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Abstract. In this paper we introduce HIMMO as a truly practical and
lightweight collusion-resistant key predistribution scheme. The scheme
is reminiscent of Blundo et al’s elegant key predistribution scheme, in
which the master key is a symmetric bivariate polynomial over a finite
field, and a unique common key is defined for every pair of nodes as
the evaluation of the polynomial at the finite field elements associated
with the nodes. Unlike Blundo et al’s scheme, however, which completely
breaks down once the number of colluding nodes exceeds the degree of
the polynomial, the new scheme is designed to tolerate any number of
colluding nodes.

Key establishment in HIMMO amounts to the evaluation of a single
low-degree univariate polynomial involving reasonably sized numbers,
thus exhibiting excellent performance even for constrained devices such
as 8-bit CPUs, as we demonstrate. On top of this, the scheme is very
versatile, as it not only supports implicit authentication of the nodes
like any key predistribution scheme, but also supports identity-based
key predistribution in a natural and efficient way. The latter property
derives from the fact that HIMMO supports long node identifiers at a
reasonable cost, allowing outputs of a collision-resistant hash function to
be used as node identifiers. Moreover, HIMMO allows for a transparent
way to split the master key between multiple parties.

The new scheme is superior to any of the existing alternatives due to
the intricate way it combines the use of multiple symmetric bivariate
polynomials evaluated over “different” finite rings. We have extensively
analyzed the security of HIMMO against two attacks. For these attacks,
we have identified the Hiding Information (HI) problem and the Mixing
Modular Operations (MMO) problem as the underlying problems. These
problems are closely related to some well-defined lattice problems, and
therefore the best attacks on HIMMO are dependent on lattice-basis
reduction. Based on these connections, we propose concrete values for all
relevant parameters, for which we conjecture that the scheme is secure.

Keywords: Key predistribution scheme, collusion attack, identity, lattice anal-
ysis



1 Introduction

Background Efficient and practical pairwise key establishment is of extreme
importance for industrial deployment of large networks of resource-constrained
devices, such as wireless sensors. The nodes in these networks are severely lim-
ited with respect to computational power, energy, and bandwidth. In this paper
we propose an innovative method for pairwise key establishment. We do so by
addressing a longstanding open problem regarding the existence of key predis-
tribution schemes, as introduced by Matsumoto and Imai [17], which are both
highly secure and highly efficient. Here, highly secure means that large collusions
of corrupted nodes are tolerated, and highly efficient means that the running time
for key establishment takes a fraction of a second only, even for very constrained
devices such as 8-bit CPUs, and that the memory footprint is low.

The starting point for our work is Blundo et al.’s elegant key predistribution
scheme [5]. Key predistribution schemes allow for the establishment of pairwise
keys in a large network of nodes, where each node uses its so-called keying
material as secret input [17]. In Blundo et al.’s scheme, a master key consisting
of a symmetric bivariate polynomial over a finite field is generated by a trusted
party, and each node’s keying material consists of the univariate polynomial
obtained as the evaluation of the master key at a field element associated with
the node.

Key establishment in Blundo et al.’s scheme is very efficient, as it amounts
to the evaluation of a polynomial over a finite field. The scheme is secure against
collusions whose size does not exceed the degree of the polynomial. For larger
collusions, however, the security of Blundo et al.’s scheme breaks down com-
pletely.

The challenge is to find a key predistribution scheme that achieves efficiency
comparable to Blundo et al.’s scheme but with much better security, basically
tolerating collusions of practically any size. The potential of such an efficient
and collusion-resistant scheme is huge, as it enables secure communication in
large networks of wireless sensors, for example. Moreover, key predistribution
schemes naturally have benefits such as implicit authentication (ruling out man-
in-the-middle attacks) and identity-based modes (avoiding the need for public
keys).

Related work We motivate our approach by discussing related work covering
three alternative approaches to key establishment.

The first approach is to use any Diffie-Hellman based scheme, involving a
one-way function defined for a discrete log setting (including elliptic curve cryp-
tography). The main drawback of these schemes is simply that evaluation of the
one-way function is too costly, and this drawback extends to schemes involv-
ing pairings. Some relevant examples are the schemes and related constructions
in [6,9,10,11,13,20,22].



The second approach is to use a simpler one-way function. For instance,
[16] proposes a key exchange protocol based on the NTRU one-way function.
Basically, two nodes establish a common key by exchanging NTRU encryptions
of their private keys, which is computationally efficient. However, several serious
drawbacks remain. In the first place, there is no protection against man-in-the-
middle attacks as the corresponding public keys of the nodes are not certified.
Secondly, the communication complexity of such a key establishment protocol
is high, as it involves an exchange of public key encryptions; hence the protocol
is too costly for resource-constrained devices. And, finally such a scheme lacks
identity-based modes.

The third approach is to actually build a key predistribution scheme. All
pairwise keys are determined by a master key, and one gets all the benefits
mentioned above. Clearly, the main challenge is to achieve collusion resistance.
In the literature there has only been one attempt at constructing an efficient
scheme with collusion-resistance against arbitrary collusions [24]. However, the
collusion resistance claims turned out to be flawed [2].

Contributions The HIMMO scheme introduced in this paper is the first efficient
key predistribution scheme tolerating large collusions of corrupted nodes. Key
establishment between two nodes amounts to the evaluation of a single low-
degree univariate polynomial for each node. The numbers involved are reasonably
sized, allowing for excellent performance even on constrained devices such as 8-
bit CPUs. The performance of the scheme is thus comparable to the performance
of an NTRU-based scheme, except that HIMMO requires a minimal amount of
information exchange only (taking full advantage of the fact that pairwise keys
are predetermined). The only information that needs to be exchanged serves to
reconcile the keys computed by both nodes, which in general will differ slightly.
Allowing a small discrepancy between the keys computed by the respective nodes
turns out be an important degree of freedom, giving us just enough leeway to
find a successful solution.

Being a key predistribution scheme, HIMMO automatically provides implicit
authentication of the nodes, hence protection against man-in-the-middle attacks.
Furthermore, the parameters can be set such that key establishment becomes
identity-based. Identities may be bit strings of arbitrary length. The identities
are simply hashed to a relatively small range of identifiers, for which the trusted
party holding the master key may generate key material.

