
Fully Secure Attribute Based Encryption

from Multilinear Maps

Sanjam Garg∗ Craig Gentry† Shai Halevi‡ Mark Zhandry§

Abstract

We construct the first fully secure attribute based encryption (ABE) scheme that can handle
access control policies expressible as polynomial-size circuits. Previous ABE schemes for general
circuits were proved secure only in an unrealistic selective security model, where the adversary
is forced to specify its target before seeing the public parameters, and full security could be
obtained only by complexity leveraging, where the reduction succeeds only if correctly guesses
the adversary’s target string x∗, incurring a 2|x

∗| loss factor in the tightness of the reduction.
At a very high level, our basic ABE scheme is reminiscent of Yao’s garbled circuits, with

4 gadgets per gate of the circuit, but where the decrypter in our scheme puts together the
appropriate subset of gate gadgets like puzzle pieces by using a cryptographic multilinear map
to multiply the pieces together. We use a novel twist of Waters’ dual encryption methodology
to prove the full security of our scheme. Most importantly, we show how to preserve the
delicate information-theoretic argument at the heart of Waters’ dual system by enfolding it in
an information-theoretic argument similar to that used in Yao’s garbled circuits.

1 Introduction

In traditional encryption schemes, access control is all or nothing: the sender encrypts its message
under a particular key, and anyone with the corresponding secret key can recover the message.
In contrast, attribute-based encryption (ABE) schemes [SW05] allow the sender to embed sophis-
ticated access control policies into its ciphertext. More specifically, an ABE scheme includes an
authority, which holds a master secret key and publishes public system parameters, including a re-
lation R(x, y). The sender uses the public parameters to encrypt its message m under some string
x to obtain a ciphertext ctx, where x may (for example) specify some “policy”. A user may obtain
a secret key sky for the string y from the authority (if the authority deems that the user is entitled),
where y may specify some “attributes” of the user. If R(x, y) = 1, then sky can be used to decrypt
ctx to recover m; otherwise decryption fails. In a “ciphertext-policy” ABE scheme [GPSW06],
R(x, y) = x(y) – that is, x is viewed as a function or “policy” acting on y. In a “key-policy” ABE
scheme, R(x, y) = y(x). In an ABE scheme for general circuits, the policy or relation can be an
arbitrary boolean circuit, up to some polynomial bound on size dictated by the public parameters.
Using ABE for circuits, a sender can wrap its message in essentially any desired access policy.

Until recently, known ABE schemes could handle only relatively simple relations, and construct-
ing ABE for circuits was the main open problem in the area. Now we have two ABE schemes for
circuits, one based on LWE [GVW13] and another based on the multilinear Diffie-Hellman problem
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over multilinear groups [GGH+13c]. However, both of theses schemes have a drawback: they are
only selectively secure – that is, they have been proved secure only in an unrealistic model in which
the adversary is required to specify the string x∗ for its challenge ciphertext before it sees the pub-
lic parameters of the ABE scheme. We would like ABE for circuits that is fully secure – i.e., that
allows the adversary to choose x∗ adaptively after seeing the public parameters and even responses
to its private key queries. In general, one can trivially reduce full security to selectively security
via complexity leveraging – essentially the reduction tries to guess the adversary’s chosen x, and
succeeds with probability 2−|x| – but complexity leveraging loses a 2|x| factor in the reduction to
the underlying hard problem that we would like to avoid. Achieving full security without the lossi-
ness of complexity leveraging is just as important for ABE for circuits as it was for identity-based
encryption (IBE) ten years ago [Wat05, Gen06, Wat09], for both efficiency and conceptual reasons.

1.1 Our Results

We construct the first fully secure ABE for circuits scheme (without complexity leveraging). Our
scheme uses n-multilinear maps [BS02, GGH13a, CLT13], where n is proportional to the size
of the circuit computing the relation. We base security on fixed, relatively simple assumptions
(independent of the relation).

In our scheme, ciphertexts and keys are proportional in size to the circuit computing the relation.
It remains an interesting open problem to construct a fully secure ABE for circuits scheme in which
the size of the ciphertext is proportional to |x| or the size of the keys is proportional to |y|.

1.2 Concurrent and Independent Work

In concurrent and independent work, Waters [Wat14] constructs a fully secure functional encryption
(FE) scheme. In a FE scheme, when a ciphertext ctm that encrypts m is decrypted by a key skf
for function f , the result is f(m) – that is, the value that is decrypted is a key-dependent function
of the message. FE for circuits is more powerful than ABE for circuits, since ABE is the special
case where f outputs m iff R(x, y) = 1. In this sense, the Waters result is stronger than ours.

However, Waters needs stronger tools and assumptions. In particular, he builds his FE scheme
from indistinguishability obfuscation (IO) [GGH+13b]. While tremendous progress has been made
on justifying the security of IO [BR14, BGK+14, PST14, GLW14, GLSW14], ultimately the
security of the resulting constructions still either relies on an exponential number of assump-
tions [BR14, BGK+14, PST14] (basically, one per circuit), or a polynomial set of assumptions,
but with an exponential loss in the security reduction [GLW14, GLSW14]. For example, the recent
IO scheme based on the MSE assumption [GLSW14] crucially uses complexity leveraging in its
proof – specifically, the number of hybrids in the proof is proportional to 2|x| where x is the input,
and each hybrid “examines” a particular input x and implicitly “verifies” that the circuits C0, C1 in
question satisfy C0(x) = C1(x). We note that, using complexity leveraging, it is possible to boost
any selectively secure ABE or FE scheme into an adaptively secure scheme.

While Waters’ result on FE is exciting, our goal is to build a simpler functionality (fully adap-
tively secure ABE for circuits) using simpler tools (multilinear maps and simple assumptions in-
volving them) without complexity leveraging.
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1.3 Technical Difficulties and New Ideas

1.3.1 The Challenge of Full Security for ABE Schemes

A naive approach for proving the full security of an ABE scheme (or any scheme involving key
queries) is the “key-partitioning” strategy. In this approach, the security reduction works by
partitioning the y values into two types at the beginning: the set Yyes for which it knows the secret
keys (and for which it can answer key queries), and the complementary set Yno = Y \ Yyes for
which it doesn’t. Let Yadv be the adversary’s key queries and x∗ be the adversary’s value for the
challenge ciphertext. For the reduction to succeed, we must have Yadv ⊆ Yyes, so that the reduction
can answer all of the adversary’s key queries, which suggests that the reduction should make Yyes
a very dense subset in Y. On the other hand, we must have R(x∗, y) = 0 for all y ∈ Yyes, since
otherwise (assuming the reduction could efficiently find a y ∈ Yyes for which R(x∗, y) = 1) the
reduction could decrypt its own challenge ciphertext without the adversary’s help; this suggests
that the reduction should take Yyes to be a small subset. Unfortunately, the tension between these
two requirements makes it impossible for the key-partitioning strategy to give a tight security
reduction. Concretely, consider the relation R(x, y) = 1 iff x 6= y, and suppose that the adversary
makes the single key query y = x∗. In this case, the reduction fails unless it correctly guesses x∗,
which happens only with probability 2−|x|.

To prove the full security of ABE with a tight reduction, we need an alternative to the key-
partitioning strategy, and our starting point is Waters’ dual system methodology [Wat09]. In the
dual system, keys and ciphertexts can take on one of two forms: normal or semi-functional. The
semi-functional keys and ciphertexts are not used in the real system, but rather only in the proof
of security. The reduction always knows how to generate some secret key for any y ∈ Y, but
(depending on which hybrid in the security proof) the reduction may know how to sample only
normal secret keys or only semi-functional keys. The way normal and semi-functional keys and
ciphertexts work is that, if ctx is a ciphertext that encrypts m under string x and sky is a key
for y and R(x, y) = 1, the value of Decrypt(ctx, sky) equals m unless ctx and sky are both semi-
functional, in which case the output is uniform (individually over uniform semi-functional ctx or
uniform semi-functional sky). In the security proof, the first hybrid corresponds to the real security
game, in which the adversary is given normal keys and a normal challenge ciphertext. In the next
hybrid, the challenge ciphertext is switched to semi-functional while the keys remain normal. In
subsequent hybrids, the keys are switched one-by-one from normal to semi-functional. By the final
hybrid, all of the keys are semi-functional and useless for decrypting the semi-functional challenge
ciphertext, at which point finishing the security proof becomes relatively easy.

