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Abstract—In recent years Physically Unclonable Functions
(PUFs) have been proposed as a promising building block for
key storage and device authentication. PUFs are physical systems
and as such their responses are inherently noisy, precluding a
straightforward derivation of cryptographic key material from
raw PUF measurements. To overcome this drawback, Fuzzy
Extractors are used to eliminate the noise and guarantee robust
outputs. A special type are Reverse Fuzzy Extractors, shifting the
computational load of error correction towards a computationally
powerful verifier. However, the Reverse Fuzzy Extractor reveals
error patterns to any eavesdropper, which may cause privacy
issues (due to a systematic drift of the PUF responses, the error
pattern is linkable to the identity) and even security problems
(if the noise is data-dependent). In this work we investigate both
these issues and propose modified protocols that eliminate the
problems.

I. INTRODUCTION

In the past decade Physically Unclonabe Functions (PUFs)
have attracted increasing attention. With their desirable prop-
erty of unclonability they were proposed as a promising secu-
rity building block that can be applied to various identification
and authentication applications. Several protocols featuring
PUFs have been devised in the past, such as key storage,
authentication and remote attestation schemes [1]–[3]. In this
paper we focus on key storage. This application is sometimes
referred to as ‘Physically Obfuscated Key’. In this work, we
will consider the use of a PUF-based key storage in the context
of privacy-preserving protocols that are designed to hide the
identity of the users from eavesdroppers.

PUFs are physical systems and thus their measurements
always contain a certain amount of noise. However, crypto-
graphic primitives like hashes and ciphers do not tolerate any
noise. Thus, the noise in a PUF measurement must be removed
before the measurement can be used as input to a cryptographic
primitive. This introduces a complication: redundancy data (for
the error correction) needs to be stored somewhere as part of
the PUF enrollment data. The usual attacker model states that
this redundancy data is public and thus can be accessed by
the adversary. Hence, error correction needs to be designed
such that the redundant data hardly leaks information about
the PUF key. An error correction scheme that satisfies this
requirement is variously known as Helper Data Scheme (HDS),
Secure Sketch (SS) or Fuzzy Extractor (FE). FEs have the
additional property that they generate a (nearly) uniform key. A
FE can be trivially derived from a SS. One of the most popular
HDSs is the Code Offset Method that employs a linear Error-
Correcting Code (ECC). Particularly compact implementations
are possible if syndrome decoding is used.

In many PUF applications the prover is assumed to be a
resource-constrained device. In the key reconstruction phase
the prover needs to perform an ECC decoding step, which may
be infeasible given the constraints. An elegant solution was
proposed in [4], where it was detailed how the ECC decoding

can be securely outsourced to the verifier. The scheme was
dubbed ‘Reverse Fuzzy Extractor’. The most difficult HDS
task for the prover is now merely to compute a syndrome,
which can be done very efficiently. On the downside, in each
protocol run the Reverse FE reveals to eavesdroppers which
error pattern is present in the PUF measurement, as compared
to the enrollment measurement. In [4] it was argued that
the PUF key is secure as long as the measurement noise is
independent of the PUF value itself.

In this paper we (a) examine what happens when this as-
sumption does not hold, i.e., we study the security implications
of data-dependent noise; and (b) argue that the statement “the
PUF key is secure as long as the measurement noise is data-
independent”, while true, does not cover all security aspects
of the protocol.

Point (a) is important because data-dependent noise was
shown to exist in PUFs such as FlipFlop PUFs, Latch PUFs
and Buskeeper PUFs [5]. We use the Binary Asymmetric
Channel (BAC) as our noise model. We quantify the leakage
in this model and study possible countermeasures. It turns out
that applying an extra Z-channel [6] after the BAC is a very
effective solution.

Regarding point (b), we note that PUFs exhibit a slow
‘drift’ in the values of their response bits over time, which is
due to device ageing. This drift is characteristic to individual
PUF instances. An attacker can try to identify PUF instances
by analyzing the revealed error pattern, since the drift is
directly reflected in the error pattern. This creates a privacy
risk in case the PUF is used in privacy-preserving protocols.
It is worth noting that the privacy leakage can increase the
above-mentioned security risk by allowing the attacker to
link protocol executions from the same PUF. We show from
experimental data that several PUF types indeed exhibit a drift.
We propose an adaptation of the Reverse FE protocol that
eliminates the drift issue.

The rest of the paper is organized as follows. In Section II
we define notations, give a brief overview on PUFs and
Fuzzy Extractors, introducing the Reverse Fuzzy Extractor
in partiuclar. In Section III we discuss the problem of data-
dependent noise and describe our solution. In Section IV we
look at experimental data on drift and analyse the leakage
caused by drift. We introduce an improved version of the
Reverse Fuzzy Extractor in Section V.

II. PRELIMINARIES

A. Notation and terminology

The notation ‘log’ stands for the base-2 logarithm. Random
variables are written in capital letters and their values in
lowercase. The binary entropy function is written as

h(p)
def
= −p log p− (1− p) log(1− p). (1)



The Shannon entropy of a random variable X is denoted as
H(X), and mutual information as I(X;Y ).

The Binary Asymmetric Channel (BAC) is a memory-less
channel. An transmitted bit X is received as a noisy bit X ′.
The channel is fully characterized by two parameters: α def

=

Pr[X ′ = 1|X = 0] and β def
= Pr[X ′ = 0|X = 1]. Without loss

of generality we consider only α, β ∈ [0, 12 ]. The case α = β is
called the Binary Symmetric Channel (BSC). The case α = 0
or β = 0 is known as a Z-channel. We will occasionally write
α = µ−δ, β = µ+δ, with µ ∈ [0, 12 ] and |δ| ≤ min(µ, 12−µ).

