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Abstract

In this work, we seek to extend the capabilities of the “core obfuscator” from the work of Garg,
Gentry, Halevi, Raykova, Sahai, and Waters (FOCS 2013), and all subsequent works constructing
general-purpose obfuscators. This core obfuscator builds upon approximate multilinear maps,
and applies to matrix branching programs. All previous works, however, limited the applicability
of such core obfuscators to matrix branching programs where each matrix was of full rank. As
we illustrate by example, this limitation is quite problematic, and intuitively limits the core
obfuscator to obfuscating matrix branching programs that cannot “forget.” At a technical level,
this limitation arises in previous work because all previous work relies on Kilian’s statistical
simulation theorem, which is false when applied to matrices not of full rank.

In our work, we build the first core obfuscator that can apply to matrix branching programs
where matrices can be of arbitrary rank. We prove security of our obfuscator in the generic
multilinear model, demonstrating a new proof technique that bypasses Kilian’s statistical
simulation theorem. Furthermore, our obfuscator achieves two other notable advances over
previous work:
• Our construction allows for non-square matrices of arbitrary dimensions. We also show

that this flexibility yields concrete efficiency gains.
• Our construction allows for a single obfuscation to yield multiple bits of output. All

previous work yielded only one bit of output.
Our work leads to significant efficiency gains for obfuscation. Furthermore, our work can be
applied to achieve efficiency gains even in applications not directly using obfuscation.
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1 Introduction
Obfuscation is a tool that allows cryptographers to achieve a powerful new capability: software that
can keep a secret. That is, consider a piece of software that makes use of a secret to perform its
computation. Then obfuscation allows us to transform this software so that it can be run publicly:
anyone can obtain the full code of the program, run it, and see its outputs, but no one can learn
anything about the embedded secret, beyond what can be learned by examining the outputs of the
program. At least as far back as the work of Diffie and Hellman in 1975 [DH76] — who suggested
using general-purpose obfuscation to convert private-key encryption to public-key encryption —
researchers have contemplated applications of general-purpose obfuscation. However, until 2013,
even heuristic constructions for secure general-purpose obfuscation were not known.

This changed with the work of Garg, Gentry, Halevi, Raykova, Sahai, and Waters [GGH+13b],
which gave the first candidate cryptographic construction for a general-purpose obfuscator. Formal
exploration of the applications of general-purpose obfuscation began shortly thereafter [GGH+13b,
SW14]. Since then, the floodgates have opened, and many remarkable applications of general-
purpose obfuscation have been explored (see the introduction and references of [AGIS14] for a list
of recent works).

At the heart of the construction of [GGH+13b], and all subsequent works constructing obfusca-
tors [BR14, BGK+14, PST14a, GLSW14, AGIS14], is a “core obfuscator” for obfuscating programs
represented as certain classes of matrix branching programs. All proposed core obfuscators have
been built upon Multilinear Jigsaw Puzzles [GGH+13b], a relaxation of approximate multilinear
maps [GGH13a, CLT13]. In general, attempting to apply a core obfuscation method directly to
circuits requires overhead that grows exponentially with depth. This occurs for two reasons: First,
and perhaps most problematically1, the level of multilinearity required by known core obfuscators
grows exponentially with the depth of the circuit being obfuscated, and known implementations
of Multilinear Jigsaw Puzzles have complexity that grows polynomially with the level of multilin-
earity [GGH13a, CLT13]. Furthermore, the only known method for converting circuits to full-rank
matrix branching programs requires the size of the representation to grow exponentially with the
depth of the circuit [Bar86].

The work of [GGH+13b] shows that, nevertheless, such a core obfuscator can be used to
obfuscate general (high depth) circuits with a polynomial overhead through a “bootstrapping”
procedure. However, attempting such bootstrapping for obfuscation [GGH+13b, GIS+10, App13]
based on existing core obfuscators encounters overheads that are asymptotically polynomial but
easily reach above 2100. Such large overheads primarily arise due to the depth of the circuit that
needs to be obfuscated by the core obfuscator (even though asymptotically, this circuit has depth
logarithmic in the security parameter). Indeed, similarly large overheads arise when attempting to
apply the core obfuscator to other programs represented in circuit form, since few interesting and
non-learnable families of circuits have depth below, say, 50.

This suggests that perhaps representing programs as circuits may not be the best approach
toward efficient obfuscation. Indeed, if we can expand the classes of program representations that are
amenable to direct obfuscation by our core obfuscator, then this may allow for alternative methods of
bootstrapping that yield substantially better efficiency (see also [AGIS14] for a speculative discussion
of one such approach). Thus, improving the capabilities of the core obfuscator is a critical goal in

1We make special note of this because even if in the future a core obfuscator that works directly for circuits is
found, unless it can avoid multilinearity that is exponential in the depth of the circuit, this obstacle will remain.
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obfuscation research.
Aside from the efficiency motivations outlined above (see also applications below), another goal

is also of independent interest: By improving the core obfuscator, we seek to understand what
general mathematical representations of computations are amenable to secure obfuscation. This
goal is the focus of our paper.

Our Results. In our work, we expand the class of matrix branching programs that can be
directly obfuscated to any matrix branching program satisfying a mild natural condition called
non-shortcutting2. Specifically, we present a core obfuscator that directly obfuscates such branching
programs. This is a substantial generalization compared to existing core obfuscators [GGH+13b,
BR14, BGK+14, PST14a, GLSW14, AGIS14], where the program was restricted to consist of square
and invertible matrices. As we elaborate below, this limitation of previous work is quite restrictive.
Furthermore, our work achieves two other advances over previous work:

• Our construction allows for sequences of non-square matrices of arbitrary compatible dimen-
sions. We also show that this flexibility yields concrete efficiency gains (see Section 3 for
details).

• Our construction allows for a single obfuscation to yield multiple bits of output contained in
different entries in the output matrix M . This is in contrast to previous work that yielded
only one bit of output, and required many parallel obfuscations to obtain multiple bits.

We then show how to exploit our results to yield efficiency improvements over previous obfusca-
tions of both Boolean formulas and layered graphical branching programs. These improvements are
summarized in Tables 1 and 2.

Furthermore, our analysis can also be used in settings where obfuscation is not directly used,
but where low-rank matrix branching programs are considered in the context of multilinear maps.
Indeed, subsequent to our work, our theorems were used by [BLR+14] to yield substantial efficiency
improvements in the context of multi-input functional encryption and semantically secure order-
revealing encryption.

To obtain our results for Boolean formulas, in Section 3, we give a simple conversion from
formulas to (low-rank) matrix branching programs that achieves qualitatively better parameters
than was previously known [Cle91]. This conversion may be of independent interest.

Following [BGK+14, AGIS14], we analyze our core obfuscator in the generic multilinear model,
and show that it (unconditionally) achieves the strong Virtual Black-Box (VBB) definition of security
in this model. We refer the reader to [BGK+14] for discussions concerning the generic multilinear
model and security results in this model. (See also [PST14b] for methods for converting generic
security proofs like ours into proofs of indistinguishability obfuscation security based on explicit,
strong, families of assumptions over multilinear maps.) We leave the question of adapting our
techniques to yield a proof of indistinguishability obfuscation security based on simple assumptions,
as was recently done by [GLSW14], as an important open question.

2Non-shortcutting is defined in Section 2.2. Intuitively, this condition requires that no intermediate product of
matrices yields the all-zero matrix.
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Table 1: Comparing the efficiency of obfuscation schemes for keyed formulas over different bases.
We use Õ to suppress the multiplicative polynomial dependence on the security parameter and
other poly-logarithmic terms and Oε to suppress multiplicative constants which depend on ε. Here
s is the formula size, ε > 0 is an arbitrarily small constant, and φ is a constant such that for κ-level
multilinear encodings, the size of each encoding is Õ(κφ). The current best known constructions
have φ = 2. Evaluation time is given in the form a · b, where a denotes the number of multilinear
operations (up to lower order additive terms) and b denotes the time for carrying out one multilinear
operation.

Work Levels of Size of Obfuscation/
Multilinearity Evaluation Time

[AGIS14]
s 4s3 · Õ(sφ)(previous work)

{and,not}-basis
[AGIS14] + [Gie01]

O(s1+ε) O(2(21/ε)s(1+ε)) · Õ(s(1+ε)φ)(previous work)
{and,xor,not}-basis
This work (direct)

s 1
4s log2(s)2 · Õ(sφ){and,xor,not}-basis

Table 2: Comparing the efficiency of obfuscation schemes for keyed layered graphical branching
programs, as defined in Section 2.2. For a layered graphical branching program, ` denotes the length
of the branching program, and w is the width. Other notation is as in Table 1.

Work Levels of Size of Obfuscation/
Multilinearity Evaluation Time

[AGIS14] (previous work) ` 4`3w2 · Õ(`φ)

This work ` `w2 · Õ(`φ)

The rank constraint in matrix branching programs. Let us begin by examining the kinds of
matrix branching programs that current core obfuscators can handle, and see why the limitation to
full-rank square matrices presents a bottleneck. Recall that a matrix branching program [GGH+13b]
is defined by a sequence of pairs of full-rank square matrices (B1,0,B1,1), . . . , (B`,0,B`,1). Then this
program is evaluated on an input x ∈ {0, 1}n by computing the following matrix product:

M =
∏
i∈[`]

Bi,xi mod n

In the original formulation of matrix branching programs [GGH+13b], the resulting matrix M
was required to be one of two fixed matrices M0,M1, with M = Mb indicating that the output
of the program is b. In the recent work of [AGIS14], the notion of a relaxed matrix branching
program was defined, which allowed the product M to be arbitrary, but where the output of the
computation would be encoded by whether a particular entry in the matrix M is zero or non-zero.
As demonstrated in [AGIS14], this relaxation already allows for much more efficient obfuscation of
natural functionalities (such as obfuscating a Hamming ball) than would arise from attempting to
obfuscate a circuit for the same functionality.
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As we look deeper into how to represent natural functionalities as relaxed matrix branching pro-
grams, however, we immediately see that the full-rank requirement imposes problematic constraints:
As a running example, consider the simple functionality of an exact match, where a program Pw, on
input x ∈ {0, 1}n, checks if x = w and if so outputs 1, otherwise outputs 0. There is a very simple
representation of this program as a branching program: We think of a layered graph with n layers,
where each layer i has two nodes: One node Gi represents the notion that all letters so far have
matched w, and another node Fi represents that at least some letter has not matched. In layer i, if
the next input bit is wi, then node Gi should connect to Gi+1 and Fi should connect to Fi+1. On
the other hand if the next input bit is w̄i, then both nodes Gi and Fi should connect to Fi+1. By
associating with each layer the (bipartite) adjacency matrix of layer i and layer i+ 1, this naturally
yields a matrix branching program with square matrices of size 2 by 2.

