrary fan-in.

NAND gates. Consider a NAND gate with fan-in m, call this gate g. Recall that for this gate the output
bit bg = 0 should occur exactly if all the input bits are equal to 1, b1 = b2 = . . . = bm = 1. This means that
we can define the output key representing bit 0 directly from these: If we denote the key on input wire i by
Xbi

i , then the output 0-key is computed as

X0
g = KDF

(
X1

1 , X
1
2 , . . . , X

1
m

)
.

Now, if we are not using a free-XOR scheme we define the 1-output key to be X1
g = KDF

(
X0

1
)
. Then the

entries in the garbled computation table is as follows:{
Ci = X1

g ⊕ KDF
(
X0

i

)}m

i=2 .

When we are using a free-XOR scheme we have another entry in the garbled computation table since the
output key X1

g needs to meet the constraint X1
g = X0

g ⊕ ∆ and thus we cannot define it to simply be
KDF

(
X0

1
)
. However, similarly to the scheme above that does not use free-XOR we use the KDF applied to

the first input key (which we have not used to hide anything in the scheme above) to hide X1
g . We let the

rest of the table remain as before and thus the whole garbled computation table is computed as follows:{
Ci = X1

g ⊕ KDF
(
X0

i

)}m

i=1 .

We describe the evaluation: Call the input keys Xb′1
1 , X

b′2
2 , . . . , X

b′m
m . If b′i = 1 for all i ∈ [m] then the

output is X0
g = KDF

(
X1

1 , X
1
2 , . . . , X

1
m

)
. Otherwise find the first value of i for which b′i 6= 1 and output

X1
g = Ci ⊕ KDF

(
X0

i

)
, except if i = 1 and we do not use a free-XOR garbling scheme, in which case the

output is X1
g = KDF

(
X0

1
)
.

XOR gates. To garble XOR gates (when we are not using the free-XOR method), we define the output 0-key
from information based on all the input 0-keys. Specifically as

X0
g = X0

1 ⊕X0
2 ⊕ · · · ⊕X0

m =
m⊕

i=1
X0

i .

In a similar manner we define the output 1-key from information based on the first input 1-key and all the
other input 0-keys, that is

X1
g = X1

1 ⊕X0
2 ⊕ · · · ⊕X0

m−1 ⊕X0
m = X1

1 ⊕

(
m⊕

i=2
X0

i

)
.

Let bi, for all i ∈ [m] be the input bits at evaluation time and bg = b1 ⊕ . . .⊕ bm be the output of that gate.
It might be the case that b1 6= 1 or that there are other j s.t., bj = 1. So we let the garbled computation
table consist of information which makes it possible for the evaluator to compute the right output key in
any such situation. Specifically we define the table as the following set:{

Ci = X0
i ⊕X1

i ⊕X0
1 ⊕X1

1
}m

i=2 .
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It is clear that, for any j 6= 1⊕
i∈[m]

Xbi
i

⊕ Cj = Xb1⊕1
1 ⊕Xbj⊕1

j

⊕
j 6=i>2

Xbi
i

Thus by XORing all the Ci’s for which bi = 1 we obtain⊕
i∈[m]

Xbi
i

⊕
 ⊕

i≥2:bi=1
Ci

 = Xb1⊕...⊕bm
1 ⊕

 ⊕
i≥2:bi=0

X0
i

⊕
 ⊕

i≥2:bi=1
X1⊕1

i

 = Xbg
g

Other gates. It is easy to see that our garbling scheme can be applied also to few other kind of gates such
as AND, (N)OR, XNOR etc., also in the case of high fan-in (by using a different partitioning of the inputs
and relabeling the outputs) but it cannot be used in for generic, “unstructured” gates of high fan-in.

Using high fan-in gates. Note that our garbling scheme is favorable for gates with high fan-in, since the
complexity shown in Table 3 (both in terms of communication and computational complexity) only grows
linearly with the gate fan-in, while a straightforward use of standard garbled circuit leads in a exponential
blow-up in the gate fan-in. Even when comparing the garbling of a gate with fan-in m to a circuit imple-
menting the same functionality (e.g., a tree of fan-in 2 NANDs to implement a NAND with fan-in m) our
scheme is still favorable. Depending on the garbling scheme we can save a factor 2-3 in terms of computation
for the garbler and also save in communication. In addition, the evaluator has an overhead of log(m) when
evaluating the circuit (versus a single call to the KDF in our case).

3.3 Formal specification

We describe our gate garbling schemes in the same notation as [BHR12], but with some changes in order
to reflect that we only require privacy, only assume one bit output and that we support gates of arbitrary
fan-in. The specification of the garbling scheme is given in Fig. 1 and the realizations for individual gate
garbling is given in Fig. 2 and Fig. 3, depending on whether or not one uses free-XOR or GRR1.

To enhance understanding we describe each step of these procedures.

The Garbling Scheme. The first method, Gb, constructs a garbled circuit, F , along with information, e, to
encode a binary string as garbled input to this garbled circuit and information, d, to check if the output of an
evaluation of the garbled circuit has the semantic value 1. The method takes as input a security parameter
1k and a description of the Boolean function to be computed, f . The format of the function description
should be in accordance with the description given in Section 2.2, and thus can be viewed directly as a
Boolean circuit. In step 1 the algorithm chooses two keys for each of the n input bits to f , in accordance
with the specific type of garbling scheme used. These are the 0-, respectively, 1-input keys. Step 2 involves
iteratively constructing each of the q garbled gates of the circuit, along with the two output keys needed
for each of these gates. It is done by first using I to decide the fan-in of a given gate, then using G to find
the specific functionality of the given gate. Finally the input keys for that gate (which have already been
constructed) are loaded using W and all the information is passed to the gate garbling method Garb. In step
3 the garbled circuit, F , is set to include all the information of f along with the garbled computation table
returned by Garb in the previous step for all the gates in the circuit. These tables are called P . Furthermore,
the encoding information e is set to be the two keys for each input wire and the decoding information d is
set to be the output 1-key of the final gate in the circuit. In the last step, the garbled circuit F , the input
encoding information, e, and decoding information, d, is returned.

The second method, En, constructs an ordered set of input keys to a garbled circuit, X. It takes as input
the encoding information e (along with a binary string x of length n) representing the input to the garbled
circuit. In the first step the method parses e as n ordered pairs of keys. In step 2 the functionality returns
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Gb
(
1k, f

)
→ (F, e, d)

1. Set (n, q, I,W,G)← f and
{
X0

i , X
1
i

}
i∈[n]

← InKeys(n, k).
2. For each g ∈ [n + 1, n + q] set m = I(g) and define G′ : {0, 1}m → {0, 1} s.t. G′(i) = G(g, i) for all

i ∈ {0, 1}m and set
{(
X0

g , X
1
g

)
, P [g]

}
← Garb

(
g,G′,

{
X0

W (g,i), X
1
W (g,i)

}
i∈[m]

)
.

3. Set F ← (n, q, I,W,G, P ), e←
{
X0

i , X
1
i

}
i∈[n]

and d← X1
n+q.

4. Finally return (F, e, d).
En(e, x)→ X

1. Set
{
X0

i , X
1
i

}
i∈[n]

← e.
2. Then set X ← {Xxi

i }i∈[n] and return X.
De(d, Z)→ b

1. If d = Z then output 1 otherwise output 0.
Ev(F,X, x)→ Z

1. Set (n, q, I,W,G, P )← F and for all i ∈ [n] set wi = xi and define Q = {wi}i∈[n].

2. For each g ∈ [n+ 1, n+ q] let m = I(g) and add wg = G
(
g,
{
wW (g,i)

}
i∈[m]

)
to the set Q.