B. Physically Unclonable Functions

A Physically Unclonable Function (PUF) is a complex
physical structure that generates a response to a pysical stim-
ulus. The response depends on the challenge as well as on the
micro- or nanoscale physical structure of the PUF itself. One
typically assumes that the PUF can not be cloned, not even by
the manufacturer of the device. Furthermore, the challenge-
response behavior of the physical system is assumed to be
complex enough such that the response to a given challenge
can not be predicted.

Several different PUF constructions exist; for an overview
we refer to [7]. Among them are memory-based PUFs, such
as SRAM PUFs, which exploit biases in memory cells. At the
power-up phase these cells initialize to either ‘0’ or ‘1’. Most
cells show a significant tendency to initialize to one of both
values. The entirety of the the start-up values creates a start-
up pattern, which is taken as PUF response. PUFs can also
be based on random timing characteristics of circuits, among
them Ring Oscillator PUFs and Arbiter PUFs.

Due to physical characteristics of the device, measurements
of a PUF response are subject to noise; thus, subsequent
measurements will be slightly different. In order to use them
in cryptographic protocols, the noisy responses must be stabi-
lized. This is done by employing a Fuzzy Extractor [8], which
extracts the stable part of the PUF response and transforms it
to a uniformly distributed value.

C. Fuzzy Extractors

The authors of [8] introduced Fuzzy Extractors as a means
to deal with the noise. Commonly, Fuzzy Extractors work
in two phases, a generation phase Gen() performed upon
enrollment and a reconstruction phase Rec() performed after
each measurement. During Gen(), a secret key K and a public
Helper Data W are derived from a noisy PUF reference
(enrollment) measurement X . The algorithm Rec() transforms
a noisy PUF measurement X ′ back into the key K, thereby
using the Helper Data W . This works as long as X and X ′

are close enough (e.g. are two PUF responses to the same
challenge). Usually the reconstruction is achieved using an
error correcting code.

D. The Reverse Fuzzy Extractor

We briefly review the Reverse FE protocol [4].1 We omit all
details that are not critical for the key reconstruction itself (i.e.,

1We will actually work with a more general primitive: a Secure Sketch. It
is always possible to construct a Fuzzy Extractor from a Secure Sketch.

Prover Verifier

∑X ∈ {0, 1}n∑
= W ⊕ Syn(X ′) E = SynDec(

∑
)

E
X̂ = X′ ⊕ E
K̂ = KeyDeriv(X̂ )

Fig. 1. Sequence diagram of the device authentication protocol.

signal processing of the raw PUF data, additional protection of
the helper data, hashes of the key, quantities derived from the
key, usage of the key, etc.). The description below is identical
to the ‘Syndrome-Only’ Code Offset Method [8], [9] with the
sole difference that syndrome decoding is outsourced to the
verifier.

System setup:
The parties agree on a linear error correcting code C, with mes-
sage length k and codeword length n. The encoding algorithm
of C is Enc : {0, 1}k → {0, 1}n, and the algorithm for com-
puting the syndrome is denoted as Syn : {0, 1}n → {0, 1}n−k.
The code is chosen such that an efficient syndrome decoder
SynDec : {0, 1}n−k → {0, 1}n exists. The parties also agree
on a key derivation function KeyDeriv : {0, 1}n → {0, 1}`.

Enrollment:
A PUF enrollment measurement X ∈ {0, 1}n is obtained. The
helper data W = Syn(X) is computed. The prover stores W ,
while the verifier stores K = KeyDeriv(X).

Reconstruction:
The prover performs a fresh measurement X ′ ∈ {0, 1}n. He
computes Σ = W ⊕ SynX ′ and sends Σ to the verifier. The
verifier computes the error pattern E = SynDecΣ and sends E
to the prover. The prover computes the estimators X̂ = X ′⊕E
and K̂ = KeyDeriv X̂ .

Note that this protocol is extremely lightweight, as the
prover only has to perform one Syn and one KeyDeriv
operation. Note further that Σ = Syn(X ⊕ X ′), due to the
linearity of the code C. Hence, if there is not too much noise,
E is the error pattern that maps X ′ back to X .

III. DATA-DEPENDENT NOISE

A. Quantifying the problem

If the PUF noise is not independent of the measurement X ,
then some information about X is leaked to eavesdroppers
via the error pattern E, communicated in step 2 of the
reconstruction (Section II-D). For instance, imagine that for
a single bit of the PUF response a 0 → 1 transition is much
more likely than a 1 → 0 transition. Then the error locations
in E point to locations where a ‘0’ in X is much more likely
than a ‘1’. This is a security risk. It becomes even more serious
if the adversary observes multiple transcripts from the same
prover, carrying different information about X , and is able to
link those transcripts together.

We adopt the Binary Asymmetric Channel (see Sec-
tion II-A) as our noise model and quantify the amount of
leakage in this model. We further assume, for simplicity, that



the bias is constant over the device, i.e., we consider a global
bias.