However, there is a problem: the matrix corresponding to the case of an input bit equal to w̄i is
not full rank. Indeed, this is for a very natural reason: When we see that a particular bit does not
match, we want to “forget” everything about what state we were in until now, and just remember
that there is no possibility of a match existing from now on. The constraint that all matrices be
full-rank means that every matrix is invertible – in other words, information about what state we
were in cannot be forgotten. As the amount of state information roughly corresponds to the width
of the branching program (i.e. the number of nodes in each layer), this creates a substantial blowup
in branching program width and size. In [AGIS14], this was dealt with by increasing the size of
every matrix to the size of the entire graph, not just the portion of the graph between adjacent
layers, and adding self-loops to maintain full rank of the adjacency matrices. Is this added overhead
really necessary? More fundamentally, can we directly obfuscate programs that can “forget”?

The technical barrier – Kilian’s statistical simulation. Before we proceed to answer these
questions, let us consider the technical roots of the full-rank requirement in matrix branching
programs. In every paper constructing secure obfuscation so far [GGH+13b, BR14, BGK+14,
PST14a, GLSW14, AGIS14] and in every different model that has been considered, one theorem
has played a starring role in all security analyses: Kilian’s statistical simulation theorem [Kil88]. As
relevant here, Kilian’s theorem considers the setting where we randomize each matrix as follows:

B̂i,b = R−1
i−1BRi

where Ri are random invertible matrices for i ∈ [` − 1], and identity otherwise. Note that this
randomization does not affect the iterated product considered above. Then, for any particular
input x, if the iterated product is M , Kilian’s theorem states that we can statistically simulate
the collection of matrices { ̂Bi,ximod n

}i∈[`] knowing only M but with no knowledge of the original
matrices {Bi,b}.

Kilian’s statistical simulation theorem has been a keystone in all previous analyses of obfuscation:
in one way or another, all previous security analyses for obfuscation methods have found some
way to isolate the adversary’s view of the obfuscation to a single input. Once this isolation was
accomplished, Kilian’s theorem provided the assurance that the adversary’s view of the obfuscation,
as it related to this single input, only encoded information about the output of the computation
within M , and nothing more.

However, note that Kilian’s statistical simulation theorem is false when applied to matrix
branching programs without the full-rank guarantee. To see a simple and natural example, again
consider the case of the exact match matrix branching program without full-rank matrices outlined
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above. Now consider an input x(i) that differs from w only on a single bit position i. In this
case, among the matrices B(i)

j = B
j,x

(i)
j

relevant to the input x, only B(i)
i = B

i,x
(i)
i

is not full rank.

Therefore, for any i, among the randomized matrices B̂(i)
j = B̂

i,x
(i)
i

, only B̂(i)
i is not full rank.

However, as we vary i across all possible values, the output is the same — none of these inputs x(i)

are an exact match for w. Thus, statistical simulation is impossible knowing only the output, since
the actual distribution of matrices depends on i, but the output does not.

If we are to obtain a method for obfuscation that works with low-rank matrices, then we would
need to avoid Kilian’s theorem entirely, deviating from all previous analyses of obfuscation.

Our Techniques. Our key technical challenge is to replace the use of Kilian’s theorem [Kil88]
in the previous work of [BGK+14, AGIS14]. As noted above, it is not possible to simply extend
Kilian’s theorem to our setting (as was done in [AGIS14] for relaxed matrix branching programs),
because Kilian’s theorem is false when matrices can have arbitrary ranks. Nevertheless, even though
we will not rely on Kilian’s simulation theorem, we will use a matrix randomization scheme that is
essentially3 identical to the one outlined above.

To obtain our result, we must directly analyze what kinds of polynomials an adversary can
generate using multilinear operations. Before continuing, we remark that our analysis at this stage
will not be efficient. Nevertheless, this analysis will allow us to obtain an efficient VBB simulator in
the generic multilinear model.

Roughly speaking, we can model the multilinear setting as follows: There is a universe set [`].
For every subset S ⊂ [`], we have a copy of Zq that we name GS . Then, the adversary has access to
the following operations:

• Add: GS ×GS → GS , for every subset S ⊂ [`].

• Mult: GS ×GT → GS∪T , for every pair of disjoint subsets S, T ⊂ [`] : S ∩ T = ∅.

• ZeroTest: G[`] → {True,False}.

This is sometimes called the “asymmetric” multilinear setting, is natively supported by known
instantiations of Multilinear Jigsaw Puzzles [GGH13a, CLT13], and was used in the previous works
of [BGK+14, AGIS14]. Observe that in this setting, if the adversary is given a matrix entirely
encoded in G{1}, for example, then it will not be possible for the adversary to compute the rank of
this matrix. This is because no two entries within this matrix can be multiplied together, since they
both reside in the same group G{1}, and multiplication is only possible across elements of groups
corresponding to disjoint index sets. This is essential: if the adversary could compute ranks, then
our goal would be impossible.

Our analysis proceeds by considering the most general polynomial that the adversary can
construct in G[`]. More precisely, we consider every possible monomial m that can exist over the
matrix entries that are given to the adversary. For each such monomial m, we associate with it
a coefficient αm that the adversary could potentially choose arbitrarily. Finally, the adversary’s
polynomial is a giant sum p = Σmαmm over all these potential monomials. We first observe that

3Because we consider rectangular matrices in general, we do need to modify this slightly. Also, for technical
simplification, we consider the adjugate matrix rather than the inverse. However, for the purposes of this technical
overview, these variations can be ignored.
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the adversary can only extract useful information from this polynomial by passing it to ZeroTest,
thereby determining if it is zero or not. However, recall that the matrices {Ri,b} are randomly
chosen during obfuscation. Therefore, by the Schwartz-Zippel lemma, we know that unless the
adversary’s polynomial p is the zero polynomial over the entries of the Ri,b matrices, ZeroTest
will declare the polynomial to be nonzero with overwhelming probability. So, we restrict ourselves
to analyzing adversarial polynomials that end up being the zero polynomial over the entries of the
Ri,b matrices.

Our analysis proceeds inductively. At its heart, in the inductive step, we consider what a single
Ri,b matrix and its inverse R−1

i,b can contribute to the adversary’s polynomial. At a high level, we
divide the monomials m into two categories: First, we consider all those monomials that do not arise
from standard matrix multiplication. By the examining the structure of the R−1

i,b matrix together
with the constraint that the adversary’s polynomial must be identically zero over the entries of
Ri,b, we are able to conclude that these monomials must have zero coefficients: αm = 0, because
otherwise this monomial’s contributions over the entries of Ri,b would survive and the adversary’s
polynomial cannot be identically zero over the entries of Ri,b. Next, we do the same for those
monomials that do arise in standard matrix multiplication; however this time we instead conclude
that the coefficients of these monomials must be the same: that is, αm = αm′ for monomials m and
m′ that both arise in matrix multiplication.

As a result, inductively, we can conclude that any adversarial polynomial that is identically
zero over the entries of the {Ri,b} matrices must in fact be the result of an honest iterated matrix
multiplication. In other words, such an adversarial polynomial can be simulated knowing only the
outcome of the iterated matrix multiplication, as desired. Even though this analysis is not efficient,
as mentioned above, we are still able to use it to yield an efficient VBB simulator in the generic
multilinear model. At a high level, this is done by using the Schwartz-Zippel lemma to “weed out”
most adversarial polynomials without needing to simulate their structure at all.

Our analysis is detailed in Section 5, and its use to obtain a VBB simulator is sketched in
Section 6 and further detailed in Section 7.

2 Preliminaries

2.1 Obfuscation

We now give the definition of virtual black-box obfuscation in an idealized model, identical to the
model studied in Barak et al. [BGK+14] and Ananth et al. [AGIS14], with one exception: we also
consider giving both the adversary and simulator an auxiliary input determined by the program.

Definition 2.1 (“Virtual Black-Box" Obfuscation in an M-idealized model). For a (possibly
randomized) oracleM, a circuit class

{
C`
}
`∈N, and an efficiently computable deterministic function

Aux` : C` → {0, 1}t` , we say that a uniform PPT oracle machine O is a “Virtual Black-Box"
Obfuscator for

{
C`
}
`∈N in theM-idealized model with respect to auxiliary information Aux`, if the

following conditions are satisfied:

• Functionality: For every ` ∈ N, every C ∈ C`, every input x to C, and for every possible coins
forM:

Pr[(OM(C))(x) 6= C(x)] ≤ negl(|C|) ,

where the probability is over the coins of C.
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• Polynomial Slowdown: there exist a polynomial p such that for every ` ∈ N and every C ∈ C`,
we have that |OM(C)| ≤ p(|C|).

• Virtual Black-Box: for every PPT adversary A there exist a PPT simulator Sim, and a
negligible function µ such that for all PPT distinguishers D, for every ` ∈ N and every C ∈ C`:∣∣∣Pr

[
D
(
AM

(
OM(C),Aux`(C)

) )
= 1,

]
− Pr

[
D
(

SimC
(
1|C|,Aux`(C)

) )
= 1

]∣∣∣ ≤ µ(|C|) ,

where the probabilities are over the coins of D,A,Sim,O andM

Note that in this model, both the obfuscator and the evaluator have access to the oracleM but the
function family that is being obfuscated does not have access toM.

2.2 Branching Programs

We now define branching programs. We will actually define three notions of branching programs.
The first, layered (graphical) branching programs, corresponds to the standard notion of branching
programs found in the literature. Second, we define the notion of a matrix branching program,
which can be seen as a generalization of graphical branching programs. Finally, we define a matrix
branching program sampler, which is again a generalization of matrix branching programs.

Layered Graphical Branching Programs. Our notion of a layered graphical branching pro-
gram corresponds to the traditional notion of branching programs.

