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Abstract. We propose the first UC secure commitment scheme with
(amortized) computational complexity linear in the size of the string
committed to. After a preprocessing phase based on oblivious transfer,
that only needs to be done once and for all, our scheme only requires a
pseudorandom generator and a linear code with efficient encoding. We
also construct an additively homomorphic version of our basic scheme
using VSS. Furthermore we evaluate the concrete efficiency of our schemes
and show that the amortized computational overhead is significantly lower
than in the previous best constructions. In fact, our basic scheme has
amortised concrete efficiency comparable with previous protocols in the
Random Oracle Model even though it is constructed in the plain model.

1 Introduction

A commitment scheme is a very basic but nevertheless extremely powerful
cryptographic primitive. Intuitively, a commitment scheme is a digital
equivalent of a secure box: it allows a prover P to commit to a secret s
by putting it into a locked box and giving it to a verifier V . Since the
box is locked, V does not learn s at commitment time and we say the
commitment is hiding. Nevertheless, P can later choose to give V the key
to the box to let V learn s. Since P gave away the box, he cannot change
his mind about s after commitment time and we say the commitment is
binding.

Commitment schemes with stand-alone security (i.e., they only have
the binding and hiding properties) can be constructed from any one-way
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function and already this most basic form of commitments implies zero-
knowledge proofs for all NP languages. Commitments with stand-alone
security can be very efficient as they can be constructed from cheap
symmetric cryptography such as pseudorandom generators [Nao91].

However, in many cases one would like a commitment scheme that com-
poses well with other primitives, so that it can be used as a secure module
that will work no matter which context it is used in. The strongest form
of security we can ask for here is UC security [Can01]. UC commitments
cannot be constructed without set-up assumptions such as a common
reference string [CF01]. On the other hand, a construction of UC commit-
ment in such models implies public-key cryptography [DG03] and even
multiparty computation [CLOS02] (but see [DNO10] for a construction
based only on one-way functions, under a stronger set-up assumption).

With this in mind, it is not surprising that constructions of UC
commitments are significantly less efficient than those of stand-alone secure
commitments. Until recently, the most efficient UC commitment schemes
were based on the DDH assumption and required several exponentiations in
a large group [Lin11,BCPV13]. Therefore, even though the communication
complexity for committing to k strings was O(k), the computational
complexity was typically Ω(k3).

However, in [DDGN14] and independently in [GIKW14], it was ob-
served that even though we cannot build UC commitments without using
public-key technology, we can still hope to confine the use of it to a
once-and-for-all set-up phase, the cost of which can then be amortized
over many uses of the commitment scheme.

While [GIKW14] focused on the rate of the commitment scheme,
[DDGN14] concentrated on the computational complexity. More specif-
ically, a UC commitment scheme was proposed based on the following
idea: the committer will secret-share the string s to commit to using a
linear secret sharing scheme (LSSS), encrypt the shares and send them
to the receiver. The encryption is done in such a way that the receiver
will be able to decrypt an unqualified subset (and hence will not learn s).
However, the committer will not know which subset the receiver has seen.
We can achieve this efficiently using a combination of oblivious transfers
(done only in a set-up phase) and a pseudorandom generator. To open s,
the committer will send s and the randomness used for the sharing and
the receiver can then check if the resulting shares match those he already
knows. Intuitively, we can hope this will be binding because any two sets
of shares for different secrets must be different in many positions (they
cannot agree on any qualified subset). Furthermore since the committer



does not know which subset the receiver checks, it is likely that the receiver
will see a mismatch for at least one of the sets of shares.

The most natural way to construct a suitable LSSS is to use the
standard construction from a linear code C, where we choose a random
codeword subject to the condition that the secret s appears in the first
k coordinates and the shares are then the values appearing in the rest
of the codeword. This approach requires that both C and its dual have
large minimum distance. But unfortunately, all known codes with linear
time encoding have very bad dual codes. Therefore, [DDGN14] resorted
to using Reed-Solomon codes which gives a complexity of O(k log k) for
both parties.

Our contribution. In this paper, we propose a different way to construct an
LSSS from a linear code C: we encode the secret s in C, and then additively
share each entry in the codeword to form t shares, thus we get nt shares
for a code of length n. We show that already for t ≥ 2, using this LSSS
in the above template construction results in a secure UC commitment
scheme. Note that the LSSS we construct is not of the usual threshold
type where any sufficiently large set can reconstruct, but instead we have
a more general access structure where the qualified sets are those that can
get enough entries in the underlying codeword to be able to decode.

Since we can now choose C without any conditions on the dual code,
we can plug in known constructions of codes with linear time encoding and
get complexity O(k) for both parties. Furthermore we show a particular
instantiation of the building blocks of our basic protocol for security
parameter τ = 60 and message length k = 256 that achieves an amortized
computational complexity which is 5500 times lower than in the most
efficient previous constructions [BCPV13,Lin11] (see Section 6 for details
on the implementation). In fact, our basic scheme achieves amortised
concrete effieciency comparable to previous schemes [HM04,DSW08] in
the Random Oracle Model [BR93] even though it is constructed in the
plain model. Concretely, it has an amortized computational cost 41% lower
than the one of [HM04].

Commitment schemes can be even more useful if they are homomorphic.
An additively homomorphic commitment scheme, for instance, has the
following property: from commitments to s and s′, the receiver can on his
own compute a commitment to s+ s′, such that if the committer opens
this new commitment, s+ s′ (and no other information on s, s′) will be
revealed. Our basic construction above is not additively homomorphic.
The reason is that a corrupt committer may submit sets of values in the



commit phase that are not consistent sharings of any value. Nevertheless,
when some of these shares are added, we may get values that do in fact
form valid commitments, and this may allow the committer to cheat.
To solve this problem, we start from an idea that was introduced in
[GIKW14]: they construct a very compact linear verifiable secret sharing
scheme (VSS) from any LSSS. The idea is now that the committer will
execute the VSS “in his head” and send to the receiver the resulting views
of each VSS-player, encrypted in the same way as we encrypted shares
before: the receiver can decrypt some subset of the views. The receiver
will now be able to execute some of those consistency checks that honest
players would normally do in the VSS, and will reject if anything is wrong.
The hope is that this will force the committer to submit views from a
correctly executed instance of the VSS, which in particular means that
the sets of shares he submits will be consistent, thus implying the additive
homomorphic property.

This idea was shown to work in [DDGN14], but unfortunately the
proof works only if the underlying LSSS is a threshold scheme, and our
LSSS is not threshold. However, in this paper, we give a different proof
showing that we do in fact get a secure commitment scheme if we choose
the parameter t from our LSSS to be at least 3. This yields a UC secure and
additively homomorphic commitment scheme with linear complexity, albeit
with larger hidden constants than our first scheme. We also instantiate
this scheme for concrete parameters, see Section 6.

It is interesting to note that there is strong relation between the way
the VSS is used here and the “MPC-in-the-head” line of work [IPS09].
Roughly speaking, MPC-in-the-head is a general technique for turning
a multiparty protocol into a 2-party protocol for the same purpose. A
VSS is essentially a multiparty commitment scheme, so one can use the
so-called IPS compiler on the VSS from [DDGN14] to get a UC secure
commitment scheme. This commitment scheme is quite similar to (but
not the same as) the one from [DDGN14]. Previously, the IPS compiler
was only known to work for protocols with threshold security. However,
our proof technique also applies to IPS, so from this point of view, our
result is the first to show that the IPS compiler can also be used to
transform a non-threshold multiparty protocol into a 2-party protocol. It
is an interesting open problem to characterise the adversary structures for
which it will work.



2 Preliminaries

2.1 Notation

We denote uniformly sampling a value r from a set D as r ← D and
{r1, . . . , rn} ← D indicates that we sample from D a uniformly random
subset of n elements. We denote concatenation by ‖ and vectors of elements
of some field by bold symbols. For z ∈ Fk, z[i] denotes the i’th entry of the
vector. We use 1-indexing, meaning that z[1] is the first element of z and
we write [n] = {1, 2, . . . , n}. We will use πk to denote the projection that
outputs the first k coordinates of a vector, i.e. πk(z) = (z[1], . . . ,z[k]).
Finally we will denote by ek,i the row vector of k components whose i-th
entry is 1 while all other entries are 0 and with 0k the row vector of k
components whose all entries are 0.

We say that a function ε is negligible in n if for every polynomial p
there exists a constant c such that ε(n) < 1

p(n) when n > c. Two ensembles
X = {Xκ,z}κ∈N,z∈{0,1}∗ and Y = {Yκ,z}κ∈N,z∈{0,1}∗ of binary random
variables are said to be indistinguishable, denoted by X ≈ Y , if for all z it
holds that | Pr[Xκ,z = 1]− Pr[Yκ,z = 1] | is negligible in κ.

2.2 Universal Composability

The results presented in this paper are proven secure in the Universal Com-
posability (UC) framework introduced by Canetti in [Can01]. Definitions
can be found in Appendix A.2 of this paper.

Adversarial Model: In this work we consider security against static adver-
saries, i.e. corruption may only take place before the protocols starts
execution. We consider active adversaries who may deviate from the
protocol in any arbitrary way.

Setup Assumption: It is known that UC commitment protocols (as well
as most “interesting” functionalities) cannot be obtained in the plain
model [CF01]. In order to overcome this impossibility, UC protocols
require a setup assumption, that basically models a resource that is
made available to all parties before execution starts. The security of
our protocols is proved in the FOT-hybrid model [Can01,CLOS02],
where all parties are assumed to have access to an ideal 1-out-of-2 OT
functionality (see Figure 8).

Ideal Functionalities: In Section 4, we construct a simple string commit-
ment protocol that UC-realizes the functionality FCOM as presented
in [CLOS02,CDD+14] and recalled here in Figure 6. In Section 5, we



extend this simple scheme to allow homomorphic operations over com-
mitments. The extended protocol UC-realizes the functionality FHCOM
in Figure 7, that basically adds a command for adding two previously
stored commitments and an abort command in the Commit Phase to
FCOM. The abort is necessary to deal with inconsistent commitments
that could be sent by a corrupted party. In fact, our additively ho-
momorphic commitment protocol is constructed in the F t−1,t

OT -hybrid
model (i.e. assuming access to (t− 1)-out-of-t OT where t ≥ 2 is an
integer parameter). Notice that F t−1,t

OT is basically a special case of a
k-out-of-n OT where k = n− 1, which can be subsequently reduced to
the FOT-hybrid model via standard techniques [Nao91,BCR86,NP99].
We define FOT in Figure 8 and F t−1,t

OT in Figure 9 following the syntax
of [CLOS02]. Notice that FOT can be efficiently UC-realized by the
protocol in [PVW08], which can be used to instantiate the setup phase
of our commitment protocols.