Lemma 1: Let X ∈ {0, 1}n be the enrollment measure-
ment, with i.i.d. bits Xi ∼ (1−p, p), i.e., all bits have the same
bias Pr[Xi = 1] = p. Let X ′ ∈ {0, 1}n be the reconstruction
measurement. Let the noise behave as a BAC. Let E = X⊕X ′
be the error pattern during reconstruction. Then the mutual
information between the error pattern and X is given by

I(X;E) = n

[
h
(

(1−p)α+pβ
)
− (1−p)h(α)−ph(β)

]
(2)

and the entropy of X given E is

H(X|E) = nh(p)− I(X;E). (3)

The proof is given in Appendix A. This shows that if α = β,
then I(X;E) = 0 and no leakage occurs.

More generally, an attacker could observe multiple error
vectors E(1), . . . , E(k) ∈ {0, 1}n from the same device. We
define Ti as the number of observations that yield an error in
location i, i.e., Ti = |{k : E

(k)
i = 1}| =

∑k
j=1E

(j)
i . We

define T = (Ti)
n
i=1. The generalization of (2) then becomes

I(X;E(1) · · ·E(k)) = I(X;T )

= H(T )− H(T |X) (4)
= nH(Ti)− nH(Ti|Xi),

where in the last line the index i is arbitrary. For the eval-
uation of H(Ti|Xi) and H(Ti) we need the corresponding
probability distributions. For given Xi, the Ti is binomial-
distributed: Pr[Ti = t|Xi = 0] =

(
k
t

)
αt(1 − α)k−t and

Pr[Ti = t|Xi = 1] =
(
k
t

)
βt(1 − β)k−t. This yields Pr[Ti =

t] = (1− p)Pr[Ti = t|Xi = 0] + pPr[Ti = t|Xi = 1].

Fig. 2 shows the leakage nI(Xi;Ti) relative to the total
information nH(Xi) = nh(p) that can potentially be leaked,
i.e., the leaked fraction. This is shown for various parameter
settings of µ and k, where p has been tuned so as to maximize
H(Xi|Ti), the attacker’s uncertainty about Xi. While k is the
number of observed error instances observed by the attacker,
µ indicates the asymmetry of the BAC (see Section II-A).
The leakage is considerable. For example, in the µ = 0.05
graph we see that already at δ = 0.025 a dozen observations
reveals around 10% of the entropy of X . In order to connect
Fig. 2 to real-life PUFs we cite some numbers from the Unique
dataset [10]. For Ring Oscillator PUFs, DFF PUFs (high
temperature) and Latch PUFs (low temperature), values of δ
up to 0.07, 0.16 and 0.19 respectively can occur (at µ ≈ 0.2),
while Arbiter and SRAM PUFs have very little asymmetry.
These are the ‘raw’ values before reliable component selection
has been applied, or other processing, e.g. repetition codes, that
reduces µ and δ. It is clear from Fig. 2 that even after noise
reduction residual asymmetries lead to significant leakage.

A naive attempt to deal with the leakage problem would be
to tune the KeyDeriv function so that it compresses X more
strongly, taking into account the expected leakage; however,
there is no clear upper bound on the leakage, as the adversary
can eavesdrop on additional protocol rounds. Keeping in mind
that even a few percent of key leakage can endanger the
cryptographic primitives, we conclude that, no matter how

Fig. 2. The attacker’s knowledge about Xi after observing k error instances,
for various BAC parameters and various k. In each plotted point individually,
the p is tuned to maximize H(Xi|Ti) as a function of µ, δ and k.

KeyDeriv and the distribution of X are tuned, the Reverse
FE has a serious leakage problem when the noise is data-
dependent.

B. Eliminating the leakage

In order to eliminate the leakage, we propose a simple
solution in the BAC case: to apply, in the reconstruction phase,
an additional Z-channel that compensates the asymmetry in the
X → X ′ channel. The parameters required for the Z-channel
can be pre-computed based on calibration measurements which
are done at system setup or at enrollment. The adapted
reconstruction procedure is as follows.

Reconstruction:
1) The prover performs a fresh measurement X ′ ∈ {0, 1}n.
He applies additional Z-channel noise to X ′, yielding X ′′. He
computes Σ = W ⊕ Syn(X ′′) and sends Σ to the verifier.
2) The verifier computes the error pattern E = SynDec(Σ)
and sends E to the prover.

3) The prover computes the estimators X̂ = X ′′ ⊕ E and
K̂ = KeyDeriv(X̂).

We define the notation αZ = Pr[X ′′i = 1|X ′i = 0] and βZ =
Pr[X ′′i = 0|X ′i = 1] for the Z-channel bit flip probabilities
(see Fig. 3). Note that at least one of the parameters αZ, βZ is
zero. The nonzero parameter is tuned such that the combined
channel, consisting of the BAC with appended Z-channel, is a
BSC. We will denote the bit error rate of this BSC as ε. The
parameter tuning is given by the following theorem.
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Fig. 3. Concatenation of two Binary Asymmetric Channels.

Theorem 2: Let X → X ′ be a given BAC with parameters
α, β (or µ, δ). Let X ′ → X ′′ be a second BAC with parameters
αZ, βZ such that the combined channel X → X ′′ is a BSC
with bit error rate ε. Then ε is minimised by the following
parameter choice:

α ≥ β (δ ≤ 0) : αZ = 0, βZ =
α− β

1 + α− β
=

2|δ|
1 + 2|δ|

β ≥ α (δ ≥ 0) : βZ = 0, αZ =
β − α

1 + β − α
=

2δ

1 + 2δ
.

Both cases yield ε = µ+|δ|
1+2|δ| .