3. Now for each g ∈ [n + 1, n + q] let m = I(g) and define G′ : {0, 1}m → {0, 1} s.t. G′(i) = G(g, i) and
w′ ∈ {0, 1}m s.t. w′

i = wW (g,i) for all i ∈ [m] and set Xg ← Eval
(
g,G′, w′,

{
XW (g,i)

}
i∈[m]

, P [g]
)
.

4. Return Xn+q.
ev(f, x)→ b

1. Set (n, q, I,W,G)← f and for all i ∈ [n] set wi = xi and define Q← {wi}i∈[n].
2. For each g ∈ [n+ 1, n+ q] let m = I(g) and add wg = G

(
g,
{
wW (g,i)

}
i∈[m]

)
to the set Q.

3. Finally return wn+q.
Ve(F, f, e)→ b

1. Set (n, q, I,W,G, P )← F , (n′, q′, I ′,W ′, G′)← f and
{
X0

i , X
1
i

}
i∈[n]

← e.
2. If n 6= n′, q 6= q′, I 6= I ′, W 6= W ′ or G 6= G′ output 0.
3. For each g ∈ [n + 1, n + q] let m = I(g) and define G′ : {0, 1}m → {0, 1} s.t. G′(i) = G(g, i) for all

i ∈ {0, 1}m and set
{(
X0

g , X
1
g

)
, P̄ [g]

}
← Garb

(
g,G′,

{
X0

W (g,i), X
1
W (g,i)

}
i∈[m]

)
.

4. If for any g ∈ [n+ 1, n+ q] we have P̄ [g] 6= P [q] output 0, otherwise output 1.

Figure 1. Privacy-free Garbling

an ordered subset of the keys. In particular if the i’th bit of x is 0 then the i’th element in the ordered set
is the i’th 0-key, otherwise it is the i’th 1-key.

The third method, De, evaluates whether some value, Z, is equal to the output 1-key of a garbled circuit,
d. It takes as input the decoding information of a garbled circuit, d, along with a potential output key, Z.
The method only has one step which checks if d = Z and returns 1 if that is true, otherwise it returns 0.

The fourth method, Ev, evaluates a garbled circuit, F , and returns the output key of the final gate as
a result of this evaluation, Z. It takes as input a garbled circuit F , and an ordered set of input keys, X,
along with a binary vector x where the i’th bit represents the semantic value of the i’th input key. In step
1 the method parses the information stored in the garbled circuit F and defines an ordered set of bits, Q,
which represents the bits on each each wire in the garbled circuit. Initially this set only includes the bits of
the input wires. Step 2 iteratively evaluates the garbled circuit one gate at a time. It first finds the fan-in
of a given gate using I and then evaluates the gate in plain using the set Q along with the gate description
G. After evaluating the gate in plain it updates Q to contain the output bit of the given gate. Thus at the
end Q contains the expected bit on each wire given the garbled circuit F and the binary input x. In step 3
the method proceeds to evaluate each garbled gate iteratively. Again it uses I to learn the fan-in for a given
gate, it uses G to decode the specific functionality of the gate and the elements of Q to find the semantic
meaning of the keys supposed to be input to the garbled gate. Using this information, along with the garbled
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computation table of the gate, P , it calls Eval to evaluate the garbled gate and stores the output key which
the method returns. Finally in step 4 it returns the output key of the final gate in the garbled circuit.

The fifth method, ev, evaluates the Boolean functionality f in plain using a binary input vector x. It
returns a bit being the value f(x). In Step 1 it parses the functionality f and constructs a set Q which
represents the bit on each wire in the circuit. Initially this set only contains the bits on the input wires,
exactly as specified by x. In step 2 it iteratively evaluates each gate of the functionality. It does so by first
learning the fan-in of the give gate using I and then using G with the given gate index and bits already
stored in Q. It updates the set Q with the result. Finally it returns the result of evaluating the final gate in
the circuit.

The sixth and last method, Ve, checks whether a garbled circuit, F , evaluates the same as some plain
circuit, f , given both pairs of input keys for all wires of the garbled circuit, e. The method returns either 1 (for
accept) or 0 (for reject). It takes as input a garbled circuit F , a plain description of the circuit functionality
f along with the ordered set of input keys, e. In the first step it parses the garbled circuit F and the plain
function description f . Step 2 is a sanity check which verifies that the “meta” data of F and f is the same,
i.e., same amount of input bits, n, the same amount of gates q, each with the same fan-in I, using the same
wires, W , and computing the same functionality, G. If any of these checks fail the method outputs reject.
Then step 3 iteratively constructs a new garbled circuit using Garb in the same manner as in Gb, based on
the information in f . Finally in step 4 the method checks equality of each garbled computation table given
in F with each of the tables generated in the previous step. If any are not equal then the method outputs
reject, otherwise it outputs accept.

InKeys(n, k)→
{
X0

i , X
1
i

}
i∈[n]

1. For each i ∈ [n] sample uniformly random X0
i , X

1
i ∈R {0, 1}k and return the set

{
X0

i , X
1
i

}
i∈[n]

.

Garb
(
g,G′,

{(
X0

i , X
1
i

)}
i∈[m]

)
→
{(
X0

g , X
1
g

)
, g̃
}

1. If G′(·) = NAND do as follows:
(a) Let X0

g = KDF
(
X1

1 , X
1
2 , . . . , X

1
m; (key, g, 0)

)
and X1

g = KDF
(
X0

1 ; (key, g, 1)
)
.

(b) Next let Ci = X1
g ⊕ KDF

(
X0

i ; (inte, g, i)
)
for all i ∈ [2,m] and set g̃ = {Ci}m

i=2.
(c) Return

{(
X0

g , X
1
g

)
, g̃
}
.

2. If instead G′(·) = XOR do as follows:
(a) Let X0

g =
⊕m

i=1 X
0
i and X1

g = X1
1 ⊕

(⊕m

i=2 X
0
i

)
.

(b) Next let Ci = X0
1 ⊕X1

1 ⊕X0
i ⊕X1

i for all i ∈ [2,m] and set g̃ = {Ci}m
i=2.

(c) Return
{(
X0

g , X
1
g

)
, g̃
}
.

Eval
(
g,G′, w′, {Xi}i∈[m] , g̃

)
→ {Xg}

1. If G′(·) = NAND do as follows:
(a) If w′ = 1m then set Xg = KDF (X1, X2, . . . , Xm; (key, g, 0)). If instead w′

1 = 0 then set Xg =
KDF (X1; (key, g, 1)). Otherwise find the first i ∈ [2,m] s.t. w′

i = 0, parse {Ci}m
i=2 ← g̃ and set

Xg = Ci ⊕ KDF (Xi; (inte, g, i)).
(b) Return Xg.

2. If instead G′(·) = XOR do as follows:
(a) Parse {Ci}m

i=2 ← g̃.
(b) Let S be the set of i ∈ {2,m} for which it is true that w′

i = 1.
(c) Return Xg =

(⊕
i∈[m] Xi

)
⊕
(⊕

i∈S
Ci

)
.

Figure 2. Garbling GRR1 - Without free-XOR

Gate Garbling. All of our garbling schemes have two methods: Garb and Eval. The first constructs a garbled
gate, g̃, and two keys,

(
X0

g , X
1
g

)
. It takes as input a nonce, g (gate ID), a function mapping a binary vector
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InKeys(n, k)→
{
X0

i , X
1
i

}
i∈[n]

1. Sample a uniformly random difference ∆ ∈ {0, 1}k.
2. Then for each i ∈ [n] sample uniformly random X0

i ∈R {0, 1}k and return the set
{
X0

i , X
0
i ⊕∆

}
i∈[n]

.

Garb
(
g,G′,

{(
X0

i , X
1
i

)}
i∈[m]

)
→
{(
X0

g , X
1
g

)
, g̃
}

1. Set ∆ = X0
1 ⊕X1

1 .
2. If G′(·) = NAND do as follows:

(a) Let X0
g = KDF

(
X1

1 , X
1
2 , . . . , X

1
m; (key, g, 0)

)
and X1

g = X0
g ⊕∆.

