
Security Proofs for the BLT Signature Scheme

Ahto Buldas, Risto Laanoja, and Ahto Truu

GuardTime AS, Tammsaare tee 60, 11316 Tallinn, Estonia.

Abstract. We present security proofs for the BLT signature scheme in the model, where hash functions
are built from ideal components (random oracles, ideal ciphers, etc.). We show that certain strengthen-
ing of the Pre-image Awareness (PrA) conditions like boundedness of the extractor, and certain natural
properties (balancedness and the so-called output one-wayness) of the hash function are sufficient for
existential unforgeability of the BLT signature scheme.

1 Introduction

By the BLT signature scheme, we mean the server-based hash-tree signature scheme proposed
recently in [7, 8]. To sign a message m at time t, the signer first combines m and a pseudoran-
dom number (“password”) zt and obtains a time-stamp St′ for a hash h(zt,m). The signature
(m, zt, St′(m, zt)) is valid only if t′ = t, which means that the already-used pseudorandom numbers
cannot later be abused to create new signatures (m′, zt, St′′(m

′, zt)), because t′′ > t. For such a
scheme to be useful and secure in practice, several additional requirements must be met.

First, the time-stamping service used must be trustworthy because signatures can be forged by
back-dating the pair (m′, zt) of a new message m′ and an already used password zt. Therefore, the
hash-tree keyless time-stamping schemes [15, 1, 10] and keyless signatures [4] are especially suitable
for the scheme. The aim of keyless time-stamping is to avoid key-based cryptography and trusted
third parties so that time-stamps become irrefutable proofs of time. A collection of C documents is
hashed down to a single digest of few dozen bytes that is then published in widely available media
such as newspapers. Merkle hash trees [18] enable to create compact “keyless signatures” of size
O(logC) for each of the C documents. Every such signature consists of all sibling hash values in
the path from a document (a leaf of the tree) to the root of the tree. After the root hash value
is published, it will be impossible for anyone to back-date a new document in terms of creating
a hash chain from a new document to the already published hash value. Formal security proofs
exist for these schemes about their resistance to back-dating attacks [10, 9] assuming the collision-
resistance of the hash function, and somewhat tighter proofs [5, 6] assuming stronger security than
the collision-resistance.

Second, there should be a mechanism to verify that a password zt was indeed intended to
use at time t. In [7, 8], the solution to this was to use an iterated one-way function so that all
the pseudorandom passwords are computed by recursively iterating a one-way function f on the
random seed z`, so that zi = f(zi+1) and z0 is the public key. In order to verify that z = zt, the
verifier iterates f on z exactly t times and checks if f(...f︸ ︷︷ ︸

t

(z)...) = z0. In order to make such a

verification more efficient, one may compute a Merkle tree with leaves z1, . . . , z` and use its root
hash r as the public key. This reduces verification from O(`) to O(log `).

In [7, 8], several implementation-related questions are analyzed, but so far there are no formal
security proofs for the new signature scheme. All the known proofs [10, 9, 5, 6] only consider the
security against back-dating but not against existential forgeries as mostly required from signature

schemes. In this work, we try to figure out how to formalize the security of server-based keyless
signatures and present a security proof in an ideal hash function model where the hash function
uses an ideal component (such as an ideal cipher, or a fixed-length random oracle). We show that
under a slight strengthening of the Pre-image Awareness (PrA) assumption, the so-called Bounded
Pre-image Awareness (BPrA) [6]. the BLT signature scheme is existentially unforgeable.

The paper is organized as follows. In Section 2, we present the preliminary concepts about
general theory of cryptographic protocols and hash functions, hash tree keyless (data) signatures,
and the notion of security against back-dating. In Section 3, we present a formal security model
for the BLT signature scheme and a new notion of security against back-dating, which we call
strong unforgeability, and which, as we show, is sufficient for the security of BLT against existential
forgeries. In Section 4, we prove that the BPrA condition (with some natural extensions) is sufficient
to prove the strong unfogeability of the so-called rank 1 (not the same as rate 1) constructions HP

in which the ideal component P is used just once. In Section 5, we generalize the proofs for the
rank k schemes, and show that their strong unforgeability follows from a weaker assumption, the
so-called k-grade strong unforgeability.

2 Preliminaries

2.1 Cryptographic Protocols and Security

A cryptographic protocol usually consists of several functionalities that define the rules of commu-
nication between the parties. Formally, we may define a protocol Π as a family of functions of type
{0, 1}∗ → {0, 1}∗ along with a matching between these functions and Turing machines implement-
ing them. However, we can usually compose these functions into one single function – we just use
the first few input bits to tell the function which sub-function we want to use. This means that we
can still formalize the primitive as one single function, although it may be a little counter-intuitive.
A primitive is usually defined in terms of functional requirements that the instances of the primitive
must satisfy before it makes sense to talk about their security. These requirements, though, are just
syntactic and have nothing to do with security. For example, every permutation is an instance of
the one-way permutation primitive, however, it does not have to be a secure instance.

In cryptography we also have to define the security of protocols. Note that security may mean
different things considering the attacking scenarios we want to avoid in practice. For example,
by secure hash function, one may mean one-wayness, collision-resistance, or any other particular
security condition.

Definition 1 (Security Condition, Adversaries and Advantage). A security condition C

is defined by any function (advantage function) AdvC(·, ·), which given as input a cryptographic
protocol Π, and an oracle Turing machine AO (an adversary) returns a real number AdvC(Π,AO) ∈
[0, 1] (the advantage of AO when breaking Π). The function AdvC(Π, ·) is extended to probabilistic
Turing machines by taking the average over their randomness strings1.

We emphasize that our definition says nothing about the efficiency of Π. The function may even
be non-computable, as long as the advantage that can be gained by any adversary is negligible.
In practice, one needs protocols that are both efficient and secure. Commonly, it is required that

1 Each fixed randomness string gives a deterministic poly-time Turing machine A for which AdvC(Π,A) is already
defined.

2

we can compute the function Π with a (uniform) poly-time Turing machine for Π to be called
efficient.

The same applies to the advantage function AdvC(·, ·). In some security conditions, the advan-
tage may not be efficiently computable. However, in most practical cases, the advantage function
is efficiently computable. The following important class of security conditions covers all our needs
in this work.

Definition 2 (t-time Falsifiable Security Condition). By a t-time falsifiable security condition
C, we mean a security condition for which the advantage function is in the form

AdvC(Π,A) = Pr
[
1← EΠ,A

]
,

where E (the so-called environment) is a t-time probabilistic oracle Turing machine, where oracle
calls are assumed to be unit-cost.

The security of cryptographic protocol Π is measured by the amount of resources needed for
an adversary to break the primitive. A scheme is said to be S-secure, if it can be broken by no
adversaries with less than S units of resources available. Considering that the running time t and
the success probability δ of the known practical attacks against the scheme may vary, Luby [16]
proposed the time-success ratio t

δ as a measure for attacking resources. The following definition is
based on the approach of [16].

Definition 3 (S-Secure Protocol). A cryptographic protocol Π is said to be S-secure in terms
of a security condition C, if every t-time adversary A has advantage AdvC(Π,A) ≤ t

S . In terms
of oracle-adversaries, Π is said to be S-secure relative to O, if every t-time oracle adversary has
advantage AdvC(Π,AO) ≤ t

S .

In a typical security proof for a protocol P built from a primitive Q, it is shown that if Q is Sq-secure,
then P is Sp-secure. Bellare and Rogaway [2, 3] first emphasized the importance of the tightness
Sp/Sq of security proofs in practical applications. Informally, tightness shows how much security of
the primitive is transformed to the protocol. Security proofs are mostly reductions: an adversary for
P with running time t and success probability δ is transformed to an adversary for Q with running
time t′ and success probability δ′. This means that for having t

δ -secure P, we have to use a t′

δ′ -secure
Q.

2.2 Random Oracles

By a random oracle Ω, we mean a function that is chosen randomly from the set of all functions
of type {0, 1}m → {0, 1}n. By the random oracle heuristic we mean a security argument when an
application of a hash function (e.g. a time-stamping scheme, a signature scheme) is proved to be
secure in the so-called random oracle model, where the hash function is replaced with a random
oracle. The random oracle heuristic was first introduced by Bellare and Rogaway [2]. Although it
was proved later by Canetti et al [11] that the random oracle heuristic fails in certain theoretical
cases, proofs in the random oracle model are still considered valuable security arguments, especially
if no better security proofs are known.