The proof is given in Appendix B. (Note that Theorem 2 does
not assume that a Z-channel is the solution but starts more
generically from a second BAC.)

Our solution entirely eliminates leakage from the commu-
nicated error pattern, but this comes at a cost: the additional
noise degrades the channel, i.e. it reduces the amount of
useful information about X that can be recovered after error
correction. We now quantify how much ‘worse’ the channel
X → X ′′ is than the original channel X → X ′. First we
show that the final noise parameter ε cannot be larger than the
highest BAC parameter.

Corollary 3: The bit-error probability ε specified in The-
orem 2 satisfies

ε ∈
[α+ β

2
,max{α, β}

]
= [µ, µ+ |δ|]. (5)

Proof: Let β ≥ α (δ ≥ 0) w.l.o.g. From Theorem 2 we
have ε = µ+δ

1+2δ . Obviously, ε ≤ µ + δ. Furthermore, ε =
µ+δ
1+2δ = µ(1+2δ)+δ−2δµ

1+2δ = µ+ δ(1−2µ)
1+2δ ≥ µ. In the last step we

used 0 ≤ µ ≤ 1
2 . Thus, we obtain ε ∈ [µ, µ+ δ] =

[
α+β
2 , β

]
.

The derivation for δ < 0 follows exactly the same lines.

Next we characterize the loss of channel quality by looking
at the channel capacity. The channel capacity places a lower
bound on how much source entropy (from X) is required
to derive a noise-robust key of a certain size. A capacity
equal to 1 corresponds to absence of noise, in which case all
entropy from X is directly usable. In general, the capacity C
is the fraction of all the entropy in X that may survive error
correction in case of an ideal error-correcting code.

The BSC X → X ′′ has capacity CBSC = 1 − h(ε), with
ε = µ+|δ|

1+2|δ| as specified in Theorem 2. The capacity of the
BAC is given by (see e.g. [11]),

CBAC =
µ− |δ|
1− 2µ

h(µ+ |δ|)− 1− µ− |δ|
1− 2µ

h(µ− |δ|)

+ log
(

1 + 2−
h(µ+|δ|)−h(µ−|δ|)

1−2µ

)
(6)

= 1− h(µ) + (
δ

µ
)2

µ

2 ln 2
+O(

δ2

µ2
[µ lnµ]2). (7)

Theorem 4: The capacity loss due to introducing the Z-
channel can be approximated as

CBAC − CBSC = |δ|(1− 2µ) log
1− µ
µ

+O(δ2)

= |δ| log
1

µ
+O(δµ log

1

µ
). (8)

Proof: Follows from Taylor-expanding the expressions for
CBAC and CBSC .

In Fig. 4 we plot the capacity loss CBAC − CBSC relative
to the original capacity CBAC. The ‘raw’ noise levels in PUFs
(i.e. without reliable cell selection), for instance for D-Flipflop
PUFs as reported in [5], can be as high as µ = 0.2, δ = 0.1.
According to Fig. 4 the Z-channel insertion would then lead
to almost 40% capacity loss. Depending on the context this
may be acceptable. If not, the noise µ, δ can be reduced by
techniques such as reliable component selection and repetition
codes. In Fig. 4 we see that the capacity loss is less severe at
low noise. The optimal tuning of the parameters in the noise
reduction techniques depends on the specific PUF properties.

Of course the legitimate parties need to estimate the noise
parameters α, β of the BAC in order to be able to set αZ, βZ

as specified in Theorem 2. The noise parameters have to be
established either (i) as part of a system setup phase before
the enrollments or (ii) during operation, by using a subset of
the PUF cells as non-secret test cells for calibration purposes.

Fig. 4. Relative loss of channel capacity due to the extra Z-channel.

IV. THE DRIFT PROBLEM

In some PUF instances individual cells have a bias towards
either zero or one. We present measurements which show that
these biases change over time; we call this the drift of a PUF.
Furthermore, we provide a model for the drift and estimate
the privacy leakage (and the induced key leakage) in Reverse
Fuzzy Extractors due to the drift. The following evaluation
of the drift and its results have been presented in a previous
paper [12].



A. Drift model

We adopt the bias-based PUF model proposed in [5]. We
denote the bias of a PUF cell i during enrollment as a value
bi ∈ [0, 1]; it can be estimated by counting the number
xi of occurrences of a ‘1’ response during k enrollment
measurements: b̂i = xi/k ∈ {0, 1k , . . . , 1}. A PUF is fully
characterized by a vector of biases, b = (bi)

n
i=1. Similarly, b′i

represents the bias of cell i at a later time. It can be estimated
from the number x′i of ‘1’ responses in a series of l PUF
responses: b̂′i = x′i/l ∈ {0, 1l , . . . , 1}.

The drift is modeled by a transition probability τ(b′|b)
indicating how likely it is that the PUF has bias vector b′ at a
later time given that it had b at enrollment. Assuming that the n
PUF cell responses are mutually independent (this assumption
seems justified as we did not see any correlation between cell
responses in the PUF types under investigation), and that drift
behavior is the same for all bits, we can express the transition
probability for the entire PUF as

τ(b′|b) =
∏
i∈[n]

τ0(b′i|bi). (9)

The function τ0 does not depend on the cell index i. To
estimate τ0 we made histograms of drifted biases, conditioned
on the enrolled bias, i.e., for each possible value of b̂i we
computed a histogram counting b̂i → b̂′i occurrences. Here the
b̂i → b̂′i transitions were collected from all cells. Finally we
converted the histograms to probability distributions.