Definition 2.2. A (graphical) branching program is a finite directed acyclic graph with two special
nodes, a source node and a sink node, also referred to as an “accept” node. Each non-sink node is
labeled with a variable xi and can have arbitrary out-degree. Each of the out-edges is either labeled
with xi = 0 or xi = 1. The sink node has out-degree 0. We denote a branching program by BP and
denote the restriction of the branching program consistent with input x by BP |x. BP accepts an
input x ∈ {0, 1}n if and only if there is at least one path from the source node to the accept node in
BP |x. The length ` of BP is the maximum length of any such path in the graph. The node size t
of the branching program is the total number of nodes in the graph.

A layered (graphical) branching program is a branching program such that nodes can be parti-
tioned into a sequence of layers L0 through L` where all the nodes in Li−1 have only outgoing edges
to Li, and all of the outgoing edges from Li−1 are labeled with the same input variable, denoted
xinp(i) where inp : [`] → [n]. We can assume without loss of generality that L0 contains only the
source node and L` contains only the sink node. The length of a layered branching program is `,
and the shape (d0, . . . , d`) counts the number of nodes in each layer: di = |Li|. Finally, the width w
is the maximum di. The node size t of BP is still the total number of nodes in the graph,

∑`
i=0 di.

We also define an additional quantity, the total size u is the sum of the products of sizes of adjacent
layers

∏`
i=1 di−1di. Consider a slight modification to BP where there is an edge from every node in

Li to every node in Li+1, and the edges are labeled with either xi = 0, xi = 1, xi = 0, 1 (representing
that this edge is always used), or xi = ⊥ (representing that this edge is never used). Then u counts
the total number of edges in BP , and therefore represents the actual size of the description of BP .
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Matrix Branching Programs. Note that our definition of a matrix branching program will
depart in several ways from the standard definitions of matrix branching programs in the literature.
At a high level, a matrix branching program consists of a sequence of pairs of matrices (Bi,0, Bi,1).
To evaluate the branching program on an input x, select one matrix from each pair based on the
input, and multiply all of the matrices together. The matrices are shaped so that the products
are valid and the end result is a scalar; otherwise, there are no restrictions on the shapes of the
matrices. The branching program evaluates to 0 if and only if the product of all the matrices is 0,
and otherwise it evaluates to 1. We can also easily generalize to multi-bit outputs by having the
final matrix product be an actual matrix, and test each component independently for zero.

Definition 2.3. A generalized matrix branching program of length ` and shape (d0, d1, . . . , d`) ∈
(Z+)`+1 for n-bit inputs is given by a sequence

BP =
(
inp, (Bi,0,Bi,1)i∈[`]

)
where Bi,b ∈ Zdi−1×di are di−1 × di matrices, and inp : [`]→ [n] is the evaluation function of BP .
BP defines the following three functions:

• BParith : {0, 1}n → Zd0×d` computed as

BParith(x) =
n∏
i=1

Bi,xinp(i)

• BPbool : {0, 1}n → {0, 1}d0×d` computed as

BPbool(x)j,k =
{

0 if BParith(x)j,k = 0
1 if BParith(x)j,k 6= 0

• BPbool(q) : {0, 1}n → {0, 1}d0×d` computed as

BPbool(q)(x)j,k =
{

0 if BParith(x)j,k = 0 mod q

1 if BParith(x)j,k 6= 0 mod q

A matrix branching program is t-bounded if |BParith(x)j,k| ≤ t for all x, j, k. In other words, t
bounds the possible output values of BParith.

We define the width w = maxi∈[0,`] di, node size t =
∑`
i=0 di, and total size u =

∑`
i=1 di−1di.

Fact 2.4. Any graphical layered branching program BP of length ` and shape (d0, . . . , d`) can be
converted into a generalized matrix branching program BP ′ of length `, shape (d0, . . . , d`), and bound
t =

∏`−1
i=1 di ≤ w`−1 such that BP ′bool(x) = BP (x) for all x.

For our obfuscator, similar to existing works, we will need to actually consider dual-input
generalized matrix branching programs:

Definition 2.5. A dual-input generalized matrix branching program of length ` and shape
(d0, d1, . . . , d`) ∈ (Z+)`+1 for n-bit inputs is given by a sequence

BP =
(
inp0, inp1, {Bi,b0,b1}i∈[`],b0,b1∈{0,1}

)
where Bi,b0,b1 ∈ Zdi−1×di are di−1 × di matrices, and inp : [`]→ [n] is the evaluation function of BP .
BP defines the following three functions:
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• BParith : {0, 1}n → Zd0×d` computed as

BParith(x) =
n∏
i=1

Bi,xinp0(i),xinp1(i)

• BPbool : {0, 1}n → {0, 1}d0×d` computed as

BPbool(x)j,k =
{

0 if BParith(x)j,k = 0
1 if BParith(x)j,k 6= 0

• BPbool(q) : {0, 1}n → {0, 1}d0×d` computed as

BPbool(q)(x)j,k =
{

0 if BParith(x)j,k = 0 mod q

1 if BParith(x)j,k 6= 0 mod q

A matrix branching program is t-bounded if |BParith(x)j,k| ≤ t for all x, j, k.

We note that is it easy to transform any normal matrix branching program into a dual input
matrix branching program of the same length, shape, and bound: set inp0 = inp1 = inp, and
Bi,b,b = Bi,b (the values Bi,b,1−b can be set arbitrarily).

Unlike previous obfuscation constructions [GGH+13b, BR13, BGK+14, PST14b, AGIS14], we
allow the matrices in the branching program to be singular, and even to be rectangular. This gives
us the ability to have the product matrix have any desired shape — in particular, it can be a scalar
for single-bit outputs. Thus, we do not need the “bookends” used in previous works to turn the
matrix product into a scalar.

We will impose one requirement on matrix branching program, called non-shortcutting, which
will be important in the security analysis of our obfuscator. We say that a branching program
shortcuts on an input x if there is an interval [j, k] ( [`] strictly smaller than [`] such that the
sub-product

k∏
i=j

Bi,xinp0(i),xinp1(i) = 0 .

In other words, for the input x, it is possible to determine that BP (x)j,k = 0 prematurely without
evaluating the entire product. We say that a branching program is non-shortcutting if it does not
shortcut on any x:

Definition 2.6. A dual-input generalized matrix branching program is non-shortcutting if, for any
input x, and any j ∈ [d0] and any k ∈ [d`], the following holds:

eTj ·
(
`−1∏
i=1

Bi,xinp0(i),xinp1(i)

)
6= 0d`−1 and

(∏̀
i=2

Bi,xinp0(i),xinp1(i)

)
· ek 6= 0d1

where ej and ek are the jth and kth standard basis vectors of the correct dimension. Equivalently,
each row of the product

∏`−1
i=1 Bi,xinp0(i),xinp1(i) and each column of the product

∏`
i=2 Bi,xinp0(i),xinp1(i)

has at least one non-zero entry.
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A similar definition holds for regular (non-dual-input) branching programs.
We will see in the next section that it is easy to convert any matrix branching program into a

non-shortcutting branching program, and only increasing its width by 2.
A final property of matrix branching programs, which we call exactness, says that the outputs

of BParith and BPbool are the same on all inputs:.
Definition 2.7. A matrix branching program BP is exact if, for all inputs x, it holds that

BParith(x) ∈ {0, 1}d0×d`

In other words,
BParith(x) = BPbool(x)

In this case, we simply write BP (x) to denote BPairth(x) = BPbool(x) = BPbool(q) for all q ≥ 2.

Matrix Branching Program Samplers. We now define a matrix branching program sampler
(MBPS). Roughly, an MBPS is a procedure that takes as input a modulus q, and outputs a matrix
branching program BP . However, we will be interested mainly in the function BPbool(q).
Definition 2.8. A matrix branching program sampler (MBPS) is a possibly randomized procedure
BPS that takes as input a modulus q satisfying q > t for some bound t. It outputs a matrix
branching program.
Fact 2.9. Any matrix branching program BP with bound t can trivially be converted into a
matrix branching program sampler BPS with the same bound t, such that if BP ′ ← BPS(q), then
BP ′bool(q)(x) = BPbool(x).

2.3 The Ideal Graded Encoding Model

In this section, we describe the ideal graded encoding model. This section has been taken almost
verbatim from [BGK+14] and [AGIS14]. All parties have access to an oracleM, implementing an
ideal graded encoding. The oracleM implements an idealized and simplified version of the graded
encoding schemes from [GGH13a]. The parties are provided with encodings of various elements at
different levels. They are allowed to perform arithmetic operations of addition/multiplication and
testing equality to zero as long as they respect the constraints of the multilinear setting. We start
by defining an algebra over the elements.
Definition 2.10. Given a ring R and a universe set U, an element is a pair (α, S) where α ∈ R is
the value of the element and S ⊆ U is the index of the element. Given an element e we denote by
α(e) the value of the element, and we denote by S(e) the index of the element. We also define the
following binary operations over elements:
• For two elements e1, e2 such that S(e1) = S(e2), we define e1 + e2 to be the element (α(e1) +
α(e2), S(e1)), and e1 − e2 to be the element (α(e1)− α(e2), S(e1)).

• For two elements e1, e2 such that S(e1) ∩ S(e2) = ∅, we define e1 · e2 to be the element
(α(e1) · α(e2), S(e1) ∪ S(e2)).

We will often use the notation [α]S to denote the element (α, S). Next, we describe the oracle
M. M is a stateful oracle mapping elements to “generic" representations called handles. Given
handles to elements,M allows the user to perform operations on the elements. M will implement
the following interfaces:
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Initialization. M will be initialized with a ring R, a universe set U, and a list L of initial elements.
For every element e ∈ L,M generates a handle. We do not specify how the handles are generated,
but only require that the value of the handles are independent of the elements being encoded, and
that the handles are distinct (even if L contains the same element twice). M maintains a handle
table where it saves the mapping from elements to handles. M outputs the handles generated for all
the elements in L. AfterM has been initialized, all subsequent calls to the initialization interface
fail.

Algebraic operations. Given two input handles h1, h2 and an operation ◦ ∈ {+,−, ·},M first
locates the relevant elements e1, e2 in the handle table. If any of the input handles does not appear
in the handle table (that is, if the handle was not previously generated byM) the call toM fails.
If the expression e1 ◦ e2 is undefined (i.e., S(e1) 6= S(e2) for ◦ ∈ {+,−}, or S(e1) ∩ S(e2) 6= ∅ for
◦ ∈ {·}) the call fails. Otherwise,M generates a new handle for e1 ◦ e2, saves this element and the
new handle in the handle table, and returns the new handle.