(b) Next let Ci = X1
g ⊕ KDF

(
X0

i ; (inte, g, i)
)
for all i ∈ [m] and set g̃ = {Ci}m

i=1.
(c) Return

{(
X0

g , X
1
g

)
, g̃
}
.

3. If instead G′(·) = XOR set X0
g =

⊕m

i=1 X
0
i , X1

g = X0
g ⊕∆ and return

{(
X0

g , X
1
g

)
,⊥
}
.

Eval
(
g,G′, w′, {Xi}i∈[m], g̃

)
→ {Xg}

1. If G′(·) = NAND do as follows: If w′ = 1m then set Xg = KDF (X1, X2, . . . , Xm; (key, g, 0)). Oth-
erwise find the first i ∈ [m] s.t. w′

i = 0, parse {Ci}m
i=1 ← g̃ and compute and return Xg =

Ci ⊕ KDF (Xi; (inte, g, i)).
2. If instead G′(·) = XOR return Xg =

⊕m

i=1 Xi.

Figure 3. Garbling GRR2 - With free-XOR

to a bit, G′, along with a pair of input keys for each input wire to the gate. The second method reconstructs
a single output key. It takes as input a nonce, g (gate ID), a function mapping a binary vector to a bit,
G′, a binary vector describing the bits on the input wires to the gate, w′, an ordered set of input keys
{Xi}i∈[m] along with an ordered set which is the garbled computation table g̃.2 Two concrete schemes are
shown in Fig. 2 and Fig. 3.

3.4 Security

The scheme presented in Fig. 1 composed with Fig. 2 and Fig. 3 respectively are clearly correct. In fact, any
correctly generated scheme evaluates to the correct output key with probability 1. From this it also follows
that the schemes have verifiability, as we verify by regenerating each garbled gate, and hence a verified
garbled gate is correctly generated. This takes care of the demands of correctness (Def. 1) and verifiability
(Def. 3) of a secure privacy-free garbling scheme, as defined in Def. 4. What remains is authenticity (Def. 2):
In the following we reduce this to the security of the KDF used.

Theorem 2. If the KDF used in the garbling scheme of Fig. 1 composed with Fig. 2 is secure according to
Def. 6, then the composed scheme enjoys authenticity according to Def. 2.

Proof. For notational convenience we are going to focus on the case with fan-in 2. The proof idea generalizes
immediately.

A NAND gate with input keys L0, L1 for the left wire and R0, R1 for the right wire and gate identifier g
is garbled as follows:

O1 ← KDF(L0; (key, g, 1)) , (1)
O0 ← KDF(L1, R1; (key, g, 0)) , (2)
A← KDF(R0; (inte, g)) , (3)
C ← A⊕O1(with label (garb, g)) . (4)

2 Note that, as it is described, the running time of Eval depends on the particular input used. To prevent leakage of
the input based on timing attacks, any implementation of Eval would need to take appropriate countermeasures,
and ensure that the running time does not depend on the input used.
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The output keys are (O0, O1). The garbled gate is just C.
An XOR gate with input keys L0, L1 for the left wire and R0, R1 for the right wire and gate identifier g

is garbled as follows:

O0 ← L0 ⊕R0 (with label (key, g, 0)) , (5)
O1 ← L0 ⊕R1 (with label (key, g, 1)) , (6)
C ← L0 ⊕ L1 ⊕R0 ⊕R1 (with label (garb, g)) . (7)

The output keys are (O0, O1). The garbled gate is just C.
Besides this, the circuit garbling just consist of reusing the appropriate output keys as input keys to

later gates. A garbled circuit F consists of, amongst other, a garbled gate for each of the q internal wires,
P = (Cn+1, . . . , Cn+q), in an order in which they can be evaluated. For each garbled gate Ci, let L0

i and L1
i

be the corresponding keys on the left input wire, let R0
i and R1

i be the corresponding keys on the right input
wire, and let O0

i and O1
i be the output keys.

We can assume without loss of generality that the last gate is the output gate. For a garbled input
X =

{(
X0

i , X
1
i

)}n

i=1 and a plaintext input x ∈ {0, 1}n, let Xx = {Xxi
i }i∈[n] be the garbled version of x. For

i = n+ 1, . . . , n+ q, let wi be the bit we get by computing plaintext gate number i on the bits for its input
wires, that is wi = G(i, {W (i, 1),W (i, 2)}) in accordance with Fig. 1. This defines a plaintext evaluation
w = (w1, . . . , wn, wn+1, . . . , wn+q). For i = n+ 1, . . . , n+ q, let Ki = Owi

i . This defines a garbled evaluation
Kx = (K1, . . . ,Kn,Kn+1, . . . ,Kn+q). The scheme is constructed such that from a correct garbled circuit F
and Xx one can efficiently compute Kx, which in particular allows one to compute Kn+q = O

f(x)
n+q . We have

to prove that from a randomly generated P and Xx one cannot also efficiently compute O1−f(x)
n+q . For this,

it is sufficient to prove that one cannot efficiently compute
(
i, O1−wi

i

)
for any i ∈ [n+ q] with non-negligible

probability.
We do the proof by a simple reduction to the game KDF in Def. 5. It is easy to see that the garbling and

the keys learned by the evaluator in the scheme can be computed by queries to the game KDF in such a way
that all the keys O1−wi

i are uncompromised. In more detail, the reduction runs as follows:

Input keys: For each i ∈ [n] and b ∈ {0, 1}, output (fresh key, (key, i, b)) to define a fresh random key
Xb

i ∈R {0, 1}k. Then for each i ∈ [n], output (leak, (key, i, xi)) to add Xxi
i to the set of values to leak.

Let Xx = {Xxi
i }

n
i=1. Now for each input wire, both keys are defined in the game KDF.

Internal gates: Iteratively go through all the gates. Specifically for each i ∈ [n + 1, q] we do as follows,
depending on whether or not gate i is a NAND or XOR gate:
NAND gate: Call the plaintext value on the left input wire li = wW (i,1), call the plaintext value on the

right input wire ri = wW (i,2), and call the plaintext value on the output wire wi. Call the keys on these
wires

(
L0

i , L
1
i

)
,

(
R0

i , R
1
i

)
and

(
O0

i , O
1
i

)
respectively. Thus

(
L0

i , L
1
i

)
=(

X0
W (i,1), X

1
W (i,1)

)
,
(
R0

i , R
1
i

)
=
(
X0

W (i,2), X
1
W (i,2)

)
and

(
O0

i , O
1
i

)
=
(
X0

i , X
1
i

)
. The first four of these

keys are defined in the game KDF and we are given Lli
i and Rri

i before our guess. We should define(
O0

i , O
1
i

)
in the game and make sure we learn Owi

i before our guess. We use derive-commands to de-
fine O1

i = KDF
(
L0

i ; (key, i, 1)
)
, O0

i = KDF
(
L1

i , R
1
i ; (key, i, 0)

)
, and Ai = KDF

(
R0

i ; (inte, i)
)
. Then

we use a linear-command to define Ci = Ai ⊕ O1
i (with label (garb, i)). Then we add Ci to the

set of values to leak by outputting (leak, (garb, i)). This is a correct garbling, so when we are later
given Lli

i and Rri
i , we can use them to compute Owi

i by computing the garbled gate on (Lli
i , R

ri
i ).

XOR gate: We proceed as for NAND gates, except for the specific commands issued: We use linear-
commands to define O0

i = L0
i ⊕ R0

i (under identifier (key, i, 0)), O1
i = L1

i ⊕ R0
i (under identifier

(key, i, 1)) and Ci = L0
i ⊕ L1

i ⊕ R0
i ⊕ R1

i (under identifier (garb, i)). Then we add Ci to the set of
values to leak by outputting (leak, (garb, i)). This is a correct garbling, so we later use it to compute
Owi

i by computing the garbled gate on (Lli
i , R

ri
i ).