2.3 Linear Secret-Sharing Scheme

We briefly recall here the definition of linear secret-sharing scheme (LSSS)
following the approach of [CDP12].

Definition 1. A linear secret sharing scheme for N players P1, . . . , PN
over the finite field F is defined by the pair (k,M), where k is the length
of a secret and M is a N × m matrix with entries in F (and m > k).
If k > 1, then the scheme is called packed. The row number i of M is
denoted by mi and, if A is a subset of players, then MA denotes the
matrix consisting of rows mi such that Pi ∈ A.

In order to share a secret s ∈ Fk, the dealer of the LSSS given by
(k,M) takes a random column vector f ∈ Fm such that πk(f) = s> and
computes c = M · f . The column vector c is called the share vector of s,
and its i-th component c[i] is the share sent by the dealer to the player Pi.

Definition 2. A subset of players A is called unqualified if the distribu-
tion of MA · f is independent of s, while a subset of players B is called
qualified if s is uniquely determined from MB · f .

It is the case that A is unqualified if and only if there exists, for each
position j in s, a column vector of m components wA,j (called sweeping
vector) such that wA,j ∈ ker(MA) and πk(wA,j) = e>k,j . Similarly, B
is qualified if and only if there exists, for each position j in s, a row



vector of |B| components rB,j (called reconstruction vector) such that
rB,j ·MB = em,j .

Given two positive integers a and b, if any subset of players A with
|A| = a is unqualified, then we say that the LSSS has a-privacy. If any
subset of players B with |B| = b is qualified, then we say that the LSSS
has b-reconstruction.

Example 1. The additive secret-sharing scheme for N players over F is
the linear secret-sharing scheme where in order to share a secret s ∈ F
among N players, the dealer chooses random values s1, . . . , sN in F such
that

∑N
i=1 si = s and sends the value si to player i. It is clear that the

set of all the players can reconstruct the secret from the received values,
while any set of at most N − 1 players has no information on the value s
held by the dealer. With the previous notation, this LSSS can be defined
by the pair (1,M), where M has the following N rows: mi = eN,i+1 for
i = 1, . . . , N − 1 and mN = eN,1 −

∑N−1
i=1 mi.

3 Linear-Time Secret Sharing and Coding Scheme

In this section we describe the coding scheme Ct that stands in the core of
our commitment protocols. We depart from any error correcting code and
apply a simple transformation that yields a code that can also be seen as
a linear secret sharing scheme for an specific access structure. Intuitively,
this makes it possible to reveal a large fraction of a codeword generated
by Ct without revealing any information on the encoded message.

Standard generic constructions of general linear secret sharing schemes
from error correcting codes, require a code whose dual code has high min-
imum distance. On the other hand, our construction does not require any
specific property from the underlying error correcting code. This conceptual
difference is of fundamental importance for the asymptotic and concrete
efficiencies of our constructions, since it allows a secret sharing scheme
to be constructed from very efficient linear error correcting codes whose
dual codes’ minimum distance are mostly unfit for the standard generic
constructions. In particular, our coding scheme Ct inherits the underlying
code C’s complexity. achieving linear-time encoding and/or decoding when
constructed from appropriate codes [GI01,GI02,GI03,GI05,Spi96,DI14].

Intuitively, the encoding procedure EncCt of Ct first encodes a message
m under the underlying code C obtaining a codeword v. In the next step,
each element of v is secret shared into t shares under a simple additive
secret sharing scheme (i.e. taking random vectors v1, . . . ,vt such that∑t
i=1 vi = v). The final codeword c is defined as c = (v1[1], . . . ,vt[1], . . . ,v1[n], . . . ,



vt[n])>, i.e., each t successive elements of c sum up to the corresponding
element of v. The decoding procedure DecCt basically reconstructs each
element of v from c and then uses the decoding algorithm of C to decode
v into the original message m. Figure 5 illustrates the inner workings of
our coding scheme.

Notice that only the encoding procedure EncCt is used in the actual
commitment schemes, while the decoding procedure DecCt is used in the
simulators. Moreover, Ct basically applies a linear transformation on
codewords generated by the underlying code C, since EncCt uses a LSSS
to divide each component of the codeword into t shares. Hence, if C is
linear, so is Ct. Finally, we show in Remark 1 that EncCt itself can be seen
as a LSSS. Intuitively, after a message m is encoded through EncCt , an
element v[i] of the underlying codeword can only be recovered if all shares
v1[i], . . . ,vt[i] are known. Hence, no information on m is revealed as at
least one share is missing for every underlying codeword element.

Before we formally outline the coding scheme Ct Figure 1, we need to
define the auxiliary functions Σt and Λt:

– Σt : Fn −→ Ftn is a randomized function that takes as input a row
vector v in Fn and does the following: sample v1, . . . ,vt−1 ← Fn
and compute vt = v − (v1 + · · · + vt−1). For j = 1, . . . , n, define
wj = ‖ti=1vi[j] = (v1[j], . . . ,vt[j]) and setΣt(v) = ‖nj=1wj = (w1, . . . ,wn).
Note that this means each consecutive t-tuple of Σt(v) sums to the
corresponding element in the vector v.

– Λt : Ftn → Fn takes as input a vector h and adds each consecu-
tive t components of h. That is, Λt(h) gives as output the row vec-
tor in Fn whose i’th component is

∑t
j=1 h[(i − 1)t + j]. Note that

Λt (Σt(m)) = m.

Remark 1. It is possible to see the entire encoding procedure EncCt as
a LSSS for N = tn players: let C ∈ Matn×k be the transpose of a
generator matrix for the code C and let cj be its jth row, then the vector
EncCt (m) can be seen as a share vector of m ∈ Fk in the LSSS defined by
the pair (k,MC

t ), where m = k + (t − 1)n and MC
t is a N ×m matrix

with rows given by mi = em,i+k−bi/tc for i ∈ [nt] \ {t, 2t, . . . , nt} and
mjt =

(
cj ,0(t−1)n

)
−
∑t−1
i=1 m(j−1)t+i for j ∈ [n].

The set of tn players can be divided in n groups of t players each:
define Tj =

{
P(j−1)t+1, . . . , Pjt

}
for all j ∈ [n]. Thus we can rephrase

the encoding procedure EncCt for a vector m ∈ Fk as: first compute the
codeword v = C(m) and then, for all j ∈ [n], share the component v[j] be-



Coding Scheme Ct

Let C : Fk → Fn be a linear error correcting code over a field F of dimension k,
length n and minimum distance d, and let t ≥ 2 be a fixed integer. Let m be a row
vector in Fkand c be a column vector in Ftn The coding scheme is composed by the
pair of algorithms

(
EncCt ,DecCt

)
described as follows:

– EncCt (m): the encoding procedure EncCt : Fk → Ftn takes as input a message m
and proceeds as follows:
1. Encode m using C, thus obtaining v = C(m) ∈ Fn.
2. Use the randomized function Σt(v) to additively secret share each compo-

nent of the codeword v into t shares. Output the column vector c = Σt(v)>.
When we need to remember the randomness used in Σt, we will write
EncCt (m; v1, . . . , vt−1).

Let τ =
⌊
d−1

2

⌋
and let D : Fn → Fn ∪ {⊥} be a τ -bounded decoding algorithm for

the underlying code C. That is, D either decodes a received word r into the unique
codeword c ∈ C at distance not more than τ from r (if such codeword exists) or
indicates that no such codeword exists, declaring a decoder failure.

– DecCt (c): the decoding procedure DecCt : Ftn → Fk ∪ {⊥} takes as input a
codeword c and proceeds as follows:
1. Compute Λt(c) to obtain a vector v′ ∈ Fn.
2. Decode v′ using the decoding algorithm D for the underlying code C. If D

fails, output ⊥. Otherwise output m = C−1(D(v′)).

Fig. 1. Coding Scheme Ct

tween the players in Tj using the additive LSSS for t players (see Example
1). From the (t− 1)-privacy property of the additive LSSS, it follows that
any subset of players A ⊆ {P1, . . . , Pn} such that |A ∩ Tj | ≤ t− 1 for all
j ∈ [n] is unqualified for the scheme (k,MC

t ). Instead, if B ⊆ {P1, . . . , Pn}
satisfies B ∩Tj = Tj for at least n− (d− 1) indices j, then it is a qualified
set for (k,MC

t ). Indeed, the players in B can compute at least n− (d− 1)
components of the codeword v and then they can apply an erasure correc-
tion algorithm for C and recover m. In particular if |B| ≥ nt − (d − 1),
then B is qualified.

4 Basic Construction

In this section we present our basic commitment scheme. We will work in
the F t−1,t

OT -hybrid model (t being a fixed integer greater or equal than 2)
and we will phrase our protocol in terms of a Setup and an Online phase.
This decoupling is motivated by the fact that the Setup phase can be run



at any time and independently of the inputs of the parties. Once the Setup
phase is completed, polynomially many commitments can be executed in
the Online phase, when the inputs are known. Moreover, the Setup phase
is also completely independent of the number of commitments executed
in the Online phase. Finally our scheme is based on a [n, k, d] linear error
correcting code C over F used in the encoding procedure EncCt defined in
Figure 1 (we consider τ =

⌊
d−1

2

⌋
the security parameter).

A commitment to a message m ∈ Fk will be obtained by sending to the
receiver Pr a subset of components (watch-list) of the vector w = EncCt (m)
computed by the sender Ps. The watch-list has to be chosen in such a
way that the components of w contained in it give no information on
the message m (hiding property). To open the commitment, the sender
Ps has to send to the receiver both m and the randomness used in the
procedure EncCt , so that the receiver can compute by itself w and check if
it is consistent with the components it already knows from the watch-list.
If we design the protocol in such a way that the sender doesn’t know
which components the receiver will check, then, since Ps can not change
the message it committed to without changing a substantial amount of
entries, Pr will see a mismatch and catch the cheating opening with high
probability (binding property).

The watch-list mechanism is created in the Setup phase. The idea is
that the sender and the receiver run n (t− 1)-out of t OTs on n groups
of tn seeds for a PRG, in such a way that for each group the verifier will
know only (t− 1) of the seeds chosen by the sender. The expanded strings
produced by the PRG are used to form a matrix Y . After that, in the
Online phase, for each new commitment, the sender choses a new column
yη in Y and use it as one-time pad for sending to Pr the encoding EncCt (m).
This will allow the receiver Ps to view (t− 1)n entries of the encodings
without the sender knowing which these entries are. Furthermore, in this
way we can allow many commitments while using the OT-functionality
only once. For every new commitment, the sender and receiver can obtain
new one-time pads for the watch-list by simply expanding the PRG seeds
into a larger pseudorandom string up to a polynomially bounded length.