Zero testing. Given an input handle h,M first locates the relevant element e in the handle table.
If h does not appear in the handle table (that is, if h was not previously generated byM) the call to
M fails. If S(e) 6= U, the call fails. Otherwise,M returns 1 if α(e) = 0, and returns 0 if α(e) 6= 0.

2.4 Straddling Set Systems

We describe the straddling set system which is same as the one considered in [BGK+14]:

Definition 2.11. A straddling set system Sn = {Si,b : i ∈ [n], b ∈ {0, 1}} with n entries over the
universe U = {1, 2, . . . , 2n− 1} is as follows:

S1,0 = {1}, S2,0 = {2, 3}, . . . , Si,0 = {2i− 2, 2i− 1}, . . . , Sn,0 = {2n− 2, 2n− 1}

S1,1 = {1, 2}, S2,1 = {3, 4}, . . . , Si,1 = {2i− 1, 2i}, . . . , Sn−1,1 = {2n− 3, 2n− 2}, Sn,1 = {2n− 1}

3 Building Low-Rank Branching Programs
In this section, we describe some procedures to be carried out on branching programs. We will use
these procedures to show how to make any branching program non-shortcutting, and how to convert
formulas into matrix branching programs.

In particular, we will describe a way to convert any formula of size s over NOT,AND,XOR gates
into an exact matrix branching program of length s+1 and maximum width dlog2(s+2)e. Our result
gives a qualitative improvement to a result of Cleve [Cle91], which achieves similar asymptotics, but
only for balanced formula, and only for formula over NOT,AND gates.

3.1 Operations on Generalized Matrix Branching Programs

We now describe several operations on generalized matrix branching programs. We will use these
operations to build our branching program for formulas.
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Transpose. Let BP =
(
inp, (Bi,0,Bi,1)i∈[`]

)
be a branching program of length ` and shape

(d0, d1, . . . , d`) ∈ (Z+)`+1. The transpose of BP , denoted BP T , is a branching program of length `
and shape (d`, . . . , d0), given by

BP T =
(

inpT ,
(
BT
`+1−i,0,BT

`+1−i,1

)
i∈[`]

)
where inpT (i) = inp(`+ 1− i). Observe that (BP T )arith/bool(x) = (BParith/bool(x))T . Note that if
BP is exact, then so is BP T .

Augment. Let BP be as above. The r-augmentation of BP is the branching program BP ′ =
Augment(BP, r) of length ` and shape (d0 + r, d1 + r, . . . , d` + r) given by

BP ′ =
(

inp,
(
B′i,0,B′i,1

)
i∈[`]

)
where B′i,b = Bi,b 0di−1×r

0r×di Ir

Observe that
BP ′arith/bool(x) = BParith/bool(x) 0d0×r

0r×d` Ir

Moreover, if BP is exact, then so is BP ′. We will define Augment(BP ) = Augment(BP, 1).

Linear Operations. Let BP be as above. Given a d′0 × d0 matrix L and a d` × d′` matrix R, we
can compute the branching program L ·BP ·R which has length `, shape (d′0, d1, . . . , d`−1, d

′
`), and

is given by

L ·BP ·R =
(

inp,
(
B′i,0,B′i,1

)
i∈[ell]

)
where B′i,b =


Bi,b if i 6= 1, `
L ·B1,b if i = 1
B`,b ·R if i = `

Observe that (L ·BP ·R)arith(x) = L · (BParith(x) ·R), and that if BP is non-shortcutting, then
L ·BP ·R is also non-shortcutting.

Merge. Let BP (0), BP (1) be two branching programs of length `(b) and shape (d(b)
0 , . . . , d

(b)
` ) for

b ∈ {0, 1} with the property that d(0)
` = d

(1)
1 . Then we can compute the merge of BP (0) and BP (1)

as
BP (0) ·BP (1) =

(
inp, (Bi,0,Bi,1)i∈[`′]

)
where `′ = `(0) + `(1), inp′ : [`(0) + `(1)]→ [n] is defined as inp(i) =

{
inp(0)(i) if i ≤ `(0)

inp(1)(i− `(0)) if i > `(1) , and

Bi,b =

B(0)
i,b if i ≤ `(0)

B(1)
i−`(0),b

if i > `(0) . Observe that
(
BP (0) ·BP (1)

)
arith

(x) = (BP (0)
arith(x)) · (BP (1)

arith(x)).
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3.2 Making any branching program non-shortcutting

Let BP be an arbitrary matrix branching program of shape (d0, d1, . . . , d`). Define

BP ′ =
(
Id0 1d0×1 0d0×1

)
· Augment(BP, 2) ·

 Id`
01×d`

11×d`


Notice that the shape of BP ′ is (d0, d1 + 2, . . . , d`−1 + 2, d`). Moreover, BP ′arith computes the

matrix

BP ′arith =
(
Id0 1d0×1 0d0×1

)
·
(
BParith 0d0×2

02×d` I2

)
·

 Id`
01×d`

11×d`


=
(
Id0 1d0×1 0d0×1

)
·

 BParith
0d`×1

1d`×1

 = BParith

Finally, we have the following:

Lemma 3.1. BP ′, as defined above, is non-shortcutting.

Proof. The branching program BP (L) = Augment(BP, 2) ·

 Id`
01×d`

11×d`

 on input x computes the

matrix  BParith(x)
0d`×1

1d`×1


which always has all columns not identically zero. Therefore the sub-product of BP (L)

arith(x) consisting
of all matrices except the left-most matrix will always have non-zero columns. We obtain BP ′

from BP (L) by left-multiplying the left-most matrix by a matrix. Therefore, the sub-product of
BP ′arith(x) that drops the left-most matrix is identical to the sub-product of BP (L)

arith(x) that drops
the left-most matrix, and therefore has non-zero columns. Similarly, we can conclude that any
sub-product that does not include the right-most matrix has non-zero rows. Therefore, the branching
program is non-shortcutting, as desired.

3.3 Arithmetic Formulas to Matrix Branching Programs

We now give our conversion of formulas to matrix branching programs. We will build a a branching
program for any arithmetic formula taking 0/1 inputs, where every gate is an arbitrary bilinear
polynomial in its inputs. That is, for any such arithmetic formula f , we build a branching program
BP such that BParith(x) = f(x). We note, however, that BPbool only reveals if f(x) is zero or not.

As a first step, we build a branching program BP such that BParith(x) = ( 1 f(x) ). The

final branching program BP ′ is given as BP ′ = BP ·
(

0
1

)
For input wires xi, the branching program is trivial: inp maps 1 to i, and B1,b = ( 1 b ).
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We now build BP recursively. Suppose f = f0OPf1 for some bilinear OP. Write y0OPy1 =
c0 + c1y0 + c2y1 + c3y0y1. We observe that

(
1 y0

)
·
(

0 c2 1
c1 c3 0

)
·

 1 0
y1 0
0 1

 · ( 0 1
1 c0

)
=
(

1 y0OPy1
)

Therefore, we can compute the branching programs BP0 and BP1 for f0 and f1, and let

BP = BP0 ·
((

0 c2 1
c1 c3 0

)
· Augment(BP T1 ) ·

(
0 1
1 c0

))

It follows that BParith(x) = ( 1 f(x) ), meaning BP computes the correct function.

Now notice that f0 and f1 are not treated symmetrically above. Indeed, the width w of the
branching program BP is equal to max(w0, 1 + w1), where w0 and w1 are the widths of BP0 and
BP1, respectively. For very unbalanced formula, this could lead the total width to be linear in the
formula size.

However, we can easily exchange the roles of f0 and f1. In particular, for a gate OP, let OPT
be the operation defined as y0OPT y1 = y0OPy1. Now we can write f = f0OPf1 or f = f1OPT f0.
In the first case, the total width becomes w = max(w0, 1 + w1), and in the second case, the width
becomes w = max(w1, 1 + w0). Therefore, we can choose which recursion to perform to arrive at
the minimum:

w = min (max(w0, 1 + w1),max(w1, 1 + w0))

For reasons that make the proof below more straightforward, we actually choose the order based
on the formula size, rather than the resulting branching program width. That is, we have s0 ≥ s1
where sb is the size of fb.

Lemma 3.2. The length `, width w, total nodes t and total size u of the branching program BP ′

satisfy

` = s+ 1
w ≤ dlog2(s+ 2)e

t ≤ d(s+ 1)(1 + 1
2 log2(s+ 2))e

u ≤ d(s+ 1)(3 + log2(s+ 2))2/4e

Proof. The fact that ` = s+ 1 follows easily from the recurrence. We will prove that the profile of
BP , (d0, . . . , ds+1), satisfies the following:

d0 = 1 ds+1 = 2
2 ≤ d1 ≤ dlog2(s+ 2)e for i ∈ [s]

s+1∑
i=0

di ≤ 1 + d(s+ 1)(1 + 1
2 log2(s+ 2))e

s∑
i=0

didi+1 ≤ d(s+ 1)(3 + log2(s+ 2))2/4e
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The final branching program BP ′ has the same profile, except that ds+1 is set to 1 instead of 2.
The lemma easy follows.

The base case where s = 0 is trivial. For a formula f = f0OPf1 of size s, let the size of the
sub-formulas f0 and f1 be s0 and s1: s0 +s1 +1 = s. Then by induction the branching programs BP0
and BP1 have profiles d(b)

0 , . . . d
(b)
sb+1 for b = 0, 1 where d(b)

0 = 1, d(b)
sb+1 = 2, and 2 ≤ d(b)

i ≤ wb where
dlog2(sb + 2)e for i ∈ [1, sb]. Moreover,

∑sb+1
i=0 d

(b)
i ≤ tb where tb = 1 + d(sb + 1)(1 + 1

2 log2(sb + 2))e
and

∑sb
i=0 d

(b)
i d

(b)
i+1 ≤ ub where ub = d(s+ 1)(3 + log2(s+ 2))2/4e

For now, suppose s0 ≥ s1. The case s1 > s0 is handled similarly. Then BP has the profile

(1, d(0)
1 , d

(0)
2 , . . . , d(0)

s0 , 2, d
(1)
s1 + 1, d(1)

s1−1 + 1, . . . , d(1)
1 + 1, 2)

If s0 > s1, the total width is at most w0 ≤ dlog2(s+ 2)e, as desired.
Now if s0 = s1, then the total width will be w0 + 1. However, s = 2s0 + 1 and so

w0 + 1 = 1 + dlog2(s0 + 2)e = dlog2(2s0 + 4)e = dlog2(s+ 3)e

At first, this bound looks worse than what we are trying to prove. However, we know that s is
odd. Suppose dlog2(s+ 3)e > dlog2(s+ 2)e. Then it must be that s+ 2 is a power of 2, and s+ 3 is
one greater. However, this is impossible since s is odd. Therefore, w ≤ dlog2(s+ 2)e in this case as
well.