End: After having handled all the gates, we issue the end-command and learn the input keys Ki = Xxi
i for

i ∈ [n], along with the garbled gates Ci for i ∈ [n + 1;n + q]. Using these we can evaluate the garbled
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circuit and thus learn the value Ki = Owi
i for all i ∈ [n + 1; q]. We then give Kx = {Ki, . . . ,Kn+q} to

the adversary.
Guess: If the adversary outputs

(
i, O1−wi

i

)
for any i ∈ [n + q], then we output (guess, (key, i, 1− wi) ,

O1−wi
i ).

It is clear that we win the guessing game exactly when (key, i, 1 − wi) is uncompromised and O1−wi
i is

the correct “other” key for wire i supplied by the adversary – we call Owi
i the known key and we call O1−wi

i

the other key. We call a key Ob
i compromised if the label (key, i, b) is compromised as defined by the KDF

game. We call gate Ci compromised if the other key O1−wi
i is compromised as defined by the KDF game.

It is sufficient to prove that (key, i, 1−wi) is uncompromised for all i. It is clear that whether (key, i, 1−wi)
is uncompromised does not depend on the strategy of the adversary, only the structure of the circuit,
the nature of our garbling scheme and the input x. Hence, if for a fixed circuit and fixed input x some
(key, i, 1− wi) is sometimes compromised, then it is always compromised. Hence, if any (key, i, 1− wi) can
be compromised, then there exists a first gate j such that before executing the commands corresponding
to gate j, no identifier (key, i, 1 − wi) was compromised, and after executing the commands corresponding
to gate j, some identifier (key, i, 1 − wi) is compromised, where i ≤ j. Consider this gate Cj . Furthermore,
among the commands executed for gate j there is a first command that leads to a compromise of a gate. We
call this command patient zero. We first show that patient zero is not a key derivation command. Then we
show that it is not a linear command followed by a leak command. And then we are done.

Assume first that patient zero is a key derivation command. We use several times that a key derivation
command, when it is the last command to have been executed, cannot compromise any other key than its
output key. When patient zero is a key derivation command, then gate j must be a NAND gate, as there are
no key derivation commands in XOR gates. Recall that we issue the key derivation commands (1), (2) and (3),
as part of a NAND gate, and then we leak Cj . Assume that lj = 0. In that case O1

j = KDF
(
L0

j ; (key, j, 1)
)
is a

known key and hence cannot be a compromised other key. We can also assume that L1
j is uncompromised (as

it is an other key and we are at patient zero), and hence the other output key O0
j = KDF

(
L1

j , R
1
j ; (key, j, 0)

)
will clearly be uncompromised after executing the command. Assume then that rj = 0. In that case the
other output key is again O0

j = KDF
(
L1

j , R
1
j ; (key, j, 0)

)
, and now R1

j is uncompromised. The command
Aj = KDF

(
R0

j ; (inte, j)
)
can therefore never be the patient zero compromising an output key, as Aj is not

an output key.
Before we prove that patient zero cannot be a linear command we change the system that we analyze by re-

placing the processing of all NAND gates by the following commands: First we execute (fresh key, (key, j, 0)),
(fresh key, (key, j, 1)) and (fresh key, (inte, j)) to define the values O0

j , O1
j and Aj respectively. Then

we compute Cj = Aj ⊕ O1
j , and leak Cj by issuing the commands (linear, (garb, j), (inte, j), (key, j, 0))

and (leak, (garb, j)) in that order. In addition we leak Owj

j . If rj = 0 such that R0
j is a known key, then

we also leak Aj . So, we essentially skip all key derivation commands and simulate their effect on the system
by leaking the produced known keys. Since we could compute Owj

j before the change, it was compromised
before the change. It is also compromised after the change, as we now leak it. Similarly for Aj . Hence, the
set of compromised identifiers is the same before and after the introduced changes, at least right after the
gate has been handled. As a consequence, we have not changed whether or not some other key later gets
compromised.3 Furthermore, notice that since we have already showed that patient zero could not be a key
derivation command this change does not affect the adversary’s advantage. We therefore just have to prove
that in the modified system, no other key gets compromised. Since there are no key derivation commands
left, this is simple linear algebra.

3 Note that if eventually an other key gets compromised, then the introduced changes will have an effect. When we
use key derivation commands, one compromised other key leads to many compromised other keys. When we use
fresh key commands, a compromised other key might not have an avalanche effect. However, we are proving that
the number of compromised other keys is 0, and hence using one system or the other is equally good.
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Assume that patient zero is Cj = Aj ⊕ O1
j . Since Aj is a fresh key and only occurs in this equation, if

Aj is uncompromised, adding this equation cannot change whether an output key is compromised or not.4
Hence it must be the case that Aj is compromised. Since Aj is fresh and occurs in no other equation, this
can only have happened because we leaked it earlier. Hence R0

j is a known key. So, lj = 0 and hence wj = 1.
Therefore O1

j is a known key and hence already compromised. Hence Cj = Aj ⊕O1
j will compromise Aj , but

since Aj occurs in no other equation, this does not further change the status of any variable. We can therefore
assume in the following that we process all NAND gates, with index i, as follows: Call (fresh key, (key, i, 0)),
(fresh key, (key, i, 1)) and (leak, (key, i, wi)) to first define the key O0

i , O1
i and then leak Owi

i . This does
not change whether or not there will be a patient zero. We can even make further changes. We once and for
all create a global key ∆ through the call (fresh key, delta). Then we execute each NAND gate as follows:
Call (fresh key, (key, i, 0)), (linear, (key, i, 1), (key, i, 0), delta) and (leak, (key, i, wi)) to define the key
O0

i and O1
i respectively and leak Owi

i . Similarly we can create the input keys X0
i and X1

i = X0
i ⊕∆ by calling

(fresh key, (key, i, 0)) and (linear, (key, i, 1), (key, i, 0), delta) respectively for i ∈ [n]. This will only add
equations to the system, and hence if there was a patient zero in the system before the change there will
also be a patient zero in the system after the change.

Assume then that patient zero is a linear command from an XOR gate, again with index j. We process
such a gate as follows: Compute O0

j ← L0
j ⊕R0

j (with label (key, j, 0)), O1
j ← L1

j ⊕R0
j (with label (key, j, 1))

and Cj ← L0
j ⊕ L1

j ⊕ R0
j ⊕ R1

j (with label (garb, j)) using the linear command, and leak Cj using the
leak command. Notice that L0

j ⊕ L1
j ⊕R0

j ⊕R1
j = ∆⊕∆ = 0. Hence leaking Cj does not change the status

of any key. We can therefore assume that we process XOR gates as follows: Compute O0
j ← L0

j ⊕ R0
j and

O1
j ← L1

j ⊕R0
j using the linear command.

After all the changes to the system, we now “garble” as follows: First call

∆← (fresh key, delta) .

Then for each input key, i ∈ [n], do:

X0
i ← (fresh key, (key, i, 0)) ,

X1
i ← (linear, (key, i, 1), (key, i, 0), delta) ,

Xxi
i ← (leak, (key, i, xi)) .

For each NAND gate, with index i, do:

O0
i ← (fresh key, (key, i, 0)) ,

O1
i ← (linear, (key, i, 1), (key, i, 0), delta) ,

Owi
i ← (leak, (key, i, wi)) .

Finally, for each XOR gate, with index i, do:

O0
i ← (linear, (key, i, 0), (key, li, 0), (key, ri, 0)) ,

O1
i ← (linear, (key, i, 0), (key, li, 0), (key, ri, 1)) ,

Owi
i ← (leak, (key, i, wi)) .