Statistical binding property: if the sender wants to open two different
messages m and m′ for the same commitment (η, c), then it has to
produce randomness consistent with two vectors w and w′ such that
C(m) = Λt(w) and C(m′) = Λt(w′). Since the code has minimal distance
d and d ≥ 2τ + 1, at least one of the two different codewords Λt(w) and
Λt(w′) is at distance strictly greater than τ from Λt(c− yη) (Hamming



Protocol ΠCOM in the F t−1,t
OT -hybrid model

Let G : {0, 1}l
′
→ {0, 1}l be a pseudorandom generator, C : Fk → Fn be a linear

error correction code over F and t ≥ 2 a fixed integer. The procedure EncCt is defined
in Figure 1.

A sender Ps and receiver Pr interact between themselves and with F t−1,t
OT as follows:

OT-Setup phase:
For i = 1, t+ 1, 2t+ 1, . . . , (n− 1)t+ 1:
1. Ps samples t strings xi,xi+1, . . . ,xi+t−1 ← {0, 1}l

′
and sends

(sender, sid, ssid, (xi, . . . ,xi+t−1)) to F t−1,t
OT .

2. Pr samples {ci1, . . . , cit−1} ← {0, 1, . . . , t − 1} and sends
(receiver, sid, ssid, ci1, . . . , cit−1) to F t−1,t

OT .
3. Pr receives (received, sid, ssid,xi+ci

1
, . . . ,xi+ci

t−1
) from F t−1,t

OT .
Let W (watch-list) be the set of indices
W =

{
i+ ci1, . . . , i+ cit−1 | i = 1, t+ 1, 2t+ 1, . . . , (n− 1)t+ 1

}
and let

Y ∈Mattn×l be the tn× l matrix with rows yj ’s consisting of the row vectors
G(xj)’s for j = 1, . . . , tn. Denote by yj the j’th column of Y . Ps knows the
entire matrix Y , Pr knows the watch-list W and only (t− 1)n rows of Y , but
in a structured way: for each groups of t rows yjt+1, . . . ,y(j+1)t it holds exactly
t− 1 of thosea.

Commit phase:
1. Upon input (commit, sid, ssid, Ps, Pr,m) for m ∈ Fk, Ps samples

v1, . . . , vt−1 ← Fn and computes w = EncCt (m; v1, . . . , vt−1). Then Ps
chooses an unused column yη from the matrix Y defined in the Setup phase,
computes c = w + yη and sends (sid, ssid, η, c) to Pr.

2. Pr stores (sid, ssid, η, c) and outputs (receipt, sid, ssid, Ps, Pr).
Open phase:

1. Upon input (reveal, sid, ssid, Ps, Pr), Ps sends (sid, ssid,m, v1, . . . , vt−1)
to Pr.

2. Pr receives (sid, ssid,m, v1, . . . , vt−1), computes
w = EncCt (m; v1, . . . , vt−1) and checks if w[i] + yη[i] = c[i] for all
i ∈ W . If this check fails Pr rejects the opening and halts. Otherwise Pr
outputs (reveal, sid, ssid, Ps, Pr,m).

a We remark that the parties do not need to hold the entire matrices at any one
point in time, but can generate it on demand using an appropriate pseudorandom
generator.

Fig. 2. Protocol ΠCOM



distance). Assume w. l. o. g. that dHam(Λt(w), Λt(c− yη)) ≥ τ + 1, then
in w − c + yη there are at least τ + 1 groups of consecutive entries in
which at least one entry is not zero. Since the receiver checks t− 1 entries
chosen at random in each group, the probability that he doesn’t see any
mismatch is at most

(
1
t

)τ+1
.

Computational hiding property: from the security of the PRG G, we can
claim that the receiver knows only t−1 entries in each group of consecutive
entries of wη = EncCt (m). That is, Pr knows only t − 1 shares of each
component of the codeword C(m). Thus, the hiding property follows from
the (t − 1)-privacy property of the additive secret-sharing scheme for t
players used to share each component of the codeword C(m).

The protocol ΠCOM UC-realizes the ideal functionality FCOM in the
F t−1,t

OT -hybrid model, as stated in the following two propositions. See
Appendix A.3 for the proofs.

Proposition 1 (Statistical Binding Property). Let G : {0, 1}l′ → {0, 1}l
be a pseudorandom generator and C : Fk → Fn be a [n, k, d] error correc-
tion code over F. For every static active adversary A corrupting only Ps
in the F t−1,t

OT -hybrid execution of ΠCOM and for every environment1 Z,
there exists a simulator S such that:

IDEALFCOM,S,Z ≈ HYBRIDF
t−1,t
OT

ΠCOM,A,Z

where the security parameter is τ =
⌊
d−1

2

⌋
.

Proposition 2 (Computational Hiding Property). Let G : {0, 1}l′ → {0, 1}l
be a pseudorandom generator and C : Fk → Fn be a [n, k, d] error correc-
tion code over F. For every static active adversary A corrupting only Pr
in the F t−1,t

OT -hybrid model execution of ΠCOM and for every environment
Z, there exists a simulator S such that:

IDEALFCOM,S,Z ≈ HYBRIDF
t−1,t
OT

ΠCOM,A,Z

where the security parameter is τ =
⌊
d−1

2

⌋
.

1 Note that in the proof of Proposition 1 the requirement for the environment to be
polynomial-time is not necessary. Indeed the proof holds for any environment that
interacts with each system only a polynomial number of times.



5 Additive Homomorphic Property

Notice that in the protocol ΠCOM a commitment (i, c) may be accepted
in the Open phase by an honest receiver even if Λt(wi) is not a codeword,
but it is near enough to a codeword. More precisely, if a cheating sender
computes wi in such a way that Λt(wi) = C(m) + e for some error vector
e with Hamming weight equal to e, then an honest receiver will accept
the commitment (i, c) for the message m with probability equal to

(
1
t

)e
.

Because of this, a cheating sender can setup an attack where with non
negligible probability the sum of two commitments can be opened to a mes-
sage that is different to the sum of the messages contained in the individual
commitments. Given the vectors m,m′ and m̃ where m̃ 6= m+m′, Ps can
compute the vectors e, e′ and ẽ such that e + e′+ ẽ = C(m + m′)−C(m̃)
and the Hamming weight of each of them is less or equal than τ (note
that this is possible to achieve as long as d ≤ 3τ , which is not disallowed
by our assumption d ≥ 2τ + 1). In the Commit phase the corrupted Ps
defines w = Σt(C(m)− e) and w′ = Σt(C(m′)− e′) and sends (α, c) and
(β, c′), where c = w + yα and c′ = w′ + yβ. Recall that Σt is the outer
additive code in our encoding. From the above argument, in the Open
phase, an honest receiver will accept (α, c) or (β, c′) as commitment for
m or for m′ respectively, with probability strictly greater than

(
1
t

)τ+1
in

both cases. Furthermore with the same probability, Ps can also open the
sum c + c′ to m̃ because by construction w + w′ = Σt(C(m̃) + ẽ).

While we could prevent the attack above by imposing the stronger
condition d ≥ 3τ + 1, it is easy to see that the same problem would still
apply to the additions of at least d dτ e − 1 commitments.

To deal with this problem, we need to assure that for any vector w
computed by the sender in the Commit phase, it holds that Λt(w) is an
actual codeword. Since a correct vector w can be seen as a share-vector
in the LSSS given by (k,MC

t ) (Remark 1), a standard way to achieve
this guaranty is to convert (k,MC

t ) into a verifiable secret-sharing scheme
(VSS). The latter is a secret-sharing scheme for which, together with
the standard privacy property for unqualified sets of players, a stronger
reconstruction property holds for the qualified sets. Indeed, in a VSS,
even when the dealer is corrupted, any qualified set of honest players can
determine a secret that is consistent with the share held by any honest
player in the scheme. In order to obtain the additive homomorphic property
for our commitment protocol, the basic idea we will use in Section 5.2
consists in forcing the sender to compute the vector w using a verifiable
version of the encoding procedure EncCt . In this way the receiver can verify



that w has been properly constructed (i.e. Λt(w) is a codeword) with
overwhelming probability.

5.1 Packed Verifiable Secret-Sharing Scheme

In this section we recall the packed verifiable secret-sharing protocol
described in [DDGN14]. We refer to the latter for the proof of the following
lemmas. The protocol can be based on any linear secret-sharing scheme
(k,M) for N players as defined in Section 2 and it secret-shares k vectors
s1, . . . , sk ∈ Fk in each its execution (the LSSS is over the field F). In
the following, F will be a m × m matrix with entries in F (m is the
number of columns in M) and f b will be its the b-th column. For any
index i = 1, . . . , N define the column vector hi = F ·m>i and the row
vector gi = mi · F (where mi is the i-th row in M). It is then clear that
mj ·hi = gj ·m>i for all i, j ∈ [N ]. The VSS protocol is shown in Figure 3.

Protocol ΠVSS (M)
1. Let s1, . . . , sk ∈ Fk be the secrets to be shared. The dealer chooses a random

m×m matrix F with entries in F, subjecta to πk(f i) = s>i , for any i = 1, . . . , k.
2. For any i = 1, . . . , N , the dealer computes hi and gi and sends them to Pi
3. Each player Pj sends gj ·m>i to Pi, for i = 1, . . . , N .
4. Each Pi checks, for j = 1, . . . , N , that mj · hi equals the value received from

Pj . He broadcasts (accept, sid, ssid,) if all checks are satisfied, otherwise he
broadcasts (reject, sid, ssid,).

5. If all players said (accept, sid, ssid,), then each Pj stores gj [i] as his share of si,
for i = 1, . . . , k. Otherwise the protocol aborts.

a Recall that we use πk to denote the projection that outputs the first k coordinates
of a vector

Fig. 3. Packed Verifiable Secret-Sharing Scheme

For a column vector v ∈ Fm, we will say that v shares s ∈ Fk, if
πk(v) = s and each honest player Pj holds mj · v. It is clear the the
scheme ΠVSS is complete, i.e. if the dealer is honest, then all honest
players accept and the column vector f i shares si, for any i = 1, . . . , k.
Moreover, the scheme has the following reconstruction property:

Lemma 1. Let B be a qualified subset of b honest players and assume
that the protocol ΠVSS doesn’t abort. Then, for all i = 1, . . . , k, the vector
f̃
i (defined by f̃

i =
∑b
j=1 rB,i[j]hj) shares πk(f̃

i). The vectors rB,i are
the reconstruction vectors defined in Section 2.3.



Lemma 1 assures that if the protocol ΠVSS doesn’t abort, then, even
when the dealer is corrupted, for all i = 1, . . . , k the info held by a
qualified set of honest players at the end of the protocol determine the
secret si = πk(f̃ i)> and the randomness f̃

i used by the dealer to share it
in such a way that (M · f̃ i)[j] = mj · f̃

i = gj [i] for any j with Pj honest.
Finally, since ΠVSS shares k secrets in one execution, the privacy

property can be stated in an extended form which also guarantees that
making public any linear combination of the shared secrets doesn’t reveal
extra info on the individual secrets.