The linear size t satisfies t ≤ t0 + t1 − 2 + s1. We have that

t ≤ d(s0 + 1)(1 + 1
2 log2(s0 + 2))e+ d(s1 + 1)(1 + 1

2 log2(s1 + 2))e+ s1

We can bound this expression as

t ≤ 1 + d(s0 + 1)(1 + 1
2 log2(s0 + 2)) + (s1 + 1)(1 + 1

2 log2(s1 + 2)) + s1e

Given that s = s0 + s1 + 1 and s0 ≥ s1, it is straightforward but tedious to bound this as

t ≤ 1 + d(s+ 1)(1 + 1
2 log2(s+ 2))e

Next, we observe that

u =
(
s0∑
i=0

d
(0)
i d

(0)
i+1

)
+ 2(d(1)

s1 + 1) +
(
s1−1∑
i=0

(d(1)
i + 1)(d(1)

i+1 + 1)
)

The term
(∑s0

i=0 d
(0)
i d

(0)
i+1

)
is equal to u0. The term

(∑s1−1
i=0 (d(1)

i + 1)(d(1)
i+1 + 1)

)
is equal to(∑s1−1

i=0 d
(1)
i d

(1)
i+1

)
+ 2

(∑s1
i=0 d

(1)
i

)
+ s1 − 1− d(1)

0 − d
(1)
s1 . Using the fact that d(1)

s1+1 = 2, d(1)
0 = 1 and

d
(1)
i ≥ 2 for all other i, we can therefore, we can bound

u ≤ u0 + u1 + 2t1 + s1 − 4

We can then bound this as

u ≤ d(s0 +1)(3+log2(s0 +2))2/4+(s1 +1)(3+log2(s1 +2))2/4+2(s1 +1)(1+ 1
2 log2(s1 +2))+s1 +1e

It is straightforward but tedious to bound this as u ≤ d(s+ 1)(3 + log2(s+ 2))2/4e, as desired.
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Making the branching program non-shortcutting. We can make BP ′ non-shortcutting by
increasing the profile by 2 as in Lemma 3.1. However, it turns out in this case it is sufficient to
only increase the profile by 1. This is because the branching program BP ′ always has non-zero
outputs, and we obtain BP ′ from BP by right-multiplying the rightmost matrix. Therefore, any
sub-product of BP ′ that does not contain the rightmost matrix must be a non-zero row vector (so
its one and only row is non-zero). Therefore, BP ′ is part-way to non-shortcutting already. However,
there is still a possibility that sub-products that do contain the right-most matrix will be zero.

We will fix this by augmenting the branching program, and then collapsing it back to a scalar by
modifying the left- and right-most matrices. We do this is such a way that leaving out the left-most
matrix always gives a non-zero product. Our branching program is set to

BP final =
(

1 0
)
· Augment(BP ′) ·

(
1
1

)

Lemma 3.3. BP final, as constructed above, is non-shortcutting. Moreover, it satisfies

w ≤ d1 + log2(s+ 2)e
t ≤ d(s+ 1)(4 + log2(s+ 2))/2e
u ≤ d(s+ 1)(5 + log2(s+ 2))2/4e

Proof. By a similar analysis to Lemma 3.1 and the discussion above about BP ′ being partially
non-shortcutting, we have that BP final is non-shortcutting.

The augment procedure only increases the profile by one in each coordinate except d0 and ds+1.
Therefore, the bound on w follows from the previous analysis. The linear size increases by exactly
s− 1, so the bound of t follows from the previous analysis. Finally, it is straightforward to see that
the actual size u only increases by less that twice the old linear size, plus 1. Therefore, the bound
on u also follows from the previous analysis.

3.4 Extensions

Boolean Formula. Any boolean gate can be seen as a bilinear polynomial when its inputs and
outputs are treated as integers. Therefore, for any boolean formula f , we can use the conversion
above to build a matrix branching program BP such that BParith = f(x). Since f(x) is either 0 or
1, we see that BPbool(x) = BParith(x), and so the resulting matrix branching program is exact.

Arithmetic Formula With Integer Input. Given any arithmetic formula where the input
variables are bounded in some range of size B, we can break each input variable x into dlog2(B+ 1)e
input bits xi, which can then be assembled into x using dlog2(B + 1)e − 1 gates. Thus we increase
the size of the formula by approximately a factor of log2B, but can handle large inputs. We note
that while BParith(x) = f(x), BPbool still only reveals if f(x) is 0 or not.

Arithmetic Formula With Bounded Outputs. One limitation of the above constructions is
that for general arithmetic formula, the function BPbool does not reveal f(x), but only a single
bit. When we build our obfuscators, we will see that the function BPbool is what we can actually
obfuscate. Therefore, we would like to build a branching program BP such that BPbool reveals the
entire output f(x). Here we make partial progress towards this goal by solving the case where the
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output f(x) is confined to a small range. Let f be an arithmetic formula with the guarantee that
f(x) ∈ [B0, B1] for some integers B0, B1 where B1 − B0 is relatively small. We will construct a
branching program BP such that BPbool (rather than BParith) reveals the entire output of f .

First, construct the branching program BP where BParith(x) =
(

1 f(x)
)
as above. Then

construct the branching program

BP ′ = BP ·
(
B0 B0 + 1 · · · B1 − 1 B1
−1 −1 · · · −1 −1

)

Notice that

BP ′arith(x) =
(
B0 − f(x) (B0 + 1)− f(x) · (B1 − 1)− f(x) B1 − f(x)

)
Then BP ′bool(x) is all 1’s, except for index f(x)−B0 + 2, which will be zero. Therefore, there is a
bijective mapping between BP ′bool(x) and f(x), as desired. Moreover, BP ′arith(x) always contains
a non-zero entry, so we can make the branching program non-shortcutting by only increasing the
profile by 1 instead of 2.

While the above increases the maximum width to at least B1 −B0 + 2, it does not increase the
total size of the branching program by much. Indeed, the above modification only increases the
profile in the last position. Therefore, the vertex size increases by an additive B1 −B0, while the
total size increases by at most an additive (B1 − B0)w where w was the maximum width before
the conversion. If we were restricted to using square matrices, the total size would increase by
approximately s(2(B1 −B0)w+ (B1 −B0)2), which is considerably worse for large B1 −B0 or large
s.

4 Obfuscator for Low-Rank Branching Programs
We now describe our obfuscator for generalized matrix branching programs. Our obfuscator is
essentially the same as the obfuscator of Ananth et al. [AGIS14]. The differences are as follows:

• We view branching programs as including the bookends. While the bookends of previous
works did not depend on the input, they can in our obfuscator. However, for [AGIS14], this
distinction is superficial: the bookends of [AGIS14] can be “absorbed” into the branching
program by merging them with the left-most and right-most matrices of the branching program.
This does not change functionality, since this merging always happens during evaluation, and
it does not change security, since the adversary can perform the merging himself.

• We allow our branching program to have singular and rectangular matrices. We do, however,
require the branching program to be non-shortcutting. Note that a branching program
with square invertible internal matrices and non-zero bookend vectors, such as in [AGIS14],
necessarily is non-shortcutting.

• We allow branching programs to output multiple bits — that is, the function computed by
our obfuscated program will be BPbool, which is a matrix of 0/1 entries. In order to prove
security, we will have to perform additional randomization. However, in the case of single-bit
outputs, this additional randomization is redundant.
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Input. The input to our obfuscator is a dual-input matrix branching program sampler BPS of
length `, shape (d0, d1, . . . , d`), and bound t. The first step is to choose a large prime q for the
graded encodings. Then sample BP ← BPS(q). Write

BP = (inp0, inp1, {Bi,b0,b1})

We require BPS to output BP satisfying the following properties:

• BP is non-shortcutting.

• For each i, inp0(i) 6= inp1(i)

• For each pair (j, k) ∈ [n]2, there exists an i ∈ [`] such that (inp0(i), inp1(i)) = (j, k) or
(inp1(i), inp0(i)) = (j, k)

For ease of notation in our security proof, we will also assume that each input bit is used exactly
m times, for some integer m. In other words, for each i ∈ [n], the sets ind(i) = {j : inpb(j) =
i for some b ∈ {0, 1}} have the same size. This requirement, however, is not necessary for security.

Step 1: Randomize BP . First, similar to previous works, we use Kilian [Kil88] to randomize
BP , obtaining a randomized branching program BP ′. This is done as follows.

• Let q be a sufficiently large prime of Ω(λ) bits.

• For each i ∈ [`− 1], choose a random matrix Ri ∈ Zdi×diq . Set R0,R` to be identity matrices
of the appropriate size. Define

B̂i,b0,b1 = Radj
i−1 ·Bi,b0,b1 ·Ri

• For each s ∈ [d0], choose a random βs and set S to be the d0 × d0 diagonal matrix with the βs
along the diagonal. For each t ∈ [d`], choose a random γt and set T to be the d` × d` diagonal
matrix with γt along the diagonal. Set

C1,b0,b1 = S · B̂1,b0,b1 C`,b0,b1 = B̂1,b0,b1 ·T Ci,b0,b1 = B̂i,b0,b1 for each i ∈ [2, `− 1]

We note that this additional randomization step is not present in previous works, but is
required to handle multi-bit outputs

• For each i ∈ [`], b0, b1 ∈ {0, 1}, choose a random αi,b0,b1 ∈ Zp, and define

Di,b0,b1 = αi,b0,b1Ci,b0,b1

Then define BP ′ = (inp0, inp1, {Di,b0,b1}). Observe that BP ′bool(q)(x) = BPbool(q)(x) for all x.
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Step 2: Create set systems. Consider a universe U, and a partition U1, . . . ,U` of U into equal
sized disjoint sets: |Ui| = 2m− 1. Let Sj be a straddling set system over the elements of Uj . Note
that Sj will have m entries, corresponding to the number of times each input bit is used. We now
associate the elements of Sj to the indicies of BP that depend on xj :

Sj = {Sjk,b : k ∈ ind(j), b ∈ {0, 1}}

Next, we associate a set to each element output by the randomization step. Recall that in a
dual-input relaxed matrix branching program, each step depends on two fixed bits in the input
defined by the evaluation functions inp0 and inp1 . For each step i ∈ [n], b0, b1 ∈ {0, 1}, we define
the set S(i, b0, b1) using the straddling sets for input bits inp1(i) and inp2(i) as follows:

Si,b0,b1 = §inp0(i)
i,b0

∪ §inp1(i)
i,b1

Step 3: Initialization. O initializes the oracleM with the ring Zp and the universe U. Then it
asks for the encodings of the following elements:

{(Di,b0,b1 [j, k], Si,b0,b1)}i∈[`],b0,b1∈{0,1},j∈[di−1],k∈[di]

O receives a list of handles back fromM. Let [β]S denote the handle for (β, S), and for a matrix
M , let [M ]S denote the matrix of handles ([M ]S)[j, k] = [M [j, k]]S . Thus, O receives the handles:{

[Di,b0,b1 ]Si,b0,b1
}
i∈[`],b0,b1∈{0,1}

Output. O(BPS) outputs these handles, along with the length `, shape d0, . . . , d`, and input
functions inp0, inp1, as the obfuscated program. Denote the resulting obfuscated branching program
as BPO

Evaluation. To evaluate BPO on input x, use the oracleM to add and multiply encodings in
order to compute the product

h =

∏
i∈[`]

Di,xinp0(i),xinp1(i)


U

=
∏
i∈[`]

[
Di,xinp0(i),xinp1(i)

]
Si,xinp0(i),xinp1(i)

h is a d0 × d` matrix of encodings relative to U. Next, useM to test each of the components of h
for zero, obtaining a matrix hbool ∈ {0, 1}d0×d` . That is, if the zero test on returns a 1 on h[s, t],
hbool[s, t] is 0, and if the zero test returns a 0, hbool[s, t] is 1.

Correctness of evaluation. The following shows that all calls to the oracleM succeed:

Lemma 4.1 (Adapted from [AGIS14]). All calls made to the oracle M during obfuscation and
evaluation succeed.

It remains to show that the obfuscated program computes the correct function. Fix an input
x, and define bic = xinpc(i) for i ∈ [`], c ∈ {0, 1}. From the description above, BPO outputs 0 at
position [s, t] if and only if
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0 =

∏
i∈[`]

Di,bi0,b
i
1

 [s, t] = βsγt

∏
i∈[`]

αi,bi0,bi1
Radj
i−1 ·Bi,bi0,b

i
1
·Ri

 [s, t]

= βsγt

∏
i∈[`]

αi,bi0,bi1

∏
i∈[`]

Bi,bi0,b
i
1

 [s, t] =

βsγt ∏
i∈[`]

αi,bi0,bi1

 (BParith(x)[s, t])

With high probability βs, γt, αi,b0,b1 6= 0, meaning BParith(x)[s, t] = 0 mod q if and only if the
zero test procedure on position [s, t] gives 0. Therefore, BPO(x) = BPbool(q)(x) for the branching
program BP sampled from BPS .

5 Polynomials on Kilian-Randomized Matrices
In this section, we prove a theorem about polynomials on the Kilian-randomized matrices from the
previous section. Our high level goal is to show polynomials the adversary tries to construct other
than the correct matrix products will be useless to the adversary. In this section, we focus on a
simpler case where the polynomial is only over matrices corresponding to a single input. In the
following section, we use the results of this section to prove the general case.

Previous works showed the single-input case using Kilian simulation [BR13, BGK+14], or a
variant of it [PST14b, AGIS14]. Namely, these works queried the function oracle to determine what
the result of the matrix product P (x) should be. Then, they tested the polynomial on random
matrices, subject to the requirement that the product equaled P (x), to see what the result was.
Crucially, previous works relied on the fact that the matrices the polynomial is tested on come from
the same distribution as the matrices would in the branching program. Unfortunately, this step of
the analysis requires the branching program to consist of square invertible matrices. However, we
need to be able to handle generalized matrix branching programs with rectangular and low-rank
matrices. Therefore, we need to replace the Kilian randomization theorem with a new theorem
suitable in this setting.

Let d1, . . . , dn−1 be positive integers and d0 = dn = 1. Let Âk for k ∈ [n] be dk−1 × dk matrices
of variables.

Definition 5.1. Let dk, Âk be as above. Consider a multilinear polynomial p on the variables in
{Âk}k∈[n]. We call p allowable if each monomial in the expansion of p contains at most one variable
from each of the Âk.

As an example of an allowable polynomial, consider the the matrix product polynomial Â1 · Â2 ·
· · · · Ân.

Now fix a field F, and let Ak ∈ Fdk−1×dk for k = 1, . . . , n be a collection of matrices over F. Let
Rk be dk × dk matrices of variables for k ∈ [n], and let Radj

k be the adjugate matrix of Rk. Let
R0 = Rn+1 = 1. Now suppose we set

Âk = Rk−1 ·Ak ·Radj
k

Theorem 5.2. Let F, dk,Ak,Rk, Âk be as above. Consider an allowable polynomial p in the Âk,
and suppose p, after making the substitution Âk = Rk−1 ·Ak ·Radj

k , is identically 0 as a polynomial
over the Rk. Then the following is true:
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• If A1 ·A2 · · · · ·An 6= 0, then p is identically zero as a polynomial over its formal variables,
namely the Âk.

• If A1 ·A2 · · · · ·An = 0 but

A1 ·A2 · · · · ·An−1 6= 01×dn

A2 · · · · ·An−1 ·An 6= 0d2×1

then p, as a polynomial over the Âk, is a constant multiple of the matrix product polynomial
Â1 · Â2 · · · · · Ân.

Proof. If n = 1, there are no Rk matrices, a single A1 matrix of dimension 1 × 1, with entry a.
Then p = p(a) = ca for some constant c. As a polynomial over the (non-existent) Ri matrices, p is
just a constant polynomial, so p = 0 means ca = 0. In the first case above, a 6= 0, so c = 0, meaning
p is identically 0. The second case above is trivially satisfied since the matrix product polynomial is
also a constant.

We will assume that A1 is non-zero in every coordinate. At the end of the proof, we will show
this is without loss of generality.

Now we proceed by induction on n. Assume Theorem 5.2 is proved for n − 1. Consider an
arbitrary allowable polynomial p. We can write p as

p =
∑

j1,i2,j2,...,jn,in+1

αj1,i2,...,jn−1,inÂ1,1,j1Â2,i2,j2 . . . Ân−1,in−1,jn−1Ân,in,1

Where ik+1, jk ∈ [dk], and Âk,i,j is the (i, j) entry of the matrix Âk. From this point forward, for
convenience, we will no longer explicitly refer to the bounds dk on the ik+1, jk.

Now we can expand p in terms of the R1 matrix:

p =
∑

j1,i2,j2,...,jn,in+1,m,`

αj1,i2,...,jn−1,inA1,1,mR1,m,j1R
adj
1,i2,` (A2 ·R2)`,j2 Â3,i3,j3 . . . Ân,in,1

=
∑
j,i,`,m

α′j,i,`A1,1,mR1,m,j1R
adj
1,i2,`

where
α′j,i,` =

∑
j2,...,jn,in+1

αj,i,...,jn−1,in (A2 ·R2)`,j2 Â3,i3,j3 . . . Ân,in,1

Recall that

Radj1,i,` =
∑

σ:σ(i)=`
sign(σ)

∏
t6=i

R1,σ(t),t


where the sum is over all permutations satisfying σ(i) = `. Thus we can write p as

p =
∑

j,i,σ,m

sign(σ)α′j,i,σ(i)A1,1,mR1,m,j

∏
t6=i

R1,σ(t),t


Now, since p is identically zero as a polynomial over the Rk matrices, it must be that for

each product R1,m,j
(∏

t6=iR1,σ(t),t
)
, the coefficient of the product (which is a polynomial over the

Rk : k ≥ 2 matrices) must be identically 0. We now determine the coefficients.
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First, we examine the types of products of entries in R1 that are possible. Products can be
thought of as arising from the following process. Choose a permutation σ, which corresponds to
selecting d1 entries of R1 such that each row and column of R1 contain exactly one selected entry.
Then, for some i, un-select the selected entry from column i and instead select any entry from R1
(possibly selecting the same entry twice). We observe that the following products are possible:

•
∏
tR1,σ(t),t for a permutation σ. This corresponds to re-selecting the un-selected entry from

column i. The resulting list of entries determines the permutation σ used to select the original
entries (since it is identical to the original list), but allows the column i of the un-selected/re-
selected entry to vary. Thus in the summation above, this fixes σ, j = i and m = σ(i), but
allows i to vary over all values, corresponding to the fact that if we remove any entry and
replace it with itself, the result is independent of which entry we removed. Call such products
well-formed. Well-formed products give the following equation:∑

i

α′i,i,σ(i)A1,1,σ(i) = 0 for all σ (5.1)

• R1,m,j
∏
t6=iR1,σ(t),t where j 6= i and m 6= σ(i). This corresponds to, after un-selecting the

entry in column i, selecting a another entry that is in both a different row and a different
column. Note that, given final list of selected entries, it is possible to determine the newly
selected entry as the unique selected entry that shares both a column with another selected
entry and a row with another selected entry. It is also possible to determine the un-selected
entry as the only entry that shares no column nor row with another entry. Therefore, the
original entry selection is determined as well. Thus, in the summation above, the selected
entries fix σ, i, j, and m. In other words, there is no other selection process that gives the
same list of entries from R1.
We call such products malformed type 1. Malformed type 1 products have the coefficient

α′j,i,σ(i)A1,1,m

Given any i, j 6= i,m, ` 6= m, pick σ so that σ(i) = `. Since A1,1,m 6= 0 for all m, this gives