It is then fairly straight-forward to see that there are no compromised other key. In particular, it is trivial
to see that if an other key would be compromised in this system, then the free-XOR scheme from [KS08]
would trivially be insecure, as the system of equations created by the free-XOR scheme is a super set of the
system created by the above commands. We therefore refer to [KS08] for the details of why the free-XOR
trick is secure. ut
4 If O1

j is uncompromised then Aj goes from uncompromised to compromised, but Aj is not an output key, and
clearly no other key than Aj can change status by this equation.
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Notice that we can use a subset of this proof to prove security of our free-XOR privacy-free garbling
scheme, since the free-XOR already implements the global difference ∆. Specifically we have the following
theorem:
Theorem 3. If the KDF used in the garbling scheme of Fig. 1 composed with Fig. 3 is secure according to
Def. 6, then the composed scheme enjoys authenticity according to Def. 2.

Gb
(
1k, f,L

)
→ (F, e, d)

1. Set (n, q, I,W,G)← f and
{
X0

i , X
1
i , {∆i}i∈[L]

}
i∈[n]

← InKeys(n, k,L).
2. For each g ∈ [n + 1, n + q] set m = I(g) and define G′ : {0, 1}m → {0, 1} s.t. G′(i) = G(g, i) for all

i ∈ {0, 1}m and set
{(
X0

g , X
1
g

)
, P [g]

}
← Garb

(
g,G′,W,L,

{
X0

W (g,i), X
1
W (g,i)

}
i∈[m]

,∆L(g)

)
.

3. Set F ← (n, q, I,W,G,L, P ), e←
{
X0

i , X
1
i

}
i∈[n]

and d← X1
n+q.

4. Finally return (F, e, d).
En(e, x)→ X

Like in Fig. 1.
De(d, Z)→ b

Like in Fig. 1.
Ev(F,X, x)→ Z

1. Set (n, q, I,W,G,L, P )← F and for all i ∈ [n] set wi = xi and define Q = {wi}i∈[n].

2. For each g ∈ [n+ 1, n+ q] let m = I(g) and add wg = G
(
g,
{
wW (g,i)

}
i∈[m]

)
to the set Q.

3. Now for each g ∈ [n + 1, n + q] let m = I(g) and define G′ : {0, 1}m → {0, 1} s.t. G′(i) = G(g, i) and
w′ ∈ {0, 1}m s.t. w′

i = wW (g,i) for all i ∈ [m] and set Xg ← Eval
(
g,G′,W,L, w′,

{
XW (g,i)

}
i∈[m]

, P [g]
)
.

4. Return Xn+q.
ev(f, x)→ b

Like in Fig. 1.
Ve(F, f, e)→ b

1. Set (n, q, I,W,G,L, P )← F , (n′, q′, I ′,W ′, G′)← f and
{
X0

i , X
1
i

}
i∈[n]

← e.
2. If n 6= n′, q 6= q′, I 6= I ′, W 6= W ′ or G 6= G′ output 0.
3. For each g ∈ [n + 1, n + q] let m = I(g) and define G′ : {0, 1}m → {0, 1} s.t. G′(i) = G(g, i) for all

i ∈ {0, 1}m and set
{(
X0

g , X
1
g

)
, P̄ [g]

}
← Garb

(
g,G′,W,L,

{
X0

W (g,i), X
1
W (g,i)

}
i∈[m]

,∆L(g)

)
.

4. If for any g ∈ [n+ 1, n+ q] we have P̄ [g] 6= P [q] output 0, otherwise output 1.

Figure 4. Privacy-free FleXOR Garbling

4 Privacy-free fleXOR

In [KMR14] Kolesnikov et al. introduced a generalization and optimization of the free-XOR approach which
allows to weaken the security assumption needed for free-XOR and/or limit the amount of ciphertexts used
to garble non-XOR gates. In their schemes (only considering fan-in 2 gates) non-XOR gates are constructed
exactly as one would in a regular garbling scheme, but XOR gates are constructed differently and, depending
on a wire ordering of the circuit, consists of either 0, 1 or 2 ciphertexts. When the garbling scheme used
implements aggressive row reduction (i.e., GRR1) this yields an overall smaller size for most garbled circuits
compared the size of garbled circuits constructed using the free-XOR approach.

Here we propose a variant of fleXOR which combines their ideas with non-oblivious gate evaluation,
leading to a significant improvements in terms of computation complexity. Before we can describe our privacy-
free fleXOR construction we need a few definitions. These are taken almost verbatim from [KMR14]. We
assume familiarity with their construction and direct the reader to their paper if that is not the case.
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InKeys(n, k,L)→
{(
X0

i , X
1
i

)
i∈[n]

, {∆i}i∈[L]

}
1. For each i ∈ [L] sample uniformly random differences ∆i ∈ {0, 1}k.
2. Then for each i ∈ [n] sample uniformly random X0

i ∈R {0, 1}k and return the set{(
X0

i , X
0
i ⊕∆L(i)

)
i∈[n]

, {∆i}i∈[L]

}
.

Garb
(
g,G′,W,L,

{(
X0

i , X
1
i

)}
i∈[m]

,∆L(g)

)
→
{(
X0

g , X
1
g

)
, g̃
}

1. If G′(·) = NAND do garbling as described in Fig. 2 if L is safe, otherwise as described in Fig. 3.
2. If instead G′(·) = XOR do as follows:

(a) Let T be the set of integers i ∈ [m] for which L(W (g, i)) 6= L(g).
(b) Let X0

g =
⊕m

i=1 X
0
i and X1

g = X0
g ⊕∆L(g).

(c) Next let Ci = ∆L(g) ⊕∆L(i) for all i ∈ T and set g̃ = {Ci}i∈T .
(d) Return

{(
X0

g , X
1
g

)
, g̃
}
.

Eval
(
g,G′,W,L, w′, {Xi}i∈[m] , g̃

)
→ {Xg}

1. If G′(·) = NAND do evaluation as described in Fig. 2 if L is safe, otherwise as described in Fig. 3.
2. If instead G′(·) = XOR do as follows:

(a) Let T be the set of integers i ∈ [m] for which L(W (g, i)) 6= L(g) and parse {Ci}i∈T ← g̃.
(b) Parse {Ci}i∈T ← g̃.
(c) Let S be the subset of T for which it is true that w′

i = 1.
(d) Return Xg =

(⊕
i∈[m] Xi

)
⊕
(⊕

i∈S
Ci

)
.

Figure 5. Garbling - Using fleXOR

Definition 7 (Wire Ordering). A wire ordering for a Boolean circuit f is a function L that assigns an
integer to each wire in f . Without loss of generality, we assume that im(L) = {1, . . . , L} for some integer
L, and we denote |L| = L. We say a wire ordering L is safe if:

– For each non-XOR gate with output wire i, and each wire j where there exists a directed path in the
circuit that contains wire j before wire i, we have L(i) > L(j).

– For each value ` ∈ im(L), there is at most one non-XOR gate whose output wire i satisfies L(i) = `.

We say that a topological ordering of gates in a circuit f is safety-respecting of L if for every non-XOR gate
g with output wire i, g appears earlier in the ordering than any other gate g′ with output wire i′ satisfying
L(i) = L(i′).

Formal Description. We describe the privacy-free fleXOR protocol for gates of fan-in m in Fig. 4 and
Fig. 5. Notice that the description in Fig. 4 is essentially the same as the one for the general privacy-free
scheme we described in Fig. 1, except for the fact that we include the wire ordering L needed in order for
the garbling scheme to know which ∆’s should be used for which wires. Regarding the specificities of the
garbling, described in Fig. 5, see that the garbling of NAND gates is exactly the same as in Fig. 2 and Fig. 3,
depending on whether or not the wire ordering is safe. That is, the scheme first checks whether or not a gate
is an XOR or NAND gate. If it is a NAND gate then the garbling is the same as in Fig. 2 if L is safe, and
the same as in Fig. 3 if L is not safe.