Lemma 2. If the dealer in ΠVSS is honest, then for any unqualified set of
players A and for any λ1, . . . , λ` ∈ F, the distribution of {F ·M>

A,MA·F ,
∑`
j=1 λjs

j}
is independent of the secrets held by the dealer.

5.2 Homomorphic Commitment Scheme

In this section we present our additively homomorphic commitment scheme.
The protocol is designed in the F t−1,t

OT -hybrid model using preprocessing
and it will be based on the instantiation of the ΠVSS protocol in which the
underlying LSSS is the one that is equivalent to our encoding procedure
EncCt . The result is a commitment scheme that can be seen as a concrete
exemplification of the homomorphic commitment scheme described in
[DDGN14]. Note that in this section, for technical reasons, the fixed
integer t has to be strictly greater than 2.

Given the [n, k, d] linear error-correcting code C, we have already
noted in Remark 1 that computing the vector w = EncCt (m; v1, . . . ,vt−1)
is equivalent to computing the share-vector for m in the LSSS defined by
(k,MC

t ) for N = tn players. In particular w = MC
t · f where the vector

f is given by f = (m,f1, . . . ,fn)> with f j = (v1[j], . . . ,vt−1[j]) for any
j ∈ [n].

The protocol ΠHCOM is presented in Figure 4. In the Setup phase,
firstly the same watch-list mechanism of ΠCOM is created and after
the sender runs ΠVSS on some random messages r1, . . . , rk comput-
ing the vectors hi, gi for all i = 1, . . . , N . In particular Ps computes
EncCt (ri) = (g1[i], . . . , gN [i])>. Thanks to the watch-list mechanism, the
receiver sees all the vectors hi, gi such that i is in the watch-list setW and
therefore it can check the relation mj ·hi = gj ·m>i for all i, j in W . If all
these checks are satisfied, then it follows from the strong reconstruction
property of the VSS, that the vectors EncCt (ri) have been properly con-
structed (i.e. Λt(EncCt (ri)) is a codeword) with overwhelming probability.



Nevertheless, since the set of players {Pi | i ∈ W} is unqualified for the
LSSS (k,MC

t ), the receiver has no info about the vectors r1, . . . , rk.
In the Online phase, to commit to m ∈ Fk, the sender takes an unused

rη and sends c = m + rη to the sender. The commitment is represented
by the pair (η, c). To open it, the sender reveals m and the randomness
used to compute w = EncCt (rη), thus the receiver can check if the entries
he already knows of the encoding of rη match the ones of w.

As in the basic protocol, the hiding property follows easily from the
privacy of the VSS scheme and the security of the PRG. The binding
property, again, follows from the fact that in order to change ri in r′i
the sender has to change a large amount of entries in EncCt (ri) without
knowing which entries the receiver checks. Finally, in this protocol we can
implement additions: given a commitment (α, c1) to m1 and a commitment
(β, c2) to m2, both the parties can just compute c3 = c1 + c2 and store
((α, β), c3) as new commitment. To open c3 to m1 + m2 the senders sends
to Pr the vector m1 +m2 and the sum of the randomness used in EncCt (rα)
an in EncCt (rβ). While the receiver will check the received randomness as
in an usual Open phase but considering the sum of the encodings of rα
and rβ.

Note that now a commitment will be represented by (η, c), where η
can also be a tuple of indices instead of just one index in [k] = {1, . . . , k}.
Indeed, if c is the commitment obtained by the sum of ` standard com-
mitments (i.e. commitments created in the Commit phase), then η ∈ [k]`.
For this reason, in order to implement the Addition command in the
description of the protocol, we will use the following notation: if α ∈ [k]i
and β ∈ [k]j , then γ = α ‖ β = (α, β) ∈ [k]i+j .

The protocol ΠHCOM UC-realizes the ideal functionality FHCOM in
the F t−1,t

OT -hybrid model, as stated in the following two propositions. See
Appendix A.4 for the proofs.

Proposition 3 (Statistical Binding Property). Let G : {0, 1}l′ → {0, 1}2m
be a pseudorandom generator and C : Fk → Fn be a [n, k, d] error correc-
tion code over F. For every static active adversary A corrupting only Ps
in the F t−1,t

OT -hybrid world execution of ΠHCOM and for every environment
Z, there exists a simulator S such that:

IDEALFHCOM,S,Z ≈ HYBRIDF
t−1,t
OT

ΠHCOM,A,Z

where the security parameter is τ =
⌊
d−1

2

⌋
.



Protocol ΠHCOM in the F t−1,t
OT -hybrid model

Let G : {0, 1}l
′
→ {0, 1}2m be a pseudorandom generator, C : Fk → Fn be a [n, k, d]

code over F and t ≥ 3 a fixed integer. We recall that N = tn, m = k + (t− 1)n and
the matrix MC

t , whose i-th row is called mi, is defined in Remark 1.
A sender Ps and receiver Pr interact between themselves and with F t−1,t

OT as follows:
Setup phase:

OT-Setup:
For i = 1, t+ 1, 2t+ 1, . . . , (n− 1)t+ 1:
1. Ps samples t strings xi,xi+1, . . . ,xi+t−1 ← {0, 1}l

′
and sends

(sender, sid, ssid, (xi, . . . ,xi+t−1)) to F t−1,t
OT .

2. Pr samples {ci1, . . . , cit−1} ← {0, 1, . . . , t − 1} and sends
(receiver, sid, ssid, ci1, . . . , cit−1) to F t−1,t

OT .
3. Pr receives (received, sid, ssid,xi+ci

1
, . . . ,xi+ci

t−1
) from F t−1,t

OT .
Let Y ∈ MatN×2m be the N × 2m matrix with rows yj ’s
consisting of the row vectors G(xj)’s for j = 1, . . . , N and
W =

{
i+ ci1, . . . , i+ cit−1 | i = 1, t+ 1, 2t+ 1, . . . , (n− 1)t+ 1

}
.

Pre-commitment:
1. Upon receiving (received, sid, ssid) from F t−1,t

OT , Ps samples
r1, . . . , rk ← Fk and runs ΠVSS (MC

t ) using r1, . . . , rk as input
and constructing the row vectors wi =

(
gi, (hi)>

)
∈ F2m for

i = 1, . . . , N . Let W ∈MatN×2m be the matrix consisting of the rows
wi.

2. Ps computes A = W + Y and sends (sid, ssid,A) to Pr. Denote with
ai the i-th row of A.

3. Pr computes
(
gi, (hi)>

)
= ai − yi for all i ∈ W and checks if

mj · hi = gj ·m>i for all different indices i, j ∈W . If all the checks are
satisfied, then Pr accepts the Setup phase, otherwise it halts.

Commit phase:
1. Upon input (commit, sid, ssid, Ps, Pr,m) for m ∈ Fk, Ps chooses an unused

rη from the Setup phase, computes c = m + rη and sends (sid, ssid, η, c)
to Pr.

2. Pr stores (sid, ssid, η, c) and outputs (receipt, sid, ssid, Ps, Pr).
Addition:

If the tuples (sid, ssid1, α, c1), (sid, ssid2, β, c2) were previously sent by
Ps and recorded by Pr, then:
1. Upon input (add, sid, ssid1, ssid2, ssid3, Ps, Pr), both the players Ps and

Pr define and store (sid, ssid3, γ, c3) where γ = α ‖ β and c3 = c1 + c2.
Open phase:

If (sid, ssid, δ, c′) was stored and δ = (δ1, . . . , δ`) ∈ [k]`, then:
1. Upon input (reveal, sid, ssid, Ps, Pr) to reveal message m′, Ps sends

(sid, ssid,m′, v1, . . . , vt−1) to Pr, where vi =
∑`

j=1 v
δj

i for all
i = 1, . . . , t − 1 and the vectora EncCt (rδj ; v

δj

1 , . . . , v
δj

t−1) is the column
number δj in the matrix W (for all j = 1, . . . , `).

2. Pr receives (sid, ssid,m′, v1, . . . , vt−1) and computes
w = EncCt (c′ −m′; v1, . . . , vt−1). Then, Pr checks if w[j] =

∑`

i=1 gj [δi] for
all the entries j ∈ W . If this check fails Pr rejects the commitment and
halts. Otherwise Pr outputs (reveal, sid, ssid, Ps, Pr,m′).

a Since the LSSS defined by (k,MC
t ) is equivalent to the encoding procedure EncCt ,

Ps already knows the vectors {vδj

i }i used to encode rδj from the Pre-commitment
phase

Fig. 4. Protocol ΠHCOM



Also in the protocol ΠHCOM it is possible to implement polynomial
many commitments, after having run the OT-Setup phase only once.
Indeed, after that the watch-list W has been settled, the sender can
always sample new random vectors r∗1, . . . , r

∗
k ← Fk and, together with

the receiver, repeat the execution of the Pre-commitment phase on this
new input. We have already recalled in Section 4 that it is possible to
expand the PRG output in order to have new one-time keys to use in the
each execution of the Pre-commitment phase. After that, Ps and Pr can
continue the protocol following the instructions in ΠHCOM. Moreover, this
doesn’t create any restriction about the Addition command: we can allow
the sum of commitments that use one-time keys coming from different
Pre-commitment phases.

Proposition 4 (Computational Hiding Property). Let G : {0, 1}l′ → {0, 1}2m
be a pseudorandom generator and C : Fk → Fn be a [n, k, d] error correc-
tion code over F. For every static active adversary A corrupting only Pr
in the F t−1,t

OT -hybrid world execution of ΠHCOM and for every environment
Z, there exists a simulator S such that:

IDEALFHCOM,S,Z ≈ HYBRIDF
t−1,t
OT

ΠHCOM,A,Z

where the security parameter is τ =
⌊
d−1

2

⌋
.

6 Complexity and Concrete Efficiency

In this section we discuss the computational and communication complex-
ities of the commitment schemes proposed in Sections 4 and 5. We also
estimate concrete parameters and compare the efficiency of our schemes
with previous works.

6.1 Complexity

The commitment scheme presented by Damgård et al. in [DDGN14]
suffered from a quadratic computational overhead in order to achieve
optimal communication overhead. This issue stems from the fact that
their scheme requires an underlying LSSS that operates over constant size
fields [CDP12] whose sharing operations consist in matrix multiplications.
Our homomorphic scheme circumvents that by constructing the VSS
scheme from a linear error correcting code with linear-time encoding
where one can compute shares by computing encodings.