3

2.3 Pseudorandom Functions

Pseudorandom functions are functions that are (computationally) indistinguishable from true ran-
dom oracles, though the family of functions they are chosen from is much smaller than the set of
all functions from which the random oracle is chosen.

Definition 4 (PRF). A function h: {0, 1}k × {0, 1}m → {0, 1}n is an S-secure pseudorandom
function family (PRF) if for every t-time distinguisher D:

AdvPRF(h,D) =
Pr

[
1← Dh(z,·)

]
− Pr

[
1← DΩ

] ≤ t

S
,

where z ← {0, 1}k and Ω is a random oracle chosen from the set of all functions {0, 1}m → {0, 1}n.
We say that h is an S-secure PRF relative to an oracle P , if h and D are allowed to use P -calls,
i.e. we use hP , Dh(z,·),P , and DΩ,P in the definition.

If h is pseudorandom and Π is a cryptographic protocol in which h(z, ·) (with random z) is used,
then we can replace such calls of h with calls to a true random oracle Ω without changing the
security of the protocol, if the changed (randomized) version of the protocol is secure then so is
the original protocol. The following theorem formalizes this same idea. In order to replace some
of the h-calls with random oracle calls, we first represent ΠhP as a special case of a more general
protocol Σf,g (f and g represent two different instances of the h-calls made by Π) such that

ΠhP ≡ ΣhP (z,·),hP , i.e. the first type of h-calls of Π (equivalently, the f -calls of Σ) are all in the
form x 7→ h(z, x), where z is picked randomly and uniformly and is the same for all these calls.
We may now replace these calls with calls to a true random oracle, to get the so-called randomized
protocol ΠhP

rnd ≡ ΣΩ,hP .

Theorem 1. Let ΠhP be any protocol that can be represented as a special case of a more general
protocol Σf,g such that ΠhP ≡ ΣhP (z,·),hP . If hP (z, ·) is an S-secure PRF relative to P and the

randomized protocol ΠhP

rnd ≡ ΣΩ,hP is S-secure relative to P in terms of a t′-time falsifiable security

condition C, then the original protocol ΠhP is S
2t′ -secure relative to P in terms of C.

Proof. Let AP be a t-time adversary that breaks ΠhP with advantage δ = AdvC(ΠhP , AP) =

Pr
[
1← EΠ

hP ,AP
]
. Let DΦ,P ≡ EΣ

Φ,hP ,AP . The running time of D does not exceed tt′. Note that

Pr
[
1← DhP (z,·),P

]
= Pr

[
1← EΣ

hP (z,·),hP ,AP
]

= AdvC(ΣhP (z,·),hP , AP) = AdvC(ΠhP , AP) = δ,

and Pr
[
1← DΩ,P

]
= Pr

[
1← EΣ

Ω,hP ,AP
]

= Pr
[
1← EΠ

hP

rnd,A
P
]

= AdvC(ΠhP

rnd, A
P) ≤ t

S . Therefore,

δ ≤ AdvC(ΠhP

rnd, A
P) +

Pr
[
1← Dh(z,·),P

]
− Pr

[
1← DΩ,P

] ≤ t

S
+
tt′

S
≤ 2t′

t

S
,

which means that ΠhP is S
2t′ -secure relative to P . ut

2.4 Pseudorandom Oracles

There is a stronger notion of pseudorandom function that applies to functions HP that use ideal
components accessible via an oracle P . For example, one may assume that the compression function
of a hash function is made of an ideal cipher or a random oracle. In such a model, it would be fair

4

to assume that adversaries also have access to the P oracle. Moreover, sometimes HP is used as a
building block in cryptographic protocols the security proofs of which (for simplicity) assume that
HP is replaced with a true random oracle Ω. For such a replacement (the so-called random oracle
heuristics) to be correct, it is sufficient that HP is a pseudo-random oracle:

Definition 5 (PRO). We say that HP is an (S, t′)-secure pseudo-random oracle (PRO) if there
is a t′-time simulator S, such that for every t-time distinguisher D:

AdvPRO(HP , D) =
Pr

[
1← DHP ,P

]
− Pr

[
1← DΩ,SΩ

] ≤ t

S
.

This notion is first studied by Maurer et al [17] and was adapted to hash functions by Coron et
al [12]. The most important practical implication of the pseudo-random oracle property of HP is
that any application that uses HP as a hash function is almost as secure as if a random oracle is
used instead of HP . This means that the random oracle heuristics applies in case of the particular
application, i.e. we can prove the security of the application in the random oracle model and then
replace the oracle by a more realistic (but still ideal!) model HP of the hash function. Note that
the PRO-property is a very strong assumption and often we would like to know if some lighter
assumptions would also be sufficient for the security of the application. For example, it was shown
[12] that the commonly used Merkle-Damg̊ard style hash functions do not satisfy the PRO property.

Theorem 2. If a cryptographic protocol ΠΩ (where Ω is a random oracle) is S-secure in a t′-

time falsifiable sense in the random oracle model, and HP is (S, t′′)-secure PRO, then ΠHP
is

S
t′+t′′ -secure relative to P in the same sense.

Proof. Let AP be a t-time adversary that breaks ΠHP
with probability δ = AdvC(Π,AP) =

Pr
[
1← EΠ

HP ,AP
]
. Let BΩ be an adversary that behaves like A, except that it simulates its P -

queries using the t′′-time simulator SΩ. The running time of B does not exceed tt′′. As ΠΩ is

S-secure, the probability that BΩ breaks ΠΩ is δ′ = AdvC(ΠΩ, BΩ) = Pr
[
1← EΠ

Ω ,BΩ
]
≤ tt′′

S .

Let DΦ,π be a distinguisher that simulates the attack of Aπ against ΠΦ and outputs 1 iff A is

successful. Hence, Pr
[
1← DΦ,π

]
= AdvC(ΠΦ, Aπ) = Pr

[
1← EΠ

Φ,Aπ
]
. The running time of D

does not exceed tt′, which means that

δ = Pr

[
1← EΠ

HP ,AP
]

= Pr
[
1← DHP ,P

]
≤ Pr

[
1← DΩ,SΩ

]
+
tt′

S
= Pr

[
1← EΠ

Ω ,AS
Ω
]

+
tt′

S

= Pr
[
1← EΠ

Ω ,BΩ
]

+
tt′

S
≤ tt′′

S
+
tt′

S
= (t′ + t′′)

t

S
,

which means that ΠHP
is S

t′+t′′ -secure. ut

2.5 Pre-Image Awareness

Pre-Image Awareness (PrA) of a (hash) function H means, that if we first commit to an output
y and later come up with an input x, such that y = H(x), then it is safe to conclude that we
knew x before committing y. This notion was first formalized by Dodis et al. [14] for hash functions

5

HP that are built using an ideal primitive P as a black box. For HP being PrA, there has to be
an efficient deterministic extractor E which when given y and the list α of all previously made
P -calls, outputs an input x, such that HP (x) = y, or ⊥ if E was unable to find such an x. The
adversary tries to find x and y so that x 6= E(α, y) and y = HP (x). A weaker form of PrA (so-called
WPrA) allows E output a set L of inputs x, and the adversary tries to find x, such that the query
L ← E(α, y) was made, y = HP (x), but x 6∈ L. Obviously, WPrA becomes PrA if the number of
elements in L is limited to one, i.e. |L | ≤ 1. To define pre-image awareness of HP in a precise way,

Exppra
H,P,E,B :

x← BP,Ex

y ← HP (x)
If Q[y] = 1 and V[y] 6= x return 1,
else return 0

oracle P(m):
c← P (m)
α← α||(m, c)
return c

oracle Ex(y):
if Q[y] 6= 1, then:
Q[y]← 1
V[y]← E(y, α)

return V[y]

Fig. 1. Preimage awareness experiment with the oracles P and Ex.

we set up an experiment Exp (see Fig. 1), specified as a game which an attacker B is trying to
win. B is constrained to oracle access to P , via a wrapper oracle P, which records all P -calls made
by B as an advise string α. Likely, the extractor E is accessible through another wrapper oracle
Ex, which uses global arrays Q (initially ⊥ everywhere) and V (initially blank). Q is used to record
all input parameters to E; V is used to store all successfully extracted values corresponding to E’s
inputs. The adversary B tries to output a value x such that HP (x) = y, Q[y] = 1 and V[y] 6= x, i.e.
E tried to invert y, but was unsuccessful. As P- and Ex-calls are unit cost, the running time of B
does not depend on the running time of E. Note that PrA implies collision-resistance, but WPrA
does not.

Definition 6 (Pre-Image Awareness). A function HP is S-secure pre-image aware (PrA) if
there is an efficient extractor E, so that for every t-time B:

AdvPrA(HP , B) = Pr
[
1← Exppra

H,P,E,B

]
≤ t

S
. (1)

2.6 Bounded Pre-Image Awareness

In [6], a stronger than PrA security condition was defined that is called Bounded Pre-Image Aware-
ness (BPrA) which is a stronger version of the PrA condition. The BPrA condition assumes the
existence of a PrA-extractor E that is bounded in the sense that for efficiently computable query
strings α, the number of outputs y for which E(y, α) succeeds does not exceed the number of queries
in α.

Definition 7. A function HP : {0, 1}2n → {0, 1}n is S-secure Bounded Pre-Image Aware (BPrA)
if it is S-secure PrA, and for any t-time adversary α← QP :

Adv(E, QP) = Pr
[
α← QP : |{y: E(y, α) 6= ⊥}| > |α |

]
≤ t2

2n
,

where E is the extractor from the PrA condition.

6

Note that for BPrA, the extractor must always return ⊥ if the query string is empty, i.e. E((), z) = ⊥
for every z ∈ {0, 1}n, because otherwise Q may break E with doing nothing and hence producing
an empty query list.

2.7 Collision Resistance

Informally, the collision resistance of a hash function HP means that it is infeasible for adversaries
to find two different inputs x and x′ that have the same hash value, i.e. HP (x) = HP (x′). This
definition makes sense only if the ideal primitive P contains some randomness, as the collisions or
fixed functions can always be “wired” into the adversary.

Definition 8 (Collision Resistance). A function HP is S-secure collision resistant (CR) if for
every adversary B with running time t:

AdvCR(HP , B) = Pr
[
x, x′ ← BP :x 6= x′, HP (x) = HP (x′)

]
≤ t

S
. (2)

Due to the so-called Birthday bound, functions with n-bit output can only be up to 2
n
2 -secure

collision resistant.

2.8 Hash-Tree Schemes and their Security Against Back-Dating

Hash trees were introduced by Merkle [18]. Let h: {0, 1}2n → {0, 1}n be a hash function. By a
hash-tree we mean a binary tree-shaped data structure that consists of nodes labeled with n-bit
hash values. Each node is either a leaf which means it has no children, or an internal node with
two child nodes (the left and the right child). The hash value y of an internal node is computed as
a hash y = h(y0, y1), where y0 and y1 are the hash values of children. There is one root node that is
not a child of any node. If T is a hash tree with m leaves labeled with hash values x1, . . . , xm and
r is the root hash value, then we use the notation r = T(x1, . . . , xm).

Encoding the Leaves of a Hash Tree. Nodes of a hash tree can be named in a natural way
with finite bit-strings. The root node is named by the empty string bc. If a node is named by `, then
its left and right child nodes are named by `0 and `1, respectively. The name ` of a node is also an
“address” of the node, considering that one starts the searching process from the root node, and
then step by step, chooses one of the children depending on the corresponding bit in `.

Shape of a Hash Tree. Hash tree has a particular shape by which we mean the set of all names
of the leaf-nodes. For example, a balanced complete tree with four nodes (Fig. 2, left) has the shape
{00, 01, 10, 11}. If the root hash value is denoted by r (instead of rbc) and r` denotes the hash value
of a node with name `, then in this example, the relations between the nodes are the following:
r = h(r0, r1), r0 = h(r00, r01), and r1 = h(r10, r11). The shape {000, 001, 01, 1} represents a tree
with four leaves (Fig. 2, right) with the hash values being in the following relations: r = h(r0, r1),
r0 = h(r00, r01), and r00 = h(r000, r001). Note also that the shape is a prefix-free code.

Hash Chains. In order to prove that a hash value r` (where `1`2 . . . `m is the binary representation
of `) participated in the computation of the root hash r, it is sufficient to present all the sibling
hashes of the nodes on the unique path from r` to the root r. For example, in the left tree of Fig. 2,
to prove that r01 belongs to the tree, one has to present the hashes r00 and r1 that enable us to
compute r0 = h(r00, r01) and r = h(r0, r1). Formally, hash chains can be defined as follows [5]:

7

Fig. 2. Trees with shape {00, 01, 10, 11} (left) and {000, 001, 01, 1} (right).

Definition 9 (Hash-Chain). If h: {0, 1}2n → {0, 1}n be a hash function. An h-hash-chain (or
simply, a hash chain) from x to r (where x, r ∈ {0, 1}n) is a (possibly empty) sequence c =
(c1, c2, . . . , cm) of triples ci = (xi, x

′
i; yi) (where yi = h(xi, x

′
i)), such that yi ∈ {xi+1, x

′
i+1} for

every i = 1, . . . ,m − 1. We write x
c
 r to denote that c is a hash chain from x to r. Note that

x
()
 x for every x ∈ {0, 1}n.

Definition 10 (Subchains, Reduced Chains). By a subchain of a hash chain x
c
 r is an

arbitrary sub-sequence of c′ of c that itself is a hash chain; c′ is said to be proper if x
c′
 r. A hash

chain c is reduced, if all its triples (xi, x
′
i; yi) have unique output values yi, i.e. if all the values

yi are different. Note that shortest proper subchains of c are always reduced and can be efficiently
found by using a simple backwards wave-propagation technique.

Hash-Tree Keyless Signature Schemes. The signing (time-stamping) procedure runs as follows.
During every time unit t (e.g. one second) the server receives a list Xt = (x1, . . . , xm) of requests
(n-bit hash values) from clients, computes the root hash value r(t) = T(x1, . . . , xm) of a hash tree
T and publishes r(t) in a public repository R = (r(1), r(2), . . . , r(t)) organized as an append-only
list. Each request xi is then provided with a hash chain ci (the signature for xi) that proves the
participation of xi in the computation of the root hash value r(t). A request x ∈ Xt is said to precede
another request x′ ∈ Xt′ if t < t′. The requests of the same batch are considered simultaneous. In
order to verify the hash chain ci (the signature) of a request xi, one computes the output hash
value of ci (the last hash value xm in the sequence) and checks whether xm = r.

Security Against Back-Dating. Informally, we want that no efficient adversary can back-date
any request x, i.e. first publishing a hash value r, and only after that generating a new “fresh” x
(not pre-computed by the adversary), and a hash chain c, so that x

c
 r. We use the formal security

condition from [5] that involves a two-stage back-dating adversary A = (A1, A2). The first stage A1

creates a public repository R of hash values that may be created in an arbitrary way, not necessary
by using hash trees. The second stage A2 of A presents a high-entropy x and a hash chain x

c
 r

with r ∈ R. The high entropy of x is crucial because otherwise x could have been pre-computed
or guessed by A1 before r is published and hence x could be in fact older than r and thereby not
really back-dated by A2. Therefore, only unpredictable adversaries (that produce high-entropy x)
are considered, i.e. x must be hard to guess for A2 even if the contents of R and all the internal
computations of A1 are known. There might be several ways to define unpredictability, but we use
the strong unpredictability assumption from [5]:

Definition 11 (Strong Unpredictability). We say that a back-dating adversary A = (A1, A2)
is strongly unpredictable if the conditional min-entropy H∞[x | R, a] of x (back-dated by A2) is

8

at least n − 1 bits, i.e. for every input of A2 and for any possible value x0 of x, the probability of
x = x0 is upper bounded by 1

2n−1 .

Definition 12 (Security against Back-Dating). A hash function h is S-secure against back-
dating if for every t-time strongly unpredictable (A1, A2):

AdvBD(h,A) = Pr
[
(R, a)←A1, (x, c)←A2(R, a): x

c
 R

]
≤ t

S
, (3)

where by x
c
 R we mean that x

c
 r for some r ∈ R, and a is an advice string that contains

possibly useful information that A1 stores for A2.

2.9 Merkle-Damg̊ard Hash Functions

Merkle-Damg̊ard (or iterated) hash functions use a compression function F (m, v) to iteratively
compute a hash of an arbitrary size message m divided into equal blocks m1, . . . ,m` of suitable size.
The hash h = H(m) is computed as follows: (1) h ← IV ; (2) for i ∈ {1, . . . , `} do: h ← F (mi, h);
(3) and output H(m) = h. Here, IV is a public and standard initial value. It has been proved [14]
that if F is PrA, then so is H.

2.10 Blockcipher-Based Compression Functions

Many hash functions are constructed from secure block-ciphers. The most common approach for
creating a 2n→ n hash function is to use a block-cipher with n-bit block and n-bit key and make a
compression function that makes one call to the block-cipher. Such constructions were first analyzed
by Preneel et al. [19] and are called rate-1 schemes. Higher rate schemes compress several n-bit
blocks at one iteration. The most general approach is that of Stam [21], where the compression
function is defined by the following three steps:

1. Prepare key and plaintext: (k, x)← Cpre(m, v);

2. Use the blockcipher: y ← Ek(x);

3. Output the digest: w ← Cpost(m, v, y).

There are two types of rank-1 compression functions.

Definition 13. A block-cipher-based rate-1 compression function FE is called Type-I iff: (1) Cpre is
bijective; (2) Cpost(m, v, ·) is bijective for all m, v; and (3) Caux(·) = Cpost(C

−1
pre(k, ·), y) is bijective

for all k, y.

Definition 14. A block-cipher-based rate-1 compression function FE is called Type-II iff: (1) Cpre

is bijective; (2) Cpost(m, v, ·) is bijective for all m, v; and C−1pre(k, ·) (restricted to its second output
v) is bijective for all k.

Type-I functions are collision-resistant. Type-II functions become collision-resistant when iterated
as Merkle-Damg̊ard hash functions. It has been shown [14] that rate-1 Type-I compression functions
are PrA and that if the rate-1 Type-II compression function is iterated, then it becomes PrA.

9

3 Security Model for the BLT Signature Scheme

3.1 Parties

The following parties (Fig. 3) are involved in the BLT server-based signature scheme:

– Server authenticates clients and creates keyless signatures St(y) for signers’ requests y. For
serving several clients, and multiple signature requests by one client, the server has to process
requests in batches, create a hash tree for each batch, and send the root hash rt (together with

t) to the Repository. For every request y, a hash chain y
c
 rt is extracted from the hash tree

and is sent as a keyless signature St(y) back to client.
– Repository R is a trusted database that receives: (i) write requests rt which are stored in

append-only manner as an array; and (ii) read requests t which are answered with R[t]. The
repository also has the public verification hash z0 of every signer.

– Signer S who signs documents. For that, client first hashes the document to produce a hash
value x and then, combining the hash with a suitable one-time password zt, hashing the com-
bination and sending the hash y = h(zt, x) (together with t) as a request to the server. After

having received the keyless signature St(y) = y
c
 rt, the signer makes a read request t to the

repository and obtains rt, and verifies St(y) against rt (i.e. computes the output hash of c and
compares it to rt). Only after a successful verification, the signer can send the full signature
(t, zt, c) to the verifier.

– Verifier is a party who has to verify signatures created by signers. For verifying a signature
(t, zt, c) on m, the verifier makes a read-request to the repository to obtain rt. After that, the
verifier computes h(zt, x) and compares the result with y, computes the output of the hash
chain c and compares the result to rt, and it also has to verify that zt was intended for using at
t. For example, in the scheme of [7, 8], the verifier iterates f(...f︸ ︷︷ ︸

t

(zt)...) and compares the result

to z0 obtained from the repository. In this paper, we use a somewhat different scheme.

3.2 Adversary

We assume that both the verifier and the server may co-operate against the signer, trying to forge
signatures and hence, the verifier and the server are assumed to be under complete control of the
adversary (dashed box in Fig. 3). The adversary AS,R is assumed to make oracle calls x to signer
S and repository R (Fig. 4). The objective of AS,R is to produce a correct signature (t, zt, c) for
an x that was never used to call S during the attack, i.e. the attack scenario describes a standard
existential forgery setting.

The signer and the repository are defined in such a way that the adversary has to write rt to R

before it is possible to access zt, which intuitively means that zt cannot be abused by AS,R, unless
AS,R is able to back-date zt relative to rt, i.e. to first store rt and then (having got zt) find a hash
chain y′ rt from y′ = h(zt, x

′) (where x′ is the new hash to be signed) to an already stored root
hash rt.

However, formal security proof is not trivial, even in the model with the repository R as an
ideal object, mostly because of two reasons:

– Before storing rt, the adversary has partial knowledge about zt, namely the one-way image
f(zt) = zt−1 (and also the just-received request y = h(zt, x)). This has not been foreseen in the

10

Fig. 3. Parties involved in the BLT signature scheme.

Fig. 4. Adversarial model of the BLT signature scheme.

standard security conditions that consider back-dating [10, 9, 5], where the back-dated data was
generated randomly after the first stage (r, a)← A1 of the back-dating adversary has finished.

– There is another way for the adversary to try to forge a signature with zt, namely using the
partial information that y = h(zt, x) may provide clues for creating a hash y′ = h(zt, x

′) for
x′ 6= x knowing only y. The security condition about h that prevents doing so resembles very
much the so-called non-malleability of h, which is considered a very strong security condition.

“Common sense analysis” suggests that if the hash function is non-malleable and secure against
back-dating, then it is also secure for the BLT setting. Assume that the adversary A1 has y = h(zt, x)
and it commits to a hash value r, i.e. (r, a)← A1, where a is an advice string. Say that A2 is able

to come up with a forgery, i.e. (x′, c)← A2(a, zt), where x′ 6= x, and c is a hash chain y′
c
 r from

y′ = h(zt, x
′) to the published (by A1) hash r. Informally, we may argue that either:

– (A1, A2) found a collision for h, i.e. h(zt, x) = y = y′ = h(zt, x
′);

– A1 was able to compute y′ from y before publishing r; or

11

– A2 was able to back-date a new hash value y′ relative to r.

The problem is though that in the standard model, it is very hard to define “knowledge”, i.e. what
does it mean that A1 knows y′ before commiting to r. For this reason, we prove the security in a
model with ideal objects and use the Preimage-Awareness (PrA) assumption.

3.3 Verifiable Pseudorandom Passwords

We analyze the necessary and sufficient requirements that the one-time passwords zi have to meet.
It turns out that they should not necessarily be generated in iterative manner: zi = f(zi+1), and
z` = s ← {0, 1}n. If we use an additional hash tree structure on z1, . . . , z` for more efficient
verification, then we may use the values zi = h(i, s) instead, assuming that there is an easily
verifiable relation between i and the shape of the hash chain for zi in the hash tree.

Fig. 5. Hash password scheme. Gray nodes denote the information available to the adversary after using z2.

The one-time password generation scheme z1, . . . , z`, x1, . . . , x` ← G(`) is defined as follows (Fig. 5):

– Pick a random seed s← {0, 1}n.
– For all i = 1 . . . `: zi ← h(s, i) and xi ← h(zi, 0

n).

The values x1, . . . , x` are assumed to be known by adversaries, because the hash chains that prove
the authenticity of zi contain them. Once we assume that all xi are known to the adversary, the
hash chains do not provide any additional information about zi, because the hash chains can be
easily computed from xi. We also define the randomized scheme z1, . . . , z`, x1, . . . , x` ← Grnd(`) is
defined as follows:

– For all i = 1 . . . `: zi ← {0, 1}n and xi ← h(zi, 0
n).

The following theorem is a direct corollary of Thm. 1.

Theorem 3. If h(z, ·) is an S-secure PRF and the random password generation scheme Grnd is
S-secure in a t′-time falsifiable sense, then the original password scheme G is S

2t′ -secure in the same
sense.

12

3.4 Formal Security Definition

Considering the model above, we give the following formal definition to the security of the BLT-type
signature scheme.

Definition 15. A keyless signature scheme is said to be S-secure, if every t-time adversary AS,R

(that does not make S-queries with x) has success probability

Pr
[
(z1, . . . , z`, x1, . . . , x`)← G(`), (m, i, z, c)← AS,R(x1, . . . , x`):h(m, z)

c
 R[i], z = zi

]
≤ t

S
.

Oracle S (signing oracle)

Initialize:
i = 0
Query S(x):
i = i+ 1
Output h(zi, x)
wait Query S(r):
If R[i] = r then output zi

Oracle R (repository)

Initialize:
i = 0
Query R(r): (write query)
i = i+ 1
R[i] = r
Query R[j]: (read query)
If j ≤ i then output R[j],
otherwise output ⊥

Fig. 6. The oracles used in the security condition.

It turns out that the following strong unforgeability condition (Def. 16) is sufficient for the BLT
scheme to be secure. It may seem that the strong unforgeability condition is somewhat similar to
the security against back-dating (Def. 12) but as we discussed in Sec. 3.2, the main difference is
that the “back-dated” entity z was generated before A1 publishes R and A1 has a partial knowledge
on z in the form of an oracle query h(z, x). On the other hand, the strong unforgeability does not
assume that the output of A2 is unpredictable, which means that by running A2 twice with the
same input (a, z) may produce exactly the same output (m, c) which means that we cannot extract
a collision as it was done in the proofs [10, 9].

Definition 16 (Strong Unforgeability). We say that a hash function h: {0, 1}∗ → {0, 1}n is
S-secure strongly unforgeable, if for every t-time A = (A1, A2) (that queries h(z, ·) only once and
not with x):

Pr
[
z ← {0, 1}n, (R, a)← A

h(z,·)
1 (h(z, 0n)), (x, c)← A2(a, z): h(z, x)

c
 R, x 6= 0n

]
≤ t

S
. (4)

In this definition, the oracle h(z, ·) returns h(z, v) for any v ∈ {0, 1}n. Note that we may assume
without loss of generality that the hash chain produced by A is always reduced (Def. 10).

Theorem 4. If h is S-secure strongly unforgeable, then the randomized scheme Grnd is S
` -secure.

Proof. Let AS,R be a t-time adversary with success δ. We construct an adversary A′ = (A1, A2)
that breaks strong unforgeability:

A
h(z,·)
1 (v) generates a random j ← {1, . . . , `} and random z1, . . . , zj−1, zj+1, . . . , z` ← {0, 1}n. It

then assigns xi ← h(zi, 0
n) (for i 6= j), and xj ← v. Then A1 simulates AS,R until it makes the j-th

13

write query to R. The j − 1 first S-queries can all be simulated using z1, . . . , zj−1. To simulate the
j-th query x′, the adversary A1 uses the oracle call to obtain h(z, x′). The j-th write query r is
added to R by A1 and the output of A1 is (R, a), where a is the current state of AS,R. Note that by
the definition of the oracles S and R, before the j-th R-query, the continuation query of the j-th
signature query can be answered by ⊥.

A2(a, z) restores the state of AS,R from a and continues to simulate AS,R. Note that now it has
zj = z and is able to simulate the j-th signing call. Finally, if AS,R finishes and outputs (x, i, z, c)

such that h(z, x)
c
 R[i] and z = zi, then if i = j, it outputs (x, c), otherwise it outputs ⊥. Note

also that if AS,R never queries S with x, then A1 does not query h(z, ·) with x.

As the distribution of zi and xi are identical to those generated by Grnd, the value of j does not
have any influence over the success of the simulated AS,R. Hence, the event j = i (with probability
1
`) and the success event of A (with probability δ) are independent and the success probability of

A′ is δ′ = δ
` . The running time t′ of A′ is about t. Hence, δ = `δ′ ≤ ` · t′S ≈ ` · tS and hence, the

randomized scheme Grnd is S
` -secure. ut

This means that, the strong unforgeability property is sufficient for the security of G, but this
property seems to be very strong. For example, it implies the following version of non-malleability
of h. Hence, it is not realistic to imply such property from the classical properties of hash functions,
like one-wayness, second pre-image resistance, or even collision-freeness.

4 Security Proof under PrA

We study the security properties of h that follow the strong unforgeability of Grnd and are hence
also sufficient for the security of G. It turns out that the following, application specific, weaker form
of non-malleability plays a central role in the security proofs.

Definition 17 (Weak Non-Malleability). We say that a hash function h: {0, 1}2n → {0, 1}n is
S-secure Weakly Non-Malleable (WMN), if for every t-time A = (A1, A2) (that queries h(z, ·) only
once and not with x):

AdvWNM(h,A) = Pr
[
z←{0,1}n, (R,a)←A

h(z,·)
1 (h(z,0n)), x←A2(a, z): h(z,x)∈R, x 6=0n

]
≤ t

S
.

The adversary has hash values h(z, x′), h(z, 0n) and has to produce a list R of hash values such
that if later z is made public, the adversary is able to show x, such that h(z, x) = y ∈ R. This
definition easily generalizes to hash functions hP that use an ideal primitive P , if both A1 and A2

have access to the P -oracle. We will now study the known conditions that would imply WMN, and
then the conditions that together with WMN imply strong unforgeability. The following notion of
non-guessability will simplify later proofs.

Definition 18 (Non-Guessability). We say that a hash function h: {0, 1}2n → {0, 1}n is S-
secure non-guessable, if for every t-time oracle-adversary A (that queries the oracle no more than
once):

AdvNG(h,A) = Pr
[
z ← {0, 1}n, z′ ← Ah(z,·)(h(z, 0n)): z′ = z

]
≤ t

S
.

It turns out that non-guessability follows from weak non-malleability.

14

Theorem 5. If h is S-secure WNM, then it is S-secure NG.

Proof. Let A be a t-time guesser with success δ = AdvNG(h,A). Let A′ = (A1, A2) be the WNM

adversary, such that A
h(z,·)
1 (y) simulates z′ ← Ah(z,·)(y) and if x′ was the only oracle query that

A produces, choses x 6= x′, computes y = h(z′, x) and outputs ((y), x); and the adversary A2(z, x)
just outputs x. If A is successful, then z′ = z and hence h(z, x) = h(z′, x) = y, which means that
A′ is also successful. ut

Definition 19 (Output One-Wayness, OOW). A function f :D → R is said to be S-secure
output one-way, if every t-time adversary A has success:

AdvOOW(f,A) = Pr [y ← R, x← A(y): y = f(x)] ≤ t

S
.

Definition 20 (Quasi-Balanced Function). A function f :D → D is called quasi-balanced, if
|f−1(d) | ≤

√
|D | for every d ∈ D.

Theorem 6. For any α > 0 and for any S = α2n/2, if h: {0, 1}2n → {0, 1}n is a hash function
such that h(·, 0n): {0, 1}n → {0, 1}n is quasi-balanced and S-secure output one way, and h(z, ·) is
an S-secure PRF, then h is S

2+α -secure non-guessable.

Proof. Let A be an adversary that guesses h with success δ. We construct an adversary B that
inverts h(·, 0n) and a distinguisher Dφ as follows.

The inversion adversary B having as input y ∈ {0, 1}n simulates the run of Ah(z,·)(y), hoping
that A will not make any oracle-calls, because B is not able to simulate them. If A succeeds to find
its output z′ without oracle calls, then B outputs z′, otherwise B gives up and outputs ⊥.

The distinguisher Dφ simulates A on input y = φ(0n) and answers to A-s oracle calls with the
φ-oracle. It hopes that A makes at least one oracle call y′ ← φ(x). If A outputs z′, then D checks
if y = h(z′, 0n) and y′ = h(z′, x), and outputs 1 if both equalities hold, otherwise D outputs 0.

Let δ0 be that probability that A succeeds to invert h(·, 0n) without making any oracle calls.
Then, the success of B is δ0 = AdvOOW(h(·, 0n), B) ≤ t

S .

Let δ1 be the probability that A succeeds while making at least one oracle call. It is easy to see
that Pr

[
1← Dh(z,·)] = δ1. In order to estimate Pr

[
1← DΩ

]
(where Ω is a true random oracle),

note first that due to the quasi-balancedness of h(·, 0n), the are no more than 2
n
2 possible z′-s for

which h(z′, 0n) = y. Hence, no matter how we choose x, there are no more than 2
n
2 possible y′-s

such that y′ = h(z′, 0n) for a z′ such that h(z′, 0n) = y. As the output y′ = Ω(x) is uniformly

distributed random variable, the probability that such a z′ exists does not exceed 2n/2

2n = 2−n/2.

Hence, as h(z, ·) is an S-secure PRF, we have δ1 ≤ 2−n/2 + t
S . This implies

δ = δ0 + δ1 ≤ 2
t

S
+ 2−n/2 ≤ 2

t

S
+
α

S
≤ (2 + α)

t

S
,

which means that h is S
2+α -secure non-guessable. ut

Theorem 7. For any α > 0 and S = α2n/2, if a rank 1 hash function hP : {0, 1}2n → {0, 1}n
(queries P only once) is S-secure BPrA and S-secure non-guessable, then it is S

2+α -secure weakly

non-malleable against adversaries with running time t ≤ 2n/2.

15

Proof. Suppose there is an adversary (A1, A2) with running time t ≤ 2
n
2 that breaks weak non-

malleability with success δ, and assume also that hP is BPrA. We construct three adversaries: a
guesser A, a BPrA-adversary BP,Ex, and a query-list adversary QP .

The guesser Ah
P (z,·),P (y) simulates (R, a) ← A

hP (z,·),P
1 , where R = (y1, . . . , ym). Let x′ 7→ y′ =

hP (z, x′) be the single call that A1 makes and let α0 be the query string that consists of all P -
queries made by A1. Note that α0 may not contain the P -query of hP (z, x′) and y = hP (z, 0n).

1. If ⊥ 6= E(α0, y) = (z′, ∗) 6= ⊥, then return z′;

2. If ⊥ 6= E(α0, y
′) = (z′, ∗) 6= ⊥, then return z′;

3. Find the first i such that E(α, yi) = (z′, ∗) 6= ⊥ such that hP (z′, 0n) = y and hP (z′, x′) = y′,
and return z′;

4. If there is no such i, then return ⊥.

The PrA adversary B proceeds as follows:

1. Pick z ← {0, 1}n and simulate (R, a) ← A
hP (z,·)
1 (y), so that the P -calls are made through the

P-oracle, where y = hP (z, 0n) and y′ = hP (z, x′) is the oracle call of A1.

2. Compute X ← Ex(y) and X ′ ← Ex(y′),

3. If X 6= (z, 0n), then output (z, 0n) and stop.

4. If X ′ 6= (z, x′), then output (z, x′) and stop.

5. Call m Ex-calls X1 ← Ex(y1), . . . , Xm ← Ex(ym), where R = (y1, . . . , ym).

6. Find the fist i for which Xi = (z′, ∗), hP (z′, 0n) = y, and hP (z′, x′) = y′, output (z′, 0n) and
stop.

7. If there is no such i, simulate x← AP2 (a, z) and return (z, x).

The query-list adversary QP picks z ← {0, 1}n, simulates (y1, . . . , ym, a)← A
hP (z,·)
1 (y) and outputs

the list α1 of all the P -queries made by A1, h
P (z, 0n) and hP (z, x′), where x′ is the only h(z, ·)-query

made by A1.

Let δ0 be the probability that (A1, A2) succeeds, while either:

(a) (z, ∗)← E(α0, y) or

(b) ⊥ ← E(α0, y) and ⊥ 6= (z, ∗)← E(α0, y
′) (i.e. A guesses the right z by applying E to y or y′), or

(c) There is i, for which ⊥ 6= (z′, ∗) = E(α0, yi) and hP (z′, 0n) = y and hP (z′, x′) = y′, and z = z′

for the first such i. (i.e. the first “consistent” z′ that A finds from yi-s is the right z).

By definition of A, we have AdvNG(h,A) ≥ δ0. Let δ1 be the probability that (A1, A2) succeeds,
while all of the following conditions hold:

(i) E(α0, y) 6= (z, ∗);
(ii) E(α0, y

′) 6= (z, ∗);
(iii) One of the following conditions hold:

(a) For all i such that ⊥ 6= E(α0, yi) = (z′, ∗), either hP (z′, 0n) 6= y, or hP (z′, x′) 6= y′ (i.e.
z′ 6= z); or

(b) There is i, such that ⊥ 6= (z′, ∗) = E(α0, yi), h
P (z′, 0n) = y, and hP (z′, x′) = y′; but for first

such i, we have z′ 6= z.

(iv) |{y:E(y, α) 6= ⊥}| ≤ |α |.

16

Let δ2 be the probability that (A1, A2) succeeds while |{y:E(y, α) 6= ⊥}| > |α | (i.e. the condition
(iv) does not hold). It is easy to see that the logical statement

[(a) ∨ (b) ∨ (c)] ∨ [(i) ∧ (ii) ∧ (iii) ∧ (iv)] ∨ (iv)

is a tautology, and hence, δ = δ0 +δ1 +δ2. Let α1 be the query string that consists all the P -queries
made by B while simulating A1.

– If E(α1, y) 6= (z, 0n) or E(α1, y
′) 6= (z, x′), then B fools E at steps 3,4. Hence, we may assume

that E(α1, y) = (z, 0n) and E(α1, y
′) = (z, x′). Then (i) and (ii) imply E(α0, y) = E(α0, y

′) = ⊥.
Hence, in the next analysis, considering (iv), we may assume that y and y′ are the only outputs,
for which E(α0, y) = ⊥ = E(α0, y

′) and E(α1, y) 6= ⊥ 6= E(α1, y
′).

– From (iii,b) it follows that there is i such that ⊥ 6= (z′, ∗) = E(α0, yi), h
P (z′, 0n) = y, and

hP (z′, x′) = y′; and z′ 6= z for first such i, which means that B fools the extractor at step 6.
– If (A1, A2) successfully finds (z, x) with x′ 6= x 6= 0n and hP (z, x) = yi, then y 6= yi 6= y′ and

hence E(α0, yi) = E(α1, yi). From (iii, a) then follows that Ex(yi) = E(α1, yi) = E(α0, yi) 6=
(z, ∗), which means that B fools the extractor at step 7.

Therefore, AdvBPrA(hP , B) ≥ δ1. As t2

2n ≥ Adv(E, QP) ≥ δ2, and

δ ≤ AdvNG(h,A) + AdvBPrA(hP , B) + Adv(E, QP) ≤ 2
t

S
+
t2

2n
≤ 2

t

S
+

t

2n/2
≤ (2 + α)

t

S
,

it follows that hP is S
2+α -secure weakly non-malleable. ut

Procedure ExTreeEx(y):
If y 6∈ T and N > 0, then

T := T ∪ {y}
N := N − 1
If ⊥ 6= Ex(y) = (y0, y1) then

Define y0, y1 as children of y
ExTreeEx(y0)
ExTreeEx(y1) .

endif
endif

Procedure ExForestEx(R):
T := ∅
N := 2× “a time bound for A1”
For all r ∈ R do

ExTreeEx(r) .

Fig. 7. Procedures for extracting the set T from the published hash database R.

Theorem 8. For any α > 0 and S = α2n/2, if a rank 1 hash function hP : {0, 1}2n → {0, 1}n
(queries P only once) is S-secure BPrA and S-secure non-guessable, then it is S

2+α -secure strongly

unforgeable against adversaries with running time t ≤ 2n/2.

Proof. Suppose there is an adversary (A1, A2) with running time t ≤ 2
n
2 that breaks strong unforge-

ability ability with success δ, and assume also that hP is BPrA. We construct three adversaries: a
guesser A, a BPrA-adversary BP,Ex, and a query-list adversary QP .

The guesser Ah
P (z,·),P (y):

17

1. Simulates (R, a)← A
hP (z,·),P
1 (y);

2. Creates an extraction forest T0 by simulating the ExForestEx(R) procedure (Fig. 7) so that the
oracle calls are simulated using E(α0, ·), where α0 is the query string that consists of all P -
queries made by A1. Note that α0 may not contain the single P -query of y′ = hP (z, x′) of A1

and of y0 = hP (z, 0n). We may assume without loss of generality that x′ 6= 0n.
3. If ⊥ 6= E(α0, y) = (z′, ∗), returns z′;
4. If ⊥ 6= E(α0, y

′) = (z′, ∗), returns z′;
5. Find a triple (z′, ∗; ∗) in T0 such that hP (z′, 0n) = y and hP (z′, x′) = y′, and return z′; If there

is no such triple in T0, return ⊥.

The PrA adversary B:

1. Picks z ← {0, 1}n and simulates (R, a)← A
hP (z,·)
1 (y), so that the P -calls are made through the

P-oracle, where y = hP (z, 0n) and y′ = hP (z, x′) is the oracle call of A1.
2. Creates an extraction forest T1 by simulating the ExForestEx(R) procedure (Fig. 7) using the

oracle Ex. Note that this time Ex uses E(α1, ·), where α1 is the query string that consists of all
P -queries made by A1 and also the P -queries of y′ = hP (z, x′) and y0 = hP (z, 0n).

3. If Ex(y0) 6= (z, 0n), outputs (z, 0n) and stops.
4. If Ex(y′) 6= (z, x′), outputs (z, x′) and stops.
5. Finds a triple (z′, ∗; ∗) in T1 for which hP (z′, 0n) = y, and hP (z′, x′) = y′, and outputs (z′, 0n)

and stops if z′ 6= z.
6. If there are no such triples in T1, simulates (x, c)← AP2 (a, z).
7. If y = hP (z, x) ∈ {y0, y′} then outputs (z, x) and stops;
8. If y 6∈ {y0, y′}, tries to find the first triple ci = (xi, x

′
i; yi) in c so that ci is not a subtree of T1,

but yi ∈ T1. Note that if the triple (z, x; y) is not in T1 the triple ci is the point where c enters
into T1. If there is such a triple, B outputs (xi, x

′
i) and stops. Otherwise, B returns ⊥.

The query-list adversary QP picks z ← {0, 1}n and simulates (R, a) ← A
hP (z,·)
1 (hP (z, 0n)) and

outputs the list α1 of all the P -queries made by A1, h
P (z, 0n) and hP (z, x′).

Let δ0 be the probability that (A1, A2) succeeds, while either: (a) (z, ∗)← E(α0, y); or (b) (z, ∗)←
E(α0, y

′); or (c) there are triples (z′, ∗; ∗) in T0 for which hP (z′, 0n) = y0 and hP (z′, x′) = y′, and
z = z′ for all such triples. By definition of A, we have AdvNG(h,A) ≥ δ0.

Let δ1 be the probability that (A1, A2) succeeds, while all the following conditions hold:

(i) E(α0, y) 6= (z, ∗) and E(α0, y
′) 6= (z, ∗);

(ii) Either:
(a) there is a triple (z′, ∗; ∗) in T0 such that hP (z′, 0n) = y0 and hP (z′, x′) = y′, but z′ 6= z; or
(b) threre are no triples (z′, ∗; ∗) in T0 such that hP (z′, 0n) = y0 and hP (z′, x′) = y′;

(iii) |{y:E(α1, y) 6= ⊥}| ≤ |α |.

If either Ex(y0) 6= (z, 0n) or Ex(y′) 6= (z, x′), then B fools E at steps 3, 4. Hence, we may assume
that E(α1, y0) = (z, 0n) and E(α1, y

′) = (z, x′). From (i) it now follows that E(α0, y) = ⊥ = E(α0, y
′)

and hence from (iii) it follows that y0 and y′ are the only outputs which E(α1, ·) can extract, but
E(α0, ·) doesn’t. If (ii,a), then B fools the axtractor at step 5. Otherwise, (ii,b) must hold. As x 6= 0n

and x 6= x′, then if y ∈ {y0, y′}, the adversary B fools E at step 7. If y 6∈ {y0, y′} then all y0, y
′,

and y are all different and y0 and y′ were the only outputs that differentiate E(α0, ·) and E(α1, ·),

18

we conclude using (ii,b) that the triple (z, x; y) is not in the tree T1, which means that at step 6,
the adversary B successfully fools the extractor. Hence, AdvPrA(hP , B) ≥ δ1.

Let δ2 be the probability that (A1, A2) succeeds while |{y:E(y, α) 6= ⊥}| > |α | (i.e. the condition
(iii) does not hold). It is easy to see that the logical statement

[(a) ∨ (b) ∨ (c)] ∨ [(i) ∧ (ii) ∧ (iii)] ∨ (iii)

is a tautology, and hence, δ = δ0+δ1+δ2. Therefore, AdvBPrA(hP , B) ≥ δ1. As t2

2n ≥ Adv(E, QP) ≥
δ2, and

δ ≤ AdvNG(h,A) + AdvBPrA(hP , B) + Adv(E, QP) ≤ 2
t

S
+
t2

2n
≤ 2

t

S
+

t

2n/2
≤ (2 + α)

t

S
,

it follows that hP is S
2+α -secure strongly unforgeable. ut

5 Generalization to rank k Hash Functions

It turns out that the following general notion of k-grade non-forgeability is useful for proving the
security of BLT where higher grade hash functions are used, i.e. if hP : {0, 1}2n → {0, 1}n calls P
up to k times.

Definition 21 (k-grade Strong Non-Forgeability, SNFk). For k > 0, we say that a hash
function h: {0, 1}∗ → {0, 1}n is S-secure k-grade strongly non-forgeable, if for every t-time A =
(A1, A2) (that queries h(z, ·) only once and not with m):

Pr
[
z ← {0, 1}n, (R, a)← A

h(z,·)
1 , (m, c)← A2(a, z): h(z,m)

c
 R, |c | ≤ k − 1

]
≤ t

S
; (5)

and for k = 0, Pr
[
z ← {0, 1}n, (R, a)← A

h(z,·)
1 : z ∈ R

]
≤ t

S .

Note that SNF1 is equivalent to weak non-malleability.

Theorem 9. For any α > 0 and S = α2n/2, if a rank k hash function hP : {0, 1}2n → {0, 1}n
(queries P no more than k times) is S-secure BPrA and S-secure non-guessable, and 2(k − 1)-
grade non-forgeable, then it is S

3+α -secure strongly unforgeable against adversaries with running

time t ≤ 2n/2.

Proof. Suppose there is an adversary (A1, A2) with running time t ≤ 2
n
2 that breaks strong un-

forgeability ability with success δ, and assume also that hP is BPrA. We construct four adversaries:

a guesser G, a BPrA-adversary BP,Ex, an SU-adversary A = (A
hP (z,·),P
1 , AP2) and a query-list ad-

versary QP .

The guesser Gh
P (z,·),P (y):

1. Simulates (R, a)← A
hP (z,·),P
1 (y). Let α0 is the query string that consists of all P -queries made

by A1. Note that α0 may not contain the single P -query of y′ = hP (z, x′) of A1 and of y0 =
hP (z, 0n). We may assume without loss of generality that x′ 6= 0n.

2. If ⊥ 6= E(α0, y) = (z′, ∗), returns z′;

19

3. If ⊥ 6= E(α0, y
′) = (z′, ∗), returns z′;

The PrA adversary B:

1. Picks z ← {0, 1}n, and calls Ex(z).

2. Simulates (R, a) ← A
hP (z,·)
1 (y), so that the P -calls are made through the P-oracle, where y =

hP (z, 0n) and y′ = hP (z, x′) is the oracle call of A1.
3. Creates an extraction forest T1 by simulating the ExForestEx(R) procedure (Fig. 7) using the

oracle Ex. Note that this time Ex uses E(α1, ·), where α1 is the query string that consists of all
P -queries made by A1 and also the P -queries of y′ = hP (z, x′) and y0 = hP (z, 0n).

4. If Ex(y0) 6= (z, 0n), outputs (z, 0n) and stops.
5. If Ex(y′) 6= (z, x′), outputs (z, x′) and stops.
6. Simulates (x, c)← AP2 (a, z) and if y = hP (z, x) ∈ {y0, y′} then outputs (z, x) and stops;
7. If y 6∈ {y0, y′}, finds the first triple (xi, x

′
i; yi) in c so that Ex(yi) 6= (xi, x

′
i), and outputs (xi, x

′
i)

or if Ex(y) 6= (z, x) outputs (z, x).

The SU adversary A = (A1, A2) is defined as follows:

1. A
hP (z,·)
1 (y) first simulates (R, a) ← A

hP (z,·)
1 (y), then extracts T0 and outputs (R, a′), where

R = T0 ∪ {y0, x′, y′, 0n}, and a′ = (a,R).
2. AP2 (z, a′) parses a′ = (a,R) and executes (x, c) ← A2(a, z). If A2 is successful, then it finds a

shortest subchain c′ of hP (z, x)
c
 R, such that hP (z, x)

c′
 R.

The query-list adversary QP :

1. Picks z ← {0, 1}n and if E((), z) 6= ⊥, stops. (BPrA condition implies that this never happens!)

2. Simulates (R, a)← A
hP (z,·)
1 (hP (z, 0n)) and outputs the list α1 of all the P -queries made by A1,

hP (z, 0n) and hP (z, x′).

We define the following list of logical conditions (Tab. 1), everyone of which implies the success
of either G, B, or Q. Hence, it remains to show that A ∧ ∧B ∧ C ∧ D ∧ E implies the success of
A = (A1, A2).

Table 1. Logical conditions, everyone of which implying the success of either G, B, or Q.

Name Condition Implication

A E(α0, y0) = (z, 0n) or E(α0, y
′) = (z, x′) G guesses z (steps 2, 3)

B E(α1, y0) 6= (z, 0n) or E(α1, y
′) 6= (z, x′) B fools E (steps 4, 5)

C y = hP (z, x) ∈ {y0, y′} B fools E (step 6)

D ∃(xi, x′i; yi) ∈ c: Ex(yi) 6= (xi, x
′
i) B fools E (step 7)

E |{y:E(α1, y) 6= ⊥}| > |α | Q breaks E

Indeed, A and B implies that E(α0, y0) = ⊥ = E(α0, y
′) and hence, y0 and y′ are two values

that E can extract with α1, but not with α0. It follows from E, that there no more than 2k of such
outputs. It also follows from A and B that y0 6= y′ because x′ 6= 0n and hence (z, 0n) = E(α1, y0) 6=
E(α1, x

′) = (z, x′). As 0n 6= x 6= x′, it follows from C that all y0, y
′, y are all different.

20

From D it follows that all triples of c belong to T1 as subtrees; and that c′ does not contain
triples (xi, x

′
i; z), because as the Ex(z) call was made by B before performing any other oracle calls,

we have that Ex(z) = E((), z) = ⊥ 6= (xi, x
′
i).

As c′ is reduced and is the shortest hash chain from y = hP (z, x) to R = T0 ∪{y0, x′, y′, 0n}, we
conclude that the output values of all the triples in c′ are different and hence |c′ | ≤ 2k. Moreover,
none of the three triples (z, 0n; y0), (z, x′; y′), (z, x; y) can be in c′. Indeed, (z, x; y) cannot be in c′

because then we could omit this triple together with all the preceding triples and the rest of the
chain still goes from y to R. The triples (z, 0n; y0), (z, x′; y′) could only be the final links of c′ because
y0, y

′ ∈ R and c′ is reduced. But if (z, x′; y′) was the final link of c′, the previous link should have
output either z or y′ which is impossible. If (z, 0n; y0) was the final link, then the previous triple
(link) must have output either z or 0n which is impossible. Therefore, |c′ | ≤ 2k− 3 = 2(k− 1)− 1,
which means that A successfully breaks the 2(k − 1)-grade non-forgeability. As

δ ≤ AdvNG(hP , G) + AdvBPrA(hP , B) + AdvkNF(hP , A) + Adv(E, QP)

≤ 3
t

S
+
t2

2n
≤ 3

t

S
+

t

2n/2
≤ (3 + α)

t

S
,

it follows that hP is S
3+α -secure strongly unforgeable. ut

6 Conclusions and Discussion

We have shown that if a rank 1 hash function hP : {0, 1}2n → {0, 1}n is BPrA, and additionally
hP (z, ·) is PRF and hP (·, 0n) is quasi-balanced and output one-way, then the BLT scheme with
hP is secure. All these assumptions are natural and are expected to hold for most of the hash
function constructions. From this, it follows that the PGV-constructions [19] of block-cipher-based
hash functions are all suitable for the BLT scheme.

We generalized the result to higher rank constructions (where hP uses P more than once), by
showing that if a rank k (where k ≥ 2) hash function hP is BPrA, hP (z, ·) is PRF and hP (·, 0n)
is quasi-balanced and output one-way, and if additionally hP is 2(k − 1)-grade non-forgeable, then
the BLT scheme with hP is secure. But for example for k = 2, we have to show that hP is 2-grade
non-forgeable but this is not a standard security property and has not been studied so far. It is
an open question how the Merkle-Damg̊ard construction behaves in terms of BLT, if more than
one block is needed to construct a two-to-one hash function. This might indeed be the case if an
additional padding is added to the two n-bit inputs. So, it would be desirable to study the two-block
MD-hash functions.

Not all PrA constructions of hash functions are suitable for the BLT scheme. For example,
the Dodis-Pietrzak-Punyia (DPP) [13] hash function h(m, v) = Hf1,f2(m, v) = f1(m) ⊕ f2(v) is

malleable, i.e. is not WNM. Let (A1, A2) be the following adversary. The first stage A
h(z,·)
1 (with

random z ← {0, 1}n) makes a call m (any n-bit constant) to the oracle and obtains h(z,m) =
f1(z) ⊕ f2(m), then it makes an f2-call to obtain f2(m) and by combining h(z,m) and f2(m)
finds f1(z). It then makes a second call to f2 to obtain f2(m

′), where m′ 6= m and outputs r =
f1(z)⊕f2(m′) = h(z,m′). The advice a given to the second stage A2 consists of m′. The second stage
A2(z, a) just parses a to get m′ and outputs (z,m′). Obviously, (A1, A2) breaks the WNM property
with probability 1. This also implies that the DPP hash function is not strongly unforgeable, and
one can also show that DPP is insecure in the BLT scheme. It would be interesting to know whether
the Shrimpton-Stam hash function [20] is suitable for BLT, but as it is of rank 3, we have to show
that it is 4-grade non-forgeable.

21

References

1. Bayer, D., Haber, S., Stornetta, W.-S.: Improving the efficiency and reliability of digital time-stamping. In:
Sequences II: Methods in Communication, Security, and Computer Sci., pp. 329–334. Springer, Heidelberg (1993)

2. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: the 1st
ACM conference on Computer and Communications Security: CCS’93, pp. 62–73. ACM (1993)

3. Bellare, M., Rogaway, P.: The exact security of digital signatures - How to sign with RSA and Rabin. In: Maurer,
U.M. (ed.): EUROCRYPT ’96. LNCS 1070, pp. 399–416. Springer, Heidelberg (1996)

4. Buldas, A., Kroonmaa,A., Laanoja,R.: Keyless signatures infrastructure: How to build global distributed hash-
trees. In: H. Riis Nielson, H.R., Gollmann, D. (eds.): NordSec 2013. LNCS 8208, pp. 313–320. Springer, Heidelberg
(2013)

5. Buldas, A., Laanoja, R.: Security proofs for hash tree time-stamping using hash functions with small output size.
In: Boyd, C., Simpson, L. (eds.): ACISP 2013. LNCS 7959, pp. 235–250. Springer, Heidelberg (2013)

6. Buldas, A., Laanoja, R., Laud, P., Truu, A.: Bounded pre-image awareness and the security of hash-tree keyless
signatures. In: Chow, S.M., Liu, J.K. (eds.): ProvSec 2014. (to appear)

7. Buldas, A., Laanoja, R., Truu, A.: Efficient quantum-immune keyless signatures with identity. Cryptology ePrint
Archive 2014/321 (2014)

8. Buldas, A., Laanoja, R., Truu, A.: Efficient Implementation of Keyless Signatures with Hash Sequence Authen-
tication. Cryptology ePrint Archive 2014/689 (2014)

9. Buldas, A., Niitsoo, M.: Optimally tight security proofs for hash-then-publish time-stamping. In: Steinfeld, R.,
Hawkes, P. (eds.): ACISP 2010. LNCS 6168, pp. 318–335. Springer, Heidelberg (2010)

10. Buldas, A., Saarepera, M.: On provably secure time-stamping schemes. In: Lee, P.J. (ed.): ASIACRYPT 2004.
LNCS 3329, pp. 500–514. Springer, Heidelberg (2004)

11. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. JACM 51 (4), 557–594 (2004)
12. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgard revisited: How to construct a hash function.

In: Shoup, V. (ed.): CRYPTO’05. LNCS 3621, pp. 430–448. Springer, Heidelberg (2005)
13. Dodis, Y., Pietrzak, K., Puniya, P.: A new mode of operation for blockciphers and length-preserving MACs. In:

Smart, N. (ed.): EUROCRYPT 2008. LNCS 4965, pp. 198–219, Springer (2008)
14. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging Merkle-Damg̊ard for practical applications. In: Joux, A.

(ed.): Eurocrypt 2009. LNCS 5479, pp. 371–388. Springer, Heidelberg (2009)
15. Haber, S., Stornetta, W.-S.: How to time-stamp a digital document. Journal of Cryptology 3(2), 99–111 (1991)
16. Luby, M.: Pseudorandomness and Cryptographic Applications. Princeton University Press, Princeton (1996)
17. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reductions, and applications to

the random oracle methodology. In: Naor, M. (ed.): TCC’04. LNCS 2951, pp. 21–39. Springer, Heidelberg (2004)
18. Merkle, R.C.: Protocols for public-key cryptosystems. In: Proceedings of the 1980 IEEE Symposium on Security

and Privacy, pp. 122–134 (1980)
19. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers: s synthetic approach. In: Stinson,

D.R. (ed.): CRYPTO’93. LNCS 773, pp. 368–378. Springer (1993)
20. Shrimpton, T., Stam, M.: Building a collision-resistant compression function from non-compressing primitives.

In: Aceto, L. et al (Eds.): ICALP 2008, Part II. LNCS 5126, pp. 643–654. Springer Heidelberg (2008)
21. Stam, M.: Blockcipher-based hashing revisited. In: Dunkelman, O. (Ed.): FSE 2009. LNCS 5665, pp. 67–83.

Springer (2009)

22