We have extensively analyzed the security of our scheme. In particular, we
study two attacks against HIMMO. We have identified two hard problems,
namely the Hiding Information (HI) problem and the Mixing Modular Oper-
ations (MMO) problem that are relevant for those attacks. These problems are
closely related to some well-defined lattice problems (see [18,12], respectively),
and therefore our best attacks on HIMMO are dependent on lattice-basis reduc-
tion. We have formulated the relevant lattices, and we have performed numerous
experiments to estimate the complexity of solving the (approximate) closest vec-
tor problem for these lattices. Based on our analysis we propose concrete values
for all relevant parameters, for which we conjecture that the scheme is secure.



Finally, as a bonus we note that HIMMO is resistant to quantum computing
as the cryptanalysis is entirely lattice-based.

Roadmap The paper is organized as follows. In Section 2, we describe key pre-
distribution schemes and provide some basic examples. Section 3 introduces the
HIMMO scheme, followed by a brief performance analysis in Section 4. In Sec-
tion 5, we discuss the security model, describe two attacks, review the HI and
MMO problems and security assumptions, also showing connection between the
HI and MMO problems and the structure of the keying material and keys. In
Section 6, we describe experimental results supporting our security analysis of
the HI problem, and present parameters for which we consider HIMMO to be
secure. Section 7 details further HIMMO-based schemes. In Section 8, we draw
conclusions and indicate directions for further research. In the appendix, we val-
idate the HIMMO scheme in that we show that the generated keys indeed are
pairwise the same.

2 Key Predistribution Schemes

Key predistribution schemes have been introduced by Matsumoto and Imai [17],
generalizing earlier work of Blom [4]. In a key predistribution scheme, a trusted
party provides nodes in a system with information enabling any pair of nodes
to establish a common key. A key predistribution scheme comprises three com-
ponents:

— A setup algorithm, executed by the trusted party, that on input of a
security parameter k generates system parameters o and secret root keying
material R.

— A keying material extraction algorithm, executed by the trusted party,
which on input R, ¢ and a node identifier £ generates secret keying material
Ge.

— A key establishment protocol applied by two nodes £ and 7 for generating
a pre-determined key K (&, 7), using &, and o as common input, in which £
and 7 use their secret keying material G¢ and G, respectively.

The pre-determined key K(£,7) is the same for all executions of the key estab-
lishment protocol, and may depend on which node initiates the key establishment
protocol, that is, K(&,n) and K (n,£) need not be equal.

The key predistribution schemes from [17] and [4] are non-interactive: in the
key establishment protocol, each node £ can compute the common key with
any other node 1 without any communication. Such key predistribution schemes
have recently been studied under the name of ID-based non-interactive key es-
tablishment (ID-NIKE), usually employing variations of the Diffie-Hellman key
exchange, pairings, bilinear or multilinear functions that are costly to imple-
ment [6,9,10,11,13,20,22]. Note that for the HIMMO scheme from this paper,
the key establishment protocol will be one-pass: the initiator of the protocol



sends a message to the other node involved in the protocol, but no reply is
required.

In a very simple key predistribution scheme [17], the secret root keying ma-
terial R is a random symmetric function, so R(&,n) = R(n, &) for all nodes ¢ and
n, the keying material G¢ is a table of pairs (1, R(§,7)), and as its common key
with node 7, node £ uses R(£,n) that it obtains from its look-up table. As R is
symmetric, node £ and 7 obtain a common key without interaction. Because of
the random choice of R, no information on the key between nodes £ and 7 can be
obtained from the keys between all other pairs of nodes. For systems involving
many nodes, however, the tables get large and it is preferable that G¢ specifies
a function to be applied in the key establishment protocol.

A straightforward and efficient key predistribution scheme was described by
Blundo et al. [5] in 1992. In this scheme, which we will call Blundo’s scheme,
the trusted party first randomly generates a symmetric bivariate polynomial
R(x,y) of degree « in each of the variables with coefficients from Z,,, the ring
of integers modulo p. Next, the trusted party provides, in a secure manner, to
any node & in the network the keying material R(§,y) € Zy[y]. The key K (&, 7)
that node & uses in order to communicate with node n equals R(&,7n) (computed
modulo p). As R is symmetric, K(£,n) = K(n,§). Blundo’s scheme is fast and
requires little storage. Other advantages are that it allows for any network of
size at most p, so that it scales well, e.g., to the Internet, and that nodes can
be added to a running network without the need to update already deployed
nodes. Blundo’s scheme offers information-theoretic security if at most o nodes
are compromised. However, simple interpolation using the keying material of any
a+1 nodes allows to retrieve the root keying material [5], thereby compromising
the complete system. Also, the keying material of a single node £ can be obtained
by simple interpolation of the keys of any a + 1 colluding nodes with &.

3 Description of HIMMO for Key Establishment

In this section, we describe the HIMMO scheme for key establishment. HIMMO
has been designed to achieve fast key computation, low bandwidth needs, small
memory footprint and low energy consumption. This is the reason why our
scheme relies on simple polynomials. In order to achieve collusion resistance,
we apply two novel design principles. First, polynomials in different finite rings
are mixed to obtain the secret keying material of a device, that is again a simple
polynomial. Second, in the key establishment protocol, part of the polynomial
evaluation is hidden. Our analysis shows that these two design principles enable
an operating and secure scheme.

We use the following notation: for each integer x and positive integer M, we
denote by (x) s the unique integer y € {0,1,..., M—1} such that z = y mod M.

Following the general description of key predistribution schemes from Sec-
tion 2, HIMMO comprises three components.

The setup algorithm which, on input of a security parameter s, results in
the following system parameters:



B, the bit length of the identifiers to be used in the system

b, the bit length of the generated keys

— «, the degree of polynomials to be used in the system

- m>2

— the public modulus N, an odd integer of length exactly («+ 1)B + b bits

and the following secret randomly generated root keying material:

— m distinct random moduli ¢1,go, . .., ¢m of the form ¢; = N — 2°3;, where

where 0 < 3; < 2P and at least one of 31,..., B, is odd.