At the heart of the dual system is a subtle information-theoretic argument. Specifically, in
a step where a key is switched from normal to semi-functional, the reduction must be prepared
to answer a key query for any y and issue a challenge ciphertext for any x. This seems like a
paradox, since the reduction could try to determine whether a key sky is normal or semi-functional
on its own by applying it to a semi-functional ciphertext ctx for some x satisfying R(x, y) =
1. At a high level, known versions of the dual system in the context of (hierarchical) IBE and
ABE for simple relations [Wat09, LOS+10, OT10] deal with this problem by ensuring that, when
R(x, y) = 1, the semi-functional ciphertexts for x and semi-functional keys for y that the reduction
can actually efficiently compute are highly correlated, such that decrypting a computable semi-
functional ciphertext with a computable semi-functional key actually succeeds – i.e., recovers the
intended m. However, the hybrids are structured so that these correlations for x, y satisfying
R(x, y) = 1 remain information-theoretically hidden to the adversary, who is only allowed to query
keys for y’s satisfying R(x∗, y) = 0.
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One of the main challenges in using the dual system approach to realize fully secure ABE for cir-
cuits is that we need to create a structure that simultaneously allows general computation and pre-
serves some version of the dual system’s delicate information-theoretic argument. This new struc-
ture, which will be at the heart of our construction, is a new witness encryption scheme [GGSW13].

1.3.2 A Useful Witness Encryption Scheme

A witness encryption scheme is defined for an NP language L with relation R(x, y). A sender can
encrypt a message m with respect to a string x to produce a ciphertext ctx. A recipient can decrypt
ctx to recover m if x ∈ L and the recipient knows a witness y such that R(x, y) = 1. However,
if x /∈ L, then no polynomial-time attacker can distinguish between encryptions of any two equal-
length messages. Importantly, the encrypter itself may have no idea whether x is actually in the
language. Garg et al. [GGSW13] gave a witness encryption construction for the EXACT COVER
problem, and thus for any NP language L.

Conceptually, our new witness encryption scheme is remarkably simple. For each gate g in
the circuit computing the relation, the ciphertext includes 4 components associated to the possible
assignments (0, 0, g(0, 0)), . . . (1, 1, g(1, 1)) of g’s wires. It also includes some components for fixed
input x, and components for the free input y. The decrypter who knows a valid witness y can
compute the correct assignment of the gates, then use these assignments to pick out the appropriate
ciphertext components, and then simply put together the components like puzzle pieces, using the
multilinear map as the “glue”. Details follow.

For convenience, rather than viewing relations symmetrically, we let Cx be the verification circuit
for x ∈ L – that is, Cx(y) = 1 iff R(x, y) = 1. For each wire w in the circuit, let Gw be the set of
gates that w feeds into (so that |Gw| is the fan-out of w). Let I be the set of input wires to Cx and W
be the set of internal wires of the Cx, including the output wire. Let n, the level of multilinearity, be
equal to |I|+ |Cx|. Our final ABE construction uses composite order asymmetric graded encodings
that can be instantiated with a version of the CLT multilinear maps [CLT13, GLW14], but we
start by describing this witness encryption scheme instantiated with ideal prime order symmetric
multilinear maps, with hi denoting the generator at the ith level.

Encryption. For w ∈ I ∪W, c ∈ {0, 1} and g ∈ Gw, sample random values acw, b
c
w,g subject to the

constraint that sw = a0w
∏
g∈Gw

b0w,g = a1w
∏
g∈Gw

b1w,g. For each one of the input wires i ∈ I we

give out h
a0i
1 and h

a1i
1 and for each gate g ∈ Cx except for the output gate, we give out four values

h
bc
left(g),g

bc
′

right(g),g
a
g(c,c′)
out(g)

1 for c, c′ ∈ {0, 1}, where left(g) and right(g) are the left and right input wires to
gate g and g(c, c′) is the evaluation of gate g on inputs c and c′. For the output gate we give out
only those entries where the output of the gate is actually 1. Finally we encrypt the message M

by giving M · h
∏

w sw
n .

Decryption. We are given input y such that Cx(y) = 1. Let yw be the value assigned to each wire
of Cx when evaluated on input y. Note that decryption can be easily done by pairing together the

input values ha
yw
w

1 for input wires and h
b
yleft(g)
left(g),g

b
yright(g)
right(g),g

a
yout(g)
out(g)

1 for each gate in the circuit. Note this

evaluates exactly to h
∏

w sw
n which can then be used to recover the encrypted message.

One can view decryption in our WE scheme as being somewhat similar to evaluating a Yao
garbled circuit, except that the WE decrypter is allowed to know the underlying assignments to
the wires. The gate gadgets in our WE scheme ensure a form of authenticity, but not secrecy
(which is unnecessary).
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Our WE scheme uses the NP language CircuitSAT or 3SAT, rather than EXACT COVER.
One could view our WE scheme as being inspired by the original GGSW scheme, where our new
scheme has incorporated the reduction from CircuitSAT or 3SAT to EXACT COVER – e.g., the
reduction given by Papadimitriou and Tsitsiklis [PT82]. However, we stress that our scheme cannot
be obtained from theirs in a black-box way. It is precisely our “non-black-box” approach of opening
open the reduction from CircuitSAT or 3SAT to EXACT COVER that exposes the structure that
we need for the dual system’s information theoretic argument.

1.3.3 From Witness Encryption toward Attribute Based Encryption

We do not show that our WE scheme has better provably security properties than previous WE
schemes. However, projecting our WE scheme down to an ABE scheme does (eventually) give us
an ABE scheme with better properties. Some simplifications and observations:

A Fused Input Version of the Witness Encryption Scheme. In the fused input version

instead of giving out h
a0w
1 and h

a1w
1 for each input wire w ∈ I, instead we give out one fused value,

specifically h
∏

i∈I a
yi
i

|I| . Giving this value allows decryption only if y is a valid witness for x ∈ L. In

other words it allows decryption only for a particular valid witness (which will ultimately correspond
to an ABE decrypter’s string y).

Garbleability of the Fused Input Version. Once an input y to Cx is fixed, this gives a fixed
input and intermediate gate values that need to be paired in order to recover the encrypted message.
Here we observe that if we were to move to an asymmetric multilinear maps then we can in fact
garble the other gate entries. The proof for this at an intuitive level is very similar to the proof of
Yao’s garbed circuit. For each input wire, the value a1−yii is not used as part of the ciphertext. As
in Yao’s proof, this allows us to garble three out of four gate entries for the gates that only take
input wires. Applying this argument recursively we can garble three out of four gate entries for
each gate in the circuit. This along with the facts that, (1) Cx(y) = 0 and (2) b0out for the output
wire out is not used at all; allows us to claim that

∏
w sw is information theoretically independent

of all the other values which are given out. This information theoretic argument is what enables
the use of dual system methodology in our context.

1.3.4 An ABE for Circuits Scheme with Partial Adaptivity

As an initial step, we give an ABE construction that only achieves partial adaptivity – i.e., where
the adversary is provided with the public parameters before it makes the key queries, but can
only make the queries before the challenge ciphertext is provided. For this, we need composite
order multilinear maps, where the encodings encode elements from a ring R1 × R2. (The actual
construction actually needs three sub-rings for technical reasons similar to those in [LOS+10], but
the two sub-ring setting conveys the main ideas well enough for this overview.)

In our scheme, the public parameters, the normal ciphertext and the normal secret-keys all
reside in the first sub-ring R1, and the second sub-ring will not be used at all1. Very roughly, our
scheme is essentially the above fused-input WE scheme implemented in the ring R1, where a secret
key for an input y is a fused-input key for the input y. Decryption is done just as in the fused input
witness encryption scheme.

1Actually for technical reasons, one component of the secret keys will have a R2 component, but this component
will be zeroed out during decryption.
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In our security proof, just as in regular dual-system proofs, we first switch the challenge cipher-
text to semi-functional while keeping the secret-keys normal. The semi-functional ciphertext has
additional valid components in the ring R2 as well. Next, we switch the queried secret keys one-
by-one from normal to semi-functional, which have completely random R2 component. Traditional
dual systems achieve this by first adding an R2 component to the secret key that is correlated with
the semi-functional ciphertext. Subsequently, an information theoretic argument is used to remove
these correlations and finally move to the semi-functional secret key. In our case, the information-
theoretic argument cannot be applied directly because of elaborate correlations that exist between
the second dimension of the semi-functional challenge ciphertext and the key being considered.
We solve this problem by removing these correlations between the semi-functional ciphertext and
key slowly, specifically by using the garbling argument described above. The special property of
this garbling process is that it affects only those parts of the semi-functional ciphertext which do
not interact with the specific key being considered. Once these unnecessary correlations have been
shaved off, we can indeed rely on the information theoretic argument described above to get rid of
all the correlations, finally changing the key to its semi-functional form.