Regarding XOR gates, we garble them essentially as in Fig. 2 but, since the offsets of the wires are chosen
during the InKeys procedure, the Garb procedure can only define the 0-key corresponding to the output wire.
Then, as in Fig. 2, the Garb procedure computes and outputs the XOR of the offsets between the inputs
and output wire, but only for the wires that belong to the set T , that is those for which L(i) 6= L(g), which
means that the ∆ used for the 1-key on wire i is different from the ∆ used on the output wire of the gate g.
This in turn means that we must associate a ciphertext in order to “adjust” the key on wire i.

Regarding evaluation: for NAND gates the scheme again does the same as in Fig. 2 and Fig. 3 depending
on whether or not the wire ordering is safe or not, respectively. For XOR gates the scheme first defines (in
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step a) the set of input wires for which L(i) 6= L(g), T , and parses the garbled gate g̃ to its ciphertexts,
{Ci}i∈T . Then in step c the scheme identifies the subset S ⊂ T of the input wires for which it is true that
the input value for wire i is equal to 1 and finally, in step d it computes the output key by XORing all input
keys and the adjustments for all the wires belonging to the set S.

Security. Like for our other privacy-free garbling schemes, correctness and verifiability follows relatively
straightforwards from the constructions. The proof of authenticity follows from the one for the scheme in
Fig. 2 (since the fleXOR variant is a generalization of the schemes described in Fig. 2, for which some input
wires happen to the same offset as the output wire) and from the assumption on the wire ordering. We refer
to [KMR14] for more details.

Acknowledgements. We would like to thank Payman Mohassel and Benny Pinkas (for useful discussions),
the authors of [KMR14] (for sharing with us an early copy of their manuscript and the result of their “safe
ordering” heuristics that were used for compiling Table 1 and 2), and Helene Flyvholm Haag (for valuable
editorial comments).
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A Zero-Knowledge from Garbled Circuits

In Figure 6 a sketch of the ZK protocol proposed by Jawurek et al. [JKO13] is shown. The protocol proceeds
as follows: The prover (acting as the receiver in the OT) uses the bits of his witness x as choice bits in the OT
while the verifier (acting as the sender in the OT) uses as input all the pairs of keys of the garbled circuits. The
verifier also sends the garbled circuit F . Now if the prover uses a valid witness, he can evaluate the garbled
circuit and compute the output key corresponding to the output bit 1. However, instead of disclosing this
key at this stage, the prover commits to it and waits for the verifier to prove that she constructed the garbled
circuit correctly (and acted honestly in the OT protocols as well). If this check goes through, the prover opens
the commitment and the verifier accepts the proof if the commitment contains the key corresponding to the
output bit 1. The main ideas behind the proof of security in [JKO13] are as follows: soundness (the verifier
accepts only if the statement is true) is achieved thanks to the authenticity property of garbled circuits –
using the terminology of Bellare et al. [BHR12]. At the same time the protocol is zero-knowledge (the verifier
learns only that the statement is true) because the prover verifies that she generates the GC honestly before
disclosing any information.

Using a “weak” KDF. Notice that the randomness used to generate the garbled circuit is completely
revealed to the prover at the end of the protocol, thus the encryption used to garble the gates only needs
to remain secure throughout the execution of the protocol (in contrast to most secure computation settings
where the garbling scheme needs to remain secure long after the execution of the protocol is complete in
order to ensure privacy of the input). Therefore one could imagine the following optimization: to garble the
circuit, use a “weak” KDF such that it is reasonable to assume that the prover cannot break it in time 100t,
and let the verifier accept the proof iff the prover sends the commitment C before time t. This might allow
to use shorter keys and faster KDFs, resulting in better computation and communication complexity.

Zero-Knowledge Protocol Using Garbled Circuits

Prover’s input (x, y) Verifier’s input y

OT-Choose
(
{xi}i∈[n]

)
- (

Fy,
{
X0

i , X
1
i

}
i∈[n]

, Z1
)
← Gb

(
1k, fy

)
�

OT-Transfer
({
X0

i , X
1
i

}
i∈[n]

)
, Fy

Z ← Ev
(
Fy, {Xxi

i }i∈[n]

)
C = Commit (Z)

-

�

{
X0

i , X
1
i

}
i∈[n]

= OT-OpenAll()

if Ve
(
fy, F,

{
X0

i , X
1
i

}
in[n]

)
= 1

then: Open Z
else: 0

-

Output (Z ?= Z1).

Figure 6. Informal Description of Jawurek et al. ZK from GC.
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B Proof of Theorem 1

Proof. We do the proof by constructing several hybrid games and then show a polytime reduction between
them. We then show that any PPT adversary can only win the last hybrid game with negligible probability
and thus conclude that this must also be the case for the real game. First consider the following hybrids:

Definition 8 (Hybrid 1). Let Hybrid 1 be the game defined in the same way as “game KDF” (from Def. 5)
except that the command Guess is defined as follows: If A outputs (guess, id∗ ∈ ID \COMP) then sample a
uniformly random bit b ← {0, 1}. If b = 0 return a uniformly random k bits string K ′ ← {0, 1}k, otherwise
return Kid∗ . A then returns a bit c ∈ {0, 1} and wins if c = b. The advantage is the probability that A wins
minus 1

2 .

Definition 9 (Hybrid 2). Let Hybrid 2 be the game defined in the same way as Hybrid 1 except that the
command Derive does not exist.

We let Hi
KDF,A(1k) denote the advantage of any PPTA playing Hybrid i. In particular notice that Hi

KDF,A(1k) =
1
2 − Pr[A wins ].

In the rest of the proof we say a key Kid is “fresh” if it has been constructed by the call (fresh key, id).
Similarly we say that a key Kid0 is “derived”, respectively “linear” if it has been constructed by the call
(derive, id0, id1, . . . , idm), respectively (linear, id0, id1, . . . , idm).

Before we start on the hybrid reductions consider the following lemmas:

Lemma 1. Let A2 be any PPT adversary attacking Hybrid 2. Then for any id ∈ ID \ COMP, where Kid is
a fresh key, Kid is indistinguishable from an uniformly random k bit string in the view of A2.

Proof. First notice that since id 6∈ COMP and has been constructed by the call (fresh key, id), then the
value Kid will be a uniformly random sampled element which has not been given to A2. Thus anything that
A2 can learn about Kid must necessarily be based on leaked information on keys constructed by calls to
Linear which involves Kid. This follows since any other information the adversary can learn from the game
will be independent of Kid. Next notice that any leaked linearly constructed key, say Kid′ , depending on
Kid is constructed as a linear combination of some keys and Kid. Then see that each of the keys are either
fresh or linear keys, so if they are linear keys we can simply substitute their linear expressions. This can be
done recursively. Thus we get that Kid′ = Kid ⊕

(⊕
i∈[m]Kidi

)
for some integer m ≥ 1. Next see that it

must be the case that at least one idi 6∈ COMP, otherwise it would be the case that id ∈ COMP. For each
idi 6∈ COMP we have that Kidi is uniformly random in the view of A2. Furthermore, since any value XORed
with a uniformly random value is uniformly random we have that Kid′ will be a one-time pad encryption
of Kid under the key Kidi

(potentially XORed with other compromised or uncompromised keys). This will
obviously be the case for all leaked linear constructed keys depending on Kid. However, if the leaked linear
keys are different from the key equivalent to the one-time encryption key will also be different, otherwise,
following a similar argument as above, Kid would be compromised.

Finally, since one-time encryptions are perfectly secure (leaks no information) when the key is unused and
uniformly random, like above, then it will be impossible to use these to gain an advantage in distinguishing
between Kid and another uniformly random string. ut

Lemma 2. Let A2 be any PPT adversary attacking Hybrid 2, then for any id0 ∈ ID \ COMP where Kid0 is
constructed by the call (linear, id0, id1, . . . , idm) and id1, . . . , idm ∈ ID then Kid0 is indistinguishable from
an uniformly random k bit string in the view of A2.