—for1<i<mand 0 < j <k < «, a random integer R;Z,)C with 0 < REZ,)C <

qg; — 1, and for k < j < %Rgfi)g = R](CI)J

The keying material extraction algorithm, which computes for each
node ¢ in the system, with 0 < ¢ < 28, the coefficients of the key generating
polynomial G¢:

m

Ge(y) = Z Ge ry" where G j, = <Z<Z R‘gf])gé-j>Qi>N' (1)

(07
k=0 i=1 j=0

The key establishment protocol, in which a node ¢ wishing to communi-
cate with node n with 0 < 7 < 28, computes

Ken = ((Ge()n )y (2)
and provides 7 with the helper data h(§,n) defined as
B, ) = (Ke)ze, where s = [logy(dm + 1)]. 3)
Node 7 obtains K¢, as
Key = (Kne+iN)a, (4)
where j is the unique integer such that
1 < 2m and jN = b€, ) — Ky mod 2°. (5)
The common key K (£, 1) for nodes £ and 7 is
K(n) = 27 Ke ). (6)

Due to the mixing of modular operations, (G¢(n))n and (Gy(§))n can differ
much from each other. The judicious combination of the system parameters,
however, implies that the b last bits of these evaluations, that is, K¢, and K, ¢,
although not necessarily equal, are close to each other. As shown in Theorem 1
in the appendix, if 0 < &, < 28, then

Kenm € {(Kpe+3N)2e | 0 < |j| < 2m}. (7)



Node 7 can compute K, ¢ and use Equation (7) to determine a candidate set
C of 4m + 1 keys that contains K¢ ,. In some use cases,  can obtain K¢, by
decrypting messages encrypted with K¢, with all keys from C, and discarding
keys that yield invalid messages. In these cases, no helper data needs to be sent
and the b-bits key K¢, can be used as common key between £ and 1.

If discarding keys is infeasible, the helper data h(£,n) assists 1 to determine
K¢ . As h(&,n) reveals the s least significant bits of K¢ ,, only the b — s most
significant bits K¢ ,, that is, the number [27° K , |, are used as common key. In
order to not reduce the key length too much, s, and thus m, should not be too
large; in particular, b should be larger than s.

We now show that application of Equations (4) and (5) indeed results in K¢ ,.
Let 0 < &,n < 2B. According to Equation (7), there is an integer j such that
l7] < 2m and K¢, = K, ¢+ jN mod 2°. As s < b and K¢, = h(£,n) mod 2°,
it follows that jN = h(§,n) — K, ¢ mod 2°, so node n can compute (jN)gs. As
N and 2° are relatively prime, node 7 thus can compute (j)2s. As j is in the set
{=2m,—-2m+1,...,2m} which contains 4m+1 < 2° consecutive integers, node
7 can obtain j from (j)os.

4 HIMMO Performance

HIMMO has been designed keeping in mind that it has to enable very efficient
performance. From Equation (2) we observe that obtaining a symmetric key
just requires the evaluation of a polynomial of degree a modulo N and taking
the b least significant bits. This means that only a 4+ 1 modular multiplications
are required to compute the key. In each multiplication, the B bit identifier
multiplies the (o + 1)B 4 b bit coefficient and the result is reduced modulo N.
These modular operations can be implemented in a very efficient manner for
appropriate choices for N, e.g. for N = 2(@+)B+b _

In order to evaluate the performance of the HIMMO scheme, we have imple-
mented it on a very resource-constrained 8-bit CPU ATMEGA128L running at
8 MHz, on the 32-bit NXP LPC1769 LPCXpresso Board running at 120 MHz,
and on an Intel i3 3120M (64-bit) running at 2.50 GHz running Xubuntu 14.04.
The implementations for the NXP LPC1769 and Intel i3 3120M are based on
a C library including the big integer arithmetic for addition and multiplication.
Other operations are not required. Our implementation for the ATMEGA128L
is optimized in assembler and fits in just 428 B of Flash memory. This shows that
HIMMO can fit even in very resource constrained devices. We also note that the
RAM consumption is linear with « since we have to keep in memory a term that
is (a+2)B+b bits. Tables 1 and 2 provide a brief summary of the performance of
the HIMMO scheme implemented in the above CPUs. For instance, for security
parameter o = 26 and B = b = 128, the execution of the HIMMO algorithm in
the very resource-constrained ATMEGA128L only takes 223 milliseconds. This
time is around 3000 times slower than on the much more powerful Intel i3 3120M
(64-bit) due to the different in clock speed, CPU word size, and fact than the
algorithm for the ATMEGA128L is optimized in assembler and the algorithm



in the Intel is in plain C. Finally, note that the tables include a row specifying
the lattice dimension required in the identify attack to the HI problem that is
further explained in Sections 5.3 and 6.2.

Table 1. HIMMO performance for B = b = 128 as a function of a.

a

26 |34 |40 |50
Keying material size (KB) 6.90 [11.18/15.07|22.83
Lattice dimension 405 |665 (902 (1377

ATMEGA128L (8-bit @ 8 MHz) 223 367 (497 |743
CPU time (msec)|NXP LPC1769 (32-bit @ 120 MHz)|7.46 |11.82|15.74|23.48
Intel i3 3120M (64-bit @ 2.5 GHz) [0.034(0.053(0.069|0.103

Table 2. HIMMO performance for o = 26 as a function of b = B.

b=0B
64 128 192 (256
Keying material size (KB) 3.45 6.90 |10.34|13.79

ATMEGAT128L (8-bit @ 8 MHz) |63 [223 393 |632
CPU time (msec)|NXP LPC1769 (32-bit @ 120 MHz)|2.55 |7.46 |14.93|25.16
Intel i3 3120M (64-bit @ 2.5 GHz) [0.015/0.034/0.062(0.100

5 Security Model, Assumptions, and Analysis

This section is outlined as follows: in Section 5.1 we present a computational
security model for a generic key predistribution scheme. In Section 5.2 we present
the two interpolation problems that form the basis upon which HIMMO is built,
and present evidence why these problems are difficult, for suitable parameter
choices in HIMMO. In Section 5.3 we consider two possible strategies that the
adversary has for winning the game that constitutes the security model in the
case that the key predistribution scheme is HIMMO. We show how winning the
game using these strategies depends on being able to solve either the HI or the
MMO problem. We have not been able to identify promising other strategies.



5.1 Security Model

We formalize the notion of collusion resistance, namely that an attacker who has
obtained the keying materials of any number of different identifiers should not
be able to calculate the key of a pair of uncompromised identifiers.

We consider a security model that is a game between a challenger and an

adversary. The challenger has full knowledge of the key predistribution scheme
and all secret parameters that the trusted party used in setting it up; the adver-
sary only knows the public parameters of the system. The adversary can present
queries to the challenger. In a query, the adversary randomly picks a valid iden-
tifier ¢ and the challenger responds with the keying material G¢.
After presenting ¢ queries and receiving the corresponding responses, the ad-
versary chooses a pair of identifiers (§,7), guesses the key K ,, and presents
these results to the challenger, who checks if the key guess for the pair (£,7) was
correct. The adversary wins if and only if the following holds:

1. neither ¢ nor n was used as the input to any query;
2. the adversary guessed the key K¢, correctly.

These conditions are similar to the winning condition in the computational
COMP-SK security model which is used in the security analysis of ID-NIKE
in [20].