Note that, in the steps where we remove the correlations, the changes to the semi-functional
ciphertext depend on the attributes of the secret key it is interacting with. For this reason, we only
get partially adaptive security, in which the adversary can make key queries only before it gets to
see the challenge ciphertext.

1.3.5 Boosting to Full Adaptivity: Mirroring

In our partially adaptive construction, we relied on our ability to temporarily garble a semi-
functional ciphertext so that we could change a secret key to its semi-functional form. Our fully
adaptive scheme is obtained by stitching this scheme together with its mirror image, in which the
secret key components become ciphertext components and ciphertext components become secret-
key components. This mirror image of our scheme also achieves partial adaptive security, but of
the other kind – namely, the adversary is allowed to ask for secret key queries only subsequent to
receiving the challenge ciphertext. In the mirror image, the hybrids involve garbling of secrets keys
depending on the challenge ciphertext. By carefully stitching these two partially adaptive schemes
together, we obtain a fully adaptive scheme. For full details we refer the reader to the scheme
itself.

2 Preliminaries

In this section, we start by providing the definition of adaptively secure ABE for general circuits.
Next we recall the notion of graded encoding schemes and develop notation that will be needed in
our context.

2.1 Adaptively Secure ABE

A ciphertext-policy attribute-based encryption system (more precisely, key encapsulation mecha-
nism) consists of four algorithms: Setup,KeyGen,Encrypt, and Decrypt.

- Setup(λ): The setup algorithm takes in the security parameter λ as input and outputs the
public parameters MPK and a master secret key MSK.

- KeyGen(MSK, y): The key generation algorithm takes in the master secret key MSK, and
an attribute string y as input. It outputs a private key SKy for y.
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- Encrypt(MPK,x): The encryption algorithm takes in the public parameters MPK, and an
attribute string x as input. It outputs a ciphertext header CT and message encryption key
Kenc for x. The key Kenc is used to encrypt the actual message M . The actual ciphertext
consists of the header CT and the encrypted message. We assume that the attribute string
x is implicitly included in CT .

- Decrypt(SKy, CT ): The decryption algorithm takes a private key SKy for attribute string
y and ciphertext CT for attribute x as input and outputs the message encryption key Kenc

if C(x, y) = 1. Here C represents a fixed universal circuit.

Correctness of the scheme requires that for correctly generated private keys for y and correctly
generated ciphertexts for x, if C(x, y) = 1 then decryption should output the correct message
encryption key Kenc except with negligible probability.

We will now give the security definition for adaptive ABE. This is described by a security game
between a challenger and an attacker that proceeds as follows.

- Setup: The challenger runs the Setup algorithm and gives the public parameters MPK to
the attacker.

- Query Phase I: The attacker queries the challenger for private keys corresponding to at-
tribute strings y1, . . . , yq1 , which the challenger provides.

- Challenge: The attacker declares an attribute string x∗. We require that ∀i ∈ [q1] we have
that C(x∗, yi) = 0. The challenger runs (CT,Kenc) ← Encrypt(MPK,x∗), sets K0 = Kenc

and chooses a random K1 ∈ {0, 1}λ. The challenger flips a random coin β ∈ {0, 1}, and gives
the pair (CT ∗,Kb) to the adversary.

- Query Phase II: The attacker queries the challenger for private keys corresponding to
the attribute strings yq1+1, . . . , yq, with the added restriction that ∀i ∈ {q1, . . . , q} we have
C(x∗, yi) = 0.

- Guess: The attacker outputs a guess β′ for β.

The advantage of an attacker in this game is defined to be Pr[β = β′]− 1
2 .

2.2 Graded Encoding Scheme

Now, we describe the graded encoding scheme abstraction that will be needed in our context, mostly
following [GGH13a, CLT13, GLW14]. To instantiate the abstraction, we can use Gentry et al.’s
variant [GLW14] of the Coron-Lepoint-Tibouchi (CLT) graded encodings [CLT13]. This variant
is designed to emulate multilinear groups of composite order, and to allow assumptions regarding
subgroups of the multilinear groups.

Definition 1 (U-Graded Encoding System). A U-Graded Encoding System consists of a ring R

and a system of sets S = {S(α)
T ⊂ {0, 1}∗ : α ∈ R, T ⊆ U, }, with the following properties:

1. For every fixed set T , the sets {S(α)
T : α ∈ R} are disjoint (hence they form a partition of

ST
def
=
⋃
α S

(α)
T ).
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2. There is an associative binary operation ‘+’ and a self-inverse unary operation ‘−’ (on {0, 1}∗)
such that for every α1, α2 ∈ R, every set T ⊆ U, and every u1 ∈ S(α1)

T and u2 ∈ S(α2)
T , it

holds that
u1 + u2 ∈ S(α1+α2)

T and − u1 ∈ S(−α1)
T

where α1 + α2 and −α1 are addition and negation in R.

3. There is an associative binary operation ‘×’ (on {0, 1}∗) such that for every α1, α2 ∈ R, every

T1, T2 with T1 ∪T2 ⊆ U, and every u1 ∈ S(α1)
T1

and u2 ∈ S(α2)
T2

, it holds that u1×u2 ∈ S(α1·α2)
T1∪T2 .

Here α1 · α2 is multiplication in R, and T1 ∪ T2 is set union.

CLT (and GGH) encodings do not quite meet the definition of graded encoding systems above,
since the homomorphisms required in the definition eventually fail when the “noise” in the encodings
becomes too large, analogously to how the homomorphisms may eventually fail in lattice-based ho-
momorphic encryption. However, these noise issues are relatively straightforward (though tedious)
to deal with.

Now, we define some procedures for graded encoding schemes.

Instance Generation. The randomized InstGen(1λ,U, r) takes as inputs the parameters λ,U, r,
and outputs params, where params is a description of a U-Graded Encoding System as above
for a ring R = R1 × . . .×Rr. We assume R is chosen such that the density of zero divisors
in each Ri is negligible.

Note that setting r = 1 corresponds to the prime order setting, while r > 1 corresponds to
the composite-order setting.

Ring Sampler. The randomized samp(params) outputs a “level-zero encoding” a ∈ S
(α)
φ for a

nearly uniform element α ∈R R. (Note that we require that the “plaintext” α ∈ R is nearly

uniform, but not that the encoding a is uniform in S
(α)
φ .)

Encoding. The (possibly randomized) enc(params, T, a) takes a “level-zero” encoding a ∈ S(α)
φ for

some α ∈ R and index T ⊆ U, and outputs the “level-T” encoding u ∈ S(α)
T for the same α.

Re-Randomization. The randomized reRand(params, T, u) re-randomizes encodings relative to

the same index. Specifically, for an index T ⊆ U and encoding u ∈ S
(α)
T , it outputs an-

other encoding u′ ∈ S
(α)
T . Moreover for any two u1, u2 ∈ S

(α)
T , the output distributions of

reRand(params, T, u1) and reRand(params, T, u2) are statistically indistinguishable.

Addition and negation. Given params and two encodings relative to the same index, u1 ∈ S(α1)
T

and u2 ∈ S
(α2)
T , we have an addition function add(params, T, u1, u2) = u1 + u2 ∈ S

(α1+α2)
T ,

and a negation function neg(params, T, u1) = −u1 ∈ S(−α1)
T .

Multiplication. For u1 ∈ S
(α1)
T1

, u2 ∈ S
(α2)
T2

such that T1 ∪ T2 ⊆ U, we have a multiplication

function mul(params, T1, u1, T2, u2) = u1 × u2 ∈ S(α1·α2)
T1∪T2 .

Zero-test. The procedure isZero(params, u) outputs 1 if u ∈ S(0)
U and 0 otherwise. Note that in

conjunction with the subtraction procedure, this lets us test if u1, u2 ∈ SU encode the same
element α ∈ R.
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Extraction. This procedure extracts a “canonical” and “random” representation of ring elements
from their level-U encoding. Namely ext(params, u) outputs (say) s ∈ {0, 1}λ, such that:

(a) For any α ∈ R and two u1, u2 ∈ S(α)
U , ext(params, u1) = ext(params, u2),

(b) For any i ∈ [r] and α ∈ R, the distribution {ext(params, u) : β ∈ Ri, u ∈ S
(α+β)
U } is

nearly uniform over {0, 1}λ.

We note that original abstraction of [GGH13a, CLT13] provided uniform distribution only
when β ∈ R. However, the variant in [GLW14] can also be used for the setting when β ∈ Ri.

3 Our Adaptive ABE Scheme

Notation for circuit C. The scheme uses a universal boolean circuit C with fan-in 2 that is
“fixed once and for all”. The circuit takes as input (x, y). We will refer to x as the left input and
y as the right input. Let I1 be the set of left input wires to C (input wires corresponding to x) and
I2 be the set of right input wires (input wires corresponding to y). Let W be the set of internal
wires of the circuit, including the output wire, referred to as out.

Next we define a set U of size 2|C| + |I1| + 2. For each gate g in the circuit, we will have two
elements in U, namely g and g. For each left input wire w ∈ I1, we will also have an element in U,
namely w. Additionally we will include 0, 1 in U.

Instantiating the Graded Encoding System and Our Notation for it. In our construction
we will use a U-graded encodings system for a ring R = R1 ×R2 ×R3. In particular an instance
of these encoding can be generated using the procedure params← InstGen(1λ,U, 3).

In order to simplify exposition in our scheme we will denote encodings as [α]1T where T denotes
the level of the encoding and 1 denotes that only the R1 component of α is preserved and the
component of α in R2 × R3 is zero-ed out. Similarly use of multiple indices in the super-script
would be interpreted to suggest that the ring element being encoded has a component in multiple
sub-rings. For example [α]1,2T denotes that only the R3 component of α is zero-ed out.

Noise Parameters. We will use two noise parameters σ and σ′, with σ′ � σ. In our scheme all
the public parameters will be given out with noise σ and all the ciphertext and secret key encodings
will be given out with noise σ′.2

Setup(λ,C): Next, for each wire w in the circuit, let Gw be the set of gates that w feeds into
(so that |Gw| is the fan-out of w). Then for c = 0, 1, g ∈ Gw, sample random acw, b

c
w,g from ring

R subject to the constraint that sw = a0w
∏
g∈Gw

b0w,g = a1w
∏
g∈Gw

b1w,g
3. Similarly, sample barred

versions acw, b
c
w,g with the constraint that sw = a0w

∏
g∈Gw

b0w,g = a1w
∏
g∈Gw

b1w,g. Also sample a
random α ∈ R.

For any gate g ∈ C, let left(g) denote the left input wire to g, right(g) denote the right input
wire to g and out(g) denote the output wire of g. Finally let g(c, c′) denote the output of g on

2A slightly more sophisticated noise parameter setting could be used for the sake of better efficiency. However we
avoid that here for the sake of simplicity.

3This can be accomplished by sampling k = 2|Gw|+ 2 random values t1, . . . , tk from R using samp(params). Then
set a0

w = t1t2, b
0
w,g1 = t3t4, b

0
w,g2 = t5t6, . . . and a1

w = tkt1, b
1
w,g1 = t2t3, b

1
w,g2 = t4t5, . . . .

9



inputs c and c′. The public key is:

MPK =
(
F = [α]1U, G = [1]1{g:g∈C}∪I1∪{1},

{
Ec,c

′
g =

[
bcleft(g),g · b

c′
right(g),g · a

g(c,c′)
out(g)

]1
{g}

}
g∈C;c,c′∈{0,1}

,

{
Jw,c = [acw · acw]

1
{w}

}
w∈I1;c∈{0,1}

, B =
[
b1out
]1
{1}

)
We also give out the public parameters params for the graded encoding, as well as randomizers

at the following levels in the public key (These will be needed during encryption):

- {g : g ∈ C} ∪ I1 ∪ {1}.

- I1 ∪ {1}.

- {g} for every g ∈ C.

As mentioned earlier, all the public parameters are given out with noise σ. The master secret key
MSK consists of all the acw, b

c
w,g, sw, their barred versions, and α.

Explanation of terms in the master public key.

• α is a global secret that is only given out at the top level of the encoding, and will be used by
the sender to generate the message encryption key for a ciphertext. In order for the receiver
to compute the message encryption key, he will need α at a lower level, which is not handed
out directly. Secret keys will contain α at a lower level, but masked by other random values.
The only way to remove the masking and expose α, and hence the message encryption key,
we be to combine the appropriate secret key encodings and ciphertext encodings together.

• acw, bcw,g, sw, and their barred versions, are used to enforce that the un-masking above can
only be carried out on a ciphertext with attribute x by using a secret key with attribute y
where C(x, y) = 1. We will associate the un-barred values with secret keys, and the barred
values with ciphertexts. In more detail, in order to remove the mask, it will be necessary
to compute an encoding of

∏
w∈C swsw. A ciphertext for attribute x will contain random

multiples of the Ec,c
′

g values (that have the form bcleft(g),g · b
c′
right(g),g · a

g(c,c′)
out(g)), as well as an

encoding of a random multiple of
∏
w∈I1 a

xw
w . It will also contain a random multiple of B

(giving an encoding of b1out). A secret key for attribute y, meanwhile, will contain a random

multiple of
∏
w∈I2 a

yw
w . The only way to combine these components to compute

∏
w∈C sw is

to choose the Ec,c
′

g corresponding to the evaluation of C on input x, y (that is, use the Ec,c
′

g

where c, c′ are the values of the input wires to g on the evaluation of C), and the result of the
evaluation must be 1 since we only have an encoding of b1out. The secret keys symmetrically
have components allowing the computation of

∏
w∈C sw.

KeyGen(MSK, y): On input y, sample random values θ and φw from ring R for every w ∈ W .
Also sample random values ζ0, ζ1, ζg,c,c′ for every g ∈ C; c, c′ ∈ {0, 1}. Output the secret key
components as:
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K0 = [α]1,2{g:g∈C}∪{0} +

[
θ
∏
w∈W

φw
∏
w∈C

swsw

]1
{g:g∈C}∪{0}

+ [ζ0]
3
{g:g∈C}∪{0}

K1 =

θ ∏
w∈I2

ayww ayww b1out

1

{0}

+ [ζ1]
3
{0}

Dc,c′
g =

[
φout(g)b

c
left(g),gb

c′

right(g),ga
g(c,c′)
out(g)

]1
{g}

+
[
ζg,c,c′

]3
{g} for g ∈ C; c, c′ ∈ {0, 1}

As mentioned earlier, all the secret key encodings are given out with noise σ′.

Encrypt(MPK,x): On input x, sample random values θ and φw for w ∈ W from the ring R.
Output the ciphertext as:

C0 = θ
∏
w∈W

φw ·G

=

[
θ
∏
w∈W

φw

]1
{g:g∈C}∪I1∪{1}


C1 = θ ·B ·

∏
w∈I1

Jw,xw

=

θ ∏
w∈I1

axww axww · b1out

1

I1∪{1}


∀g ∈ C, c, c′ ∈ {0, 1}, Dc,c′

g = φout(g) · E
c,c′
g

(
=

[
φout(g) · bcleft(g),g · b

c′
right(g),g · a

g(c,c′)
out(g)

]1
{g}

)

The ciphertext header is:

CT =

(
C0, C1,

{
Dc,c′
g

}
g∈C,c,c′∈{0,1}

)
To compute the message encryption key, first compute

H = θ
∏
w∈W

φw · F

=

[
αθ

∏
w∈W

φw

]1
U


Then the message encryption key is: Kenc = ext(params, H). Here Kenc can be used to encrypt

the actual message.

Remark 1. Note that all the encodings given out in the ciphertext can be re-randomized (to noise σ)
using the randomizer provided in the public parameters. We do not mention the re-randomization
above explicitly, for the sake of simplicity of notation.

Decrypt(SKy, Cx): If C(x, y) = 0 then output ⊥ and otherwise proceed as follows. In the evalu-
ation of C(x, y), let cw be the value assigned to wire w. Then compute:

H ′ = C0K0 − C1K1

∏
g∈C

D
cleft(g),cright(g)
g D

cleft(g),cright(g)
g

and let Kenc = ext(params, H ′).
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Correctness. To show correctness, it suffices to show that H ′ computed by the decryption func-
tion is equal to H computed during encryption. Indeed,

H ′ = C0K0 − C1K1

∏
g∈C

D
cleft(g),cright(g)
g D

cleft(g),cright(g)
g

=

θ ∏
w∈W

φw

(
α+ θ

∏
w∈W

φw
∏
w∈C

swsw

)
− θθ

∏
w∈W

(
φwφw

) ∏
w∈I1

(
axww axww

) ∏
w∈I2

(
ayww ayww

)
b1outb

1
out

·
∏
g∈C

(
bcleft(g),gb

c′

right(g),ga
cout(g)
out(g) b

c
left(g),gb

c′
right(g),ga

cout(g)
out(g)

)1

U

=

αθ ∏
w∈W

φw + θθ
∏
w∈W

φwφw

∏
w∈C

swsw −
∏
w∈C

acww ∏
g∈Gw

bcww,g

acww ∏
g∈Gw

bcww,g

1

U

=

[
αθ

∏
w∈W

φw

]1
U

= H

4 Proof of Security

In this section, we show that the construction presented in the previous section is an adaptively
secure ABE scheme for general circuits.

4.1 Hardness Assumptions

Given a U-graded encoding for the ring R = R1×R2×R3 we will define our hardness assumptions.
Let U be a universe of size n, and let V,W1,W2 be any partition of U into disjoint sets. Our
assumptions below will be parameterized by V, W1, and W2. Let params’ consist the parameters
params for the graded encodings, plus randomizers for all singleton sets, as well as randomizers for
the index sets U, V, W1, and W1 ∪W2. We will now state our assumptions using notation that
was used to describe our scheme.

Definition 2 (Assumption 1). The following two distributions are indistinguishable:(
params’,

{
Ri = [1]1{i}, Si = [si]

3
{i}, Ti = [ti]

1,2
{i}, Ui = [ui]

1
{i}

}
i∈U

)
and(

params’,
{
Ri = [1]1{i}, Si = [si]

3
{i}, Ti = [ti]

1,2
{i}, Ui = [ui]

1,2
{i}

}
i∈U

)
Intuitively the security of the above assumption relies on the fact that the adversary can not

isolate any encoding with a R2 component alone.

Definition 3 (Assumption 2). The following two distributions are indistinguishable:(
params’,

{
Ri = [1]1{i}, Si = [si]

3
{i}Ti = [ti]

1,2
{i}

}
i∈U

, U = [u]2,3V ,
{
Vi = [vi]

1,3
{i}

}
i∈V

)
and(

params’,
{
Ri = [1]1{i}, Si = [si]

3
{i}Ti = [ti]

1,2
{i}

}
i∈U

, U = [u]2,3V ,
{
Vi = [vi]

1,2,3
{i}

}
i∈V

)
Intuitively the security of the above assumption relies on the fact that the adversary can not

pair any of the Vi encodings with U . Additionally pairing any Vi encoding with the Ri, Si and Ti
encodings does not help the adversary in any way.
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Definition 4 (Assumption 3). For any e ∈ U the following two distributions are indistinguishable:(
params’,

{
Ri = [1]1{i}, Si = [si]

3
{i}, Ti = [ti]

2
{i}

}
i∈U

, U = [teu]2{e}, V = [tev]2{e},W = [teuv]2{e}

)
and(

params’,
{
Ri = [1]1{i}, Si = [si]

3
{i}, Ti = [ti]

2
{i}

}
i∈U

, U = [teu]2{e}, V = [tev]2{e},W = [tew]2{e}

)
The above assumption is essentially the DDH assumption in R2 (or more closely similar to the

SXDH assumption in the setting of bilinear groups.).

Remark 2. As stated, assumptions 1 and 2 are separate assumptions for each partition V,W1,W2,
meaning the number of assumptions is exponential in n = |U|. However, in current graded encoding
candidates, different indexes e ∈ U are treated identically, meaning the indexes can be re-labeled
arbitrarily. Thus, all the exponentially-many assumptions are generated by a polynomial-sized set
of assumptions, namely the assumptions parameterized by k, `,m such that k + ` + m = n, where
V = [1, k], W1 = [k + 1, k + `], and W2 = [k + ` + 1, n]. Similarly, assumption 3 can be collapsed
to three assumptions for each k, `,m, depending on whether e ∈ V, e ∈ W1, or e ∈ W2 (note that
we will actually not need the case where e ∈W1).

Moreover, k, `,m will be determined solely by the size of C and the number of left input wires in
I1 (in particular, k = |C|+1, ` = |I1|+1, and m = |C|). Therefore, we can fix a family of universal
circuits {Ci}i∈N to use in our scheme. Then we will need to rely on only a single instance of each
of assumptions 1, 2, and two instances of assumption 3 to argue security.

Remark 3. We state our assumptions with the Ri being encodings of 1 in the ring R1, rather than
a random element from R1 (as is typically the case in dual system literature). This was mostly for
convenience in our security proofs — all our proofs still carry though if the Ri were encodings of
random R1 elements.

Remark 4. Even though we do not explicitly mention this above, we assume that all the encodings
in the assumptions are provided with noise parameter σ′′ that is much less than the parameters σ
and σ′, which correspond to the level of noise in the encodings given out in the scheme. These
parameters are set such that all the encodings in the proof can be given out according to the correct
noise parameters.

4.2 Additional Structures Needed for the Proof

Before we give our proof of security, we define two additional structures needed for the proof:
namely, semi-functional ciphertexts and keys. These will not be used in the real system, but will
be needed in our proof.

Semi-functional Ciphertext. A semi-functional ciphertext on input (MPK,x) has the same
form as a real ciphertext for (MPK,x), except that a semi-functional ciphertext has components
in R1 and R2, rather than just R1.
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C0 =

[
θ
∏
w∈W

φw

]1,2
{g:g∈C}∪I1∪{1}

C1 =

θ ∏
w∈I1

axww axww b1out

1,2

I1∪{1}

Dc,c′
g =

[
φout(g)b

c
left(g),gb

c′
right(g),ga

g(c,c′)
out(g)

]1,2
{g}

∀g ∈ C, c, c′ ∈ {0, 1}

The ciphertext is

CT =

(
C0, C1,

{
Dc,c′
g

}
g∈C,c,c′∈{0,1}

)
The message encryption key is computed as:

H =

[
αθ

∏
w∈W

φw

]1,2
U

Kenc = ext(params, H)

Semi-functional Key. A semi-functional key will take on one of the following forms.

- A semi-functional key of type 1 has a random R2 component in K0, while all the other secret
key encodings are zero in R2. In other words, it has the following form:

K0 =

[
α+ θ

∏
w∈W

φw
∏
w∈C

swsw

]1
{g:g∈C}∪{0}

+ [ζ0]
2,3
{g:g∈C}∪{0}

K1 =

θ ∏
w∈I2

ayww ayww b1out

1

{0}

+ [ζ1]
3
{0}

Dc,c′
g =

[
φout(g)b

c
left(g),gb

c′

right(g),ga
g(c,c′)
out(g)

]1
{g}

+
[
ζg,c,c′

]3
{g} for g ∈ C; c, c′ ∈ {0, 1}

- A semi-functional key of type 2 has a random R2 component in all secret key encodings,
except that the components in R2 are correlated across each of the encodings in the secret
key. Specifically, it is set as:

K0 =

[
α+ θ

∏
w∈W

φw
∏
w∈C

swsw

]1,2
{g:g∈C}∪{0}

+ [ζ0]
3
{g:g∈C}∪{0}

K1 =

θ ∏
w∈I2

ayww ayww b1out

1,2

{0}

+ [ζ1]
3
{0}

Dc,c′
g =

[
φout(g)b

c
left(g),gb

c′

right(g),ga
g(c,c′)
out(g)

]1,2
{g}

+
[
ζg,c,c′

]3
{g} for g ∈ C; c, c′ ∈ {0, 1}
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- A semi-functional key of type 3 also has random R2 components in all secret key encodings,

except that now the R2 components of K0 and K1 are uncorrelated with the Dc,c′
g . The R2

components of the Dc,c′
g are still correlated:

K0 =

[
α+ θ

∏
w∈W

φw
∏
w∈C

swsw

]1
{g:g∈C}∪{0}

+ [ζ0]
2,3
{g:g∈C}∪{0}

K1 =

θ ∏
w∈I2

ayww ayww b1out

1

{0}

+ [ζ1]
2,3
{0}

Dc,c′
g =

[
φout(g)b

c
left(g),gb

c′

right(g),ga
g(c,c′)
out(g)

]1,2
{g}

+
[
ζg,c,c′

]3
{g} for g ∈ C; c, c′ ∈ {0, 1}

- A semi-functional key of type 4 has random uncorrelated components in R2 for all secret key
encodings:

K0 =

[
α+ θ

∏
w∈W

φw
∏
w∈C

swsw

]1
{g:g∈C}∪{0}

+ [ζ0]
2,3
{g:g∈C}∪{0}

K1 =

θ ∏
w∈I2

ayww ayww b1out

1

{0}

+ [ζ1]
2,3
{0}

Dc,c′
g =

[
φout(g)b

c
left(g),gb

c′

right(g),ga
g(c,c′)
out(g)

]1
{g}

+
[
ζg,c,c′

]2,3
{g} for g ∈ C; c, c′ ∈ {0, 1}

4.3 Proof Overview

At the highest level, our proof strategy will be similar to existing dual systems proofs. We prove
security though a sequence of hybrids. First, we transform the challenge ciphertext to be semi-
functional. Then, one-by-one, we transform the secret keys to be semi-functional (type 1). For each
secret key, the transformation involves several hybrids, where we first make the secret key semi-
functional (type 2), and then semi-functional (type 3), and then finally semi-functional (type 1). In
previous dual systems proofs, the analog of moving from type 2 to type 3 secret keys was performed
by an information theoretic argument. For our scheme, this is no longer possible. However, we
will show that the transformation is still possible using a mix of computational and information
theoretic arguments.

Our hybrids will be as follows:

• Hreal is the real security experiment.

• In H0, the challenge ciphertext is semi-functional. Hreal and H0 are proved indistinguishable
using assumption 1.

• In Hi for i = 1, ..., q, the challenge ciphertext is semi-functional, secret keys j ≤ i are semi-
functional (type 1), and secret keys j > i are normal. We prove that Hi−1 and Hi are
indistinguishable using several intermediate hybrids:
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– In Hc
i , the challenge ciphertext is semi-functional, secret keys j < i are semi-functional

(type 1), secret keys j > i are normal, and secret key i is semi-functional type 2. We
prove that Hi−1 and Hc

i are indistinguishable using assumption 2.

– Hu
i , is identical to Hc

i , except that the ith secret key is semi-functional type 3. In
previous dual system works, Hu

i and Hc
i are statistically indistinguishable following an

information theoretic argument. However, this is not the case for our scheme. Instead, we
prove the hybrids computaitonally indistinguishable using several intermediate hybrids,
relying on assumption 3 and an information theoretic argument. We note that the
hybrids vary depending on whether the ith secret key query occurs before of after the
challenge ciphertext query.

Finally, Hu
i is proved indistinguishable from Hi using assumption 2.

Lastly, in hybrid Hq, we show that the message encryption key is statistically hidden from the
adversary, meaning the adversary has negligible advantage.

4.4 The Actual Proof

We prove adaptive security through a sequence of hybrids. The high level strategy is similar to
previous dual system proofs: we first make the challenge ciphertext semi-functional, and then we
gradually transform every secret key one-by-one to be semi-functional (type 1). However, the
method we use to make each secret key semi-functional will be different from previous works. Once
all of the secret keys are semi-functional, we can argue that the challenge message encryption key
is statistically hidden from the adversary.

HReal: This is the real security game (as defined in Section 2.1). Let qbefore be the number of
secret key queries made by the attacker before the challenge ciphertext, and q be the total number
of secret key queries.

Next, we transform the challenge ciphertext to be semi-functional:

H0: This is the same as HReal, except that the challenge ciphertext given to the adversary is
semi-functional, meaning its terms are encoded in R1 × R2, rather than just in R1. Specifically,
the challenge ciphertext, for attribute string x, is

C∗0 =

[
θ∗
∏
w∈W

φ∗w

]1,2
{g:g∈C}∪I1∪{1}

C∗1 =

θ∗ ∏
w∈I1

axww axww b1out

1,2

I1∪{1}

Dc,c′∗
g =

[
φ∗out(g)b

c
left(g),gb

c′
right(g),ga

g(c,c′)
out(g)

]1,2
{g}

The term H∗ is then [
αθ∗

∏
w∈W

φ∗w

]1,2
U

Lemma 1. If assumption 1 holds, then HReal and H0 are computationally indistinguishable.
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Proof. Let V = {g : g ∈ C} ∪ {0}, W1 = I1 ∪ {1}, and W2 = {g : g ∈ C}. Obtain the challenge

for assumption 1:
{
Ri = [1]1{i}, Si = [si]

3
{i}, Ti = [ti]

1,2
{i}, Ui

}
i∈U

where Ui = [ui]
1
{i} or Ui = [ui]

1,2
{i}. In

addition, we also receive randomizers for each of the singleton sets, as well as the index sets U, V,
W1, and W1 ∪W2. We will simulate the view of the adversary as follows. Set the master public
key as

MPK =
(
F =

∏
i∈{g:g∈C}∪{0}

Ti
∏

i∈{g:g∈C}∪I1∪{1}

Ri, G =
∏

i∈{g:g∈C}∪I1∪{1}

Ri,{
Ec,c

′
g = bcleft(g),gb

c′
right(g),ga

g(c,c′)
out(g)Rg

}
g∈C;c,c′∈{0,1}

,

{Jw,c = acwa
c
wRw}w∈I1;c∈{0,1} , B = b1outR1

)
Assumption 1 gives us the randomization parameters necessary to re-randomize all of the

public key components. Thus, this simulates the public key correctly, formally setting α =∏
i∈{g:g∈C}∪{0} ti. Similarly, we can simulate secret keys using Ri, Si, and Ti and the random-

ization parameters as follows: the jth secret key, for attribute y(j), is computed as

K
(i)
0 =

∏
i∈{g:g∈C}∪{0}

Ti + θ(j)
∏
w∈W

φ(j)w
∏
w∈C

(swsw)
∏

i∈{g:g∈C}∪{0}

Ri + ζ0
∏

i∈{g:g∈C}∪{0}

Si

K
(i)
1 = θ(j)

∏
w∈I2

(
ay

(i)
w
w ay

(i)
w
w

)
b1outR0 + ζ1S0

Dc,c′(i)
g = φ

(j)
out(g)b

c
left(g),gb

c′

right(g),ga
g(c,c′)
out(g)Rg + ζg,c,c′Sg for g ∈ C; c, c′ ∈ {0, 1}

Namely, use the Ti to generate the α component in the R1×R2, Ri to generate the component
in R1, and Si to randomize the R3. Finally, we generate the challenge ciphertext as

C∗0 =
∏

i∈{g:g∈C}∪I1∪{1}

Ui

C∗1 =
∏
w∈I1

axww axww b1out
∏

i∈I1∪{1}

Ui

Dc,c′∗
g = bcleft(g),gb

c′
right(g),ga

g(c,c′)
out(g)Ug

H∗ =
∏

i∈{g:g∈C}∪I1∪{1}

Ui
∏

i∈{g:g∈C}∪{0}

Ti

Again, we can use the randomization parameters to re-randomize each of the ciphertext com-
ponents.

If Ui = [ui]
1
{i}, this amounts to setting φout(g) = ug and θ =

∏
i∈I1∪{1} ui in hybrid HReal.

If Ui = [ui]
1,2
{i}, this amounts to the same settings of variables, but in hybrid H0. Thus, any

distinguisher for HReal and H0 will also break assumption 1.

Now that the challenge ciphertext is semi-functional, we gradually turn the secret keys into
semi-functional (type 1). We do this one secret key at a time:
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Hi: For each secret key query made before the challenge ciphertext, we define the hybrid Hi which
is identical to H0 except that the first i secret keys are semi-functional (type 1), which means that
K0 has a random component in R2. In other words, the jth key, for j ≤ i and attribute y(j), is
generated as

K
(j)
0 =

[
α+ θ(j)

∏
w∈W

φ(j)w
∏
w∈C

swsw

]1
{g:g∈C}∪{0}

+
[
ζ
(j)
0

]2,3
{g:g∈C}∪{0}

K
(j)
1 =

θ(j) ∏
w∈I2

ay
(j)
w
w ay

(j)
w
w b1out

1

{0}

+
[
ζ
(j)
1

]3
Dc,c′(j)
g =

[
φ
(j)
out(g)b

c
left(g),gb

c′

right(g),ga
g(c,c′)
out(g)

]1
{g}

+
[
ζ
(j)
g,c,c′

]3
{g}

for g ∈ C; c, c′ ∈ {0, 1}

Now we argue the indistinguishability of hybrids Hi−1 and Hi. We do so by defining the
additional intermediate hybrids:

Hc
i : This is the same as hybrid Hi−1, except that the ith secret key is semi-functional (type 2),

which means that the secret key terms have random but correlated R2 components for all encodings:

K
(i)
0 =

[
α+ θ(i)

∏
w∈W

φ(i)w
∏
w∈C

swsw

]1,2
{g:g∈C}∪{0}

+ [ζ
(i)
0 ]3{g:g∈C}∪{0}

K
(i)
1 =

θ(i) ∏
w∈I2

ay
(i)
w
w ay

(i)
w
w b1out

1,2

{0}

+ [ζ
(i)
1 ]3{0}

Dc,c′(i)
g =

[
φ
(i)
out(g)b

c
left(g),gb

c′

right(g),ga
g(c,c′)
out(g)

]1,2
{g}

+ [ζ
(i)
g,c,c′ ]

3
{g} for g ∈ C; c, c′ ∈ {0, 1}

Lemma 2. If assumption 2 holds, then Hi−1 and Hc
i are computationally indistinguishable.

Proof. Let V = {g : g ∈ C} ∪ {0}, W1 = I1 ∪ {1}, and W2 = {g : g ∈ C}. Obtain the challenge

for assumption 2:
{
Ri = [1]1{i}, Si = [si]

3
{i}Ti = [ti]

1,2
{i}

}
i∈U

, U = [u]2,3V , {Vi}i∈V, where Vi = [vi]
1,3
{i} or

Vi = [vi]
1,2,3
{i} . We also receive randomizers, which, similar to the proof of Lemma 1, are sufficient

for re-randomizing all of the encodings handed out during simulation. Using the Ri and Ti, we can
simulate the public parameters as in the proof of Lemma 1, formally setting α =

∏
{g:g∈C}∪{0} ti. We

can also generate the challenge ciphertext using the Ti as before (now the Ti are not the challenge
elements, but lie in the R1×R2). Functional secret keys for j > i will be generated as before using
the Ri, Si, and Ti. Semi-functional (type 1) secret keys for j < i can also be generated using the
Ri, Si, Ti, and U (basically, randomize K0 in both R2 and R3 using U instead of Si). Finally, we
generate the secret key for i as
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K
(i)
0 =

∏
i∈{g:g∈C}∪{0}

Ti +
∏
w∈C

(swsw)
∏

i∈{g:g∈C}∪{0}

Vi + ζ0
∏

i∈{g:g∈C}∪{0}

Si

K
(i)
1 =

∏
w∈I2

(
ay

(i)
w
w ay

(i)
w
w

)
b1outV0 + ζ1S0

Dc,c′(i)
g = bcleft(g),gb

c′

right(g),ga
g(c,c′)
out(g)Vg + ζg,c,c′Sg for g ∈ C; c, c′ ∈ {0, 1}

If Vi = [vi]
1,3, this amounts to setting φ

(i)
out(g) = vg, θ

(i) = v0, ζ
(i)
0 = ζ0 + v0

∏
g∈C vg

∏
w∈C swsw,

ζ
(i)
1 = ζ1 + v0

∏
w∈I2

(
ay

(i)
w
w ay

(i)
w
w

)
b1out, and ζ

(i)
g,c,c′ = ζg,c,c′ + vgb

c
left(g),gb

c′

right(g),ga
g(c,c′)
out(g) in hybrid Hi−1.

If Vi = [vi]
1,2,3, this amounts to the same settings of variables, but in hybrid Hc

i . Thus, any
distinguisher for Hi−1 and Hc

i will also break assumption 2.

Next, we start making changes to the ith secret key or challenge ciphertext based on the
challenge ciphertext or ith secret key query, respectively. We will have to split into two cases: if
i ≤ qbefore, we change the challenge ciphertext based on the ith secret key, and if i > qbefore, we
change the ith secret key based on the challenge ciphertext. We now give the i ≤ qbefore case, and
will later return to the other case.

Hc,gar
i for i ≤ qbefore: This is the same as hybrid Hc

i , except that we garble the semi-functional
challenge ciphertext. Roughly, this means the following. When using the ith secret key to decrypt

the challenge ciphertext, for each gate g, only a single one of the Dc,c′∗
g value will be used. For the

other three values, we replace the component in R2 with a completely random component.
More precisely, let y(i) be the ith secret key attribute, and x be the challenge ciphertext at-

tribute. Let cw be the value of wire w when evaluating C(x, y(i)). Then compute the Dc,c′∗
g values

as

D
cleft(g),cright(g)∗
g =

[
φ∗out(g)b

cleft(g)
left(g),gb

cright(g)
right(g),ga

cout(g)
out(g)

]1,2
{g}

Dc,c′∗
g =

[
φ∗out(g)b

c
left(g),gb

c′
right(g),ga

g(c,c′)
out(g)

]1
{g}

+ [γg,c,c′ ]
2
{g} for all (c, c′) 6= (cleft(g), cright(g))

Lemma 3. If assumption 3 holds, then for i ≤ qbefore, H
c
i and Hc,gar

i are computationally indis-
tinguishable.

Proof. We prove Lemma 3 by iteratively garbling each gate in the circuit in topological order,
each time relying on assumption 3 to prove that the per-gate garbling is undetectable. We show
the case for the first gate, the rest of the gates being similar. Assume that cleft(g) = cright(g) =
0, the other cases being similar. Let e = g, and obtain the challenge for assumption 4 for

e:
({
Ri = [1]1{i}, Si = [si]

3
{i}, Ti = [ti]

2
{i}

}
i∈U

, U = [tgu]2{g}, V = [tgv]2{g},W = [tgw]2{g}

)
where w is

random in R or w = uv. We generate all of the terms as in Hc
i except for the Dc,c′∗

g terms, which
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we generate as:

D0,0∗
g =

[
φ∗out(g)b

0
left(g),gb

0
right(g),ga

g(0,0)
out(g)

]1
{g}

+ φ∗out(g)b
0
left(g),gb

1
right(g),ga

g(0,1)
out(g)Tg

D0,1∗
g =

[
φ∗out(g)b

0
left(g),gb

1
right(g),ga

g(0,1)
out(g)

]1
{g}

+ φ∗out(g)b
0
left(g),gb

1
right(g),ga

g(0,1)
out(g)U

D1,0∗
g =

[
φ∗out(g)b

1
left(g),gb

0
right(g),ga

g(1,0)
out(g)

]1
{g}

+ φ∗out(g)b
1
left(g),gb

0
right(g),ga

g(1,0)
out(g)V

D1,1∗
g =

[
φ∗out(g)b

1
left(g),gb

1
right(g),ga

g(1,1)
out(g)

]1
{g}

+ φ∗out(g)b
1
left(g),gb

1
right(g),ga

g(1,1)
out(g)W

Note that only the ith secret key and the challenge ciphertext have non-zero and correlated

values in R2. Therefore, in R2, the values a1−y
(i)
w

w for w ∈ I2 and the values a1−xww for w ∈ I1

are never used. This means b1−xww,g and b1−y
(i)
w

w,g are random and independent of all the other terms.

Moreover, these only appear in the Dc,c′∗
g components of the challenge ciphertext. Therefore, if

w = uv, the above formally replaces φout(g) in R2 with φout(g) · tg, b1left(g),g with b1left(g),g · v and

b1right(g),g with b1right(g),g · u in hybrid Hc
i . If w is random, then the R2 components of D0,1∗

g , D1,0∗
g ,

and D1,1∗
g are each random and independent of all other terms. Finally, once the R2 component of

Dc,c′∗
g for (c, c′) 6= (0, 0) is random and independent, φ∗g appears only in D0,0∗

g , so the R2 component
this encodings is also random and independent. Thus, in the case w = uv, the gate g is garbled.

Note that once g is garbled, a
1−g(0,0)
out(g) is not used in R2. This means that the b

1−g(0,0)
out(g),g′ values

are random and only appear in the corresponding Dc,c′∗
g′ values. Thus, once we have garbled both

gates feeding into an internal gate, we can garble the internal gate as well using the same strategy.
Doing this for all gates completes the proof.

Hu,gar
i for i ≤ qbefore: This is the same as hybrid Hc,gar

i , except that the ith secret key is semi-
functional (type 3). In other words, the R2 components of K0 and K1 are uncorrelated. This means
the ith secret key is generated as

K
(i)
0 =

[
α+ θ(i)

∏
w∈W

φ(i)w
∏
w∈C

swsw

]1
{g:g∈C}∪{0}

+ [ζ
(i)
0 ]2,3

K
(i)
1 =

θ(i) ∏
w∈I2

ay
(i)
w
w ay

(i)
w
w b1out

1

{0}

+ [ζ
(i)
1 ]2,3

Dc,c′(i)
g =

[
φ
(i)
out(g)b

c
left(g),gb

c′

right(g),ga
g(c,c′)
out(g)

]1,2
{g}

+ [ζ
(j)
g,c,c′ ]

3
{g} for g ∈ C; c, c′ ∈ {0, 1}

Lemma 4. For i ≤ qbefore, Hc,gar
i and Hu,gar

i are statistically indistinguishable.

Proof. After garbling, in R2, a1out is never used, and b0out was never used from the start. This means
the R2 component sout is uniformly random and independent of all the other terms. Moreover, the
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R2 component of sout only appears in K
(i)
0 . Thus, the R2 component of K

(i)
0 is uniformly random

and uncorrelated with K
(i)
1 and the D

c,c′(i)
g .

Hu
i for i ≤ qbefore: This is the same as hybrid Hu,gar

i , except that the challenge cihertext is
ungarbled (that is, the challenge ciphertext is semi-functional, and the ith secret key is semi-
functional (type 3)).

Lemma 5. If assumption 3 holds, then for i ≤ qbefore, H
u,gar
i and Hu

i are computationally indis-
tinguishable.

Proof. This is proved in an analogous manner to Lemma 3 by un-garbling each gate in reverse.

The only difference is that, in each intermediate garbling step, the R2 components of K
(i)
0 and K

(i)
1

are independent and random.

Lemma 6. If assumption 2 holds, then for i ≤ qbefore, H
u
i and Hi are computationally indistin-

guishable.

Proof. The proof is similar to the proof of Lemma 2. Let V = {g : g ∈ C} ∪ {0}, W1 = I1 ∪
{1}, and W2 = {g : g ∈ C}. Next, we obtain the challenge for assumption 2 using V,W1,W2:{
Ri = [1]1{i}, Si = [si]

3
{i}Ti = [ti]

1,2
{i}

}
i∈U

, U = [u]2,3V , {Vi}i∈V be the challenge, where Vi = [vi]
1,3
{i} or

Vi = [vi]
1,2,3
{i} . Using the Ri, we can simulate the public parameters as before, formally setting

α =
∏
i∈{g:g∈C}∪{0} ti. We can also generate the challenge ciphertext using the Ti similar to before.

Secret keys for j 6= i will be generated as in the proof of Lemma 2 using the Ri, Si, and Ti and U .
Finally, we generate the ith secret key as

K
(i)
0 =

∏
i∈{g:g∈C}∪{0}

Ti + θ
∏
w∈W

φw
∏
w∈C

swsw
∏

i∈{g:g∈C}∪{0}

Vi + ζ0U

K
(i)
1 = θ

∏
w∈I2

ay
(i)
w
w ay

(i)
w
w b1outV0

Dc,c′(i)
g = φout(g)b

c
left(g),gb

c′

right(g),ga
g(c,c′)
out(g)Vg + ζg,c,c′Sg for g ∈ C; c, c′ ∈ {0, 1}

If Vi = [vi]
1,2,3
{i} , then this amounts to setting θ(i) = v0θ, φ

(i)
out(g) = vgφout(g), and independent random

values for the ζ(i) terms in hybrid Hu,gar
i . If Vi = [vi]

1,3
{i}, then this amounts to the same setting of

variables4 in hybrid Hgar
i . Thus, any distinguisher for hybrid Hu,gar

i and Hgar
i successfully breaks

assumption 2.

Now we have addressed all the secret key queries up to the challenge ciphertext, and made
them uncorrelated semi-functional keys. Next, we need to do the same for the keys made after the
challenge ciphertext. However, the above sequence of hybrids will not work to move from Hc

i to
Hi. In particular, in hybrid Hc,gar

i , we garbled the challenge ciphertext based on the ith secret
key query, which meant we needed the ith query to occur before the challenge. We can no longer
rely on this, and we must therefore adjust the hybrids accordingly. Basically, we perform the same
garbling steps on the secret keys themselves, based on the challenge ciphertext (which now occurs
before the ith query).

4the randomness values change, but remain independent
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Hc,gar
i for i > qbefore: This is the same as Hc

i , except that we garble the ith secret key (as opposed
to garbling the challenge ciphertext). Roughly, this means the following. When using the ith secret

key to decrypt the challenge ciphertext, for each gate g, only a single one of the D
c,c′(i)
g values will

be used. For the other three values, we replace the R2 component with random.
More precisely, let y(i) be the ith secret key attribute, and x be the challenge ciphertext at-

tribute. Let cw be the value of wire w when evaluating C(x, y(i)). Then compute the D
c,c′(i)
g values

as

D
cleft(g),cright(g)(i)
g =

[
φ
(i)
out(g)b

cleft(g)
left(g),gb

cright(g)
right(g),ga

cout(g)
out(g)

]1,2
{g}

+ [ζ
(i)
g,c,c′ ]

3
{g}

Dc,c′(i)
g =

[
φ
(i)
out(g)b

c
left(g),gb

c′

right(g),ga
g(c,c′)
out(g)

]1
{g}

+ [ζ
(i)
g,c,c′ ]

2,3
{g} for all (c, c′) 6= (cleft(g), cright(g))

Lemma 7. If assumption 3 holds, then for i > qbefore, H
c
i and Hc,gar

i are computationally indis-
tinguishable.

Proof. This is exactly analogous to Lemma 3 and proved in a similar manner.

Hu,gar
i for i > qbefore: This is the same as hybrid Hc,gar

i , except that the ith secret key is semi-
functional (type 4), where the R2 components of every term of the ith secret key are uncorrelated

(as apposed to type 3 keys, where the Dc,c′
g terms remain correlated with each other). In other

words, the secret key is generated as

K
(i)
0 =

[
α+ θ(i)

∏
w∈W

φ(i)w
∏
w∈C

swsw

]1
{g:g∈C}∪{0}

+ [ζ
(i)
0 ]2,3

K
(i)
1 =

θ(i) ∏
w∈I2

ay
(i)
w
w ay

(i)
w
w b1out

1

{0}

+ [ζ
(i)
1 ]2,3

Dc,c′(i)
g =

[
φ
(i)
out(g)b

c
left(g),gb

c′

right(g),ga
g(c,c′)
out(g)

]1
{g}

+ [ζ
(i)
g,c,c′ ]

2,3
{g}

Lemma 8. For i > qbefore, H
c,gar
i and Hu,gar

i are statistically indistinguishable.

Proof. After garbling, in R2, a
1
out is never used, and b0out was never used from the start. This means

the R2 component sout is uniformly random and independent of all the other terms. Moreover,

the R2 component of sout only appears in K
(i)
0 . Thus, the R2 component of K

(i)
0 is uniformly

random and uncorrelated with K
(i)
1 and the D

c,c′(i)
g . At this point, in R2, the φ

(i)
g only appears

in D
cleft(g),cright(g)(i)
g , and therefore the R2 component of D

cleft(g),cright(g)(i)
g becomes independent of all

the other terms. The R2 components of the other D
c,c′(i)
g is already independent as a result of

garbling.

Hu
i for i > qbefore: This is the same as hybrid Hu,gar

i , except that the ith secret key is semi-

functional (type 3), meaning that the R2 components of K
(i)
0 and K

(i)
1 are uncorrelated, but the

components if Dc,c′
g are correlated.

Lemma 9. If assumption 3 holds, then for i > qbefore, H
u,gar
i and Hu

i are computationally indis-
tinguishable.
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Proof. This is proved analogously to Lemma 5, except that we un-garble each gate of the secret

key in reverse, while keeping the R2 components of K
(i)
0 and K

(i)
1 uncorrelated.

Lemma 10. If assumption 2 holds, then for i > qbefore, H
u
i and Hi are computationally indistin-

guishable.

Proof. The proof is identical to the proof of Lemma 6.

At this point, we have made all of the secret keys semi-functional. Now, we claim that the
message encryption key is statistically close to random:

Lemma 11. In hybrid Hq, the adversary has negligible advantage

Proof. Notice that now the R2 component of α only appears in H, which is hidden from the
adversary except through the message encryption key Kenc = ext(params, H). Therefore, by the
extraction property of the graded encoding, the value Kenc is statistically close to a uniform random
bit string in {0, 1}λ.
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