The core component of both commitment schemes is the coding scheme
EncCt . This construction can be seen both as an error correcting code (ECC)
and a linear secret secret sharing scheme for a specific access structure.
EncCt can be built from any linear error correcting code, differently from
previous results, which require codes whose dual codes have high mini-
mum distance in order to construct LSSS. This fundamental difference in
construction allows us to obtain a coding scheme EncCt (and consequently
a LSSS) that runs in linear time on the input length from any linear-time
encodable error correcting code. There exist constructions of linear-time
encodable codes with constant rate and good (i.e., linear in the codeword
length) minimum distance, see [GI01,GI02,GI03,GI05,Spi96]. However,
these may even be more sophisticated than what we need since all we
require about the minimum distance is that it is at least 2τ + 1, where τ
is the security parameter.

The encoding and decoding procedures of EncCt inherit the complexity
of the underlying code. Notice that in our constructions we only utilize the
encoding procedure of EncCt , since sharing and verifying share consistency
in the VSS scheme of Figure 3 can be seen as encoding. Hence, our
constructions can even take advantage of recent advances in linear-time
encodable codes [DI14].

Combining a linear-time encoding procedure EncCt with a PRG where
we pay only a constant number of elementary bit operations per output
bit (see, e.g., [VZ12]), we obtain UC-secure commitments with optimal
computational complexity. Notice that the setup phase (where OTs are
needed) is only run once, allowing for an arbitrary number of posterior
commitments. Thus, the cost of this phase is amortized over the number
of commitments. Communication complexity is also linear in the message
length if C has constant rate.

6.2 Concrete Parameters and Efficiency
Even though our schemes can achieve optimal asymptotic computational
and communication complexities, we are also interested in obtaining highly
efficient concrete instantiations. As an example, we estimate parameters
for a concrete instantiation of our schemes with message length k = 256
bits and statistical security parameter τ = 60.

Bulding Blocks: The basic building blocks of our commitment scheme
are the coding scheme EncCt , a PRG and a UC-secure OT protocol. We
select the following constructions of these building blocks for our concrete
instances:



– OT: The UC-secure protocol presented in [PVW08]. This protocol
is round optimal and requires communicating 6 group elements and
computing 11 exponentiations per transfer.

– PRG: AES in counter mode, using the IV as a PRG seed. AES
implementations are readily available in modern hardware (e.g. Intel’s
AES-NI) making the cost of this PRG negligible.

– EncCt : For the basic scheme of Figure 2 we will need a EncC2 coding
scheme, while for the additively homomorphic scheme of Figure 4 we
need a EncC3 coding scheme. Both schemes are constructed using a
binary [796, 256,≥ 121] BCH code (see, e.g., [MS78]) 2 as C according
to the generic construction of Section 3. This code has parameters
k = 256, n = 796 and d ≥ 121, which corresponds to τ = 60. We
obtain EncC2 : F256 → F1592 and EncC3 : F256 → F2388. Even though this
code doesn’t have linear encoding complexity, it was chosen because it
is readily available in the Linux Kernel and it achieves good concrete
performance.

Concrete Parameters: Table 1 presents the communication, round and
computational complexities in terms of the parameters [n, k, d] of the code
C used to instantiate the encoding scheme EncCt . The commitment message
length is k and the statistical security parameter follows from code C’s
minimum distance d following the relation τ =

⌊
d−1

2

⌋
.

Notice that the homomorphic scheme of Figure 4 requires a pre-
commitment phase after which it is possible to execute k commitments to
messages of length k. Hence, the communication and computational com-
plexities of an individual commitment are computed by dividing the total
cost of the pre-commitment phase by the number of commitments that
can be executed after this phase3. In practice the whole pre-commitment
must be run before additively homomorphic commitments can be executed.
Nevertheless, the pre-commitment phase can be preprocessed, since it is
independent of the actual messages.

2 More precisely, the [796, 256,≥ 121] code is actually obtained by shortening a BCH-
code with parameters [1023, 483,≥ 121]. This code was in turn selected by first fixing
the message size k = 256, the statistical security parameter τ = 60 and the minimum
distance d ≥ 2τ+1 ≥ 121, then using MAGMA to compute concrete code parameters
that fit these constraints.

3 Computing and checking the consistency of shares under the VSS scheme ΠVSS (MC
3 )

used for the additively homomorphic scheme of Figure 4 can be seen as computing a
number of encodings under EncC3 .



The setup phase for both schemes requires n executions of a t− 1-out-
of-t OT. Its cost in terms of exponentiations/encodings depends on the
OT protocol used.

Scheme

Communication
Complexity

(in field elements)

Round
Complexity

Computational
Complexity

Commit Open Total Commit Open Commit Open Total
Fig. 4

(homomorphic)
2mnt
k

+ k m 2mnt
k

+ k +m 1 1 4n(t−1)
k

+ 2 Enc. 1 Enc. 4n(t−1)
k

+ 3 Enc.

Fig. 2
(basic) nt m m+ nt 1 1 1 Enc. 1 Enc. 2 Enc.

Table 1. Concrete efficiency in terms of coding scheme EncCt parameter t and code
C parameters dimension k, and length n. Message length is k and statistical security
follows from the relation τ =

⌊
d−1

2

⌋
, depending on code C’s minimum distance d. Enc.

stands for encodings and m = k + n(t− 1).

Preprocessing: Both the basic scheme of Figure 2 and the homomorphic
scheme of Figure 4 can benefit from preprocessing. In this model, the
commitment phase is preprocessed before the messages are known in a so
called offline phase. Later on, in the online phase, the sender can commit
to its actual messages virtually for free. Using this trick, the sender can
pre-compute a number of commitments before they are actually needed
during his idle time, dramatically speeding up the online phase where he
receives his actual inputs. This strategy is particularly fit for scenarios
where a large number of commitments are known to be needed at some
point, such as cut-and-choose protocols.

Notice that, in pre-commitment phase of the additively homomorphic
scheme of Figure 4, the sender uses the VSS scheme to share several
random strings of the same size as the messages and sends a fraction
of the resulting shares to the receiver for verification. Later on, in the
online phase, the sender can simply encrypt its actual messages using
this random strings as one-time pads. A similar trick can be applied to
the basic scheme in Figure 2 by using the regular commit phase steps to
pre-commit to a series of random strings of the same size as the actual
messages before they are known.

Table 2 presents the communication and computational complexities
of our schemes in the preprocessing model in terms of the parameters



[n, k, d] of the code C used to instantiate the encoding scheme EncCt . The
commitment message length is k and the statistical security parameter
follows from code C’s minimum distance d following the relation τ =

⌊
d−1

2

⌋
.

Notice that pre-commitments are run as offline phase.

Scheme

Communication
Complexity

(in field elements)

Round
Complexity

Computational
Complexity

Offline Commit Open Offline Commit Open Offline Commit Open
Fig. 4

(homomorphic)
2mnt
k

k m 1 1 1 4n(t−1)
k

+ 2 Enc. 0 Enc. 1 Enc.

Fig. 2
(basic) nt k m 1 1 1 1 Enc. 0 Enc. 1 Enc.

Table 2. Preprocessing model concrete efficiency in terms of coding scheme EncCt
parameter t and code C parameters dimension k, and length n. Message length is k
and statistical security follows from the relation τ =

⌊
d−1

2

⌋
, depending on code C’s

minimum distance d. Enc. stands for encodings and m = k + n(t− 1).

Evaluating Efficiency: Previous efficiency comparisons between UC-
secure commitment schemes have been based on the number of exponen-
tiations required by each scheme. This choice of comparison parameters
is justified by the fact that this is usually the most costly operation that
dominates the concrete execution time of such schemes. However, apart
from the setup phase involving OTs, our protocols require no exponentia-
tions at all. After the setup phase of our protocols, the most expensive
operation is the encoding procedure of the EncCt coding scheme (the other
operation required is addition).

We compare the efficiency of our schemes with the most efficient
previous works [BCPV13,Lin11] by estimating the execution time of the
encoding procedure of the BCH code and comparing that to the execution
time of exponentiations on the same platform. While the encoding scheme
of the ECC and the PRG are used proportionally to the number of
commitments one wishes to make and open, the OT protocol is only used
for a fixed number of times during the setup phase. Hence, it is interesting
to estimate the concrete efficiency of the setup phase separately from the
other steps of the protocols, since the cost of running the OT protocol is
amortized over the number of commitments.



The concrete computational, round and communication complexities
for our schemes when instantiated using the previously described build-
ing blocks are presented in Table 3. In this case we consider message
length k = 256 and statistical security parameter τ = 60, using the
[796, 256,≥ 121] BCH code as the building block for EncC2 and EncC3 .

Scheme
Communication

Complexity (in bits)
Round

Complexity
Computational
Complexity

Commit Open Total Commit Open Commit Open Total
[BCPV13] (Fig. 6) 1024 2048 3072 1 5 10 Exp. 12 Exp. 22 Exp.
[Lin11] (Protocol 2) 1024 2560 3584 1 3 5 Exp. 18 1

3 Exp. 23 1
3 Exp.

Fig. 4
(homomorphic, t = 3) 34733 1848 36580 1 1 27 Enc. 1 Enc. 28 Enc.

Fig. 2
(basic, t = 2) 1592 1052 2644 1 1 1 Enc. 1 Enc. 2 Enc.

Table 3. Concrete efficiency with message length k = 256 bits, statistical security pa-
rameter τ = 60 and 128-bit computational security (for the schemes of [BCPV13,Lin11]).
Exp. and Enc. stand for exponentiations and encodings, respectively.

The execution time of an elliptic curve “exponentiations” over a field
of size 256 bits offering 128-bit security is evaluated through an implemen-
tation in SCAPI 2.3 [EFLL12] using an underlying curve implementation
provided by OpenSSL 1.1.0. The execution time of the encoding procedure
of the [796, 256,≥ 121] BCH code is evaluated using the implementation
present in the Linux kernel. The platform used for estimating the running
time of these operations is based on a Intel(R) Core(TM) i5-2400 CPU at
3.10 GHz with 4 GB of RAM running a Linux Kernel version 3.13.0.

Our experiments showed that the elliptic curve “exponentiations” take
an average of 375 µs while the encodings take an average of 0.75 µs on
the same platform. Hence, in this scenario, computing one encoding is on
average 500 times faster than computing one exponentiation on the same
platform. These data show that our basic commitment scheme is 5500
times more computationally efficient than the scheme of [BCPV13], also
achieving 14% lower communication complexity. On the other hand, our
additively homomorphic commitment scheme is 392 times faster than the
scheme of [BCPV13], though its communication complexity is 12 times
higher.

The Random Oracle Model [BR93] has historically been used to con-
struct cryptographic schemes with very high efficiency. Surprisingly, our
scheme achieves amortised concrete efficiency comparable to previous



universally composable schemes based on the ROM [HM04,DSW08] even
though it is constructed in the plain model. The average execution time
of a SHA-256 hash function in our evaluation platform is of 0.63µs for
the fastest implementation (BouncyCastle) available on SCAPI 2.3, while
the OpenSSL implementation runs in 0.835µs. The protocol introduced in
[HM04] requires four evaluations of the ROM, which translates into a total
execution time 1.68 times higher than of our basic scheme if SHA-256 is
used to instantiate the ROM.