B. Drift data

We made use of PUF measurement data obtained in the
UNIQUE project2. In this project custom ASICS with differ-
ent PUF types, including SRAM, latch, D-Flip-Flop (DFF),
Arbiter and Ring Oscillator (RO) PUFs, were developed and
tested under different conditions. The UNIQUE data set in-
cludes measurements of PUFs which were exposed to an
accelerated aging process. The simulation of aging is based on
the Negative Bias Temperature Instability (NBTI) mechanism,
carried out by by operating the ASICs at an extreme tempera-
ture of +85 ◦C and with high supply voltage of 1.44V (120%
of the 1.2V standard Vdd). The treatment lasted for 2150 hours
corresponding to an aging factor of 18.2. This way, continuous
use of the PUF device can be simulated in short time.

Three different datasets were available for our experiments:
enrollment data taken right after manufacturing (referred to as
time t0), measurements at the beginning of the aging process
(at time t1) and measurements after the aging process had
terminated (time t2). Measurements at t1 correspond to a
simulated operating time of approximately 1 week with respect
to t0 whilst t2 corresponds to approximately 4.5 years. For
our bias transition model we compared t0 versus t1 and t0
versus t2.

Figure 5 shows τ0 for SRAM, latch, DFF and RO PUFs,
for t0 → t1 and t0 → t2 aging. In 5a, 5c and 5e we observe
a diagonal ‘saddle’ between (0, 0) and (1, 1) for the t0 → t1
data. This indicates that SRAM, latch and DFF PUFs have a
stable bias over a short operating time. The RO PUF (5g) is

2http://www.unique-project.eu

(a) SRAM: t0 → t1 (b) SRAM: t0 → t2

(c) Latch: t0 → t1 (d) Latch: t0 → t2

(e) DFF: t0 → t1 (f) DFF: t0 → t2

(g) RO: t0 → t1 (h) RO: t0 → t2

Fig. 5. Bias transition probabilities τ0(b′|b) for SRAM, latch, DFF and RO
PUFs.

an exception, featuring an ‘island’ of high probabilities in the
middle of the plot area, indicating more transitions to bias 0.5
(random behavior); this is not unexpected, as ring oscillators
can be used to generate random numbers as well.

At t2 we see a flattening of the ‘saddle’ for all PUF types
(5b, 5d, 5f, 5h). This indicates, as expected, that there is a
significant drift after a longer operation time. Note that not all



Fig. 6. Bit error rates of stable cells for various PUF types after t0 → t1 and
t0 → t2 aging. The red line in each box indicates the median. The colored
bottom and top of each box marks the 25th/75th percentile. The height of a
box displays the inter quartile range (IQR). The whisker’s ends indicate the
lowest and highest bit error rates that are within 1.5 times the IQR. Single
outsider values are marked by red plus signs.

the transition probabilities are symmetric under 0↔ 1 reversal;
this phenomenon mainly occurs for the latch and RO PUFs.

The FE reconstruction phase typically employs only a
single measurement (l = 1). Hence, in practice FEs usually
do not use fine-grained information about the biases during
reconstruction. Instead, fine-grained bias information is used
only for the selection of reliable cells. A FE will typically store
pointers to stable cells (i.e., cells that have an enrollment bias
close to 0 or 1); only those are then used for key derivation.

For this context we introduce a simplified drift model
in which the biases are binarized to 0/1 values, and only
reliable cells are taken into account. The model has only two
parameters: αd, the probability of a 0 → 1 bit transition due
to drift, and βd, the probability of a 1 → 0 transition due to
drift. The numerical values of these parameters slowly vary
as a function of time. Table I lists transition probabilities of
‘stable’ cells with enrollment biases bi ∈ [0, 0.05] ∪ [0.95, 1].
Fig. 6 shows the same data graphically. For SRAM and RO
PUFs, the t0 → t2 bit error rate is considerably higher than
the t0 → t1 bit error rate.

C. Leakage analysis

The results of Section IV-B show that aging indeed causes
drifting of the PUF measurement X ′ over time. Thus, the noise
E = X ′ ⊕X in the Reverse FE protocol contains a part D ∈
{0, 1}n (the drift) that changes only over long time scales,
while the rest of E consists of short-timescale random noise
N unrelated to aging. We can represent E as E = D ⊕ N .
This both has an impact on security and privacy.

Privacy
We first quantify the privacy leakage of the Reverse FE
protocol caused by observation of the drift.

Lemma 5: Let X1 and X2 be the enrollment measurements
of two different PUFs, uniformly distributed on {0, 1}n. Let

D1 and D2 be their respective drifts. Let the drift be inde-
pendent in each bit, with parameters αd, βd as defined above.
Then the Hamming distance between D1 and D2 is binomial-
distributed, with parameters n and Puneq, where

Puneq = 2
αd + βd

2
(1− αd + βd

2
). (10)

The proof is given in Appendix C.

Corollary 6: Let X1 and X2 be the enrollment measure-
ments of two different PUFs, uniformly distributed on {0, 1}n.
Let D2 and D2 be their respective drifts. Let the drift be inde-
pendent in each bit, with parameters αd, βd. Then the expected
Hamming distance between D1 and D2 is µHD = nPuneq, and
the variance is σ2

HD = nPuneq(1− Puneq).

Proof: Follows from Lemma 5 and the properties of the
binomial distribution.

If αd +βd is large enough, and if the short-timescale noise
N does not mask the drift, then the observed noise pattern
E, via the constant part D, becomes a unique characterizing
property for each PUF, as quantified in Corollary 6.