Proof. First notice that since id0 6∈ COMP then there must be at least one i ∈ [m] for which idi 6∈ COMP.
Next notice that we can express the key Kid0 as a linear combination of keys constructed by calls to fresh
key (by recursively expanding any key Kidi

constructed by a call to linear). If Kidi
has been constructed by

the call (fresh key, idi) then we have by Lemma 1 that Kidi
is indistinguishable from a uniformly random k

bit string for A2. Thus Kid0 = K ′⊕Kidi
where Kidi

is indistinguishable from a uniformly random string and
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K ′ is some, perhaps known, string. From this we get that Kid0 is indistinguishable from a uniformly random
string. However we must still show Kid0 remains indistinguishable from a uniformly random string no matter
what following queries the adversary makes. Like in the proof of Lemma 1, the only way the adversary can
gain information on Kid0 is through compromised linear queries depending on either Kid0 or the keys used in
the linear construction of Kid0 . First consider the case of linear keys depending directly on Kid0 . Notice that
any leaked linearly constructed key, say Kid′ depending on Kid0 can be expressed as a linear combination of
some keys and Kid0 . Then see that each of these keys is either a fresh key or linear key. So for any linear keys
we can simply substitute their linear expressions. Thus we get that Kid′ = Kid0 ⊕

(⊕
i∈[m]Kidi

)
for some

integer m ≥ 1. Next see that it must be the case that at least one idi 6∈ COMP, otherwise it would be the case
that id0 ∈ COMP. For each idi 6∈ COMP we have that Kidi is uniformly random sampled. Furthermore, since
any value XORed with a uniformly random value is uniformly random we have that Kid′ will be a one-time
pad encryption of Kid0 under the key Kidi

(potentially XORed with other compromised or uncompromised
keys). This will obviously be the case for all leaked linear constructed keys depending on Kid0 . However, if
they are different from the key equivalent to the one-time encryption key will also be different otherwise,
following a similar argument as above, Kid0 would be compromised. Since one-time encryptions are perfectly
hiding when the key is unused and uniformly random, like above, then it will be impossible to use these to
gain an advantage in distinguishing between Kid0 and another uniformly random string.

Now consider the case of keys used in the linear combination of Kid0 . Notice that if there is only one
uncompromised key in the linear combination defining Kid0 then any indistinguishably advantage in an
uncompromised key of the linear combination of Kid can be directly used in distinguishing Kid0 from a
random string. This is so since we could write Kid0 = K ′⊕Kidi

for a known (or polytime computable string
K ′) and thus efficiently compute the “adjusted” knowledge of Kid0 based on Kidi

. ut

Lemma 3. For any adversary A2 and some negligible function negl(·) it holds that H2
KDF,A2(1k) ≤ negl(k).

Proof. First notice that all keys in this game have been constructed by calls to either Fresh key or Linear.
So when A2 calls (guess, id∗) then it must necessarily be the case that Kid∗ is a fresh or linear key. Now since
we are in Hybrid 2 we see that A2 cannot win the game with non-negligible probability following Lemma 1
and Lemma 2 since no matter what key he tries to guess it will indistinguishable from random in his view.

ut

Next we show a reduction between Hybrid 2 and Hybrid 1. First we notice that the only difference
between Hybrid 1 and 2 is the possibility of the adversary to construct new keys with method Derive.

Lemma 4. For any PPT adversary A1 there exists a PPT adversary A2 such that

H1
KDF,A1(1k) ≤ H2

KDF,A2(1k)− negl(k)

for some negligible function negl(·) when KDF(·) is modeled as a random oracle.

Proof. We fix any adversary A1 playing with Hybrid 1. We then construct a polytime adversary A2 playing
with Hybrid 2, which runs A1 internally. We then argue that the advantage of A2 is at least the same as
of A1, except with negligible difference. This means that if A1 can attack Hybrid 1 with non-negligible
probability then there exists an adversary A2 that can attack hybrid 2 with non-negligible probability.

We let A2 play the role of the challenger in Hybrid 1 against A1. A2 starts by initializes an empty map
D, such that queries of undefined elements result in ⊥ and an empty list D′. It then passes on each query it
gets from A1 to the Hybrid 2 game stores internally, and passes back to A1, the results it gets from Hybrid
2, except for the following cases:

Linear: If A1 outputs (linear, id0 6∈ ID, id1, . . . , idm) for idi ∈ ID, then update D such that (id1, . . . , idm) =
D(id0), append id0 to the end of D′ and pass the call to hybrid 2.

Derive: If A1 outputs (derive, id0 6∈ ID, id1, . . . , idm) for idi ∈ ID, then update D such that (id1, . . . , idm) =
D(id0), append id0 to the end of D′ and call (fresh key, id0).
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End: When A1 outputs (end) define COMP as in the original game, based on the queries from A1 and
initialize an empty set K′ = ∅. Now for each id ∈ COMP where id 6∈ LEAK we have A2 call (leak, id)
and internally store the response from Hybrid 2. Then A2 calls (end). Now let K to be the set of keys
returned by Hybrid 2. Next, iterate through the list D′, starting from the beginning, let id0 be the current
entry and set (id1, . . . , idm) = D(id0). Now in each iteration if it holds, for all i ∈ [m], that idi ∈ COMP
and Kid0 is a derived key, then, using the keys in the set K, define K ′id0

= KDF(Kid1 , . . . ,Kidm
; id0)

and set K′ = K′ ∪ K ′id0
. If instead Kid0 is a linear key, then, again using the keys in the set K, define

K ′id0
=
⊕

i∈[m]Kidi and set K′ = K′ ∪K ′id0
. Furthermore, if Kid0 ∈ K then replace Kid0 with K ′id0

in the
set K. Finally return the set K.

Guess: When A1 outputs (guess, id∗) pass the call on to hybrid 2 and let K ′ be the output of Hybrid 2,
then proceed as follows:
– If Kid∗ is a fresh or derived key then return K ′.
– If A1 has previously made the call (linear, id∗, id1, . . . , idm) then for each i ∈ [m] where idi ∈ COMP

and K ′idi
∈ K′ set K ′ = K ′ ⊕Kidi ⊕K ′idi

.5
Finally, when receiving a bit c from A1 pass on the same bit to Hybrid 2.

Some notes are due regarding the simulation above. We use D′ as a list of ID’s, in chronological order, whose
associated keys are either linear or derived and thus might need to be simulated by A2 (as they can be based
on compromised derived keys). We then let A2 pass on calls to Linear and Derive to Hybrid 2, except that
it adds the ID from such calls to the list D′. When End is finally called we let A2 leak all compromised keys
from Hybrid 2, as these might be needed for “adjustments”. In particular we let A2 potentially adjust (using
XOR operations or replacement) each leaked key it gets back from Hybrid 2 such that it match what A1

would expect if playing with Hybrid 1. More specifically, if all keys used to construct a derived key have been
compromised then the derived key returned to A1 has been constructed using the KDF, even though the key
has been constructed using a call to Fresh key in Hybrid 2. The same goes for linearly constructed keys
using a compromised derived key in its construction: Specifically by XOR’ing out the fresh key constructed
by Hybrid 2 and then XOR’ing in the derived keys, constructed using KDF by A2. Regarding the guess phase
we let A2 make sure that the guess given by A1 is adjusted in the same manner to reflect the keys in Hybrid
2. This is in particular needed as derived keys are simulated using calls to Fresh key and the guess of A1

might be a linear key which is constructed from compromised derived keys.
We now proceed with the proof that the view of A1 playing with A2 and Hybrid 2 is computationally

indistinguishable from the view of A1 playing with Hybrid 1.
First see that until the call to End the view of A1 is perfectly indistinguishable whether it is playing

with A2 or Hybrid 1 since nothing is returned and the same calls are permitted. Furthermore, if A1 does not
call Derive then the games will be perfectly indistinguishable, thus in the following we only consider games
where A1 calls Derive. Now consider indistinguishability of the output A1 gets after calling End.