5.2 The HI and MMO Problems

We present the two mathematical interpolation problems upon which the HIMMO
system is built. The first of these problems is the Hiding Information problem.

Problem 1 (Hiding Information (HI) problem).

Let f € Z[z] be of degree at most «, and let x; € Z and y; = {((f(x;))n)r for
0<zi<e.

HI problem: given o, N, r, (z1,41), ..., (Ze, Ye), and xg, find yo.

This problem was studied in [18], where it was shown to be equivalent to a
lattice problem in dimension a4 1 + ¢, and that ¢ must be large enough for the
solution yo to be unique. For the instances of the HI problem that pertain to
the HIMMO system, the resulting lattice dimension and structure are such that
the known techniques for finding g, fail to give the correct answer for « 2 20.
A more detailed exposition is given in Section 6.

The second interpolation problem deals with interpolation of a function that
is the sum of multiple polynomials, each evaluated modulo a different number.
We distinguish two versions of this problem, depending on whether the moduli
are given or unknown.

Problem 2 (Mixzing Modular Operations (MMO) Problems).

Let m > 2, ¢g1,...,9m € Zlx], all of degree at most «, and let z; € Z and

Yi = Z;n:l@j(xi))qj, for 0 <i<ec.

MMO problem with known moduli: given a, m, q1, ..., Gm, (X1,91), -+, (e, Ye),
and xg, find yq.

MMO problem: given «, m, (z1,41),-- -, (Ze Ye), and xg, find yo.



In [12], it was shown that the MMO problem with known moduli and ¢
colluding nodes can be reduced to finding a vector in a lattice with dimension
m(a + 14 ¢), and that ¢ must be at least m(a + 1) to find a unique solution.
Thus the adversary has to solve a lattice problem in a lattice of dimension at
least m(m + 1)(« 4 1), which quickly becomes infeasible if m grows.

Setting up the lattice requires knowledge of the secret moduli g1, ..., qm-
When the moduli are unknown, there appears to be no efficient way to recon-
struct them from any c observations. For these reasons, we consider solving the
MMO problem to be infeasible.

5.3 Security Analysis

In this section, we analyse two strategies that an adversary playing the game
described in Section 5.1 can use to find K¢, from the keying materials G¢, (y),
1 < i < ¢. These two types of attack are in line with related security models
used in other key predistribution schemes such as Matsumoto and Imai [17] and
attacks on Blundo’s scheme and Zhang’s scheme.

The first strategy to calculate K¢ ,, is to calculate G¢ from the keying materi-
als G¢,, and then to use Equation (2). Turning to the definition of the G, (y) in
terms of the root keying material, see Equation (1), we see that finding the coeffi-
cient G¢ , of the polynomial G¢(y) from the coefficients G¢, i, of the polynomials
G¢,(y) amounts to solving an instance of the MMO problem with unknown mod-
uli, which we consider infeasible. In fact, the adversary has to solve a somewhat
more complex problem, because the definition of the keying material coefficients
in Equation (1) has an additional mod N operation.

In the second strategy, which avoids determining the moduli, the adversary
evaluates (G¢,(§)) vy, and takes the b least significant bits thereof, the key K¢, ¢.
This key is used as an approximation to K¢ ¢,. Finding K¢, from the set K¢ ¢,
amounts to solving the HI problem with » = 2°. For such a low value of r,
compared to N, solving the HI problem is infeasible if « is large enough.

Using r > 2°, e.g., the whole output of (G¢, (£)) , in the HI problem to find
K¢, is not feasible since G¢(¢;)and G, (§) only show symmetry in the b least
significant bits. The («+1) B most significant bits are related through the moduli
gqi-

To show this, from Lemma 1 in the appendix, (G¢(n))n is the sum of three
terms. The first term is invariant under the exchange of ¢ and 7, the second
term is a small multiple of N and the third a multiple of 2°. We consider the
effect of the last term in the difference between (Ge¢(n))n and (G, (§))w, ie.,
(115 (€) — e (n))2%, where according to Lemma 1,

el = > M6 |

[e%

with 4;(&,7) = > (R{(©)), ", and R{’(€) = > R{}&/.
- par

k=0



Although each R is symmetric, the function A;(&,7) is not, as R,(:) is evaluated
modulo ¢;, while the evaluation of A; in 7 is performed over the integers (as is the
summation and multiplication with the 5;’s). If 7 is large, then A; (£, n) influences
all bits, including the highest order bits; if the 3/s are large, ¢ (1) affects all bits,
including the highest order bits. Indeed, assume that the coefficients of A;(§,n),
i.e., the integers <R,(;) (§)>qi are uniformly distributed in {0,1,...,¢; — 1} then
the expected value of A4;(£,n) equals %qi Zzzo n* ~ %qmo‘. We further assume
that each 3; is uniformly chosen from the integers in [0,25). Then the expected
value of pe(n) is m28-2n. Hence, if we take

n>25(2/m)'/e, (8)

then we expect that 204 () is larger than 20m28-2p@ > 2(a+DB+b=1 g4 that
2° e (n) affects all bits of (G¢(n))n. Since the pe(n) and p,(€) are affected by
the mixing of modular operations, we conjecture that with identifiers n satisfying
Equation (8), no information on the (a + 1)B most significant bits of (G¢(n))n
can be obtained from (G, (£))n.

The requirement on 7 expressed in Equation (8) reduces the number of identi-
fiers that we can use from 27 to 25 (1— (2/m)1/0‘). In other words, the “effective
bit length” of the identifiers is reduced by [—log, (1 — (2/m)1/)] bits. For rea-
sonable parameters, this is not a very big number, e.g., for m = 10 and a = 26,
the loss is just over four bits in the identifier space.

6 Experimental Results and HIMMO Parameters

This section describes experiments and provides further background supporting
the results in Section 5.3. We also propose specific configuration parameters for
which we believe HIMMO to be secure based on these experimental results.

6.1 Experimental Results in the Structure of (G¢(n))~n

In Figure 1 we show experimental evidence for the claim that the (o + 1)B
most significant bits of (G¢(n))n and (G, (€))n are uncorrelated if the identifier
interval is restricted according to Equation (8).