α′j,i,` = 0 for all i, j 6= i, ` (5.2)

• R1,m,i
∏
t6=iR1,σ(t),t where m 6= σ(i). This corresponds to, after un-selecting the entry R1,σ(i),i,

selecting a different entry R1,m,i in the same column. Let i′,m′, σ′ be some other selection
process that leads to the same product.
Given the final selection of entries, it is possible to determine m′ = m as the only row with
two selected entries. It is also possible to determine σ′(i′) = σ(i) as the only row with no
selected entries (though i′ has not been determined yet). Moreover, i′ must be one of the
two columns selected in row m, call the other i′′. All entries outside of these two rows must
have come from the original selection of entries, so this determines σ′(t) = σ(t) on all inputs
outside of i, i′′. Notice that if i = i′, then σ′ agrees with σ on d1 − 1 entries, and since they
are both permutations, this sets σ′ = σ. In this case, (i′,m′, σ′) = (i,m, σ).
Otherwise i′ 6= i, so i′′ = i, which leaves σ′(i) = σ(i′) = m. At this point, σ′ is fully determined
as σ ◦ (i i′) where (i i′) is the transposition swapping i and i′. Therefore, there are two
possibilities leading to this product, one corresponding to i and the other corresponding to i′.
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We call these products malformed type 2. Notice that σ′ and σ only differ by a transposition
swapping i and i′, and so they have opposite parity, meaning the corresponding terms in p
have the opposite sign. Given i, i′ 6= i,m, ` 6= m, choose σ so that σ(i) = `. This gives us
(α′i,i,` − α′i′,i′,`)A1,1,m = 0. Since A1,1,m 6= 0 for all m, we therefore have that α′i,i,` = α′i′,i′,` for
all i, i′. We can thus choose βl such that:

α′i,i,` = β` for all i, ` (5.3)

• R1,σ(i),j
∏
t6=iR1,σ(t),t where j 6= i. We call such products malformed type 3. the coefficients of

these products are linear combinations of the α′i,j,` for i 6= j, which we already know to be 0.
Therefore, these equations are redundant, and we will not need to consider them.

Setting σ(i) = i in Equation 5.1 and combining with Equation 5.3, we have that∑
`

β`A1,1,` = 0 (5.4)

Now we can expand α′j,i,` and βi in Equations 5.2 and 5.4, obtaining:

0 = α′i,j,` =
∑

j2,i3,...,jn−1,in

αj,i,j2,i3,...,jn−1,in (A2 ·R2)`,j2 Â3,i3,j3 . . . Ân,in,1 for all `, i, j 6= i

(5.5)
0 =

∑
`

β`A1,1,` =
∑

`,j2,i3,...,jn−1,in

αi,i,j2,i3,...,jn−1,inA1,1,` (A2 ·R2)`,j2 Â3,i3,j3 . . . Ân,in,1

=
∑

j2,i3,...,jn−1,in

αi,i,j2,i3,...,jn−1,in (A1 ·A2 ·R2)1,j2 Â3,i3,j3 . . . Ân,in,1 for all i (5.6)

Now we invoke the inductive step multiple times. Let A2,` be the `th row of A2, and let
Â2,` = A2,` ·R2. Since A2 ·A3 . . .An 6= 0, there is some ` such that A2,` ·A3 . . .An 6= 0. Then the
matrices A2,`,A3, . . . ,An satisfy the first set of requirements of Theorem 5.2 for n−1. Moreover, the
right side of Equation 5.5 gives an allowable polynomial that is identically zero as a polynomial over
the Rk, k ≥ 2, and therefore, by induction, it is identically 0 as a polynomial over Â2,`, Â3, . . . , Ân.
This shows us that

αj,i,j2,i3,...,jn−1,in = 0 for all j 6= i (5.7)

Next, Let A′2 = A1 ·A2, and let Â′2 = A′2 ·R2. There are two cases:

• A1 ·A2 · · ·An 6= 0. Then A′2 ·A3 · · ·An 6= 0. Therefore, A′2,A3, . . . ,An satisfy the first set of
requirements in Theorem 5.2. Moreover, for each i, Equation 5.6 gives an allowable polynomial
that is identically zero as a polynomial over the Rk, k ≥ 2. Therefore, by induction, the
polymomial is identically zero as a polynomial over Â′2, Â3, . . . , Ân. This means

αi,i,j2,i3,...,jn−1,in = 0 for all i

Combining with Equation 5.7, we have that all the α values are 0. Therefore p is identically
zero as a polynomial over the Â1, Â2, . . . , Ân.
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• A1 ·A2 · · ·An = 0. Then A′2 ·A3 · · ·An = 0. However, A′2 ·A3 · · ·An−1 = A1 ·A2 · · ·An−1 6= 0
and A3 . . .A4 · · ·An 6= 0 (since otherwise A2 · · ·A3 · · ·An = 0, contradicting the assumptions
of Theorem 5.2). Therefore, A′2,A3, . . . ,An satisfy the second set of requirements in Theo-
rem 5.2. By induction, for each i, the polynomial in Equation 5.6 must therefore be a multiple
γiÂ′2 · Â3 · · · Ân of the matrix product polynomial. This is equivalent to

αi,i,j2,i3,...,jn−1,in = 0 if jk 6= ik+1 for any k
αi,i,i3,i3,...,in,in = γi

This means we can write

α′j,i,` = 0 for all j 6= i (by Equation 5.7 and the definition of α′i,j,`)

α′i,i,` = γi
∑

i3,...,in

(A2 ·R2)`,i3 Â3,i3,i4 . . . Ân,in,1 = γi (A2 ·A3 · · ·An)`,1

Since α′i,i,` = β` for all i and the product A2 ·A3 · · ·An is non-zero, we have that γi = γ is
the same for all i. Therefore,

αi,i,i3,i3,...,in,in = γ for all i, i3, . . . , in

meaning p is a multiple of the matrix product polynomial, as desired.

It remains to show the case where A1 has zero entries. Since A is non-zero (as a consequence of our
assumptions), and A is a single row vector, it is straightforward to build an invertible matrix B
such that A′1 = A1 ·B is non-zero in every coordinate.

Let A′2 = B−1A2. Let R′1 = B−1 ·R1, Â′1 = A′1 ·R′1 = Â1, and Â′2 = (R′1)adj ·A′2 ·R2 = Â2.
Now A′1,A′2,A3, . . . ,An satisfy the same conditions of Theorem 5.2 as the original Ak. Moreover, p
is still allowable as a polynomial over Â′1, Â′2, Â3, . . . Ân. Moreover, we can relate p as a polynomial
over Rk to p as a polynomial over R′1,R2, . . . ,Rn−1 by a linear transformation on the R1 variables.
Therefore, p is identically zero as a polynomial over the Rk if and only if it is identically zero as
a polynomial over R′1,R2, . . . ,Rn. Thus we can invoke Theorem 5.2 on A′1,A′2, . . . ,An using the
same polynomial p, and arrive at the desired conclusion. This completes the proof.

6 Sketch of VBB Security Proof
We now explain how to use Theorem 5.2 to prove the VBB security of our obfuscator. The full
security proof appears in Section 7.

In this sketch, we will pay special attention to the steps in our proof that deviate from previous
works [BGK+14, AGIS14]. The adversary is given an obfuscation of a branching program BP ,
which consists of a list of handles corresponding to elements in the graded encoding. The adversary
can operate on these handles using the graded encoding interface, which allows performing algebraic
operations and zero testing. Our goal is to build a simulator that has oracle access only to the
output of BP , and is yet able to simulate all of the handles and interfaces seen by the adversary.

The simulator will choose random handles for all of the encodings in the obfuscation, leaving
the actual entries of the Di,b0,b1 as formal variables4. Simulating the algebraic operations is

4The simulator does not know the branching program, and so it has no way of actually sampling the Di,b0,b1 .
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straightforward; the bulk of the security analysis goes in to answering zero-test queries. Any handle
the adversary queries the zero test oracle on corresponds to some polynomial p on the variables
Di,b0,b1 , which the adversary can determine by inspecting the queries made by the adversary so far.

The simulator’s goal is to decide if p evaluates to zero, when the formal variables in the Di,b0,b1

are set to the values in the randomized matrix branching program BP ′. However, the simulator
does not know BP ′, and must instead determine if p gives zero knowing only the outputs of BP .

The analysis of [BGK+14] and [AGIS14] (and some extra analysis of our own to handle multi-bit
outputs) reduces the problem of determining if p evaluates to zero to solving the following problem.
There is an unknown sequence of matrices Ai ∈ Zdi−1×di

q for i ∈ [`], where d0 = d` = 1 (the shapes
of the Ai ensure that the product

∏
i∈[`] Ai is valid and results in a scalar). We are also given an

allowable polynomial p′ on matrices of random variables Âi. Our goal is to determine, if the Âi are
set to the Kilian-randomized matrices Âi = Ri−1 ·A ·Radj

i , whether or not p′ evaluates to zero. We
note that by applying the Schwartz-Zippel lemma, it suffices to decide if p′ is identically zero, when
considered a polynomial over the formal variables Ri.

It is not hard to see that this simpler problem is impossible in general: p′ could be the polynomial
computing the iterated matrix product

∏
k∈[`] Âi, which is equal to

∏
i∈[`] Ai. Therefore, to decide

if p′ is identically zero in this case, we at a minimum need to know if
∏
i∈[`] Ai evaluates to 0.

The analysis shows that the Ai are actually equal to Bi,xinp0(i),xinp1(i) for some (known) input
x, where Bi,b0,b1 are the matrices in the branching program BP . Therefore, we can determine if∏
i∈[`] Ai = 0 by querying the BP oracle on x. In the case where p′ is the iterated matrix product,

this allows us to determine if p′ is identically 0. What about other, more general, polynomials p′?
In previous works, A1 and A` are bookend vectors, and the Ai for k ∈ [2, ` − 1] are square

invertible matrices. In this setting, Kilian’s statistical simulation theorem allows us to sample from
the distribution of Âi knowing only the product of the Ai, but not the individual values. Then we
can apply p′ to the sample, and the Schwartz-Zippel lemma shows that p′ will evaluate to zero, with
high probability, if and only if it is identically zero. This allows deciding if p′ is identically zero.