Implementing the setup phase required by our basic scheme in Figure 2
requires n = 796 executions of a 1-out-of-2 OT, yielding a cost of 8756
exponentiations. With the above timings and considering the OT protocol
of [PVW08], the computational complexity of this scheme is lower when at
least 398 commitments are computed, and gets increasingly better as the
number of commitments increases. However, 4776 of these exponentiations
can be precomputed independently of the messages since it is enough
for the receiver to get random messages, lowering the online cost to
3980 exponentiations (i.e. the cost of 180 commitments. The additively
homomorphic scheme in Figure 4 requires n = 796 executions of a 2-out-
of-3 OT, yielding a higher cost in terms of exponentiations in the setup
phase.
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A Appendix

A.1 Coding Scheme

The following figure illustrates the inner workings of the coding scheme
EncCt introduced in Section 3.

C(m)→ v ∈ F3

v = v1 + v2

v1[1]

v2[1]

v1[2]

v2[2]

v1[3]

v2[3]

v = v1 + v2

m← C−1(v)

Fig. 5. Coding scheme illustration for t = 2, n = 3



A.2 Universal Composability

The results presented in this paper are proven secure in the Universal
Composability (UC) framework introduced by Canetti in [Can01]. In this
framework, protocol security is analyzed under the real-world/ideal-world
paradigm, i.e. by comparing the real world execution of a protocol with
an ideal world interaction with the primitive that it implements. The
model has a composition theorem, that basically states that UC secure
protocols can be arbitrarily composed with each other without any security
compromises. This desirable property not only allows UC secure protocols
to effectively serve as building blocks for complex applications but also
guarantees security in practical environments where several protocols (or
individual instances of protocols) are executed in parallel, such as the
Internet.

In the UC framework, the entities involved in both the real and ideal
world executions are modeled as probabilistic polynomial-time Interactive
Turing Machines (ITM) that receive and deliver messages through their
input and output tapes, respectively. In the ideal world execution, dummy
parties (possibly controlled by an ideal adversary S referred to as the
simulator) interact directly with the ideal functionality F , which works as
a trusted third party that computes the desired primitive. In the real world
execution, several parties (possibly corrupted by a real world adversary
A) interact with each other by means of a protocol π that realizes the
ideal functionality. The real and ideal executions are controlled by the
environment Z, an entity that delivers inputs and reads the outputs of
the individual parties, the adversary A and the simulator S. After a real
or ideal execution, Z outputs a bit, which is considered as the output of
the execution. The rationale behind this framework lies in showing that
the environment Z (that represents all the things that happen outside of
the protocol execution) is not able to efficiently distinguish between the
real and ideal executions, thus implying that the real world protocol is as
secure as the ideal functionality.

We denote by REALπ,A,Z(κ, z, r̄) the output of the environment Z in
the real-world execution of protocol π between n parties with an adversary
A under security parameter κ, input z and randomness r̄ = (rZ , rA, rP1 , . . . , rPn),
where (z, rZ), rA and rPi are respectively related to Z, A and party i.
Analogously, we denote by IDEALF ,S,Z(κ, z, r̄) the output of the envi-
ronment in the ideal interaction between the simulator S and the ideal
functionality F under security parameter κ, input z and randomness
r̄ = (rZ , rS , rF ), where (z, rZ), rS and rF are respectively related to Z, S
and F . The real world execution and the ideal executions are respectively



represented by the ensembles REALπ,A,Z = {REALπ,A,Z(κ, z, r̄)}κ∈N and
IDEALF ,S,Z = {IDEALF ,S,Z(κ, z, r̄)}κ∈N with z ∈ {0, 1}∗ and a uniformly
chosen r̄.

In addition to these two models of computation, the UC framework
also considers the G-hybrid world, where the computation proceeds as
in the real-world with the additional assumption that the parties have
access to an auxiliary ideal functionality G. In this model, honest parties
do not communicate with the ideal functionality directly, but instead the
adversary delivers all the messages to and from the ideal functionality.
We consider the communication channels to be ideally authenticated,
so that the adversary may read but not modify these messages. Unlike
messages exchanged between parties, which can be read by the adversary,
the messages exchanged between parties and the ideal functionality are
divided into a public header and a private header. The public header can
be read by the adversary and contains non-sensitive information (such
as session identifiers, type of message, sender and receiver). On the other
hand, the private header cannot be read by the adversary and contains
information such as the parties’ private inputs. We denote the ensemble
of environment outputs that represents the execution of a protocol π in a
G-hybrid model as HYBRIDGπ,A,Z (defined analogously to REALπ,A,Z). UC
security is then formally defined as:

Definition 3. A n-party (n ∈ N) protocol π is said to UC-realize an ideal
functionality F in the G-hybrid model if, for every adversary A, there
exists a simulator S such that, for every environment Z, the following
relation holds:

IDEALF ,S,Z ≈ HYBRIDGπ,A,Z

We say that the protocol is statistically secure if the same holds for all Z
with unbounded computing power.

Adversarial Model: In this work we consider security against static
adversaries, i.e. corruption may only take place before the protocols starts
execution. We consider active adversaries who may deviate from the
protocol in any arbitrary way.

Setup Assumption: It is known that UC commitment protocols (as well
as most “interesting” functionalities) cannot be obtained in the plain model
[CF01]. In order to overcome this impossibility, UC protocols require a
setup assumption, that basically models a resource that is made available



to all parties before execution starts. The security of our protocols is
proved in the FOT-hybrid [Can01,CLOS02], where all parties are assumed
to have access to an ideal 1-out-of-2 OT functionality (see Figure 8).

Ideal Functionalities: In Section 4, we construct a simple string com-
mitment protocol that UC-realizes the functionality FCOM as presented
in [CLOS02] and recalled here in Figure 6. In Section 5, we extend this
simple scheme to allow homomorphic operations over commitments. The
extended protocol UC-realizes the functionality FHCOM in Figure 7, that
basically adds a command for adding two previously stored commitments
and an abort command in the Commit Phase to FCOM. The abort is
necessary to deal with inconsistent commitments that could be sent by a
corrupted party.

In fact, our additively homomorphic commitment protocol is con-
structed in the F t−1,t

OT -hybrid model (i.e. assuming access to (t− 1)-out-
of-t OT where t ≥ 2 is an integer parameter). Notice that F t−1,t

OT is
basically a special case of a k-out-of-n OT where k = n− 1, which can be
subsequently reduced to the FOT-hybrid model via standard techniques
[Nao91,BCR86,NP99]. We define FOT in Figure 8 and F t−1,t

OT in Figure 9
following the syntax of [CLOS02]. Notice that FOT can be efficiently UC-
realized by the protocol in [PVW08], which can be used to instantiate the
setup phase of our commitment protocols.

Functionality FCOM

FCOM interacts with a sender Ps, a receiver Pr and an adversary S and it proceeds
as follows:
– Commit Phase: Upon receiving a message (commit, sid, ssid, Ps, Pr,m) from
Ps, where m ∈ {0, 1}λ, record the tuple (ssid, Ps, Pr,m) and send the message
(receipt, sid, ssid, Ps, Pr) to Pr and S. (The lengths of the strings λ is fixed and
known to all parties). Ignore any future commit messages with the same ssid
from Ps to Pr.

– Open Phase: Upon receiving a message (reveal, sid, ssid) from Ps: If a
tuple (ssid, Ps, Pr,m) was previously recorded, then send the message
(reveal, sid, ssid, Ps, Pr,m) to Pr and S. Otherwise, ignore.

Fig. 6. Functionality FCOM



Functionality FHCOM

FCOM interacts with a sender Ps, a receiver Pr and an adversary S and it proceeds
as follows:
– Commit Phase: Upon receiving a message (commit, sid, ssid, Ps, Pr,m) from
Ps, where m ∈ {0, 1}λ, record the tuple (ssid, Ps, Pr,m) and send the message
(receipt, sid, ssid, Ps, Pr) to Pr and S. (The lengths of the strings λ is fixed and
known to all parties). Ignore any future commit messages with the same ssid
from Ps to Pr. If a message (abort, sid, ssid) is received from S, the functionality
halts.

– Open Phase: Upon receiving a message (reveal, sid, ssid) from Ps: If a
tuple (ssid, Ps, Pr,m) was previously recorded, then send the message
(reveal, sid, ssid, Ps, Pr,m) to Pr and S. Otherwise, ignore.

– Addition: Upon receiving a message (add, sid, ssid1, ssid2, ssid3, Ps, Pr) from
Ps: If tuples (ssid1, Ps, Pr,m1), (ssid2, Ps, Pr,m2) were previously recorded
and ssid3 is unused, record (ssid3, Ps, Pr,m1 + m2) and send the message
(add, sid, ssid1, ssid2, ssid3, Ps, Pr, success) to Ps, Pr and S.

Fig. 7. Functionality FHCOM

Functionality FOT

FOT interacts with a sender Ps, a receiver Pr and an adversary S, and it proceeds
as follows:
– Upon receiving a message (sender, sid, ssid,x0,x1) from Ps, where each

xi ∈ {0, 1}λ , store the tuple (ssid,x0,x1) (The lengths of the strings λ is
fixed and known to all parties). Ignore further messages from Ps to Pr with the
same ssid.

– Upon receiving a message (receiver, sid, ssid, c) from Pr, where c ∈ {0, 1}, check
if a tuple (ssid,x0,x1) was recorded. If yes, send (received, sid, ssid,xc) to Pr
and (received, sid, ssid) to Ps and halt. If not, send nothing to Pr (but continue
running).

Fig. 8. Functionality FOT

A.3 UC security for ΠCOM

When both parties are honest, the protocol ΠCOM is trivially correct.
Let A be a static active adversary that interacts with the sender Ps and
the receiver Pr running the protocol ΠCOM in the F t−1,t

OT -hybrid model.
Recalling the notation in Section A.2, we will prove that ΠCOM UC-realizes
the functionality FCOM by showing a simulator S that has access to a
copy of FCOM and then arguing that no environment can distinguish with
non-negligible probability between its interaction with S and FCOM and
its interaction with A and the real parties.



Functionality F t−1,t
OT

F t−1,t
OT interacts with a sender Ps, a receiver Pr and an adversary S, and it proceeds

as follows:
– Upon receiving a message (sender, sid, ssid,x0, . . . ,xt−1) from Ps, where each

xi ∈ {0, 1}λ, store the tuple (ssid,x0, . . . ,xt−1).(The lengths of the strings λ is
fixed and known to all parties). Ignore further messages from Ps to Pr with the
same ssid.

– Upon receiving a message (receiver, sid, ssid, c1, . . . , ct−1) from Pr, where
ci ∈ {0, 1, . . . , t − 1}, check if a tuple (ssid,x0, . . . ,xt−1) was recorded. If
yes, send (received, sid, ssid,xc1 , . . . ,xct−1 ) to Pr and (received, sid, ssid) to Ps
and halt. If not, send nothing to Pr (but continue running).

Fig. 9. Functionality F t−1,t
OT

For the sake of simplicity we analyze separately the cases when only
the sender Ps is corrupted and when only the receiver Pr is corrupted.

Proposition 1 (Statistical Binding Property) Let G : {0, 1}l′ → {0, 1}l
be a pseudorandom generator and C : Fk → Fn be a [n, k, d] error correc-
tion code over F. For every static active adversary A corrupting only Ps
in the F t−1,t

OT -hybrid execution of ΠCOM and for every environment4 Z,
there exists a simulator S such that:

IDEALFCOM,S,Z ≈ HYBRIDF
t−1,t
OT

ΠCOM,A,Z

where the security parameter is τ =
⌊
d−1

2

⌋
.

Proof. The simulator S proceeds as follows: S internally runs a copy of
A and delivers to it every input received from Z. Likewise, every output
from the internal copy of A is delivered to Z. After the activation, S
proceeds with the following steps:

1. Simulating the Setup phase: S receives (sender, sid, ssid,xi,xi+1, . . . ,xi+t−1)
fromA and samples {c̃i1, . . . , c̃it−1} ← {0, 1, . . . , t−1} for i = 1, t+1, 2t+1, . . . , (n−1)t+1.
As in the protocol, defineW =

{
i+ c̃i1, . . . , i+ c̃it−1 | i = 1, t+ 1, 2t+ 1, . . . , (n− 1)t+ 1

}
and Y the tn× l matrix with rows consisting of the row vectors G(xj).

2. Simulating the Commit phase: S receives (sid, ssid, η, c) from A and
computes w̃ = c − yη, where yη is the column number η of the

4 Note that in the proof of Proposition 1 the requirement for the environment to be
polynomial-time is not necessary. Indeed the proof holds for any environment that
interacts with each system only a polynomial number of times.



matrix Y . Then, S runs the decoding procedure DecCt (w̃). If DecCt (w̃)
outputs ⊥, S samples a random message m̃ ← Fk; otherwise it sets
m̃ = DecCt (w̃). S sends (commit, sid, ssid, Ps, Pr, m̃) to FCOM.

3. Simulating the Open phase: S receives (sid, ssid,m,v1, . . . ,vt−1) from
A and computes the vector w = EncCt (m; v1, . . . ,vt−1). If w[j] = w̃[j]
for all j ∈W , then S outputs (reveal, sid, ssid, Ps, Pr) to FCOM. Oth-
erwise S rejects the commitment and halts.

The simulator always behaves like an honest receiver Pr interacting with
F t−1,t

OT in the hybrid model execution of the protocol. Thus, if m = m̃,
the distribution of the messages exchanged with A in the simulation is
exactly the same as in the execution of ΠCOM and Z can not distinguish
between them.

If m 6= m̃, then in the Open phase Z can distinguish between the
hybrid model execution and the simulated execution when the value m
is accepted by S. Indeed in this case only in the hybrid model execu-
tion the value m̃ revealed by FCOM is different from the input value m.
But we can show that this happens with negligible probability. When
DecCt (w̃) outputs ⊥ in step 2, then the Hamming distance of Λt(w̃)
from any codeword is strictly greater than τ by definition of DecCt , in
particular dHam(Λt(w), Λt(w̃)) ≥ τ + 1. If DecCt (w̃) doesn’t fail, then
C(m̃) + e = Λt(w̃) (with e vector of weight less or equal than τ) and the
Hamming distance of Λt(w̃) from Λt(w) is strictly greater than τ because

dHam(Λt(w), Λt(w̃)) ≥ dHam(Λt(w), Λt(w̃) + e)− dHam(e,0tn) =

= dHam(C(m), C(m̃))− dHam(e,0tn) ≥ d− τ ≥ τ + 1 .

Thus in both cases, there are at least τ + 1 groups of consecutive entries in
w − w̃ in which at least one entry is not zero and therefore the condition
w[j] = w̃[j] for all j ∈W for a random W holds with probability equal
or less than

(
1
t

)τ+1
.

Proposition 2 (Computational Hiding Property) Let G : {0, 1}l′ → {0, 1}l
be a pseudorandom generator and C : Fk → Fn be a [n, k, d] error correc-
tion code over F. For every static active adversary A corrupting only Pr
in the F t−1,t

OT -hybrid model execution of ΠCOM and for every environment
Z, there exists a simulator S such that:

IDEALFCOM,S,Z ≈ HYBRIDF
t−1,t
OT

ΠCOM,A,Z

where the security parameter is τ =
⌊
d−1

2

⌋
.



Proof. As before, the simulator S internally runs a copy of A simulating
for it a real-world execution of the protocol ΠCOM. In particular S delivers
all the messages received from Z to A and conversely as if they were
communicating directly. In this setting S is described by the following
instructions:

1. Simulating the Setup phase: For i = 1, t+ 1, 2t+ 1, . . . , (n− 1)t+ 1: S
samples random strings x̃i, x̃i+1, . . . , x̃i+t−1 ← {0, 1}l

′ and, acting as
F t−1,t

OT , upon receiving (receiver, sid, ssid, ci1, . . . , cit−1) from the internal
copy of A, sends back to it (received, sid, ssid, x̃i+ci1 , . . . x̃i+cit−1

).
Denote byW the set

{
i+ ci1, . . . , i+ cit−1 | i = 1, t+ 1, 2t+ 1, . . . , (n− 1)t+ 1

}
and by Y the matrix with rows consisting of the row vectors G(x̃j).

2. Simulating the Commit phase: After receiving (receipt, sid, ssid, Ps, Pr)
from FCOM, S chooses an index η such that the η-th column yη is un-
used, samples m̃, ṽ1, . . . , ṽt−1 ← Fk and computes w̃ = EncCt (m̃; ṽ1, . . . , ṽt−1).
Finally, S sends (sid, ssid, η, c̃) toA where c̃← Ftn such that c̃[j] = w̃[j]+yη[j]
for all j ∈W .

3. Simulating the Open phase: Upon input (reveal, sid, ssid, Pr, Ps,m)
from FCOM, S computes v = C(m). Then it sends (sid, ssid,m,v1, . . . ,vt−1)
to A, where the vectors vk’s are defined in the following way: fix
j ∈ {1, 2, . . . , n} and let be i = (j−1)t, if {ci1, . . . , cit−1} = {0, . . . , t−2}
then just define vk[j] = ṽk[j] for all k = 1, . . . , t− 1, otherwise let kj
be the element in {0, . . . , t−2}\{ci1, . . . , cit−1} and define vk[j] = ṽk[j]
for k 6= kj and vkj [j] = v[j]−

∑
k 6=kj vk[j]− w̃[jt].

In the Setup phase and in the Commit phase the simulator S behaves
like an honest sender running the protocol in the F t−1,t

OT -hybrid model,
except for the fact that it chooses m̃ at random and the vector c̃ at
random under the constraint that it is consistent with the watch-list of
A. In the hybrid model all the entries of c are of the form w[j] + yη[j],
while in the ideal-world some of the entries of c̃ are replaced by uniformly
random elements of F. Thus, if the environment was able to distinguish the
distribution of c from the one of c̃, then it would break the computational
security property of the PRG used. Regarding the choice of m̃, observe
that A knows only t− 1 shares of each component of the codewords C(m̃)
(shares in the additive LSSS for t players). Thus by the (t − 1)-privacy
property of the additive LSSS and Remark 1, the vector m̃ is perfectly
hidden from A. This allows to conclude that the distribution of c in the
hybrid model, given the view of the adversary, is the uniform one over Fk.

Finally, in the Open phase, S uses its knowledge of the watch-list W
in order to compute the vectors m and v1, . . . ,vt−1 in such a way that



they are consistent with the view of A from the Setup phase. That is,
if w = EncCt (m; v1, . . . ,vt−1), then w[j] = w̃[j] (the vector A already
knows from the Setup phase) for all j ∈W . This means that the opening
values sent by S have exactly the same distribution as the values sent in
the hybrid model. Since again the distribution of the messages exchanged
with A in all the phases in the simulation is exactly the same as in the
hybrid model execution of ΠCOM, Z can not distinguish between them.

A.4 UC security for ΠHCOM

In the following let A be a static active adversary that interacts with
the sender Ps and the receiver Pr running the protocol ΠHCOM in the
F t−1,t

OT -hybrid model. For the simulators we will construct to prove the
security of the protocol ΠHCOM we will always assume that S invokes
a copy of A running an internally simulated interaction of A with the
environments and the parties and that S delivers all messages exchanged
between Z and A as if they were communicating directly.

Proposition 3 (Statistical Binding Property) Let G : {0, 1}l′ → {0, 1}2m
be a pseudorandom generator and C : Fk → Fn be a [n, k, d] error correc-
tion code over F. For every static active adversary A corrupting only Ps
in the F t−1,t

OT -hybrid world execution of ΠHCOM and for every environment
Z, there exists a simulator S such that:

IDEALFHCOM,S,Z ≈ HYBRIDF
t−1,t
OT

ΠHCOM,A,Z

where the security parameter is τ =
⌊
d−1

2

⌋
.

Proof. The simulator S is described by the following instructions:

1. Simulating the OT-Setup phase: S receives (sender, sid, ssid,xi,xi+1, . . . ,xi+t−1)
from A and samples the values {c̃i1, . . . , c̃it−1} ← {0, 1, . . . , t − 1} for
i = 1, t + 1, 2t + 1, . . . , (n − 1)t + 1. Define the watch-list set to be
W =

{
i+ c̃i1, . . . , i+ c̃it−1 | i = 1, t+ 1, 2t+ 1, . . . , (n− 1)t+ 1

}
.

2. Simulating the Pre-commitment phase: S also receives (sid, ssid,A)
from A and it computes the matrix W = A − Y where Y is the
matrix with rows G(xi). If wi =

(
gi, (hi)>

)
is the i-th row of W ,

then S checks if mj · hi = gj ·m>i for any i, j ∈W . If all the checks
succeed, S continues; otherwise it sends abort to FHCOM and halts.
If it doesn’t abort, S uses all the vectors wi to construct a qualified set
H of consistent VSS players as follows: initially H contains all players.



Now, if H contains a pair of inconsistent players Pi, Pj , i.e., where we
have mj · hi 6= gj ·m>i , then these two players are deleted from H.
We repeat until no further pairs can be deleted. If H has cardinality
equal or greater than tn− τ , then H is qualified and S can compute
the set of vectors r̃1, . . . , r̃k (see Remark 1 and Lemma 1). Otherwise,
it sends abort to FHCOM and halts.

3. Simulating the Commit phase: S receives (sid, ssid, η, c) and computes
m̃ = c− r̃η. It then sends (commit, sid, ssid, Ps, Pr, m̃) to FHCOM.

4. Simulating the Addition: Assume that (sid, ssid1, α, c1) and (sid, ssid2, β, c2)
has been already stored. If S receives (add, sid, ssid1, ssid2, ssid3, Ps, Pr)
from A, then it define and store (sid, ssid3, γ, c3) where γ = α ‖ β and
c3 = c1 + c2.

5. Simulating the Open phase: Assume that (sid, ssid, δ, c′) was stored
and δ = (δ1, . . . , δ`) ∈ [k]`. If S receives (sid, ssid,m′,v1, . . . ,vt−1)
from A, it computes w = EncCt (c′ −m′; v1, . . . ,vt−1) and checks if
w[j] =

∑`
i=1 gj [δi] for all the entries j ∈W . If this check fails S rejects

the commitment and halts. Otherwise S outputs (reveal, sid, ssid, Ps, Pr)
to FHCOM.

Given the previous instructions for S, we will now argue that the envi-
ronment Z can not successfully tell whether it is interacting with A and
the parties running ΠHCOM, or with S and F t−1,t

OT in the ideal execution
more than negligible probability.

In the Setup phase, if the checks in step 2 don’t succeed or if they
succeed and S can extract the vectors r̃1, . . . , r̃k from his view, then S acts
like a honest receiver Pr. So in this case the distribution of the messages
exchanged with A is the same as in the protocol ΠHCOM. Instead, if the
checks in step 2 succeed but the reconstruction of the vectors r̃1, . . . , r̃k
fails, then the simulator S has to abort and the environment will see a
difference between the two distributions. However we can prove that this
last case only happens with negligible probability. In other words we want
to upper-bounded the probability of the event: H has cardinality strictly
less than tn− τ and the checks in step 2 are satisfied. And for this, it is
enough to upper-bounded the probability that the checks are satisfied,
assuming that the complement of H has cardinality greater or equal to
τ + 1. It is clear that the probability that the checks in step 2 are satisfied
is less or equal the probability that W doesn’t contain pairs of indices
i, j such that Pi, Pj are both in the complement of H. So we focus our
attention on the latter probability that will be called p in the following.
Recall the definition of the players’ subsets Tj =

{
P(j−1)t+1, . . . , Pjt

}
for



j ∈ [n] and consider a pair of players Pa ∈ Ti and Pb ∈ Tj . If i 6= j, then
the probability that the pair a, b is in W is

(
t−1
t

)2
. While if i = j, then

the probability of the same event is equal to t−2
t . Since

(
t−1
t

)2
> t−2

t , the
worst case is when the complement of H is formed only by pairs of players
Pa, Pb both coming from the same subset Ti. Now, we observe that if in
the complement of H there are two pairs Pa, Pb and Pc and Pd coming
from the same subset Ti (a, b, c and d all distinct by construction of H),
then by definition of W one of the two pairs {a, b}, {c, d} must stay in W ,
so p = 0. Otherwise we can assume that for each i, in the complement of
H there is at most one pair from the subset Ti. In this case the probability

p is less or equal to
(

2
t

) τ+1
2 .

In the Commit phase and in the Addition phase S behaves as an
honest receiver, so also in these phases the distribution of the messages
exchanged with A is the same as in the protocol ΠHCOM. The only case
in which Z sees a discrepancy is in the Open phase when the message m′

sent by A is accepted but it is different from the message m̃ reveled by
FHCOM. Now we will argue that this happens with negligible probability.
Note that, if S doesn’t halt during step 2, then for all η = 1, . . . , k it
computes r̃η together with some randomness {ṽηj}j=1,...,t−1 in such a way
that if w̃η = EncCt (r̃η; ṽη1, . . . , ṽ

η
t−1), then w̃η[j] = gj [η] for any j such

that Pj ∈ H (see Lemma 1). Therefore, Λt(
∑`
i=1 w̃δi) is a codeword and

its distance from the vector Λt(
∑`
i=1 wδi) is less or equal than τ . Recall

that wη = (g1[η], . . . , gnt[η])> is the η-th column in the matrix W . Thus,
if m̃ 6= m′, it must hold that dHam

(
Λt(
∑`
i=1 wδi), Λt(w)

)
> τ , which

implies that the checks in step 3 are satisfied with negligible probability,
less or equal than

(
1
t

)τ+1
.

Also in the protocol ΠHCOM it is possible to implement polynomial
many commitments, after having run the OT-Setup phase only once.
Indeed, after that the watch-list W has been settled, the sender can
always sample new random vectors r∗1, . . . , r

∗
k ← Fk and, together with

the receiver, repeat the execution of the Pre-commitment phase on this
new input. We have already recalled in Section 4 that it is possible to
expand the PRG output in order to have new one-time keys to use in the
each execution of the Pre-commitment phase. After that, Ps and Pr can
continue the protocol following the instructions in ΠHCOM. Moreover, this
doesn’t create any restriction about the Addition command: we can allow



the sum of commitments that use one-time keys coming from different
Pre-commitment phases.

Assume that in step 5 of the simulation for corrupted senders, (δ, c′)
has been created by adding commitments from different Pre-commitment
phases. For the sake of simplicity, assume that δ = (δ1, δ2). The two
individual commitments (δ1, c1) and (δ2, c2) use one-time keys r̃δ1 and
r̃∗δ2

that are part of the input of two different executions of the ΠVSS
protocol. In this case, in step 2 of the simulation we can have two different
qualified set H, H∗ used by S to compute r̃δ1 , r̃∗δ2

respectively. But if the
cardinality of H∩H∗ is greater or equal to nt−τ , then we can assure again
that dHam(Λt(w̃δ1 + w̃∗δ2), Λt(wδ1 + w∗δ2)) ≤ τ and we can conclude as in
the proof of Proposition 3 (note that the watch-list W is the same in the
two executions of ΠVSS). Now notice that, if the complement of H ∩H∗
has cardinality greater than τ , then we can repeat the argument we had
for step 2 and say that the probability that Pi and Pj are neither both in
the complement of H nor both in the complement of H∗ for all i, j in W is
negligible. Indeed, in this analysis only the numbers of inconsistent pairs
matters, it doesn’t count from which execution the inconsistent pair comes
from. Therefore we can assure that if the checks in step 2 are satisfied for
all the executions of the VSS scheme, then with overwhelming probability
|H ∩H∗| ≥ nt− τ . This argument can be easily generalized to the sum of
three or more commitments (i.e. ` ≥ 3).

Proposition 4 (Computational Hiding Property) Let G : {0, 1}l′ → {0, 1}2m
be a pseudorandom generator and C : Fk → Fn be a [n, k, d] error correc-
tion code over F. For every static active adversary A corrupting only Pr
in the F t−1,t

OT -hybrid world execution of ΠHCOM and for every environment
Z, there exists a simulator S such that:

IDEALFHCOM,S,Z ≈ HYBRIDF
t−1,t
OT

ΠHCOM,A,Z

where the security parameter is τ =
⌊
d−1

2

⌋
.

Proof. The simulator S in this case is similar to the one described for
proving the hiding property of the protocol ΠCOM.

1. Simulating the OT-Setup phase: For i = 1, t+1, 2t+1, . . . , (n−1)t+1:
S samples random strings x̃i, x̃i+1, . . . , x̃i+t−1 ← {0, 1}l

′ and, acting as
F t−1,t

OT , upon receiving (receiver, sid, ssid, ci1, . . . , cit−1) from the internal
copy of A, sends back to it (received, sid, ssid, x̃i+ci1 , . . . x̃i+cit−1

).
Denote byW the set

{
i+ ci1, . . . , i+ cit−1 | i = 1, t+ 1, 2t+ 1, . . . , (n− 1)t+ 1

}
and by Y the matrix with rows consisting of the row vectors G(x̃j).



2. Simulating the Pre-commitment phase: S uniformly samples k random
strings r̃1, . . . , r̃k ∈ Fk and runs the protocol ΠVSS (MC

t ) on them.
In this way it constructs the row vectors w̃i =

(
(h̃i)>, g̃i

)
∈ F2m

for i = 1, . . . , N . Let W̃ be the matrix consisting of the rows w̃i. S
samples a matrix M ←Mattn×2m such that for any j ∈W the j-th
row of M is given by w̃j +G(x̃j) and sends (sid, ssid,M) to A.

3. Simulating the Commit phase: After receiving (receipt, sid, ssid, Ps, Pr)
from FHCOM, S chooses an index η such that random string r̃η is
unused, samples a random message c̃ ∈ Fk and sends (sid, ssid, η, c̃)
to A.

4. Simulating the Addition: Assume that (sid, ssid1, α, c̃1) and (sid, ssid2, β, c̃2)
has been created. If S receives the message (add, sid, ssid1, ssid2, ssid3, Ps, Pr, success)
from FHCOM, it stores (sid, ssid3, γ, c̃3) where γ = α‖β and c̃3 = c̃1+c̃2.

5. Simulating the Open phase: Assume that (sid, ssid, δ, c̃′) was stored
and δ = (δ1, . . . , δ`) ∈ [k]`. Upon input (reveal, sid, ssid, Pr, Ps,m′)
from FHCOM, S computes v = C(c̃′ −m′). Note that from step 2,
S knows the vectors ṽi1, . . . , ṽ

i
t−1 such that for i = 1, . . . , k the col-

umn i of W̃ satisfies w̃i = EncCt (r̃i; ṽi1, . . . , ṽ
i
t−1). Thus, it can com-

pute the vectors vh’s in the following way: fix j ∈ {1, 2, . . . , n} and
let i = (j − 1)t, if {ci1, . . . , cit−1} = {0, . . . , t − 2} then just define
vh[j] =

∑`
s=1 ṽδsh [j] for all h = 1, . . . , t − 1, otherwise let hj be the

element in {0, . . . , t−2}\{ci1, . . . , cit−1} and define vh[j] =
∑`
s=1 ṽδsh [j]

for h 6= hj and vhj [j] = v[j]−
∑
k 6=hj vh[j]−

∑`
s=1 w̃δs [jt]. Finally, S

sends (sid, ssid3,m
′,v1, . . . ,vt−1) to A.

Notice that the set of players {Pi | i ∈ W} is unqualified for the LSSS
(k,MC

t ). Thus, thanks to Lemma 2 arguments similar to the ones used
in the proof of Proposition 2 show that the distribution of the messages
exchanged with A in the simulation is the same as in the hybrid-world
execution of ΠHCOM. Thus the environment Z can not distinguish between
its interaction with S and FHCOM and its interaction with A and the real
parties.