Note that this property does not appear to hold for a few most significant
bits, which are equal with probability significantly above 0.5. This is because in
our simulations some coeflicients or identifiers might be slightly smaller so that
the effect of the mixing of modular operations does not propagate to the very
most significant bits. These few bits may thus be used in an attack as well if
a way to find correlations between them is figured out. Currently, this remains
an open problem. Effectively, the attacker would then solve a HI problem with
a somewhat larger value of r, say r = 2019 which is still much smaller than
N, and hence does not lead to much improvement in the second attack strategy
discussed in Section 5.3.
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Fig. 1. The probability that the i-th bit of (G¢(n))~n equals the i-th bit of (G, (§))~
when K¢, = K,,¢ as a function of ¢ in a HIMMO system with a = 6, b = B = 32 and
m = 5. In the plot on the left, £ and 7 are averaged over the interval [0, 2B ), in the
plot on the right & and 7 are averaged over the interval [27(2/m)1/) 25).

6.2 HIMMO and the HI Problem

Minimum Value of ¢: The HI problem is analyzed in [18]. It is shown that
the HI problem is equivalent to a noisy polynomial interpolation problem, which
in turn is shown to be related to an approximation problem in a certain lattice
of dimension o + 1 + ¢. The approximation problem is to find a lattice vector
that lies close enough, in infinity norm, to a target vector, i.e., it is a relaxed
version of the well-known closest vector problem. It is shown that there are many
lattice vectors that solve the approximation problem, each of these vectors gives
an estimate for yg.

It is also shown that because of the structure of this lattice, there is a cross-over
value cpin, which depends on the distribution of the z;, such that when ¢ < ¢pin
the lattice vectors that solve the close vector problem give rise to many different
estimates for yg, whereas for ¢ > cpin, all solutions to the close vector problem
give rise to one, or at most a few different estimates for yg.

The value ¢, is found as the zero of the function S, defined as

[

b+1
S(c) =log (iﬁ > + 2 _l Y (Z(log((a +1+14)!) —log(i!))

i=1

~log (a i 1) —afa+1) 10g(L)>7 (9)

where we correct an error in the result from [18] and adapt their notation to the
one used in this paper.

In the derivation of this formula, it is assumed that the ¢ points x; are uniformly
chosen from an interval of length L. Numerical experiments in [18] confirm the
validity of using this indicator. When B = b and L = 27, an approximation to
Cmin 18 ¢min = (@+1)(a+2)/2. In Table 3 we give cyin(a, b, B) for several values
of @ and b = B, and compare its value to (o + 1)(a + 2)/2.



For a moderately large value of @ = 40 the attacker must solve a lattice
problem in about 900 dimensions, which lies above the upper limit for practical
lattice reduction algorithms. We point out that the record in the Ideal Lattice
Challenge is in dimension 825, see [8]. Increasing o makes this lattice attack
even more infeasible. In fact, our experiments described further below show that
for b = B = 32 and «a > 27 the approximate methods for finding a close lattice
vector fail.

The above analysis holds when the identifiers are uniformly distributed in
[0,2B). When the attacker can choose the identifiers x1,...,z., then he can
pick them from a smaller interval containing the identifier zo of the node under
attack, improving his chances to attack the system. For instance, in the previous
case with @« = 40, b = B = 32 and L = 256, the indicator function is positive for
¢ > 120. Simulations confirm this lower bound for a successful attack.

In a practical deployment of HIMMO such a small L attack can be prevented
by making it infeasible for the adversary to choose the x; freely, e.g., by letting
the HIMMO identifier z; be a secure B-bit hash of a node’s identity.

Table 3. The value cmin for B = b as a function of « and b and compared with
f(@) = (a+1)(a+2)/2.

alf(e)| 8| 16| 32| 64128
16| 153[122[142[148[151[152
20| 231[178|212|223(228(230
24| 325243|297|313|320(323
28| 435/317|396]419|428(432
32| 561|398|508|539|551(556
36| 703|487|635|675(690(697
40| 861(582|775|825|845(853

Performance of Lattice Attack on HI Problem The close vector problem
in infinity norm can be solved as if it were the closest vector problem for the
same target vector. There exist exact algorithms for the closest vector problem,
these have running times and memory requirements that grow exponentially in
the lattice dimension and turn out to become infeasible if the lattice dimension is
larger than about 100. For example, the algorithm from [3] is reported to require
3TB of memory and 2080 hours of computation time for a lattice of dimension
90. These algorithms are thus not suitable for solving the HI problem for o > 12.
There exist approximate algorithms with more modest memory requirements and
smaller running time, polynomial in the lattice dimension. These are based on
lattice reduction and rounding or the embedding technique [15] explained further
below. The downside is that for these algorithms the upper bound for the error
grows exponentially (or slightly slower) in the lattice dimension, so they can



break down when the lattice dimension becomes too large. This is investigated
experimentally for the lattices we encounter in solving the HI problem.

We first choose a value for b, the number of key bits, B, the number of
ID bits, and «, the polynomial degree. We then choose a random odd integer
N in the interval (2(@+DB+b=1 9(a+D)B+b) and o + 1 random integer polyno-
mial coefficients fo, ..., fo from [0, N). With these coefficients we construct a
polynomial f(z) = Z?:o f;@7. We choose a number ¢ and pick ¢ + 1 differ-
ent numbers g, 1, ..., 2. from the interval [0,25) and calculate the numbers
yi = ((f(x3))n)av, 0 < i < ¢. The numbers a, b, B, N, z¢ and the ¢ pairs (z;,y;)
for 1 <4 < ¢ are input to the reconstruction algorithm. The algorithm outputs
an estimate g for yg. This is the same set-up that we used for the HIMMO
challenges [14].

In the remainder of this section we report on our findings in solving our
challenges. We choose b = B = 32 for all challenges.

The main part of the algorithm is the generation of a set of integer coefficients
9o, -+, 9o 10 [0, N) and the corresponding polynomial g(z) = Z?:o g;x?. The
aim is to find g(x) such that ({(g(x;))n) = y; for 1 <i < c. The estimate g is
then output as go = ({g(x0)) ~)2e. The algorithm for obtaining the coefficients g;,
makes use of the equivalence of this reconstruction problem to a lattice problem,
as described in [18].

It is rare to find a perfect fit in all points z;, 1 < i < c¢. Define e; =
(N"Das (((g(@i)) v)av — ¥i))o» and

€; if 0<e; < 2b—1
€= .
e —20 if2vl<e <2
The absolute value |¢;| is a measure for the quality of the fit in the point x;.
Since small errors in the fit can have a huge influence on the interpolation error
in xg, we define

l; = 5 logy(1+€7) (10)

for use in plots.

In the challenges, ¢ = (a+1)((«+1)B/b+1), which is somewhat larger than
2¢min. The points x; are sorted in ascending order, and z./; < o < T¢/241-
For the larger challenges, using all ¢ points becomes infeasible. Therefore we use
a subset of |¢/2] points (or slightly more), i.e., cusea = |¢/2]. A first strategy
(strategy A) is to use the points {z,;) | u(j) = [(¢ — Cusea)/2] + 4,1 < j <
| Cused | } surrounding xg. These points lie in an interval of expected length 2B-1
and a shorter interval is expected to result in a better interpolation, according
to Eq. (9), which is decreasing in the interval length. The unused points can be
used to measure the extrapolation errors. A second strategy (strategy B) is to
interleave the unused and used points, e.g., with ¢ysea = |¢/2] and u(j) = 25— 1.
Then we lose the advantage of effectively halving the size of the interval, but we
can measure the quality of the interpolation in the unused points, which are also
spread all over the interval.



The lattice is spanned by the rows of the block matrix

I 2NI.. ., O
2V Ty )

where I, and I,11 denote unit matrices of size cysed X Cused and (a+1) x (a+1)
respectively, and V denotes the (a4 1) X ¢yseqa Vandermonde matrix with ele-
ments V; ; = :ci(j), 0<i<a 1<j < cysedq- The problem is to find a lattice
vector that lies inside a hypercube of edge length N around a target vector ¢
that is constructed with the values gy, 1 < j < cused-
This is a relaxed version of the Closest Vector Problem, and we use the em-
bedding technique [15] for finding such a close vector. The embedding technique
works as follows. First, the matrix L is extended by a column of zeros on the
right. Then the matrix is extended by a row on the bottom. The first a+ 1+ cygeq
elements of this row (the ones below L) form the vector —¢, for the last element
(below the column of zeros added in the first step) we take (N — 1)/2, which
is a reasonable guess for the distance between the lattice defined by L and the
target vector. The resulting matrix is interpreted as the basis of a o+ 2 4 cyseq-
dimensional lattice. The next step is to find a reduced basis for this lattice,
and, in this basis, find the basis vector of which the last component is equal to
(N —1)/2. The first &+ 1+ cysea components of this basis vector are then added
to t, which results in the lattice approximation to t.

The coefficients g; are obtained from the corresponding components of the
resulting lattice vector. We refer to [18] for details.

Results using LLL The first algorithm we use for finding a reduced lattice
basis is the LLL [19] wrapper, as implemented in the fpLLL library [1] that is
included in Sage [21], version 6.6. We always use the default parameters 6 = 0.99,
n = 0.501.

The results for an instance of the HI problem for & = 16 are shown in Fig. 2.
The left-hand graph shows the errors when the used points are chosen according
to strategy A. The fit in the used points is almost perfect, and the correct value of
1o is found. The extrapolation error increases for the unused points further away
from the central zone. The right-hand graph shows the errors when the used
points are chosen according to strategy B. Here both the fit and extrapolation
are almost perfect for all points, and the correct value of yq is recovered.

Fig. 3 shows the results for an instance of the HI problem with o = 18. The
interpolation with used points chosen according to strategy A is again good, but
for strategy B, LLL doesn’t even give a correct fit in the used points and then
fails to interpolate correctly in the unused points. This is consistent with the
expectation that strategy A should give a better interpolation.

Fig. 4 shows the results for an instance of the HI problem with o = 19. Now
¢ = 420, and when 210 of these points are used according to either strategy A or
B, both the fit and the interpolation fail. Using 230 points according to strategy A
instead of 210, the correct value of yg is recovered with LLL.



Fig. 2. Plots of the points (z;, ;) where ¢; is defined in Eq.(10). The points that are
used in the reconstruction algorithm are denotes by big dots, the ones that are not
used by small dots and (o, 4o) is denoted by a star. For these plots, a = 16, ¢ = 306,
and we used 153 points for the reconstruction. In the graph on the left, the used points

were chosen according to strategy A, in the graph on the right according to strategy
B.

Fig. 3. Plots of the points (z;, ¢;) where ¢; is defined in Eq.(10). The points that are
used in the reconstruction algorithm are denotes by big dots, the ones that are not
used by small dots and (xq, o) is denoted by a star. For these plots, a = 18, ¢ = 380,
and we used 190 points for the reconstruction. In the graph on the left, the used points
were chosen according to strategy A, in the graph on the right according to strategy
B.



The largest value of a for which we were able to recover the correct yg using
¢/2 4 20 points and LLL as the lattice reduction algorithm, is @ = 20. Taking
even more points doesn’t appear to help. An example for « = 25 is shown in
Fig. 5.

Fig. 4. Plots of the points (z;,¢;) where ¢; is defined in Eq.(10). The points that are
used in the reconstruction algorithm are denotes by big dots, the ones that are not
used by small dots and (zo,4o) is denoted by a star. For these plots, a = 19, ¢ = 420.
In the graphs in the top row we used 210 points for the reconstruction. In the graph on
the left, the used points were chosen according to strategy A, in the graph on the right
according to strategy B. In the graph on the bottom row we used 230 points according
to strategy A.

Fig 6 shows the times needed for solving a couple of instances of the HI
problem using strategy A with ¢/2 points, the embedding method and LLL,
running in Sage on a 3.0 GHz Intel Xeon.

Results using BKZ The fpLLL library that is included in Sage also includes
a routine to perform a blockwise Korkine-Zolotarev (BKZ) lattice reduction.
This routine has two important parameters, the block size and the precision.
In contrast to the LLL implementation, there is no wrapper routine that starts
off with a fairly low precision and increases it until the LLL reduction succeeds.
Instead, the precision with which the floating point numbers in the BKZ algo-
rithm are calculated, must be given explicitly. If the precision parameter is set



Fig. 5. Plots of the points (z;,¥;) where ¢; is defined in Eq.(10). The points that are
used in the reconstruction algorithm are denotes by big dots, the ones that are not used
by small dots and (xo, £o) is denoted by a star. The plots show the results of applying
LLL and strategy A on an instance of the HI problem with a = 25, ¢ = 704. In the
graph on the left, cysea = 372, in the graph on the right cysea = 528.
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Fig. 6. Running times for solving the HI problem using (a+1)(a+2)/2 points according
to strategy A, embedding and the fpLLL-wrapper. For a > 19, this failed to give a
good approximation to yo.



to a value that is too small, BKZ fails with the error message ’infinite loop
in babai’. To avoid this error in the basis reduction of our lattice, the precision
must be set to a value not much smaller than (o + 2)b bits, the number of bits
of N. This is not surprising, as the largest numbers that appear in the basis
matrix are about N times as large as the smallest number in the same column.
Typically, the LLL wrapper, which is called as a preconditioning step from the
BKZ routine, uses a similarly sized precision parameter in its final, successful,
run.

The block size determines the quality of the lattice reduction; a block size
value of 2 is equivalent to LLL, larger block sizes lead to a better reduced ba-
sis, but it is a priori unclear what blocksize is needed to solve our interpolation
problem, as the worst-case error bounds for these algorithms are quite conserva-
tive and the algorithms typically behave much better than the worst-case error
bounds would suggest.

In Fig. 7 we show the results for an instance of a HI problem with a = 24,
using 325 points according to strategy A. For this instance, the block size must
be increased to 16 in order to obtain a good interpolation.

The timing results for a number of BKZ runs are given in Fig. 8.

The largest instance we have been able to solve so far using this method has
a = 27, with ¢ = 812, using ¢/2 + 20 points according to strategy A, and the
BKZ algorithm with 928 bits precision and block size 18. It ran for 303 hours.
The reason that we did not result in breaking even larger instances is not lack
of patience, but most probably a problem with the BKZ implementation: for
larger instances when « grows, it appears that a block size value of at least 20 is
needed, but then the BKZ routine appears to end up in an infinite loop, without
outputting any log messages, probably because of a subtle bug triggered by the
block size and the large precision parameter. The above also seems to indicate
that BKZ performance decreases when « increases due to the higher block size
that is required.

6.3 HIMMO Security Parameters

For security reasons, the HIMMO parameters advantageously have the following
characteristics:

— a large value of b so that keys cannot be guessed by brute-force.

— a large value « so that attacking a keying material G¢(y) requires solving a
lattice of big dimension.

— keeping the ¢;’s secret and optionally taking a relatively high value of m to
ensure that attacking the root keying material R()(z,7) involves solving a
lattice of big dimension.

A set of parameters that the authors consider to lead to a complexity-theoretic
secure HIMMO instance is b = B = 80, a = 50, and m = 10. With these
parameters, attacking the 80-bit keys generated by a specific device would require
solving a lattice of dimension 1377 for the HI problem once enough nodes have
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Fig. 7. Plots of the points (z;,#;) where ¢; is defined in Eq.(10). The points that are
used in the reconstruction algorithm are denotes by big dots, the ones that are not
used by small dots and (xo,%o) is denoted by a star. The plots show the results of
applying LLL and strategy A on an instance of the HI problem with o = 24, ¢ = 650,
Cused = 325. In the top left graph, the LLL wrapper algorithm was used, in the other
graphs the BKZ algorithm with precision 832 bits and block sizes 4, 6, 8, 10, 12, 14,

and 16.
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Fig. 8. Running times for solving two instances of a HI problem using (a+1)(a+2)/2
points according to strategy A, embedding and either fpLLL-wrapper or BKZ with
various block sizes (4, 6,8, ...). For the instances with o = 20, block size 4 was sufficient
to retrieve the correct answer, for & = 22 both instances required block size 8 and for
a = 24 one instance required block size 14 and the other 16.



been compromised. As the highest dimensional lattice successfully attacked so
far was on a lattice of dimension 455 (for av = 27), we feel this parameter choice
is quite conservative. Attacking HIMMO through the MMO problem is hopeless
since the ¢;’s are secret, and even if they were known, an attacker would have to
deal with a lattice of dimension 5610. Finding a key by means of a brute force
attack is not feasible either due to the chosen key length.

As described in the next section, HIMMO enables practical applications that
require mapping a bit-string of arbitrary length to a B bit identifier. In this case,
B should be equal the output size of a collision-free hash function. In order that
birthday attacks on the hash function and brute force attacks on the key have
approximately equal complexity, we choose B = 2b. For such applications, the
authors thus consider the following set of parameters to lead to a complexity
-theoretic secure HIMMO instance: b = 80, B = 160, a = 50 and m = 10.

7 Practical Protocols and Schemes Enabled by HIMMO

HIMMO'’s collusion resistance and excellent performance provides us with a
new primitive to enable very practical security protocols. Building on HIMMO’s
pairwise key agreement, any pair of devices in a network of any size can securely
communicate with each other. With HIMMO, the system remains flexible since
nodes can be added to a running network without the need to update already
deployed nodes.

We now describe a simple protocol that allows a node £ to directly send a
message M to node n without incurring any round trip delays. Node & computes
its key K¢y, the helper data h(K¢ ,) and the common key K (£, 7) as explained
Section 3. It protects M by using K(§,7n) and some authenticated encryption
algorithm e, and sends to node 7 the helper data h(K¢ ;) and the encrypted mes-
sage E = e(M,K(&,n)). Upon reception, node n computes K, ¢ and combines it
with the helper data h(K¢ ;) to obtain K(§,7), as explained in Section 3. Node
71 subsequently obtains M by by decrypting and verifying the authenticity of the
received message F.

The fact that the HIMMO scheme can efficiently use long B-bit identifiers
allows us to design further identity-based protocols providing more functionality.
These protocols are built by mapping an input bit string of arbitrary length to a
B-bit HIMMO identifier by means of a collision resistant hash function H. For
instance, we can enable implicit certification and verification of creden-
tials between any pair of entities, as follows.

In a registration phase, a node = that wants to register with the system provides
the trusted party with its set of identifiers, e.g., in the case of a device: type,
manufacturing date, etc. The trusted party can add further parameters for better
node identification, such as the issue date of the keying material and its expira-
tion date. The concatenation of all these identifiers constitutes Credentials(Z),
the credentials of =. The trusted party obtains the node’s HIMMO identity as
¢ = H(Credentials(Z)). This HIMMO identity is used in the keying material
extraction algorithm to compute the secret keying material G¢ of =. We observe



that Credentials(Z) are linked to the secret keying material by means of H(-)
and the keying material extraction algorithm.

In the operational phase, two devices can execute a protocol that allows not
only for direct secure communication of a message M but also for implicit cer-
tification and verification of the credentials of the sender = because the key
generating polynomial assigned to a node is linked to its credentials by means of
H. The protocol builds on the protocol for direct secure sending of a message as
described above. In fact, node = with HIMMO identity & uses the above proto-
col to send to the node with HIMMO identity 1 the message M’ defined as the
concatenation of &, M and Credentials(Z). After n has obtained M’ it verifies
the credentials of = by checking whether ¢ = H(Credentials(Z)).

If the output size of H(+) is long enough, e.g., 256 bits, and equal to B, then it
is infeasible for an attacker to find any other set of credentials leading to the same
output £. The fact that credential verification might be prone to birthday attacks
motivates the choice B = 2b for the relation between identifier and key sizes in
the HIMMO scheme. In this way, the scheme provides an equivalent security
level for credential verification and key generation. The capability for credential
verification enables applications such as the verification of the expiration date of
the credentials (and the keying material) of a node, the verification of the access
roles of the sender node £ encoded in its credentials, or the capability of using
any bit-string as the identity of the nodes.

The previous protocols have the key escrow capability since the trusted
party keeps the secret root keying material that allows for the generation of
any key in the system. In some settings, we would like to have this capability
shared between several trusted parties to enhance the security of the sys-
tem. HIMMO supports such an extension supporting ¢ different trusted parties
in the following way. The setup algorithm consists of two steps: in a first step,
parameters (b, B,m,a, N) are centrally determined and published; in a second
step, for 1 < j </, trusted party j independently generates m secret g;,; and the
corresponding m secret symmetric bivariate polynomials R(j’i)(x,y) over Zg; ..
In the keying material extraction phase, each node ¢ securely receives from each
of the ¢ trusted parties a key generating polynomial GEJ )(y) € Znly]. Node 7
computes the coefficients of its final key generating polynomial G¢ by adding

the corresponding coefficients of Gél), ey Gée), SO

¢
Ge(y) = OGP W) (11)

Key generation in the key establishment protocol is done as in HIMMO. Note
that the scheme operates exactly as a scheme with a single trusted party which
generates the m - £ root keying material polynomials RU9 (z,y) € Zqy; |, y] for
1<i<m,1<j </ Clearly, if £ > 1, a single trusted party cannot determine
the key generating polynomial of individual nodes.

Another functionality enabled by HIMMO refers to secure broadcast in
the sense of source authentication. In this case, we assume a set of devices



has been configured with their HIMMO identities and their secret key generating
polynomials. The TTP wishes then to securely (in the sense of source authen-
tication) send a broadcast message M to all devices. The TTP then computes
the hash of M as p = H(M) and obtains a key generating polynomial G,, as-
sociated to p. Next the TTP broadcasts {M, G} where G, is playing the role
of a signature. When device 7 receives {M’, G}, it obtains p/ = H(M') and
verifies the validity of the message by checking whether K, ,» and K, , satisfy
Equation (7). A similar protocol is described in [23] although the underlying
security primitive is now broken [2].

HIMMO can also be extended to allow for t-key agreement, i.e., key agree-
ment in a group of t devices if the TTP uses polynomials in ¢ variables and
distributes a key generating polynomial in ¢ — 1 variables to the nodes. Note
that in this case the HIMMO parameters need to be adapted to introduce the
HI and MMO problem in the correct parts of the keys and coefficients of the key
generating polynomial.

8 Conclusions

We have put forth a completely new approach to key predistribution schemes,
avoiding the use of any costly one-way functions (and pairings) in a discrete log
setting. Rather, we have used an approach remotely akin to NTRU, involving an
intricate combination of polynomials evaluated over different “finite rings.” We
believe that this approach is of high potential and may spark further research
into related primitives.

The performance of the HIMMO key agreement protocol is very competitive,
allowing for lightweight implementations needed for applications such as wireless
sensor networks and the Internet of Things. We have also shown that the best
(collusion) attacks currently known are based on lattice-basis reduction, and
that these attacks are bound to fail for the proposed parameter selection using
state-of-the-art algorithms, viz. the BKZ algorithm as implemented in the fpLLL
library. Future work may address the use of more accurate algorithms in the
attack, e.g., BKZ-2.0 [7] with large block sizes and aggressive pruning.
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Appendix: validation of HIMMO

As stated in Section 3, the key K¢ , generated by node ¢ for communicating with
node 7 need not equal K, ¢. In this appendix, we validate HIMMO by showing
a relationship between those keys.

Lemma 1 For all integers £ and n we have that

)y = Z<R(i)(5ﬂ7)>qi + (N — pe(n)2°, with

(n) = i {A U)J, where

i=1

n)J - % éAi(ﬁ,n)J and pig(n) = i}ﬁ [A

Ailem) =Y (RP(©), 1" and RY(€) = > R\
j=0

k=0

Proof. We clearly have that

<G£(77)>N = <H§(n)> where He(n ZZ<R(Z) "

k=0 i=1

As a consequence,

He(n) = i <<i nk>q_ +a; qu i(R;(f) (§)>qin’“J> :

k= ‘ ' k=0
Using the definition of A;(&,n), we find that

m

He(n) = Z( ‘(& m),, +NZ{ J_i(N—qi)[Ai(ﬁ_’n)f

i=1 i=1 ¢

As <H5(77)>N = He(n) —NLHg(n)/NJ, and He(n) = >0 A;(&,n), we infer that




Theorem 1 Let 0 < &, < 28 — 1. We have that

an € {<K§,n +jN>2b

Proof. Using the notation from Lemma 1, we have

Ke = ((Getn)y )., = <§:<R(i)(§m)>qi + Ne(n)_, and

m

Kye = <Z<R(i)(7775)>q1 + N/\n(€)>2,,

i=1
As each root keying polynomial R is symmetric,
K¢y = (Kne + NAe(n) = Ag(8)))0-

We now give an upper bound to the absolute value of A¢(n) — Ay (§).
By definition, (A4;(£,1))q, = Ai(€,n) — ¢ LAZ» (&, n)/qij for each ¢, whence

i &[ZAMJ

qi

L’mq where A¢(n) =) 2t _ % ZAi(f,n)J-

qi

Il
T
o
—
=
|
M= T

i=1 i=1

The symmetry of the root keying polynomials implies that
Ae(n) = Ay (€) = Ae () — Xy (). (12)

We continue with providing upper and lower bounds on ;\5(17).

As |z] < x for all z, and for all i, 4;(§,n) > 0 and ¢; < N, it follows that
A¢(n) = 0.

We clearly have that

< (1 Y Aw) =1+ 2 ARt A

Moreover, for each 7 we have that

[e3%

Ai(gm = Y (R ©), 1" <> (@ = nF < (- 1) Y27 - 1)

k=0 k=0 k=0

We conclude that 0 < A¢(n7) < 1 + 3" (N —¢)2°B/N.AsO < N —gq; = 3;2° <
2840 and N > 2(@+DB+b=1 e have that

0 < Ae(n) <1+2m.



Of course, the same bounds are valid for 5\5(77). Combining these bounds with
(12), and the fact A¢(n) — A, (§) is an integer number, the theorem follows. O

It can be shown that under reasonable conditions, the bound from Theorem 1
cannot be significantly improved.