In our case, we cannot sample from the correct distribution of Âi. Instead, we observe that
our branching program is non-shortcutting, which means the Ai and p′ satisfy the requirements
of Theorem 5.2. Theorem 5.2 implies something remarkably strong: if p′ is not (a multiple of)
the iterated matrix product, it cannot possibly be identically zero as a polynomial over the formal
variables Rk. Thus, we first decide if p′ is a multiple of the iterated matrix product, which is possible
using the Schwartz-Zippel lemma. If p′ is a multiple, then we know it is identically zero if and only
if the product

∏
i∈[`] Ai is zero, and we know whether this product is zero by using our BP oracle.

7 VBB Security of our Construction
We now argue the virtual black box security of our construction. Security is given by the following
theorem:

Theorem 7.1. If BPS outputs non-shortcuttingbranching programs, then for any PPT adversary
A, there is a PPT simulator Sim such that∣∣∣∣Pr[AM(OM(BPS)) = 1]− Pr

BP←BPS
[SimBP (`, d0, . . . , d`, inp0, inp1)]

∣∣∣∣ < negl
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Proof. We construct a simulator Sim that, on input a description of an adversary A, simulates
the view of A on input BPO = O(BPS), given only oracle access to BP . Sim is also given
`, d0, . . . , d`, inp0, inp1.

Most steps in the simulator are identical to [AGIS14], which the exception being the simulation
of zero-test queries. First, the simulator emulates the obfuscator O on BP . Since Sim only has
oracle access to BP and thus has no way to determine the matrices Bi,b0,b1 , Sim instead initializes
M with formal variables. More precisely, Sim will maintain a table of handles and corresponding
level of encodings that have been initialized so far. Sim initially creates the table with random
handles corresponding to the randomized matrices Ci,b0,b1 . Sim then easily emulates all of the
interfaces ofM except for zero testing. The simulator also computes the set system used for the
encodings from inp0, inp1.

Simulating Zero-test queries. We now describe how to simulate zero-test queries by the
adversary, given only oracle access to BP . Just as in [AGIS14], when the adversary submits a
handle h for zero testing, Sim looks up the corresponding polynomial p in its table. As a first step,
we decompose p into single-input elements:

Definition 7.2. A single-input element for an input x is a polynomial px whose variables are the
Ci,xinp0(i),xinp1(i) matrices, and px is allowable in the sense of Definition 5.1: each monomial in the
expansion of px contains exactly one variable from each of the Ci,xinp0(i),xinp1(i) matrices.

Lemma 7.3 (Adapted from [BGK+14, AGIS14]). The polynomial p can be efficiently decomposed
into the sum

p =
∑
x∈D

αxpx

where αx =
∏
i∈[`] αi,xinp0(i),xinp1(i) , each px is a single-input element for input x, and D is polynomial

in size.

The first part of Lemma 7.3 follows from the decomposition in previous works. The absence of
bookends, the multi-bit outputs, and the singular and rectangular matrices does not affect this part
of the simulation. The fact that px are allowable is not mentioned or proved in previous works, but
follows easily from the graded encoding structure.

Because we have multi-bit outputs, we will actually need to decompose the polynomials even
further.

Definition 7.4. A single-input/single-output element for an input x and output position (s, t) ∈
[d0]× [d`] is a polynomial px,s,t whose variables are the ̂Bi,xinp0(i),xinp1(i) matrices, and px is allowable
in the sense, and px,s,t is allowable in the sense of Definition 5.1: each monomial in the expansion of
px contains exactly one variable from each of the ̂Bi,xinp0(i),xinp1(i) matrices. Moreover, the variable
from the matrix ̂B1,xinp0(1),xinp1(1) comes from row s, and the variable from the matrix ̂B`,xinp0(`),xinp1(`)
comes from column t.

Lemma 7.5. Each single-input element px can be efficiently decomposed into a sum

px =
∑

s∈[d0],t∈[d1]
βsγtpx,s,t

where px,s,t are single input/single output elements for x, s, t
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Proof. Write the C in terms of the B̂ and S,T, where S and T are the diagonal matrices with βs
and γt on the diagonal, respectively. That is,

C1,b1,b2 = S · B̂1,b1,b2 C`,b1,b2 = B̂1,b1,b2 ·T Ci,b1,b2 = B̂i,b1,b2 for each i ∈ [2, `− 1]

For each s ∈ [d0], t ∈ [d`], set βs = 1, γt = 1 and βs′ = γt′ = 0 for all s′ 6= s, t′ 6= t. Let px,s,t
be the polynomial remaining. Then px,s,t is exactly a single-input/single-output element for x, s, t.
Moreover, after doing this for all s, t, we have that

px =
∑

s∈[d0],t∈[d1]
βsγtpx,s,t

as desired.

Next, for each x ∈ D, we query the function oracle to learn BP (x), and use BP (x) to determine
an input distribution on which we test the various polynomials px,s,t. Starting at this point, our
simulation and analysis departs from previous works. Existing works rely on Kilian [Kil88] simulation
to argue that the distribution of test inputs matches the distribution in the actual obfuscator. This
allows them to determine whether px should evaluate to zero or not with overwhelming probability.

Unfortunately for us, Kilian simulation only applies to square invertible matrices. Therefore, we
need to modify the simulation and/or analysis to handle this.

Fix x, s, t, and let bic = xinpc(i). For i ∈ [0, `− 1], let Âi denote B̂i,bi0,b
i
1
and Ai = Bi,bi0,b

i
1
. Let Â1

be row s of B̂1,b1
0,b

1
1
and Â` be row t of B̂`,b`0,b

`
1

5. Then px,s,t is an allowable polynomial in the Âi

For each polynomial px,s,t, we determine whether px,s,t evaluates to zero. We do this as follows:

• If BP (x)[s, t] = 1, we choose totally random matrices Âi, and test if px,s,t evaluates to zero
on these matrices. If the result is zero, we say px,s,t evaluates to zero, and if the result is
non-zero, we say px,s,t evaluates to non-zero. There are two cases:

– px,s,t is identically zero. Then our test will give zero with probability 1, and px,s,t evaluates
to zero in the actual scheme with probability 1. Therefore, we correctly determine if
px,s,t evaluates to zero.

– px,s,t is not identically zero. Then, by Schwartz-Zippel, our test will, with overwhelming
probability, obtain non-zero, and we will report non-zero. In the actual scheme, since
BP (x)[s, t] = 1, the Ai satisfy the first set of requirements of Theorem 5.2. Therefore,
since px,s,t is allowable, Theorem 5.2 shows that px,s,t is also not identically zero as a
polynomial over the randomization matrices Ri. Schwartz-Zippel then shows that in the
actual scheme, with overwhelming probability, px,s,t will evaluate to non-zero. Thus we
correctly guess whether px,s,t evaluates to non-zero with overwhelming probability.

• If BP (x)[s, t] = 0, we choose random matrices Âi subject to the restriction that their product
is zero, and test px,s,t on these matrices. This is done as follows. Choose random Ai for
i ∈ [` − 1]. Let v = (v1, . . . , vd`−1) be the row vector

∏`−1
i=0 Ai. Now we sample values

5The simulator does not actually compute the Ai; we are just using them for the analysis.
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w2, . . . , wd`−1 at random, and let Â` be the column vector

Â` =


−
∑d`−1
i=2 viwi
v1w2
v1w3
...

v1wd`−1

 (7.1)

Then v · Â` = 0. We now make the following claim:

Claim 7.6. If a polynomial p, after making the substitution in Equation 7.1, becomes identically
zero, then p was originally a multiple of the matrix product polynomial.

Proof. p being identically zero in the substitution in Equation 7.1 is equivalent to p being
identically zero after making the substitution

Â`,1,1 ←
−
∑d`−1
i=2 viÂ`,i,1
v1

If this substitution gives a zero polynomial, it must be that

Â`,1,1 +
∑d`−1
i=2 viÂ`,i,1

v1

divides p. Since p is a polynomial, we can remove the v1 in the denominator and conclude
that, in fact,

v1Â`,1,1 +
d`−1∑
i=2

viÂ`,i,1 =
d`−1∑
i=1

viÂ`,i,1

divides p. But the polynomial above is exactly the matrix product polynomial, as desired.

Now we test px,s,t on the samples Âi. If the result is zero, we say px,s,t evaluates to zero, and
if the result is non-zero, we say px,s,t evaluates to non-zero. There are two cases:

– px,s,t is a multiple of the matrix product polynomial. Then our test will give zero
with probability 1, and px,s,t evaluates to zero in the actual scheme with probability 1.
Therefore, we correctly determine if px,s,t evaluates to zero.

– px,s,t is not a multiple of the matrix product polynomial. Claim 7.6 then shows px,s,t
must be not identically zero after making the substitutions in Equation 7.1. Therefore,
Schwartz-Zippel shows that the polynomial evaluates to non-zero with overwhelming
probability. Therefore, we will say the value is non-zero. In the actual scheme, since
BP (x)[s, t] = 0 and BP is non-shortcutting, the Ai satisfy the second set of requirements
for Theorem 5.2. Since px,s,t is not a multiple of the matrix product polynomial but is
allowable, Theorem 5.2 shows that the polynomial is not identically zero as a polynomial
over the randomization matrices Ri. Schwartz-Zippel then shows that in the actual
scheme, with overwhelming probability, px,s,t will evaluate to non-zero. Thus we correctly
guess whether px,s,t evaluates to non-zero with overwhelming probability.
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Therefore, we will correctly determine whether px,s,t evaluates to 0 for each x, s, t with over-
whelming probability. Now recall that

p =
∑

x∈D,s∈[d0],t∈[d`]

∏
i∈[`]

αi,xinp0(i),xinp1(i)

βsγtpx,s,t
If any of the px,s,t evaluate to non-zero, we respond to the zero-test with non-zero. If all evaluate

to zero, we respond to the zero-test with zero. Since the number of px,s,t is polynomial (namely
|D| × d0 × d`), we can test each px,s,t efficiently. In the case where any of the px,s,t are non-zero, we
again appeal to Schwartz-Zippel (this time on the αs, βs, and γs) to see that with overwhelming
probability the polynomial p evaluates to non-zero. If all of the px are zero, then with probability 1
p will evaluate to zero. Therefore, we correctly guess the value of p with overwhelming probability.
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