Start by noticing that for each id ∈ LEAK where A1 made the call (fresh key, id) the key Kid will be
perfectly indistinguishable whether A1 plays with A2 or Hybrid 1 as it will in both cases be uniformly random
sampled. The same goes for each Kid0 with id0 ∈ LEAK where A1 made the call (linear, id0, id1, . . . , idm)
and for all i ∈ [m] it was the case that idi was constructed by a call to (fresh key, idi). This is again the
case since A2 does exactly the same as Hybrid 1. Furthermore, we can extend the case for id0 ∈ LEAK where
A1 made the call (linear, id0, id1, . . . , idm) and for all i ∈ [m] the key Kidi is either a fresh key, or a linear
key. This applies recursively.

Next consider indistinguishability of Kid0 of the first id0 ∈ D′ where A1 called (Derive, id0, id1, . . . , idm):
– If id1, . . . , idm ∈ COMP remember that we construct Kid0 ← KDF(Kid1 , . . . ,Kidm

; id0) and thus Kid0 is
constructed exactly the same as in Hybrid 1. This construction is possible since A1 will know the values
Kid1 , . . . ,Kidm and thus can query the oracle himself.

– If ∃i ∈ [m] s.t. idi 6∈ COMP we simulate key Kid0 by asking Hybrid 1 to construct and leak a fresh key, i.e.
a uniformly random key. Thus we must argue that a key sampled uniformly random is indistinguishable
from a derived key when at least one of the keys used to construct the derived key is not compromised.
To see this consider the following cases for an uncompromised key Kidi :

5 The key Kidi will always be known by A2 after End as it asks Hybrid 2 to leak it.
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1. Kidi was constructed by a call to Fresh key.
2. Kidi was constructed by a call to Linear. Assume w.l.o.g. that all keys used in the linear combination

was constructed either by a call to Fresh key (if not we can repeatedly expand the keys in the linear
combination defining Kidi

to get a single linear combination of keys made with Fresh key).
Now in the first case, Kidi is indistinguishable from a uniformly random element following the proof
of Lemma 1 and the observation that A1 at this point has not learned anything based on the calls
to Derive where Kidi

has been used. The second case follows from the proof of Lemma 2 and again
the observation that A1 at this point has not learned anything based on the calls to Derive where
Kidi

has been used. Thus Kidi
is uniformly random in the view of A1. This means that for A1 to

distinguish between a uniformly random sampled key and KDF(Kid1 , . . . ,Kidm) he must query exactly
KDF(Kid1 , . . . ,Kidm ; id0) to get an advantage, since KDF(·) is a random oracle. However, Kidi is k
uniformly random bits in his view and he is bounded by polynomial time in k, thus his advantage can
at most be poly(k)/2k, which is negligible in k. Thus the view induced on A1 by A2 is computationally
indistinguishable from the view of A1 when playing with Hybrid 1.

Next we must argue that the view remains indistinguishable for the rest of the derived keys. Following
the argument above, this remains true for each uncompromised derived key when the keys used in the
derivation have, perhaps recursively, been constructed by calls to Fresh key. Thus the remaining case we
must argue is when at least one uncompromised derived key has been used in the construction, either directly
or as part of a linear combination: First notice that we just showed that the first uncompromised derived
key is computationally indistinguishable from a uniformly random sampled key in the view of A1, thus the
argument above goes through if such a key is used instead of a fresh key. The same remains true for linearly
constructed keys consisting of at least one uncompromised derived key: Since the uncompromised derived
key is computationally indistinguishable from a random key, a linear key where it is replaced with a fresh
key will remain computationally indistinguishable from a uniformly random key.

Finally, see that the set of the compromised keys returned to A1 will be indistinguishable in both the game
played with A2 and Hybrid 1 as they will either be sampled in exactly the same way (by the fact that we do
appropriate adjustments). Then see that since A1 is bounded by poly(k) we can at most have poly(k) keys,
each computationally indistinguishable from a uniformly random element, and thus the distinguishability
advantage of the total view will be bounded by poly(k) · negl(k) = negl(k).

Finally consider the view in regards to the guess byA1. By the previous arguments ifA1 outputs id∗ where
Kid∗ is a fresh or derived key then it will be computationally indistinguishable from a uniformly random
string and thus the advantage of A1 will be the same as the advantage of A2. If instead Kid∗ was constructed
by the call (linear, id∗, id1, . . . , idm) then before A2 passes the key it gets from Hybrid 2 back to A1 it
adjusts it according to the compromised derived keys it might depend on. Thus the key returned to A1 will
be computationally indistinguishable whether it comes from A2 or Hybrid 1 assuming each uncompromised
derived key is indistinguishable form random, which is exactly the case as we previously showed. This in
turn implies the advantage of A2 is the same as A1, except with negligible difference, as A2 inputs the same
bit to the game as it received by A1.

Since the views are at most negligibly distinguishable the advantage of A2 must be the same as A1 with
at most negligible difference. ut

Lemma 5. For any PPT adversary A there exists a PPT adversary A1 such that GuessKDF,A(1k) ≤
H1

KDF,A1(1k)− negl(k) for some negligible function negl(·) when KDF(·) is modeled as a random oracle.

Proof. We fix any adversaryA attacking the KDF game. We then construct a polytime adversaryA1 attacking
Hybrid 1, which runs A internally and argue that the advantage of A1 is at least the same as of A except
with negligible difference. We let A1 play the role of the challenger in the KDF game against A. A1 passes
on each query it gets from A to the Hybrid 1 game, stores internally, and passes back to A, the result it gets
from Hybrid 1, except for the case of End: When A outputs (end,K∗) call (end) on Hybrid 1. Let K ′ be
the key returned from Hybrid 1. If K∗ = K ′ then input c = 1 to Hybrid 1, otherwise input c = 0.

First notice that the view of A will be perfectly indistinguishable whether it is playing with A1 or the KDF
game since the calls and values returned to A in both cases are constructed similarly. Thus we only need to
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argue that the advantage of A1 is the same as A playing with the KDF game except with negligible difference
in k. See that if the bit b chosen by Hybrid 1 is 1 the winning probability of A1 and A is the same. To see this
notice that if K∗ = K ′ then both A and A1 will win and if K∗ 6= K ′ then both A and A1 will loose. If instead
b = 0 and K∗ = K ′ then A will win and A1 will loose. However, since K ′ in this case is uniformly random
sampled K∗ = K ′ will only occur with probability 2−k. If instead K∗ 6= K ′ (happening with probability
1− 2−k) then A will loose and A1 will win. This will make A1 win with probability (1− 2−k) if b = 0 and
probability GuessKDF,A(1k) if b = 1. Since b is uniformly random sampled we get that A1 wins the game
with probability 1

2 · (1− 2−k + GuessKDF,A(1k)). Thus giving A1 an advantage 1
2GuessKDF,A(1k)− 2−k−1.

Since 2−k−1 is negligible in k so is the total difference in advantage of A playing with A1, respectively the
KDF game. ut

Using Lemma 4 and Lemma 5 we get the following inequalities, for any adversary A and A1 and A2

defined as in the proofs, where negl(k) is some negligible function in k:

GuessKDF,A(1k) ≤ H1
KDF,A1(1k)− negl(k) ,

H1
KDF,A1(1k) ≤ H2

KDF,A2(1k)− negl(k) .

Combining these we get
GuessKDF,A(1k) ≤ H2

KDF,A2(1k)− negl(k) .

Now we have from Lemma 3 that H2
KDF,A2(1k) ≤ negl(k) for any adversary A2, thus we get

GuessKDF,A(1k) ≤ negl(k) .

This concludes the proof. ut
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