For the further analysis we introduce the following nota-
tion. We denote the set of observed error patterns as E =
(Ea)`a=1, where ` is the number of observations. Similarly
we define N = (Na)`a=1, with Ea = D ⊕ Na. We write
Xdrifted = X ⊕D.

Theorem 7: Let Nav ∈ {0, 1}n be the pattern obtained by
averaging N . The amount of information about D gained from
observing E is given by

I(E ;D) = H(D ⊕Nav)− H(Nav). (11)

Proof: see Appendix D.

If the noise Na is data-independent, then the adversary
can get a good estimate of D by averaging the error patterns,
and we can almost say that observing E is the same as
observing D and E (or, equivalently, D and N ). In the
case of data-dependent noise Na the situation becomes more
complicated. In terms of Markov chains we have X → D and
Xdrifted → Na. Hence, a data-dependent short-timescale noise
Na has some weak dependence on the long-timescale drift D
via Xdrifted = X ⊕D.

Security
Next we analyze the security implications if the adversary is
able to link multiple instances of the authentication protocol
run by the same PUF device. (Either because of the above
explained privacy problem or by some other means.)

Since we did not specify the KeyDeriv algorithm, we
cannot compute the mutual entropy between E and the PUF
key K in general. Instead, we derive a bound on the mutual
information between E and X .

Theorem 8: The leakage about X caused by observation
of the error patterns E can be upper bounded as

I(E ;X) ≤ I(D;X) + I(N ;Xdrifted), (12)

Proof: see Appendix E.



TABLE I. TRANSITION PROBABILITIES 0→ 1 AND 1→ 0 FOR t0 → t1 AND t0 → t2 AGING
(BIASES bi ∈ [0, 0.05] ∪ [0.95, 1]. MEAN±STANDARD DEVIATION IS LISTED).

Period Transition SRAM LATCH DFF RO

t0 → t1
0→ 1 0.0036± 0.0002 0.0025± 0.0007 0.0017± 0.0003 0.0076± 0.0055
1→ 0 0.0020± 0.0001 0.0012± 0.0003 0.0019± 0.0004 0.0050± 0.0043

t0 → t2
0→ 1 0.0130± 0.0004 0.0222± 0.0135 0.0062± 0.0028 0.0350± 0.0199
1→ 0 0.0091± 0.0004 0.0041± 0.0038 0.0029± 0.0010 0.0323± 0.0184

The two leakage terms in Theorem 8 are very similar. The
I(N ;Xdrifted) term is exactly the leakage shown in Fig. 2, but
now about Xdrifted instead of X , which is practically the same
from a security point of view. The mutual information I(D;X)
is precisely given by Lemma 1 where the error pattern E is
replaced by the drift D, and the parameters α, β by αd, βd.
The I(D;X) is nonzero if the drift is asymmetric.

Note that, in contrast to the leakage I(N ;Xdrifted), the
existence of the I(D;X) leakage does not necessarily imply
that there is a grave security problem: The drift D is a single
error pattern, whereas measurements of short-term asymmetric
noise reveal new information every time. A properly designed
extraction procedure KeyDeriv can compensate for the leak-
age I(D;X) by sufficiently compressing X . In case privacy
is not important, we see the leakage I(D;X) primarily as an
issue that reduces the efficiency of the Fuzzy Extractor.

Finally we briefly comment on the case where the adver-
sary observes the helper data W as well as the communicated
noise patterns E .

Theorem 9: The leakage caused by observing W and E
can be bounded as

I(WE ;X) ≤ I(W ;X) + I(E ;X). (13)

Proof: See Appendix F.

The bound in Theorem 9 is tight, since H(E|W ) ≈ H(E).
Thus we can also read Theorem 9 as I(WE ;X) ≈ I(W ;X)+
I(E ;X), i.e. leakage from W plus almost independent leakage
from E .

V. SOLVING THE DRIFT PROBLEM

In this section we present a modified Reverse Fuzzy
Extractor in which the protocol messages do not cause leakage,
even if there is PUF drift. The prover keeps track of the
computed error patterns E over time. If E starts to exhibit
behavior constant in time (a drift D), then the prover device
modifies its stored helper data in such a way that the drift
is compensated; future error patterns E will thus not reveal
the drift. This technique is compatible with the addition of a
Z-channel as described in Section III-B.

A. Proposed solution for the drift problem

In a nutshell our proposal is as follows. The prover device
has additional non-volatile (NV) memory in which it stores
an estimated drift vector D̂ ∈ {0, 1}n and a list L of up to
Nmax error patterns observed during previous executions of
the protocol. The D̂ serves to keep track of how far the PUF
has drifted away from the enrolled PUF measurement X . The
reconstruction protocol does error correction with respect to

the (estimated) drifted PUF value X̂drifted, and then shifts the
result by the amount of D̂. Taking the drifted value X̂drifted as
the zero point for error correction has the additional advantage
that the number of bit errors is reduced. The stored helper data
is always equal to W̃ = Syn X̂drifted.
A more detailed description of our proposal is given below.

System setup:
The same as in Section II-D.

Enrollment:
The same as in Section II-D. The enrolled helper data is W̃ =
SynX . In addition, the prover’s list L is initialized to the
empty string ∅, and D̂ is initialized to the zero string.

Reconstruction:
1) The prover

(a) performs a fresh measurement Y ∈ {0, 1}n,
(b) adds (pseudo)random Z-channel noise R, yielding
Y ′ = Y ⊕R.
(c) computes Σ = W̃ ⊕ Syn(Y ′) and sends Σ to the
verifier.

2) The verifier computes the error pattern Ẽ = SynDec(Σ)
and sends Ẽ to the prover.
3) The prover computes X̂drifted = Y ′⊕Ẽ and the estimators
X̂ = X̂drifted ⊕ D̂ and K̂ = KeyDeriv(X̂).
4) If K̂ = K then the prover performs the following actions.

(a) Add the error pattern Ẽ⊕R to the list L. If necessary,
the oldest entry in L is discarded to make place.
(b) If L contains Nmax entries, check if there are bit
positions that are ‘1’ in most of the entries. If so, construct
an error pattern e ∈ {0, 1}n consisting of these positions,
replace D̂ by D̂ ⊕ e, and replace the helper data W̃ by
Syn(X̂drifted ⊕ e). Xor all entries in L with e.

B. Privacy of the proposed protocol

We have Y ′ = X⊕D⊕N⊕R, where N is short-timescale
BAC noise, and (in case of correct reconstruction of X) we
have X̂drifted = X ⊕ D̂. This gives

Ẽ = Y ′ ⊕ X̂drifted = (D ⊕ D̂)⊕N ⊕R. (14)

Thus, the error pattern Ẽ observed by the adversary is a
combination of (i) Z-channel-compensated (and hence sym-
metric) short-timescale noise N ⊕ R, and (ii) a small long-
timescale component D ⊕ D̂ which vanishes if the estimator
D̂ is accurate.

Given accurate D̂, there is no long-timescale structure to
be observed in Ẽ. Furthermore, the symmetry of the noise
N ⊕R (as opposed to N ) guarantees that the adversary learns
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Fig. 7. Accuracy of the approximated drift vector D̂ compared to the
actual drift vector D, given as fractional Hamming distances. The actual
drift D is based on 20 reconstruction measurements, taken at time periods
t1 & t2. Fractional Hamming distances are given as mean values over 40
PUF instances.

nothing about the data Xdrifted. Thus, both privacy aspects are
solved.

We checked the accuracy of D̂ compared to D, by sim-
ulating the proposed protocol based on the same data that
was used for evaluating the systematic drift in Section IV-B.
Figure 7 shows the fractional Hamming distance between D̂
and D as a function of Nmax/20 for various PUF types at
time periods t1 and t2. The listed values are averages of
40 individual PUF instances. As expected, with increasing
Nmax, the accuracy of D̂ improves up to the point where
the entire data set is considered (Nmax = 20), resulting in
D̂ ≈ D, i.e., a fractional Hamming distance close to zero. (Not
exactly zero due to quantisation noise.) The results show that
D̂ deviates only by 2% from the actual drift in the worst case
(considering only two measurements) and thus demonstrate
that the approximated drift D̂ is accurate enough in order to
mask the long-timescale drift.

C. Security of the proposed protocol

As mentioned above, an adversary who observes Ẽ learns
nothing about Xdrifted; this is the case because of the Z-
channel insertion just as in Section III-B. However, in the new
protocol we have to store additional public data D̂,L together
with W̃ in the NV memory. We study how the security is
affected by this additional information.

Theorem 10: An adversary who observes the prover’s NV
memory has the following amount of information about X ,

I(X; W̃ D̂L) = I(X;W ) + [H(W̃ |D̂)− H(W )] (15)
+I(D̂;X) + [H(L|D̂W̃ )− H(L|Xdrifted)].

In Theorem 10, the term I(X;W ) is the ‘old’ result, for
the ordinary code offset method. The corresponding proof can
be found in the Appendix.

• The I(D̂;X) is nonzero if the drift is asymmetric. As
mentioned in Section IV-C, a nonzero leakage here is

not a severe problem and can be dealt with by properly
choosing the parameters in the function KeyDeriv.

• The term H(W̃ |D̂)−H(W ) is small, since W̃ equals the
original helper data W compensated by the drift.

• The term H(L|D̂W̃ )−H(L|Xdrifted) is negligible, since
the noise stored in L is symmetric and hence data-
independent.

Note that our scheme has moved the leakage term I(X; D̂)
from the eavesdropping domain to the NV memory domain.

VI. CONCLUSION

We addressed two leakage issues of the Reverse Fuzzy
Extractor protocol. In particular (a) data-dependent short-
timescale noise poses a severe security problem; (b) there
is privacy-sensitive leakage if the long-timescale PUF drift
depends on the PUF biases themselves.

Our study of experimental data confirms the existence of
asymmetric (data-dependent) drift in several types of PUF.

We propose two modifications to the Reverse FE scheme
which together eliminate both leakage problems, (i) additional
Z-channel noise that turns a BAC into a BSC; (ii) drift
compensation by storing the estimated drift and recent error
patterns in the prover device.

The first modification turns the noisy channel X → X ′

into an even more noisy channel X → X ′′. Fig. 4 summarises
the capacity loss, which seems acceptable in practical cases.

