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Abstract

In a functional encryption (FE) scheme, the owner of the secret key can generate restricted decryption
keys that allow users to learn specific functions of the encrypted messages and nothing else. In many
known constructions of FE schemes, security is guaranteed only for messages that are fixed ahead of time
(i.e., before the adversary even interacts with the system). This so-called selective security is too restric-
tive for many realistic applications. Achieving adaptive security (also called full security), where security
is guaranteed even for messages that are adaptively chosen at any point in time, seems significantly
more challenging. The handful of known adaptively-secure schemes are based on specifically tailored
techniques that rely on strong assumptions (such as obfuscation or multilinear maps assumptions).

We show that any sufficiently-expressive selectively-secure FE scheme can be transformed into an
adaptively-secure one without introducing any additional assumptions. We present a black-box transfor-
mation, for both public-key and private-key schemes, making novel use of hybrid encryption, a classical
technique that was originally introduced for improving the efficiency of encryption schemes. We adapt
the hybrid encryption approach to the setting of functional encryption via a technique for embedding a
“hidden execution thread” in the decryption keys of the underlying scheme, which will only be activated
within the proof of security of the resulting scheme. As an additional application of this technique, we
show how to construct functional encryption schemes for arbitrary circuits starting from ones for shallow
circuits (NC1 or even TC0).
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1 Introduction

Traditional notions of public-key encryption provide all-or-nothing access to data: owners of the secret key
can recover the entire message from a ciphertext, whereas those who do not know the secret key learn nothing
at all. Functional encryption, a revolutionary notion originating from the work of Sahai and Waters [SW05],
is a modern type of encryption scheme where the owner of the (master) secret key can release function-specific
secret keys skf , referred to as functional keys, which enable a user holding an encryption of a message x to
compute f(x) but nothing else (see [KSW08,LOS+10,BSW11,O’N10] and many others). Intuitively, in terms
of indistinguishability-based security, encryptions of any two messages, x0 and x1, should be computationally
indistinguishable given access to functional keys for any function f such that f(x0) = f(x1).

While initial constructions of functional encryption schemes [BF03,BCO+04,KSW08,LOS+10] were lim-
ited to restricted function classes such as point functions and inner products, recent developments have
dramatically improved the state of the art. In particular, the works of Sahai and Seyalioglu [SS10] and Gor-
bunov, Vaikuntanathan and Wee [GVW12] showed that a scheme supporting a single functional key can be
based on any semantically-secure encryption scheme. This result can be extended to the case where the num-
ber of functional keys is polynomial and known a-priori [GVW12]. Goldwasser, Kalai, Popa, Vaikuntanathan
and Zeldovich [GKP+13] constructed a scheme with succinct ciphertexts based on a specific hardness as-
sumption (Learning with Errors).

The first functional encryption scheme that supports a-priori unbounded number of functional keys was
constructed by Garg, Gentry, Halevi, Raykova, Sahai and Waters [GGH+13], based on the existence of a
general-purpose indistinguishability obfuscator (for which a heuristic construction is presented in the same
paper). Garg et al. showed that given any such obfuscator, their functional encryption scheme is selectively
secure. At a high level, selective security guarantees security only for messages that are fixed ahead of time
(i.e., before the adversary even interacts with the system). Whereas security only for such messages may
be justified in some cases, it is typically too restrictive for realistic applications. A more realistic notion is
that of adaptive security (often called full security), which guarantees security even for messages that can
be adaptively chosen at any point in time.

Historically, the first functional encryption schemes were only proven selectively secure [BB04,GPS+06,
KSW08,GVW13,GKP+13]. The problem of constructing adaptively secure schemes seems significantly more
challenging and only few approaches are known. A simple observation is that if a selectively-secure scheme’s
message space is not too large, e.g., {0, 1}n for a relatively small n, then any adaptively-chosen message x
can be guessed ahead of time with probability 2−n. Starting with a sub-exponential hardness assumption,
and taking the security parameter to be polynomial in n allows us to argue that the selectively-secure scheme
is in fact also adaptively secure. This observation is known as “complexity leveraging” and is clearly not
satisfactory in general.

The powerful “dual system” approach, put forward by Waters [Wat09], has been used to construct
adaptively-secure attribute-based encryption scheme (a restricted notion of functional encryption) for for-
mulas, as well as an adaptively-secure functional encryption scheme for linear functions [LOS+10]. However,
this method is a general outline, and each construction was so far required to tailor the solution based on its
specialized assumption. In some cases, such as attribute-based encryption for circuits, it is still not known
how to implement dual system encryption to achieve adaptive security (although Garg, Gentry, Halevi and
Zhandry [GGH+14a] show how to do this with custom-built methods and hardness assumptions).

Starting with [GGH+13], there has been significant effort in the research community to construct an
adaptively-secure general-purpose functional encryption scheme with an unbounded number of functional
keys. Boyle, Chung and Pass [BCP14] constructed an adaptively secure scheme, under the assumption that
differing-input obfuscators exist (these are stronger primitives than the indistinguishability obfuscators used
by [GGH+13]). Following their work, Waters [Wat14] and Garg, Gentry, Halevi and Zhandry [GGH+14b]
constructed specific adaptively-secure schemes assuming indistinguishability obfuscation and assuming non-
standard assumptions on multilinear maps, respectively. Despite this significant progress, each of these
constructions relies on somewhat tailored methods and techniques.
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1.1 Our Results: From Selective to Adaptive Security

We show that any selectively-secure functional encryption scheme implies an adaptively-secure one, without
relying on any additional assumptions. Our transformation applies equally to public-key schemes and to
private-key ones, where the resulting adaptive scheme inherits the public-key or private-key flavor of the
underlying scheme. The following theorem informally summarizes our main contribution.

Theorem 1 (informal). Given any public-key (resp. private-key) selectively-secure functional encryption
scheme for the class of all polynomial size circuits, there exists an adaptively-secure public-key (resp. private-
key) functional encryption scheme with similar properties.

Specifically, the adaptive scheme supports slightly smaller circuits than those supported by the selective
scheme we started with.

Our transformation can be applied, in particular, to the selectively-secure schemes of Garg et al. [GGH+13]
and Waters [Wat14], resulting in adaptively-secure schemes based on indistinguishability obfuscation (and
one-way functions).1

We view the significance of our result in a number of dimensions. First of all, it answers the basic call
of cryptographic research to substantiate the existence of rather complex primitives on that of somewhat
simpler ones. We feel that this is of special interest in the case of adaptive security, where it seemed that
ad-hoc methods were required. Secondly, our construction, being of fairly low overhead, will allow to focus
the attention of the research community in studying selectively-secure functional encryption schemes, rather
than investing unwarranted efforts in obtaining adaptively-secure ones. Lastly, we hope that our methods
will be extended towards weaker forms of functional encryption schemes for which adaptive security is yet
unattained generically, such as attribute-based encryption for all polynomial-size circuits.

1.2 Our Techniques

Our result is achieved by incorporating a number of techniques which will be explained in this section. In
a nutshell, our main observation is that hybrid encryption (a.k.a key encapsulation) can be employed in
the context of functional encryption, and has great potential in going from selective to adaptive security of
encryption schemes. At a first glance, hybrid functional encryption should lead to a selective-to-adaptive
transformation, given an additional weak component: A symmetric FE which is adaptively secure when only
a single message query is allowed. We show that the latter can be constructed from any one-way function
as a corollary of [GVW12,BS15]. However, the intuitive reasoning fails to translate into a proof of security.
To resolve this issue, we use a technique we call The Trojan Method, which originates from De Caro et al.’s
“trapdoor circuits” [CIJ+13] (similar ideas had been since used by Gentry et al. [GHR+14] and Brakerski
and Segev [BS15]).

We conclude this section with a short comparison of our technique with the aforementioned “dual system
encryption” technique that had been used to achieve adaptively secure attribute based encryption.

Hybrid Functional Encryption. Hybrid encryption is a veteran technique in cryptography and has been
used in a variety of settings. We show that in the context of functional encryption it is especially powerful.

The idea in hybrid encryption is to combine two encryption schemes: An “external” scheme (sometimes
called KEM – Key Encapsulation Mechanism) and an “internal” scheme (sometimes called DEM – Data
Encapsulation Mechanism). In order to encrypt a message in the hybrid scheme, a fresh key is generated for
the internal scheme, and is used to encrypt the message. Then the key itself is encrypted using the exter-
nal scheme. The final hybrid ciphertext contains the two ciphertexts: (Encext(k),Encint,k(m)) (all external
ciphertexts use the same key). To decrypt, one first decrypts the external ciphertext, retrieves k and applies
it to the internal ciphertext. Note that if, for example, the external scheme is public-key and the internal is
symmetric key, then the resulting scheme will also be public key. Hybrid encryption is often used in cases
where the external scheme is less efficient (e.g. in encrypting long messages) and thus there is an advantage

1Waters [Wat14] also constructed an adaptively-secure scheme, but using specific ad-hoc techniques and in a significantly
more complicated manner.
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in using it to encrypt only a short key, and encrypt the long message using the more efficient internal scheme.
Lastly, note that the internal scheme only needs to be able to securely encrypt a single message.

The intuition as to why hybrid encryption may be good for achieving adaptive security is that the external
scheme only encrypts keys for the internal scheme. Namely, it only encrypts messages from a predetermined
and known distribution, so selective security should be enough for the external scheme. The hardness of
adaptive security is “pushed” to the internal scheme, but there the task is easier since the internal scheme
only needs to be able to encrypt a single message, and it can be private-key rather than public-key.

Let us see how to employ this idea in the case where both the internal and external schemes are FE
schemes. To encrypt, we will generate a fresh master secret key for the internal scheme, and encrypt it under
the external scheme. To generate a key for the function f , the idea is to generate a key for the function
Gf (mskint) which takes a master key for the internal scheme, and outputs a secret key for function f under
the internal scheme, using mskint (randomness is handled using a PRF). This will allow to decrypt in a
two-step process as above. First apply the external secret-key for Gf to the external ciphertext, this will
give you an internal secret key for f , which is in turn applied to the internal ciphertext to produce f(x).

For the external scheme, we will use a selectively secure FE scheme (for the sake of concreteness, let us
say public-key FE). As explained above, selective security is sufficient here since all the messages encrypted
using the external scheme can be generated ahead of time (i.e. they do not depend on the actual x’s that
the user wishes to encrypt).

For the internal scheme, we require an FE scheme that is adaptively secure, but only supports the
encryption of a single message. Fortunately, such a primitive can be derived from the works of [GVW12,
BS15]. In [GVW12], the authors present an adaptively secure one-time bounded FE scheme. This scheme
allows to only generate a key for one function, and to encrypt as many messages as the user wishes. This
construction is based on the existence of semantically secure encryption, so the public-key version needs
public-key encryption and the symmetric version needs symmetric encryption. While this primitive seems
dual to what we need for our purposes, [BS15] shows how to transform private-key FE schemes into function
private FE. In function-private FE, messages and functions enjoy the same level of privacy, in the sense that
a user that produces x0, x1, f0, f1 such that f0(x0) = f1(x1) cannot distinguish between (Enc(x0), skf0) and
(Enc(x1), skf1). Therefore, after applying the [BS15] transformation, we can switch the roles of the functions
and messages, and obtain a symmetric FE scheme which is adaptively secure for a single message and many
functions. (We note that the symmetric version of the [GVW12] scheme can be shown to be function private
even without the [BS15] transformation, however since this claim is not made explicitly in the paper we
choose not to rely on it.)

Whereas intuitively this should solve the problem, it is not clear how to prove security of the new
construction. Standard security proofs for hybrid encryption follow by first relying on the security of the
external scheme and removing the encapsulated key, and then relying on the security of the internal scheme
and removing the message. However, in our case, removing the encapsulated key is easily distinguishable,
since the adversary is allowed to obtain functional keys and apply them to the ciphertext (so long as f(x0) =
f(x1)). Without the internal key, the decryption process no longer works. To resolve this difficulty, we use
the Trojan method.

Before we describe the Trojan method, we pause to note that our idea so far can be thought of as
“boosting” a single-message, many-key, adaptive symmetric-key FE into a many-message, many-key, adaptive
public-key FE (using a selective public-key FE as a “catalyst”). The recent work of Waters [Wat14] proceeds
along a similar train of thought, and indeed, motivated our approach. However, while our transformation is
simple and general, Waters has to rely on a powerful catalyst, namely an indistinguishability obfuscator.

The Trojan Method. The Trojan Method, which is a generalization of techniques used in [CIJ+13] and
later in [GHR+14, BS15], is a way to embed a hidden functionality thread in an FE secret-key that can
only be invoked by special ciphertexts generated using special (secret) back-door information. This thread
remains completely unused in the normal operation of the scheme (and can be instantiated with meaningless
functionality). In the proof, however, the secret thread will be activated by the challenge ciphertext in such
a way that is indistinguishable to the user (= attacker). Namely, the user will not be able to tell that it is
executing the secret thread and not the main thread. This will be extremely beneficial to prove security. We
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wish to argue that in the view of the user, the execution of the main thread does not allow to distinguish
between the encryption of two messages x0, x1. The problem is that for functionality purposes, the main
thread has to know which input it is working on. This is where the hidden thread comes into the play. We
will design the hidden thread so that in the eyes of the user, it is computationally indistinguishable from the
main thread on the special messages x0, x1. However, in the hidden thread, the output can be computed in
a way that does not distinguish between x0 and x1 (either by a statistical or a computational argument),
which will allow us to conclude that encryptions of x0, x1 are indistinguishable.

In particular, this method will resolve the aforementioned conundrum in our proof outline above. In
the proof, we will use the Trojan method to embed a hidden thread in which mskint is not used at all, but
rather Gf produces a precomputed internal skf . This will allow us to remove mskint from the challenge
ciphertext and use the security properties of the internal scheme to argue that a internal encryption of x0, x1

are identical so long as f(x0) = f(x1).
We note that an important special case of the above outline is when the trojan thread is a constant

function. This had been the case in [CIJ+13, GHR+14], and this is the case in this work as well. However,
we emphasize that our description here allows for greater generality since we allow the trojan thread to
implement functionality that depends on the input x. We feel that this additional power may be useful for
future applications.

Technically, the hidden thread is implemented using (standard) symmetric-key encryption, which in turn
can be constructed starting with any one-way function. In the functional secret-key generation process for
a function f , the secret-key generation process will produce a symmetric-key ciphertext c (which can just
be encryption of 0 or another fixed message, since it only needs to have meaningful content in the security
proof). It will then consider the function Gf,c that takes as input a pair (x, s), and first checks whether it
can decrypt c using s as a symmetric key. If it cannot, then it just runs f on x and returns the output. If
s actually decrypts c, we consider f∗ = Decs(c) (i.e. c encrypts a description of a function), and the output
is the execution of f∗(x). The value c is therefore used as a Trojan Horse: Its contents are hidden from
the users of the scheme, however given a hidden command (in the form of the symmetric s) it can embed
functionality that “takes over” the functional secret-key.

We note that in order to support the Trojan method, the decryption keys of our FE scheme need to
perform symmetric decryption, branch operations, and execution of the function f∗. Thus we need to start
with an FE scheme which allows for the generation of sufficiently expressive keys.

Our Trojan method can be seen as a weak form of function privacy in FE, but one that can be applied
even in the context of public-key FE. In essence, we cannot hide the main thread of the evaluated function
(this is unavoidable in public-key FE). However, we can hide the secret thread and thus allow the function to
operate in a designated way for specially generated ciphertexts. (This interpretation is not valid for previous
variants of this method such as “trapdoor circuits” [CIJ+13].)

A simple application of the Trojan method is our reduction in Section 4, showing that FE that only
supports secret-keys for functions with shallow circuits (e.g. logarithmic depth) implies a scheme that works
for circuits of arbitrary depth (although with a size bound). Essentially, instead of producing a secret key
for the desired functionality, we output a key for the function that computes a randomized encoding of that
functionality. A (computational) randomized encoding [IK00, AIK05] of an input-function pair RE(f, x) is,
in a nutshell, a representation of f(x) that reveals no information except f(x) on one hand, but can be
computed with less resources on the other (in our case, lower depth). To make the proof work, the Trojan
thread will contain a precomputed RE(f, x0) value, which will allow us to use the security property of the
encoding scheme and switch it to RE(f, x1). See Section 4 for details. We note that a similar approach is
used in [GHR+14, Appendix D] to achieve FE that works for RAM machines.

Relation to Dual-System Encryption. Our approach takes some resemblance to the “Dual-System
Encryption” method of Waters [Wat09] and followup works [LW10, LW12]. This method had been used
to prove adaptive security for Identity Based Encryption and Attribute Based Encryption, based on the
hardness of some problems on groups with bilinear-maps. In broad terms, in their proof the distribution
of the ciphertext is changed into “semi-functional” mode in a way that is indiscoverable by an observer.
A semi-functional ciphertext is still decryptable by normal secret keys. Then, the secret-keys are modified
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into semi-functional form, which is useless in decrypting semi-functional ciphertexts. This is useful since
in IBE and ABE, the challenge ciphertext is not supposed to be decryptable by those keys given to the
adversary. Still, a host of algebraic techniques are used to justify the adversary’s inability to produce other
semi-functional ciphertexts in addition to the challenge, which would foil the reduction.

Our proof technique also requires changing the distributions of the keys and challenge ciphertext. How-
ever, there are also major differences. Our modified ciphertext is not allowed to interact with properly
generated secret keys, and therefore the distinction between “normal” and “semi-functional” does not fit
here. Furthermore, in Identity Based and Attribute Based Encryption, the attacker in the security game
is not allowed to receive keys that reveal any information on the message, which allows to generate semi-
functional ciphertexts that do not contain any information, whereas in our case, there is a structured and
well-defined output for any ciphertext and any key. This means that the information required for decryp-
tion (which can be a-priori unbounded) needs to be embedded in the keys. Lastly, our proof is completely
generic and does not rely on the algebraic structure of the underlying hardness assumption as in previous
implementations of this method.

2 Preliminaries

In this section we present the notation and basic definitions that are used in this work. For a distribution
X we denote by x ← X the process of sampling a value x from the distribution X. Similarly, for a set
X we denote by x ← X the process of sampling a value x from the uniform distribution over X . For a
randomized function f and an input x ∈ X , we denote by y ← f(x) the process of sampling a value y
from the distribution f(x). A function negl : N → R is negligible if for any polynomial p(λ) it holds that
negl(λ) < 1/p(λ) for all sufficiently large λ ∈ N.

2.1 Pseudorandom Functions and Symmetric Encryption

Pseudorandom functions. We rely on the following standard notion of a pseudorandom function family
[GGM86], asking that a pseudorandom function be computationally indistinguishable from a truly random
function via oracle access.

Definition 1. A family F =
{
PRFK : {0, 1}n → {0, 1}m : K ∈ K

}
of efficiently-computable functions is

pseudorandom if for every PPT adversary A there exists a negligible function negl(·) such that∣∣∣∣ Pr
K←K

[
APRFK(·)(1λ) = 1

]
− Pr

R←U

[
AR(·)(1λ) = 1

]∣∣∣∣ ≤ negl(λ),

for all sufficiently large λ ∈ N, where U is the set of all functions from {0, 1}n to {0, 1}m.

We say that a pseudorandom function family F is implementable in NC1 if every function in F can be
implemented by a circuit of depth c · log(n), for some constant c. We also consider the notion of a weak
pseudorandom function family, asking that the above definition holds for adversaries that may access the
functions on random inputs (that is, the oracles PRFK(·) and R(·) take no input, and on each query they
sample a uniform input r and output PRFK(r) and R(r), respectively).

Symmetric encryption with pseudorandom ciphertexts. A symmetric encryption scheme consists
of a tuple of PPT algorithms (Sym.Setup,Sym.Enc,Sym.Dec). The algorithm Sym.Setup takes as input a
security parameter λ in unary and outputs a key KE . The encryption algorithm Sym.Enc takes as input a
symmetric key KE and a message m and outputs a ciphertext CT. The decryption algorithm Sym.Dec takes
as input a symmetric key KE and a ciphertext CT and outputs the message m.

In this work, we require a symmetric encryption scheme Π where the ciphertexts produced by Sym.Enc
are pseudorandom strings. Let OEncK(·) denote the (randomized) oracle that takes as input a message m,
chooses a random string r and outputs Sym.Enc(Sym.K,m; r). Let R`(λ)(·) denote the (randomized) oracle

6



that takes as input a message m and outputs a uniformly random string of length `(λ) where `(λ) is the
length of the ciphertexts. More formally, we require that for every PPT adversary A the following advantage
is negligible in λ:

AdvsymPR
Π,A (λ) =

∣∣∣Pr[AOEncSym.K(·)(1λ) = 1
]
− Pr

[
AR`(λ)(·)(1λ) = 1

]∣∣∣
where the probability is taken over the choice of Sym.K← Sym.Setup(1λ), and over the internal randomness
of A, OEnc and R`(λ).

We note that such a symmetric encryption scheme with pseudorandom ciphertexts can be constructed
from one-way functions, e.g. using weak pseudorandom functions by defining Sym.Enc(K,m; r) = (r,PRFK(r)⊕
m) (see [Gol04] for more details).

2.2 Public-Key Functional Encryption

A public-key functional encryption (FE) scheme ΠPub over a message space M = {Mλ}λ∈N and a func-
tion space F = {Fλ}λ∈N is a tuple (Pub.Setup,Pub.KeyGen,Pub.Enc,Pub.Dec) of PPT algorithms with the
following properties:

• Pub.Setup(1λ): The setup algorithm takes as input the unary representation of the security parameter,
and outputs a public key MPK and a secret key MSK.

• Pub.KeyGen(MSK, f): The key-generation algorithm takes as input a secret key MSK and a function
f ∈ Fλ, and outputs a functional key skf .

• Pub.Enc(MPK,m): The encryption algorithm takes as input a public key MPK and a message m ∈Mλ,
and outputs a ciphertext CT.

• Pub.Dec(skf ,CT): The decryption algorithm takes as input a functional key skf and a ciphertext CT,
and outputs m ∈Mλ ∪ {⊥}.

We say that such a scheme is defined for a complexity class C if it supports all the functions that can
be implemented in C. In terms of correctness, we require that there exists a negligible function negl(·) such
that for all sufficiently large λ ∈ N, for every message m ∈ Mλ, and for every function f ∈ Fλ it holds
that Pr [Pub.Dec(Pub.KeyGen(MSK, f),Pub.Enc(MPK,m)) = f(m)] ≥ 1 − negl(λ), where (MPK,MSK) ←
Pub.Setup(1λ), and the probability is taken over the random choices of all algorithms.

We consider the standard selective and adaptive indistinguishability-based notions for functional encryp-
tion (see, for example, [BSW11,O’N10]). Intuitively, these notions ask that encryptions of any two messages,
m0 and m1, should be computationally indistinguishable given access to functional keys for any function
f such that f(m0) = f(m1). In the case of selective security, adversaries are required to specify the two
messages in advance (i.e., before interacting with the system). In the case of adaptive security, adversaries
are allowed to specify the two messages even after obtaining the public key and functional keys.2

Definition 2 (Selective security). A public-key functional encryption scheme Π = (Sel.Setup,Sel.KeyGen,
Sel.Enc,Sel.Dec) over a function space F = {Fλ}λ∈N and a message space M = {Mλ}λ∈N is selectively
secure if for any PPT adversary A there exists a negligible function negl(·) such that

AdvSelΠ,A(λ) =
∣∣∣Pr[ExptSelΠ,A(λ, 0) = 1]− Pr[ExptSelΠ,A(λ, 1) = 1]

∣∣∣ ≤ negl(λ)

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N the experiment ExptSelΠ,A(λ, b), modeled
as a game between the adversary A and a challenger, is defined as follows:

1. Setup phase: The challenger samples (Sel.MPK,Sel.MSK)← Sel.Setup(1λ).

2Our notions of security consider a single challenge, and in the public-key setting these are known to be equivalent to their
multi-challenge variants via a standard hybrid argument.
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2. Challenge phase: On input 1λ the adversary submits (m0,m1), and the challenger replies with
Sel.MPK and CT← Sel.Enc(Sel.MPK,mb).

3. Query phase: The adversary adaptively queries the challenger with any function f ∈ Fλ such that
f(m0) = f(m1). For each such query, the challenger replies with Sel.skf ← Sel.KeyGen(Sel.MSK, f).

4. Output phase: The adversary outputs a bit b′ which is defined as the output of the experiment.

Definition 3 (Adaptive security). A public-key functional encryption scheme Π = (Ad.Setup,Ad.KeyGen,
Ad.Enc,Ad.Dec) over a function space F = {Fλ}λ∈N and a message space M = {Mλ}λ∈N is adaptively
secure if for any PPT adversary A there exists a negligible function negl(·) such that

AdvAdΠ,A(λ) =
∣∣∣Pr[ExptAdΠ,A(λ, 0) = 1]− Pr[ExptAdΠ,A(λ, 1) = 1]

∣∣∣ ≤ negl(λ)

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N the experiment ExptAdΠ,A(1λ, b), modeled
as a game between the adversary A and a challenger, is defined as follows:

1. Setup phase: The challenger samples (Ad.MPK,Ad.MSK)← Ad.Setup(1λ), and sends Ad.MPK to the
adversary.

2. Query phase I: The adversary adaptively queries the challenger with any function f ∈ Fλ. For each
such query, the challenger replies with Sel.skf ← Ad.KeyGen(Ad.MSK, f).

3. Challenge Phase: The adversary submits (m0,m1) such that f(m0) = f(m1) for all function queries
f made so far, and the challenger replies with CT← Ad.Enc(Ad.MSK,mb).

4. Query phase II: The adversary adaptively queries the challenger with any function f ∈ Fλ such that
f(m0) = f(m1). For each such query, the challenger replies with Sel.skf ← Ad.KeyGen(Ad.MSK, f).

5. Output phase: The adversary outputs a bit b′ which is defined as the output of the experiment.

3 Our Transformation in the Public-Key Setting

In this section we present our transformation from selective security to adaptive security for public-key
functional encryption schemes. In addition to any selectively-secure public-key functional encryption scheme
(see Definition 2), our transformation requires a private-key functional encryption scheme that is adaptively-
secure for a single message query and many function queries. Based on [GVW12,BS15], such a scheme can
be based on any one-way function3.

More specifically, we rely on the following building blocks (all of which are implied by any selectively-
secure public-key functional encryption scheme):

1. A selectively-secure public-key functional encryption scheme Sel = (Sel.Setup,Sel.KeyGen,Sel.Enc,
Sel.Dec).

2. An adaptively-secure single-ciphertext private-key functional encryption scheme4 OneCT = (OneCT.Setup,
OneCT.KeyGen,OneCT.Enc,OneCT.Dec).

3. A symmetric encryption scheme with pseudorandom ciphertexts SYM = (Sym.Setup,Sym.Enc,Sym.Dec).

3Gorbunov et al. [GVW12] constructed a private-key functional encryption scheme that is adaptively secure for a single
function query and many message queries based on any private-key encryption scheme (and thus based on any one-way function).
Any such scheme can be turned into a function private one using the generic transformation of Brakerski and Segev [BS15],
and then one can simply switch the roles of functions and messages [AAB+13,BS15]. This results in a private-key scheme that
is adaptively secure for a single message query and many function queries.

4That is, a private-key functional encryption scheme that is adaptively-secure for a single message query and many function
queries (as discussed above).
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4. A pseudorandom function family F with a key space K.

Our adaptively-secure scheme Ad = (Ad.Setup,Ad.KeyGen,Ad.Enc,Ad.Dec) is defined as follows.

• The setup algorithm: On input 1λ the setup algorithm Ad.Setup samples (Sel.MPK,Sel.MSK) ←
Sel.Setup(1λ), and outputs Ad.MPK = Sel.MPK and Ad.MSK = Sel.MSK.

• The key-generation algorithm: On input the secret key Ad.MSK = Sel.MSK and a function f , the
key-generation algorithm Ad.KeyGen first samples CE ← {0, 1}`1(λ) and τ ← {0, 1}`2(λ) uniformly and
independently. Then, it computes and outputs Ad.skf = Sel.skG ← Sel.KeyGen(Sel.MSK, Gf,CE ,τ ),
where the function Gf,CE ,τ is defined in figure 1.

• The encryption algorithm: On input the public key Ad.MPK = Sel.MPK and a message m, the
encryption algorithm Ad.Enc first samples K ← Kλ and OneCT.SK ← OneCT.Setup(1λ). Then, it
outputs CT = (CT0,CT1), where

CT0 ← OneCT.Enc(OneCT.SK,m) and

CT1 ← Sel.Enc(Sel.MPK, (OneCT.SK,K, 0λ, 0)).

• The decryption algorithm: On input a functional key Ad.skf = Sel.skG and a ciphertext CT =
(CT0,CT1), the decryption algorithm Ad.Dec first computes OneCT.skf ← Sel.Dec(Sel.skG,CT1).
Then, it computes m← OneCT.Dec(OneCT.skf ,CT0) and outputs m.

Gf,CE,τ (OneCT.SK,K, Sym.K, β):

1. If β = 1 output OneCT.skf ← Sym.Dec(Sym.K, CE).

2. Otherwise, output OneCT.skf ← OneCT.KeyGen(OneCT.SK, f ;PRFK(τ)).

Figure 1: The function Gf,CE ,τ .

The correctness of the above scheme easily follows from that of its underlying building blocks, and in the
remainder of this section we prove the following theorem:

Theorem 2. Assuming that: (1) Sel is a selectively-secure public-key functional encryption scheme, (2)
OneCT is an adaptively-secure single-ciphertext private-key functional encryption scheme, (3) SYM is a
symmetric encryption scheme with pseudorandom ciphertexts, and (4) F is a pseudorandom function family,
then Ad is an adaptively-secure public-key functional encryption scheme.

Proof. We show that any PPT adversary A succeeds in the adaptive security game (see Definition 3) with
only negligible probability. We will show this in a sequence of hybrids. We denote the advantage of the
adversary in Hybridi.b to be the probability that the adversary outputs 1 in this hybrid and this quantity is
denoted by AdvAi.b. For b ∈ {0, 1}, we define the following hybrids.

Hybrid1.b: This corresponds to the real experiment when the challenger encrypts the message mb. More
precisely, the challenger produces an encryption CT = (CT0,CT1) where

CT0 ← OneCT.Enc(OneCT.SK,m) and

CT1 ← Sel.Enc(Sel.MPK, (OneCT.SK,K, 0λ, 0)).

Hybrid2.b: The challenger replaces the hard-coded ciphertext CE in every functional key corresponding to
a query f made by the adversary, with a symmetric key encryption of OneCT.skf (note that each key has
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its own different CE). Here, OneCT.skf is the output of OneCT.KeyGen(OneCT.SK∗, f ;PRFK∗(τ)) and K∗

is a PRF key drawn from the key space K. Further, the symmetric encryption is computed with respect
to Sym.K∗, where Sym.K∗ is the output of Sym.Setup(1λ) and τ is the tag associated to the functional
key of f . The same Sym.K∗ and K∗ are used while generating all the functional keys, and K∗ is used for
generating the challenge ciphertext CT∗ = (CT∗0,CT

∗
1) (that is, CT∗0 ← OneCT.Enc(OneCT.SK∗,mb) and

CT∗1 ← Sel.Enc(Sel.MSK, (OneCT.SK∗,K∗, 0λ, 0))). The rest of the hybrid is the same as the previous hybrid,
Hybrid1.b.

Note that the symmetric key Sym.K∗ is not used for any purpose other than generating the values
CE . Therefore, the pseudorandom ciphertexts property of the symmetric scheme implies that Hybrid2.b and
Hybrid1.b are indistinguishable.

Claim 1. Assuming the pseudorandom ciphertexts property of SYM, for each b ∈ {0, 1} we have |AdvA1.b −
AdvA2.b| ≤ negl(λ).

Proof. Suppose there exists an adversary such that the difference in the advantages is non-negligible, then
we construct a reduction that can break the security of SYM. The reduction internally executes the ad-
versary by simulating the role of the challenger in the adaptive public-key FE game. It answers both
the message and the functional queries made by the adversary as follows. The reduction first executes
OneCT.Setup(1λ) to obtain OneCT.SK∗. It then samples K∗ from K. Further, the reduction generates
Sel.MSK, which is the output of Sel.Setup(1λ) and Sym.K∗, which is the output of Sym.Setup(1λ). When
the adversary submits a functional query f , the reduction first picks τ at random. The reduction executes
OneCT.KeyGen(OneCT.SK∗, f ;PRF(K∗(τ))) to obtain OneCT.skf . It then sends OneCT.skf to the chal-
lenger of the symmetric encryption scheme. The challenger returns back with CE , where CE is either a
uniformly random string or it is an encryption of OneCT.skf . The reduction then generates a selectively-
secure FE functional key of Gf,CE ,τ and denote the result by Sel.skG which is sent to the adversary. The
message queries made by the adversary are handled as in Hybrid1. That is, the adversary submits the
message-pair query (m0,m1) and the reduction sends CT∗ = (CT∗0,CT

∗
1) back to the adversary, where

CT∗0 = OneCT.Enc(OneCT.SK∗,mb) and CT∗1 = Sel.Enc(Sel.MSK, (0λ, 0λ,Sym.K∗, 1)).
If the challenger of the symmetric key encryption scheme sends a uniformly random string back to the

reduction every time the reduction makes a query to the challenger then we are in Hybrid1.b, otherwise we
are in Hybrid2.b. Since the adversary can distinguish both the hybrids with non-negligible probability, we
have that the reduction breaks the security of the symmetric key encryption scheme with non-negligible
probability. From our hypothesis, we have that the reduction breaks the security of the symmetric key
encryption scheme with non-negligible probability. This proves the claim.

Hybrid3.b: The challenger modifies the challenge ciphertext CT∗ = (CT∗0,CT
∗
1) so that CT∗1 is an encryption of

(0λ, 0λ,Sym.K∗, 1). The ciphertext component CT∗0 is not modified (i.e., CT∗0 = OneCT.Enc(OneCT.SK∗,mb)).
The rest of the hybrid is the same as the previous hybrid, Hybrid2.b.

Note that the functionality of the functional keys generated using the underlying selectively-secure scheme
is unchanged with the modified CT∗1. Therefore, its selective security implies that Hybrid3.b and Hybrid2.b are
indistinguishable.

Claim 2. Assuming the selective security of Sel, for each b ∈ {0, 1} we have |AdvA2.b − AdvA3.b| ≤ negl(λ).

Proof. Suppose the claim is not true for some adversary A, we construct a reduction that breaks the security
of Sel. Our reduction will internally execute A by simulating the role of the challenger of the adaptive FE
game.

Our reduction first executes OneCT.Setup(1λ) to obtain OneCT.SK∗. It then samples K∗ from K. It also
executes Sym.Setup(1λ) to obtain Sym.K∗. The reduction then sends the message pair

(
(OneCT.SK∗,K∗, 0λ, 0),

(0λ, 0λ,Sym.K∗, 1)
)

to the challenger of the selective game. The challenger replies back with the public key
Sel.MPK and the challenge ciphertext CT∗1. The reduction is now ready to interact with the adversary A.
If A makes a functional query f then the reduction constructs the circuit Gf,CE ,τ as in Hybrid2.b. It then
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queries the challenger of the selective game with the function G and in return it gets the key Sel.skG. The
reduction then sets Ad.skf to be Sel.skG which it then sends back to A. If A submits a message pair
(m0,m1), the reduction executes OneCT.Enc(OneCT.SK∗,m0) to obtain CT∗0. It then sends the ciphertext
CT∗ = (CT∗0,CT

∗
1) to the adversary. The output of the reduction is the output of A.

We claim that the reduction is a legal adversary in the selective security game of Sel, i.e., for challenge
message query (M0 = (OneCT.SK∗,K∗, 0λ, 0), M1 = (0λ, 0λ,Sym.K∗, 1)) and every functional query of the
form Gf,CE ,τ made by the reduction, we have that Gf,CE ,τ (M0) = Gf,CE ,τ (M1): By definition, Gf,CE ,τ (M0)
is the functional key of f , with respect to key OneCT.SK∗ and randomness PRFK∗(τ). Further, Gf,CE ,τ (M1)
is the decryption of CE which is nothing but the functional key of f , with respect to key OneCT.SK∗ and
randomness PRFK∗(τ). This proves that the reduction is a legal adversary in the selective security game.

If the challenger of the selective game sends back an encryption of (OneCT.SK∗,K∗, 0λ, 0) then we are in
Hybrid2.b else if the challenger encrypts (0λ, 0λ,Sym.K∗, 1) then we are in Hybrid3.b. By our hypothesis, this
means the reduction breaks the security of the selective game with non-negligible probability that contradicts
the security of Sel. This completes the proof of the claim.

Hybrid4.b: For every function query f made by the adversary, the challenger generates CE by executing
Sym.Enc(Sym.K∗,OneCT.skf ), with OneCT.skf being the output of OneCT.KeyGen(OneCT.SK∗, f ;R), where
R is picked at random. The rest of the hybrid is the same as the previous hybrid.

Note that the PRF key K∗ is not explicitly needed in the previous hybrid, and therefore the pseudoran-
domness of F implies that Hybrid4.b and Hybrid3.b are indistinguishable.

Claim 3. Assuming that F is a pseudorandom function family, for each b ∈ {0, 1} we have |AdvA3.b−Adv
A
4.b| ≤

negl(λ).

Proof. