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Abstract

In this paper, we describe efficient protocols to perform in parallel many reads and writes
in private arrays according to private indices. The protocol is implemented on top of the
Arithmetic Black Box (ABB) and can be freely composed to build larger privacy-preserving
applications. For a large class of secure multiparty computation (SMC) protocols, we believe
our technique to have better practical and asymptotic performance than any previous ORAM
technique that has been adapted for use in SMC.

Our ORAM technique opens up a large class of parallel algorithms for adoption to run
on SMC platforms. In this paper, we demonstrate how the minimum spanning tree (MST)
finding algorithm by Awerbuch and Shiloach can be executed without revealing any details
about the underlying graph (beside its size). The data accesses of this algorithm heavily
depend on the location and weight of edges (which are private) and our ORAM technique
is instrumental in their execution. Our implementation is probably the first-ever realization
of a privacy-preserving MST algorithm.

1 Introduction

In Secure Multiparty Computation (SMC), k parties compute (y1,...,yx) = f(x1,...,xx), with
the party P; providing the input z; and learning no more than the output y;. For any function-
ality f, there exists a SMC protocol for it [Yao82, GMW8T7]. A universally composable [Can01]
abstraction for SMC is the arithmetic black box (ABB) [DNO03]. The ideal functionality Fags
allows the parties to store private data in it, perform computations with data inside the ABB,
and reveal the results of computations. This means that the ABB does not leak anything about
the results of the intermediate computations, but only those values whose declassification is
explicitly requested by the parties. Hence, any secure implementation of ABB also protects
the secrecy of inputs and intermediate computations. There exist a number of practical imple-
mentations of the ABB [BDNP08, DGKN09, BLW08, BSMD10, HKS*10, MK10], differing in
the underlying protocol sets they use and in the set of operations with private values that they
make available for higher-level protocols.

These ABB implementations may be quite efficient for realizing applications working with
private data, if the control flow and the data access patterns of the application do not depend
on private values. For hiding data access patterns, oblivious RAM (ORAM) techniques [GO96]
may be used. These techniques have a significant overhead, which is increased when they are
combined with SMC. Existing combinations of ORAM with SMC report at least O(log®n)
overhead for accessing an element of an n-element array [KS14].

In this work, we propose a different method for reading and writing data in SMC according
to private addresses. We note that SMC applications are often highly parallelized, because



the protocols provided by ABB implementations often have significant latency. We can exploit
this parallelism in designing oblivious data access methods, by trying to bundle several data
accesses together. In the following, we assume that we have private vector ¥ of m elements
(the number m is public, as well as the sizes of other pieces of data). We provide two protocols
on top of ABB: for reading its elements n times, and for writing its elements n times. These
protocols receive as an input a vector of indices (of length n) and, in case of writing, a new
vector of values, and return a vector of selected elements of ¥, or the updated vector . The
asymptotic complexity of both protocols is O((m + n)log(m + n)), while the constants hidden
in the O-notation should be reasonable. These protocols could be interleaved with the rest of
the SMC application in order to provide oblivious data access capability to it.

To demonstrate the usefulness of our protocols in privately implementing algorithms with
private data access, and to expand the set of problems for which there exist reasonably efficient
privacy-preserving protocols, we provide a protocol for finding the minimum spanning tree
(MST) of a weighted graph. The protocol is implemented on top of ABB, i.e. the are no
assumptions on which computing party initially knows which parts of the description of the
graph. Kruskal’s and Prim’s algorithms [CLRS01], the best-known algorithms for finding MST
(without privacy considerations), are unsuitable for direct implementation on top of ABB,
because of their inherent sequentiality. In this paper, we consider a parallel algorithm by
Awerbuch and Shiloach [AS87] (itself an adoption of a MST algorithm by Boruvka [NMNO1])
that runs on priority-CRCW PRAM in time logarithmic to the size of the graph, using as many
processors as the graph has edges. Hence the workload of this algorithm is asymptotically the
same as Kruskal’s. We adapt it to run on top of our ABB implementation, using the ORAM
protocols we’ve developed. The adoption involves the simplification of the algorithm’s control
flow, and choosing the most suitable variants of our protocols at each oblivious read or write.
The efficiency of the resulting protocol is very reasonable; our adoption only carries the cost of
an extra logarithmic factor. We believe that the adoption of other PRAM algorithms for SMC
is a promising line of research.

This paper has the following structure. After reviewing the related work in Sec. 2 and
providing the necessary preliminaries, in particular the ABB model of SMC in Sec. 3, we give
the actual protocols for parallel reading and writing in Sec. 4 and discuss both their theoretical
and practical performance in Sec. 5. We will then move on to solving the MST problem,
reviewing a parallel MST algorithm in Sec. 6 and describing its adoption to privacy-preserving
execution in Sec. 7, again quantifying its performance. We conclude in Sec. 8.

2 Related work

Secure multiparty computation (SMC) protocol sets can be based on a variety of different
techniques, including garbled circuits [Yao82], secret sharing [Sha79, GRR98, BNTW12] or
homomorphic encryption [CDNO1]. A highly suitable abstraction of SMC is the universally
composable Arithmetic Black Box (ABB) [DNO03], the use of which allows very simple security
proofs for higher-level SMC applications. Using the ABB to derive efficient privacy-preserving
implementations for various computational tasks is an ongoing field of research [DFK*06, CS10,
ACMT13, LT13], also containing this paper.

Protocols for oblivious RAM [GO96] have received significant attention during recent years [SCSL11,
KLO12, SvDS*13]. The overhead of these protocols is around O(log? m) when accessing an el-
ement of a vector of length m (with elements of size O(logm)). These ORAM constructions
assume a client-server model, with the client accessing the memory held by the server, which
remains oblivious to the access patterns. This model is simpler than the SMC model, because
the client’s and server’s computations are not shared among several parties.



In this paper, we use SMC techniques to achieve oblivious data access in SMC applications.
This goal has been studied before, by implementing the client’s computations in an ORAM
protocol on top of a secure two-party computation protocol set [GKK*12, GGH"13, LHS™ 14,
GHJR14], or over an SMC protocol set [DMN11, KS14]. For these protocol sets, the overhead
of at least O(log3 m) is reported. Recently, optimizing ORAM to perform well in the secure
computation setting has become a goal of its own [WHC™14].

The ORAM constructions often allow only sequential access to data, as the updating of the
data structures maintained by the server cannot be parallelized. Recently, Oblivious Parallel
RAM [BCP14] has been proposed, which may be more suitable for SMC protocol sets where
the computations have significant latency.

Our parallel reading protocol essentially builds and then applies an oblivious extended per-
mutation (OEP) [KS08, HEK12, MS13, LW14] (see Sec. 4.1 for details). Our OEP application
protocol is more efficient (both in practice and/or asymptotically) than any other published
construction built with SMC techniques. The building of an OEP in composable manner has
only been considered in [LW14]; our construction is more efficient than theirs.

We are aware of no previous attempts to compute the MST of a graph in a privacy-preserving
manner. For graph algorithms, there exist privacy-preserving protocols for single-source shortest
paths and for maximum flow [BS05, ACM*13, KS14].

3 Preliminaries

Universal composability (UC) [Can01] is a framework for stating security properties of systems.
It considers an ideal functionality F and its implementation 7w with identical interfaces to the
intended users. The latter is at least as secure as the former, if for any attacker A there exists
an attacker Ag, such that 7| A and F|.Ag are indistinguishable to any potential user of 7 /
F. The value of the framework lies in the composability theorem: if 7 is at least secure as F,
then £7 is at least as secure as &7 for any system ¢ that uses 7 / F. We say that such ¢ is
implemented in the F-hybrid model.

The arithmetic black boz is an ideal functionality Fagg. It allows its users (a fixed number p
of parties) to securely store and retrieve values, and to perform computations with them. When
a party sends the command store(v) to Fagg, where v is some value, the functionality assigns
a new handle h (sequentially taken integers) to it by storing the pair (h,v) and sending A to
all parties. If a sufficient number (depending on implementation details) of parties send the
command retrieve(h) to Fagg, it looks up (h, v) among the stored pairs and responds with v to all
parties. When a sufficient number of parties send the command compute(op; hy, .. ., hi; params)
to Fagg, it looks up the values vy, ..., vy corresponding to the handles hq, ..., Ay, performs the
operation op (parametrized with params) on them, stores the result v together with a new
handle h, and sends h to all parties. In this way, the parties can perform computations without
revealing anything about the intermediate values or results, unless a sufficiently large coalition
wants a value to be revealed. In this paper our protocols are given in the Fagg-hybrid model.

The existing implementations of ABB are protocol sets magg based on either secret shar-
ing [DGKN09, BLW08, BSMD10] or threshold homomorphic encryption [DN03, HKS™10]. De-
pending on the implementation, the ABB offers protection against a honest-but-curious, or a
malicious party, or a number of parties (up to a certain limit). E.g. the implementation of
the ABB by SHAREMIND [BLWOS| consists of three parties, providing protection against one
honest-but-curious party.

All ABB implementations provide protocols for computing linear combinations of private
values (with public coefficients) and for multiplying private values. The linear combination
protocol is typically cheap, involving no communication and/or cheap operations with values.



When estimating the (asymptotic) complexity of protocols built on top of ABB, it is typical to
disregard the costs of computing of linear combinations. Other operations, e.g. comparison, can
be built on top of addition and multiplication [DFK*06, NO07], or the ABB implementation
may have dedicated protocols for these operations [BNTW12]. In this paper, we require the
ABB implementation to provide protocols also for equality and comparison operations. In
the protocols we present, we let [z] denote that some value has been stored in the ABB and
is accessible under handle x. The notation [z] «+ [z] ® [y] means that the operation ® is
performed with values stored under handles z and y, and the result is stored under handle z.
In ABB implementations this involves the invocation of the protocol for ®.

We also require the ABB to provide oblivious shuffles — private permutations of values.
For certain ABB implementations, these can be added as described in [LWZ11]. A more general
approach is to use Waksman networks [Wak68]. Given an oblivious shuffle [o] for m elements,
and a private vector ([vi], ..., [um]), it is possible to apply this shuffle to this vector, permuting
its elements and resulting in the vector ([vy1)]; ..., [Vsm)])- It is also possible to unapply the
shuffle to this vector, performing the inverse permutation of its elements. The complexity of
the protocols implementing these ABB operations is either O(m) or O(mlogm) (for constant
number of parties).

With oblivious shuffles and comparison operations, vectors of private values (of length m)
can be sorted in O(mlogm) time, where the size of the constants hidden in the O-notation
is reasonable [HKIT12]. In our protocols, we let [o] + sort([¢]) denote the sorting operation
applied to the private vector [¢]. This operation does not actually reorder ¥, but produces an
oblivious shuffle [o], the application of which to ¢ would bring it to sorted order. We require
the sorting to be stable and the sorting protocol to be universally composable. In effect, this
makes sort a yet another operation provided by the ABB.

4 Oblivious data access

4.1 Protocol for reading

In Alg. 1, we present our protocol for obliviously reading several elements of an array. Given
a vector ¥ of length m, we let prefixsum(v) denote a vector w, also of length m, where w; =
> j=1vj forall j € {1,...,m}. Computing prefixsum([¢]) is a free operation in existing ABB
implementations, because addition of elements, not requiring any communication between the
parties, is counted as having negligible complexity. We can also define the inverse operation
prefixsum™": if 10 = prefixsum (%) then ¥ = prefixsum~! (). The inverse operation is even easier

to compute: v1 = wy and v; = w; —w;—1 for all ¢ € {2,...,m}.
We see that in Alg. 1, the permutation o orders the indices which we want to read, as well
as the indices 1,...,n of the “original array” ¢. Due to the stability of the sort, each index of

the “original array” ends up before the reading indices equal to it. In apply(o, @), each element
v} of ', located in the same position as the index ¢ of the “original array” in sorted t. is followed
by zero or more 0-s. The prefix summing restores the elements of ¢, with the 0-s also replaced
with the element that precedes them. Unapplying o restores the original order of ¥ and we can
read out the elements of ¥ from the latter half of @. A small example is presented in Fig. 1.

The protocol presented in Alg. 1 clearly preserves the security guarantees of the implemen-
tation of the underlying ABB, as it applies only ABB operations, classifies only public constants
and declassifies nothing. Its complexity is dominated by the complexity of the sorting oper-
ation, which is O((m + n)log(m + n)). We also note that the round complexity of Alg. 1 is
O(log(m +n)).

Instead of reading elements from an array, the elements of which are indexed with 1,...,m,



Algorithm 1: Reading n values from the private array

Data: A private vector [¢] of length m
Data: A private vector [Z] of length n, with 1 < z; < m for all ¢
Result: A private vector [u] of length n, with w; = v,, for all i
1 foreach i € {1,...,m} do [t;] + i;
2 foreach i € {1,...,n} do [tym+i] < [z];

[o] < sort([#])

[4] « prefixsum™*([7])

foreach i € {1,...,m} do [u;] < [v]];
foreach i € {1,...,n} do [um:] < 0;

[@] « unapply([o]; prefixsum(apply([o]; [4])))
foreach i € {1,...,n} do [w;] < [u, ;]
return [o]

w
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Let v = (1,4,9,16,25). Let = (3,2,4,3). The intermediate values are the following.

o ©=1(1,2,3,4,5,3,2,4,3)

o is the permutation
1[2|3]4][5]6]7|8]9
1[2]7[3]6]9[4]8]5
meaning that e.g. the 3rd element in the sorted vector is the 7th element in the original

vector.
e ¥ =(1,3,5,7,9) and @ = (1,3,5,7,9,0,0,0,0).
e After applying o to «, we obtain the vector (1,3,0,5,0,0,7,0,9).
o After prefixsumming, we get the vector (1,4,4,9,9,9,16,16,25). Denote it with 3.

e After applying the inverse of o, we get @' = (1,4,9,16,25,9,4,16,9). Indeed, to find e.g.
uf, we look for “7” in the lower row of the description of o. We find “3” in the upper row,
meaning that v}, = ys.

e Finally, we return the last n elements of @', which are @ = (9,4, 16,9).

All values are private, i.e. stored in the ABB.

Figure 1: Example of private reading according to Alg. 1

the presented protocol could also be used to read the private values from a dictionary, the
elements of which are indexed with (private) [ji],..., [jm]. In this case, in line 1, [¢;] is not
initialized with 4, but with [j;]. Note that in this case, the algorithm cannot detect if all indices
that we attempt to read are present in the dictionary.

Note that in Alg. 1, the argument [¢] is only used after the dotted line. At the same time,
the step that dominates the complexity of the protocol — sorting of [[t_]] in line 3 — takes place
before the dotted line. Hence, if we read the same positions of several vectors, we could execute
the upper part of Alg. 1 only once and the lower part as many times as necessary. In Sec. 7,
we will denote the upper part of Alg. 1 with prepareRead (with inputs [Z] and m, and output
[o]), and the lower part with performRead (with inputs [¢] and [o]).




An extended permutation [MS13] from m elements to n elements is a mapping from {1,...,n}
to {1,...,m} (note the contravariance). The application of an extended permutation ¢ to a
vector (71,...,%m) produces a vector (yi,...,yn), where y; = z4;. An oblivious extended
permutation (OEP) protocol preserves the privacy of ¥, ¢ and ¢. The prepareRead protocol
essentially constructs the representation [¢] of an OEP and the performRead protocol applies
it, with better performance than previous constructions.

4.2 Protocol for writing

For specifying the parallel writing protocol, we have to fix how multiple attempts to write to
the same field are resolved. We thus require that each writing request comes with a numeric
priority; the request with highest priority goes through (if it is not unique, then one is selected
arbitrarily). We can also give priorities to the existing elements of the array. Normally they
should have the lowest priority (if any attempt to write them actually means that they must
be overwritten). However, in case where the array element collects the maximum value during
some process (e.g. finding the best path from one vertex of some graph to another), with the
writes to this element representing candidate values, the priority of the existing element could
be equal to this element. This is useful in e.g. the Bellman-Ford algorithm for computing
shortest distances.

Thus assume that there exists an algorithm compute_priority which, when applied to an
element [w;] of the vector [W], as well as to its index ¢, returns the priority of keeping the
current value of w;. The parallel writing protocol is given in Alg. 2. The writing algorithm
receives a vector of values [7] to be written, together with the indices [;] showing where they
have to be written, and the writing priorities [p]. Alg. 2 transforms the current vector [«] (its
indices and priorities) to the same form and concatenates it with the indices and priorities of
the write requests. The data are then sorted according to indices and priorities (with higher-
priority elements coming first). The operation zip on two vectors of equal length transforms
them to a vector of pairs; the ordering on these pairs is determined lexicographically. The
vector [[5]] is used to indicate the highest-priority position for each index: b; = 0 iff the i-th
element in the vector f’ is the first (hence the highest-priority) value equal to j;. Note that
all equality checks in line 10 can be done in parallel. Here and elsewhere, foreach-statements
denote parallel execution. Performing the sort in line 11 moves the highest-priority values to
the first m positions. The sorting is stable, hence the values correspond to the indices 1,...,m
in this order. We thus have to apply the shuffles induced by both sorts to the vector of values
v = v]|w, and take the first m elements of the result.

We find Alg. 2 to be conceptually simpler than Alg. 1 and thus do not provide an example.
The writing protocol is secure for the same reasons as the reading protocol. Its complexity is
dominated by the two sorting operations, it is O((m+n)log(m-+mn)), with the round complexity
being O(log(m + n)). Similarly to the reading protocol, the writing protocol can be adapted
to write into a dictionary instead. Another similarity is the dotted line — the complex sorting
operations above the line only use the indices and priorities, while the actual values are used
only in cheap operations below the line. For the purposes of Sec. 7, we thus introduce the pro-
tocols prepareWrite which executes the operations above the dotted line, and performWrite,
executing the operations below the line. The protocol prepareWrite receives as inputs j, D,
and the length m of . It lets the existing elements of w to have the least possible priority, i.e.
they will be definitely written over if there is at least one request to do it (prioritizing existing
elements of W is not needed in Sec. 7). The output of prepareWrite is the pair of oblivious
shuffles ([o], [7]). These are input to performWrite together with [¢] and [«].



Algorithm 2: Obliviously writing n values to a private array

Data: Private vectors [], [¢], [7] of length n, where 1 < j; < m for all i
Data: Private array [«] of length m .
Result: Updated w: values in ¥ written to indices in j, if priorities in p are high enough
1 foreach i € {1,...,n} do
7] « i)
| [pil < —Ipi]
4 foreach i € {1,...,m} do
[ il i
6 | [P}y < —compute_ priority(i, [w;])
7 [o] « sort(zip([/'], [7]))
s [j"] « apply([o]; [;'])
9 [[bl]] +~0
10 foreach i € {2,...,N} do [b;] < [j] L T34 1;
11 [7] « sort([b])

12 foreach i € {1,...,n} do [v] < [uv];

13 foreach i € {1,...,m} do [v], ;] < [w;];
14 [W'] <= apply([7]; apply([o]; [¢']))
15 foreach i € {1,...,m} do [w;] < [w(];

16 return [u]

4.3 Sorting bits

Alg. 2 makes two calls to the sorting protocol. While the first one of them is a rather general sort,
the second one in line 11 only performs a stable sort on bits, ordering the “0” bits before the “1”
bits (and the sort does not actually have to be stable on the “1”-bits). In the following we show
that the second sort can be performed with the complexity similar to that of a random shuffle,
instead of a full sort. Our method leaks the number of 0-s among the bits, but this information
was already public in Alg. 2 (being equal to the length of w). The sorting protocol is given in
Alg. 3. Here random_shuffle(n) generates an oblivious random shuffle for vectors of length n.
The protocol ends with a composition of an oblivious and a public shuffle; this operation, as
well as the generation of a random shuffle, is supported by existing implementations of shuffles.

We see that the most complex operations of Alg. 3 are the applications of the oblivious
shuffle [7]. If the communication complexity of these is O(m) and the round complexity of
these is O(1), then this is also the complexity of the entire protocol. The protocol declassifies a
number of things, hence it is important to verify that the declassified values can be simulated.
The vector b’ is a random permutation of 0-s and 1-s, where the number of 0-bits and 1-bits is
the same as in [b]. Hence the number of 0-bits is leaked. But beside that, nothing is leaked: if
the simulator knows the number n of 0-bits, then Vis a uniformly randomly chosen bit-vector
with n bits “0” and (m — n) bits “17.

The vector i (computed in constant number of rounds, as all declassifications can be done
in parallel) is a random vector of numbers, such that (m — n) of its entries equal (m + 1),
and the rest are a uniformly random permutation of {1,...,n}. The numbers {1,...,n} in ¥
are located at the same places as the 0-bits in V. Hence the simulator can generate y after
generating V. Beside ¥’ and 1/, the sorting protocol does not declassify anything else. The rest



Algorithm 3: Stable sorting of 0-bits in a bit-vector

Data: Vector of private values [b] of length m, where each b; € {0,1}

Result: Oblivious shuffle [¢], such that apply([o]; [6]) is sorted and the order of 0-bits
is not changed

Leaks: The number of 0-bits in [b]

foreach i € {1,...,m} do [¢;] < 1 — [b;];

[Z] < prefixsum([c])

[7] < random_shuffle(m)

b« retrieve(apply([7]; [b]))

[2'] < apply([7]; [2])

foreach i € {1,...,m} do

L y; < if b, = 0 then retrieve([z}]) else m + 1

Let £ be a public shuffle that sorts ¢
9 [o] < [r]o¢

10 return [o]

i =R N VI

o]

of Alg. 3 consists of invoking the functionality of the ABB or manipulating public data.

5 Performance and applicability

Using our algorithms, the cost of n parallel data accesses is O((m + n) log(m + n)), where m is
the size of the vector from which we’re reading values. Dividing by n, we get that the cost of one
access is O((1+ ) log(m+n)). In practice, the cost will depend a lot on our ability to perform
many data accesses in parallel. Fortunately, this goal to parallelize coincides with one of the
design goals for privacy-preserving applications in general, at least for those where the used
ABB implementation is based on secret sharing and requires ongoing communication between
the parties. Parallelization allows to reduce the number of communication rounds necessary for
the application, reducing the performance penalty caused by network latency.

Suppose that our application is such that on average, we can access in parallel a fraction of
1/f(m) of the memory it uses (where 1 < f(m) < m). Hence, we are performing m/f(m) data
accesses in parallel, requiring O(mlog m) work in total, or O(f(m)logm) for one access. Recall
that for ORAM implementations over SMC, the reported overheads are at least O(log3 m).
Hence our approach has better asymptotic complexity for applications where we can keep f(m)
small.

Parallel random access machines (PRAM) are a theoretical model for parallel computations,
for which a sizable body of efficient algorithms exists. Using our parallel reading and writing
protocols, any algorithm for priority-CRCW PRAM (PRAM, where many processors can read
or write the same memory cell in parallel, with priorities determining which write goes through)
can be implemented on an ABB, as long as the control flow of the algorithm does not depend
on private data. A goal in designing PRAM algorithms is to make their running time polylog-
arithmic in the size of the input, while using a polynomial number of processors. There is even
a large class of tasks, for which there exist PRAM algorithms with logarithmic running time.

An algorithm with running time ¢ must on each step access on average at least 1/t fraction of
the memory it uses. A PRAM algorithm that runs in O(logm) time must access on average at
least 2(1/log m) fraction of its memory at each step, i.e. f(m)is O(logm). When implementing
such algorithm on top of SMC using the reading and writing protocols presented in this note, we
can say that the overhead of these protocols is O(log2 m). For algorithms that access a larger
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Figure 2: Times for preparing (upper) and performing (lower) a parallel read, depending on

m-+n

fraction of their memory at each step (e.g. the Bellman-Ford algorithm for finding shortest
paths in graphs; for which also the optimization described above applies), the overhead is even
smaller.

Experimental results

We have implemented protocols in Sec. 4 on the SHAREMIND secure multiparty computa-
tion platform (providing security against passive attacks by one party out of three in to-
tal) [BNTW12] and tested their performance. We measured the time it took to read n values
from a vector of length m, or to write n values to a vector of length m. Due to the structure
of the algorithms, the timings almost completely depend only on m + n and this has been the
quantity we have varied (we have always picked m = n).

Our performance tests are performed on a cluster of three computers with 48 GB of RAM
and a 12-core 3 GHz CPU with Hyper Threading running Linux (kernel v.3.2.0-3-amd64),
connected by an Ethernet local area network with link speed of 1 Gbps. The execution time of
the reading protocol on this cluster for various values of m + n is depicted in Fig. 2. We have
split the running time into two parts, for preparing the read and for performing the read. We
see that for larger values of m + n the preparation is slower by almost two orders of magnitude,
hence in the design of privacy-preserving algorithms one should aim for reuse of the results of
preparation.

Similarly, the performance measuring results of the parallel writing are depicted in Fig. 3.
Again, we distinguish the running times for preparing and performing the write, with similar
differences in running times.

We see that 2 million data accesses against an array of length 2 million require about 1000
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seconds. This makes 0.5 ms per access, which is almost two orders of magnitude faster than the
times reported in [KS14]. Of course, such efficiency is possible only if the overlying application
supports parallelism to this level. Also, active security is achieved in [KS14], while SHAREMIND
only provides passive security. On the other hand, the protocols of [KS14| also require an
expensive preprocessing phase, while nothing of that sort is required for our constructions.

6 Parallel algorithms for MST

Let G = (V, E) be an undirected graph, where the set of vertices V is identified with the set
{1,...,|V|} and the set of edges E with a subset of V' x V (the edge between vertices u and v
occurs in F both as (u,v) and as (v,u)). We assume that the graph is connected. Let w : E — N
give the weights of the edges (w must be symmetric). A minimum spanning tree of G is a graph
T = (V,E') that is connected and for which the sum ) _p w(e) takes the smallest possible
value.

Kruskal’s and Prim’s algorithms are the two most well-known algorithms for finding the MST
of a graph. These algorithms work in time O(|E|log|V|) or O(|E|+|V|log |V|) [CLRS01]. They
are inherently sequential and therefore unsuitable for an SMC implementation.

Other algorithms for MST have been proposed. Boruvka’s algorithm [NMNO1] works in
iterations. At the beginning of each iteration, the set of vertices V' has been partitioned into
Vi U--- UV, and for each V;, the minimum spanning tree has already been found (at the start
of the algorithm, each vertex is a separate part). For each i, let ¢; be a minimum-weight edge
connecting a vertex in V; with a vertex in V\V;. We add all edges e; to the MST we are
constructing and join the parts V; that are now connected. We iterate until all vertices are in
the same part. Clearly, the number of iterations is at most logs |V'| because the number of parts
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drops to at most half during each iteration.

Boruvka’s algorithm seems amenable for parallelization, as the edges e; can all be found
in parallel. Parallelizing the joining of parts is more involved. Awerbuch and Shiloach [AS87]
have proposed a parallel variant of Bortivka’s algorithm that introduces data structures to keep
track of the parts of V', and delays the joining of some parts. Due to the delays, the number of
iterations may increase, but it is shown to be at most logs |V|. Each iteration requires constant
time, when executed by |E| processors on priority-CRCW PRAM. The algorithm assumes that
all edges have different weights (this does not lessen the generality). The rest of this section
describes their algorithm.

Algorithm 4: MST algorithm by Awerbuch and Shiloach

Data: Connected graph G = (V, E), edge weights w
Result: E' C E, such that (V, E’) is the MST of G

1 foreach (u,v) € F do
2 T{u,v}] + false
3 | Al(u,v)] + true

foreach v € V do

Fv] < v

| W[v] « NIL

7 while 3(u,v) € E : A[(u,v)] do

8 foreach (u,v) € E where A[(u,v)] do

2B BN

9 if in_star(u) A Flu] # F[v] then

10 F[F[u]] + F[v] with priority w(u,v)
11 L WI[Fu]] < {u,v} with priority w(u,v)
12 Synchronize

13 if W[F[u]] = {u,v} then T [{u,v}] <+ true;
14 if u < Flu] Au= F[F[u]] then Fu] < u;
15 Synchronize

16 if in_star(u) then

17 L Al(u,v)] + false

18 else

19 | F[F[u]] + Fl[u]

20 r;turn {(u,v) € E|T[{u,v}]|}

Algorithm 5: Checking for stars in Alg. 4
Data: A set V, a mapping F': V =V
Result: Predicate St on V, indicating which elements of V' belong to stars
foreach v € V do St[v] < true;
foreach v € V do

if Fv] # F[F[v]] then

Stlv] < false
L St[F[F[v]]] < false

U W N

foreach v € V do St[v] < St[v] A St[F[v]];
7 return St

=]
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The Awerbuch-Shiloach algorithm [AS87] is presented in Alg. 4. It uses the array T to record
which edges have been included in the MST. For keeping track of the partitioning of V', Alg. 4
uses a union-find data structure — the array F' that for each vertex records its current “parent”.
At each moment, F' defines a forest of rooted trees, with the vertices v satisfying v = F[v] being
the roots. The trees of this forest correspond to the parts in the current partitioning. A rooted
tree is called a star if its height is at most 1.

The array A records which edges are “active”. The algorithm iterates as long as any active
edges remain. The body of the while-loop is multi-threaded, creating one thread for each active
edge. The changes a thread makes in common data are not visible to other threads until the
next Synchronize-statement. In particular, the reads and writes of F' in line 10 by different
threads do not interfere with each other.

The Awerbuch-Shiloach algorithm joins two parts in the current partitioning of V' or, two
rooted trees in the forest defined by F', only if at least one of them is a star. Computing, which
vertices belong in stars, can be done in constant time with |V| processors. At each iteration of
Alg. 4, before executing the lines 9 and 16, the algorithm Alg. 5 is invoked and its output is
used to check whether the vertex u belongs to a star.

An iteration of Alg. 4 can be seen as a sequence of three steps, separated by the Synchro-
nize-statements. In first step, the edges to be added to the tree are selected. For each star with
root r € V, the lightest outgoing edge is selected and stored in W]r|. This selection crucially
depends on the prioritized writing; the writing with smallest priority will go through. Also, the
star is made a part of another tree, by changing the F-ancestor of r. In the second step, we
break the F-cycles of length 2 that may have resulted from joining two stars. Independently, we
also record the edges added to the MST. In the third step, we decrease the height of F-trees, as
well as deactivate the edges that attach to a component that is still a star at this step. These
edges definitely cannot end up in the MST.

Alg. 5 for checking which vertices belong in stars is simple. If the parent and the grandparent
of a vertex differ, then this vertex, as well as its grandparent are not in a star. Also, if a parent
of some vertex is not in a star, then the same holds for this vertex.

7 Privacy-preserving MST

Let the ABB store the information about the structure of a graph and the weights of its edges.
This means that there are public numbers n and m, denoting the number of vertices and edges
of the graph. The vertices are identified with numbers 1,2,...,n. The structure of the graph
is private — the ABB stores m pairs of values, each one between 1 and n, giving the endpoints
of the edges. For each edge, the ABB also stores its weight. The preamble of Alg. 7 specifies
the actual data structures (arrays) and the meaning of their elements.

Thanks to working in the ABB model, it is unnecessary to specify which parties originally
hold which parts of the description of the graph. No matter how they are held, they are first
input to the ABB, after which the privacy-preserving MST algorithm is executed. Even more
generally, some data about the graph might initially be held by no party at all, but be computed
by some previously executed protocol. The benefit of working in the ABB model are the strong
composability results it provides.

The algorithms in Sec. 4 can be used to implement Alg. 4 in privacy-preserving manner,
if the dependencies of the control flow from the private data (there is a significant amount of
such dependencies, mostly through the array .A) could be eliminated without penalizing the
performance too much. Also, when implementing the algorithm, we would like to minimize the
number of calls to prepareRead and prepareWrite algorithms, due to their overheads.

Let us first describe the checking for stars in privacy-preserving manner, as Alg. 5 has a
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relatively simple structure. Its privacy-preserving version is depicted in Alg. 6. It receives the
same mapping F' as an input, now represented as a private vector [[ﬁ J. As the first step, the
protocol finds F' o F' in privacy-preserving manner, and stores in in [[C_j]] To find [[C_j]], we have
to read from the array [F] according to the indices also stored in [E]. This takes place in lines
1-2 of Alg. 6. We can now privately compare whether the parent and grandparent of a vertex
are equal (in parallel for all 7, as denoted by the use of foreach) The result is stored in [b]
which serves as an intermediate Value for the final result [[St]] After line 3 of Alg. 6, the value
of [[b]] is the same as the value of ¢ after the assignments in lines 1 and 4 of Alg. 5.

Algorithm 6: Privacy-preserving checking for stars

Data: Private vector [[ﬁ]] of length n, where 1 < F; <n
Result: Private predicate [St], indicating which elements of {1,...,n} belong to stars
according to F

1 [[UJ — prepareRead([[Fi]],n)

2 [G] < performRead([F], [o])

s foreach i € {1,...,n} do [bi] « [Fi] = [Gi];

4 [bpy1] < false

5 foreach i € {1,...,n} do [a;] < [bi] 7 (n+ 1) : [Gi];

6 [I'] « obliviousWrite([d], false, T, [5])
7 [p] < performRead([t'], [o]) // Ignore V.,
8 foreach i € {1,...,n} do [St;] < [b/] A [pi];
—
9 return [St]

As next, we prepare to privately perform the assignment in line 4 of Alg. 5. We only
want to perform the assignment if [F;] # [G;], hence the number of assignments we want to
perform depends on private data. Algorithm 2 presumes that the number of writes is public.
We overcome this dependency by assigning to a dummy position each time Alg. 5 would have
avoided the assignment in its line 5. We let the vector [[5]] to have an extra element at the end
and assign to this element for each dummy assignment. In line 5 we compute the indices of
vector [[5]] where false has to be assigned. Here the operation ? : has the same semantics as in
C/CH+/Java — it returns its second argument if its first argument is true (1), and its third
argument if the first argument is false (0). It can be easily implemented in the ABB: [b] 7 [x]:[y]
is computed as [b] - ([z] — [y]) + [¥]-

In line 6 of Alg. 6, the oblivious write is performed. The arguments of obliviousWrite are
in the same order as in the preamble of Alg. 2: the vector of addresses, the vector of values to
be written, the vector of writing priorities, and the original array. All arguments can be private
values. All public values are assumed to be automatically classified. In line 6, all values to be
written are equal to false, as in Alg. 5. Hence the priorities do not really matter; we make them
all equal to 1 (with the assumption that the priorities for existing elements of [[l;]], output by
compute_priority in line 6 of Alg. 2, are equal to 0). The result of the writing is a private vector
[¢] of length n + 1 that is equal to [b] in positions that were not overwritten.

Lines 7 and 8 of Alg. 6 correspond to the assignment in line 6 of Alg. 5. First we compute
St[F[v]] for all v (in terms of Alg. 5) by reading from [b] according to the indices in [F]. In
line 1 we prepared the reading according to these indices. As [[ﬁ]] has not changed in the
meantime, this preparation is still valid and can be reused. Hence we apply performRead to
first n elements of [5']. The conjunction is computed in line 8.

The privacy-preserving MST protocol is given in Alg. 7. We explain it below.
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Algorithm 7: Privacy-preserving minimum spanning tree

Data: Number of vertices n, number of edges m
Data: Private vector [E] of length 2m (endpoints of edges, i-th edge is (Ej, Eirm))
Data: Private vector [&J] of length m (edge weights)
Result: Private boolean vector [[ﬂ] of length m, indicating which edge belongs to the
MST
1 foreach i € {1,...,2m} do

[wi] < —[wi mod m]
3 | [E] < [E(i+m) mod 2m]
4 foreach i€ {1,...,n+1} do
[F] « i

B Wi] < (m+1)

7 foreach i € {1,...,m+ 1} do [T;] < false;

8 [0¢] « prepareRead([E],n)

9 for iteration_number := 1 to |logs/,n| do
10 | [Si] « StarCheck([F])
11 [F*] + performRead([F], [c¢]) // Ignore F,i;
12 [[ﬁe]] — performRead([[ﬁ]], teadlb]
13 foreach i € {1,...,m} do [d;] + [F7] L [Fs I
14 foreach i € {1,...,2m} do
15 | [ai] < [SE] A =di moa ml ? [FF] : (n+1)
16 ([e¥], [7¥]) + prepareWrite([d], [&'],n + 1)
17 | [F] := performwrite([o], [**], [E'], [F])
18 [W] := performiirite([o"], [¥], (¢ mod m)2™, [W])
19 [T] := obliviousWrite(WV], m, 1.[7D
20 [0'] < prepareRead([F],n + 1)
21 [G] « performRead([F], [1])
22 [H] + performRead([G], [1])

23 foreach i € {1,...,n} do

24 V] « i = [Gi]

25 [2] i < [F]

26 [€¥] — [F] £ [H] A TF] < [Gi]
i, i ALEY]

[F], i [V] A =[c”)]
[F], it =[] A )]
[G] it =[] A =[]

27 [Fi] =

28 return ([71],...,[Tm])

To adapt Alg. 4 for execution on ABB, we first we have to simplify its control flow. For-
tunately, it turns out that it is not necessary to keep track which edges are still “active”. The
outcome of Alg. 4 does not change if all edges are assumed to be active all the time. In this case,
only the stopping criterion of Alg. 4 (that there are no more active edges) has to be changed
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to something more suitable. One could keep track of the number of edges already added to the
MST, or to execute the main loop of the algorithm sufficiently many times. We opt for the
second solution, as otherwise we may leak something about the graph through the running time
of the algorithm.

Alg. 7 first copies around some input data, effectively making the set of edges E symmetric.
Throughout this algorithm we assume that £ mod m returns a value between 1 and m. In line 2
we negate the weights, as lower weight of some edge means that it has higher priority of being
included in the MST. In lines 4 to 7 we initialize [F], [W] and [T] similarly to Alg. 4. All
these vectors have an extra element in order to accommodate dummy assignments. In [[W]], the
value (m + 1) corresponds to the value NIL in Alg. 4 — the elements of [W] are used below as
addresses to write into [7] and (m -+ 1) indicates a dummy assignment.

Before starting the iterative part of the algorithm, in line 8 we prepare for reading according
to the endpoints of edges. The actual reads are performed in each iteration.

As mentioned before, the number of iterations of Alg. 7 (line 9) will be sufficient for all edges
of the MST to be found. As discussed before, [logg/; n| is a suitable number. All iterations are
identical; the computations do not depend on the sequence number of the current iteration.

An iterations starts very similarly to Alg. 4, running the star checking algorithm and finding
for each endpoint u of each edge e the values F[u] and St[u] (in terms of Alg. 4). In line 9 of
Alg. 4, a decision is made whether to update an element of F and an element of W. The same
decision is made in lines 13-15 of Alg. 7: we choose the address of the element to update. If the
update should be made then this address is [F;]. Otherwise, it is the dummy address n + 1.
In lines 16-18 the actual update is made. As the writes to both [[]3 ] and HV_\}]] are according to
the same indices [d] and priorities [&J'], their preparation phase has to be executed only once.
If the write has to be performed, we write the other endpoint of the edge to F and the index of
the edge to W. In line 19 we update [7] similarly to line 13 of Alg. 4.

Compared to Alg. 4, we have redesigned the breaking of F-cycles and decreasing the height
of F-trees, in order to reduce the number of calls to algorithms in Sec. 4. In Alg. 4, the cycles
are broken (which requires data to be read according to the indices in F , and thus the invocation
of prepareRead, as F has just been updated), and then the F-grandparent of each vertex is
taken to be its F-parent (which again requires a read according to F and another invocation
of prepareRead). Instead, we will directly compute what will be the F-grandparent of each
vertex after breaking the F-cycles, and take this to be its new F-parent.

For this computation, we need the F-parents of each vertex, which we already have in the
vector F. We also need their F -grandparents which we store in é, and F-great-grandparents,
which we store in H. We only need a single call to prepareRead to find both [G] and [H]J.
After breaking the cycles, the F-grandparent of the vertex ¢ can be either i, F; or G;. It is not
hard to convince oneself that the computation in lines 24-27 finds the F-grandparent of ¢ and
assigns it to [F;]. As before, the computations for different vertices are made in parallel. The
case-construction in line 27 is implemented as a composition of ? : operations.

Finally, we return the private boolean vector [[ﬁ] indicating which edges belong to the MST,
except for its final dummy element [75,41].

Alg. 7 is UC-secure for the same reasons as Alg. 1 and Alg. 2 — it only applies the oper-
ations of ABB, classifies only public constants and declassifies nothing. The amount of work
it performs (or: the amount of communication it requires for typical ABB implementations)
is O(|E|log? |V|). Indeed, it performs O(log |V|) iterations, the complexity of which is domi-
nated by reading and writing preparations requiring O(log |E|) = O(log|V|) work. For typical
ABB implementations, the round complexity of Alg. 7 is O(log? |V'|) — each private reading or
writing preparation requires O(log |V]) rounds.

Awerbuch-Shiloach algorithm (Alg. 4) accesses all of its memory during each of its iterations.
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Figure 4: Running times for the private MST algorithm, depending on the number of vertices
n. Number of edges is m = 3n (lower line), m = 6n (middle line), m = n(n — 1)/2 (upper line)

Hence we can say that for this algorithm the overhead of our private data access techniques is
only O(logm).

Experimental results

We have also implemented Alg. 7 (and Alg. 6) on the SHAREMIND SMC platform and tested its
performance on the same setup as described in Sec. 5. We have varied the number of vertices
n and selected the number of edges m based on it and on the most likely applications of our
private MST protocol.

We believe the most relevant cases for our protocol to be planar graphs and complete
graphs. Planar graphs have m = 3n, if most of its faces are triangles. Complete graphs have
m = n(n —1)/2. We have also considered the case m = 6n as a “generic” example of sparse
graphs.

The results of our performance tests are depicted in Fig. 4. These will serve as the baseline
for any further investigations in this direction.

8 Conclusions

We have presented efficient privacy-preserving protocols for performing in parallel many reads
or writes from private vectors according to private indices. We have used these protocols to
provide a privacy-preserving protocol for finding the minimum spanning tree in a graph; no
protocols for this task have been investigated before. To achieve these results, this paper makes
use of several novel ideas.

First, we noted that multiparty computations by necessity have to process their data in a
parallel fashion, otherwise the costs of network latency are prohibitive. Hence one does not
need a protocol for reading or writing one value from a private vector according to private




index (with the intent to run many copies of this protocol in parallel). It is sufficient to look
for protocols that are efficient only when performing many reads or writes in parallel.

Second, we have noticed that the operations available relatively cheaply in existing ABB
implementations allow us to construct such protocols. Our protocols in Sec. 4 are somewhat
inspired by the techniques first appearing in [LW14], but are significantly more efficient.

Third, we have noticed that many PRAM algorithms become amenable to privacy-preserving
implementations without too much overhead, if the protocols in Sec. 4 are available. In this
sense, the private MST protocol of Sec. 7 serves just as an example. We have chosen this
example because it is very difficult to imagine it to be implemented without the ideas in this
paper.

Performance-wise, we have certainly obtained impressive results: a graph with 200,000 ver-
tices and 1,200,000 edges can be processed in nine hours. Also, the set-up of our performance
tests is realistic — LAN speeds between servers under control of different parties can easily be
achieved through a co-located hosting service that provides physical barriers to the access of
individual servers.
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