The second modification ‘moves’ the drift problem from
the eavesdropping domain to the helper data domain: In the
new scheme, an adversary who gets access to the data stored
in the NV memory of the prover device will learn as much as
an eavesdropper did in the original reverse FE scheme. On the
other hand, an attacker who only eavesdrops will not be able
to identify the PUF device.
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APPENDIX

A. Proof of Lemma 1

Since all bits are independent we consider a single bit i. We
have Pr[Ei = 1] = Pr[Ei = 1|Xi = 0]Pr[Xi = 0] + Pr[Ei =

1|Xi = 1]Pr[Xi = 1] = (1−p)α+pβ. Thus, H(Ei) = h
(

(1−

p)α + pβ
)

. Next we have H(Ei|Xi) = Pr[Xi = 0]h(α) +

Pr[Xi = 1]h(β). We obtain I(Xi;Ei) = H(Ei)−H(Xi|Ei) =

h
(

(1−p)α+pβ
)
− [(1−p)h(α)+ph(β)]. Multiplying by the

number of bits n gives (2). Eq. (3) follows from H(X|E) =
H(X)− I(X;E).



B. Proof of Theorem 2

The bit error probabilities for the X → X ′′ channel are

Pr[X ′′ = 1|X = 0] = α(1− βZ) + (1− α)αZ

Pr[X ′′ = 0|X = 1] = β(1− αZ) + (1− β)βZ

(16)

We want to impose the constraint that these probabilities are
equal and then mimimize the bit error rate under this con-
straint. We use Lagrange multipliers formalism. We introduce
the notation αZ = x2 and βZ = y2, thus enforcing αZ, βZ ≥ 0.
The Lagrangian for this minimization problem is

L(x,y,λ)=α(1−y2)+(1−α)x2+λ
[
α(1−y2)+(1−α)x2

−β(1−x2)−(1−β)y2
]

(17)

where λ is the Lagrange constraint multiplier. Note that the
quantity to be minimized is the first expression in (16); we
could equally well have taken the second expression, or some
combination. Setting the derivatives of the Lagrangian to zero
gives

∂L

∂x
= 2x(1− α) + λ

[
2x(1− α) + 2xβ] = 0

∂L

∂y
= −2yα+ λ

[
− 2yα− 2y(1− β)] = 0 (18)

∂L

∂λ
= α(1−y2)+(1−α)x2−β(1−x2)−(1−β)y2 =0.

The first two lines of (18) simplify to

x = 0 or λ =
α− 1

1− α+ β

y = 0 or λ =
−α

1 + α− β

(19)

This leaves two possible solutions of the whole set of equa-
tions,

αZ =
β − α

1 + β − α
, βZ = 0, if β ≥ α

βZ =
α− β

1 + α− β
, αZ = 0, if α ≥ β

Substituting αZ and βZ into (16) yields ε.

C. Proof of Lemma 5

In bit i we have the following conditional probabilities,

Prob[D1,i 6= D2,i|X1 = x1, X2 = x2]

=

{
2αd(1− αd) if x1,i = x2,i = 0
2βd(1− βd) if x1,i = x2,i = 1

αd(1− βd) + (1− αd)βd if x1,i 6= x2,i
(20)

We compute Puneq
def
= Prob[D1,i 6= D2,i]

= Ex1x2
Prob[D1,i 6= D2,i|X1 = x1, X2 = x2]

= 1
4

∑
x1,ix2,i

Prob[D1,i 6= D2,i|X1 = x1, X2 = x2].
Performing the summation and then simplifying the result
yields (10). The drift in each bit position is independent;
therefore the Hamming weight is the result of n independent
events, each of which increments the Hamming weight with
probability Puneq.

D. Proof of Theorem 7

I(E ;D) = H(E)− H(E|D) (21)
= H(D +N )− H(N ) (22)
= H(D +Nav, D +N )− H(Nav,N ) (23)
= H(D +Nav) + H(D +N|D +Nav)

−[H(Nav) + H(N|Nav)] (24)
= H(D +Nav) + H(N|Nav)

−[H(Nav) + H(N|Nav)] (25)
= H(D ⊕Nav)− H(Nav). (26)

E. Proof of Theorem 8

We have

H(X|E) ≥ H(X|DN ) (27)
= H(X|D) + H(N|XD)− H(N|D) (28)
= H(X|D) + H(N|Xdrifted)− H(N|D) (29)
≥ H(X|D) + H(N|Xdrifted)− H(N ) (30)
= H(X|D)− I(N ;Xdrifted). (31)

In (27) we used that D and N together contain more infor-
mation than E . In (29) we used that N depends on X and D
only through X ⊕D. Finally we take H(X) minus the whole
inequality (27,31).

F. Proof of Theorem 9

H(X|WE) = H(X|W ) + H(E|XW )− H(E|W )

= H(X|W ) + H(E|X)− H(E|W ) (32)
≥ H(X|W ) + H(E|X)− H(E) (33)
= H(X|W )− I(E ;X). (34)

In (32) we used the fact that W is a function of X . Finally
we take H(X) minus the whole inequality derived above.

G. Proof of Theorem 10

We write

H(X|W̃ D̂L) = H(XW̃D̂L)− H(W̃ D̂L). (35)

Applying the chain rule again we expand these terms as

H(XW̃D̂L) = H(X) + H(W̃ D̂L|X)

= H(X|W ) + H(W ) (36)
+H(D̂|X) + H(W̃ |D̂X)︸ ︷︷ ︸

0

+H(L|W̃ D̂X)︸ ︷︷ ︸
H(L|X̂drifted)

and

H(W̃ D̂L) = H(D̂) + H(W̃ |D̂) + H(L|D̂W̃ ). (37)

In (36) we have used the fact that L is noise on Xdrifted and
therefore can depend at most on Xdrifted itself. We substitute
(36) and (37) into (35).
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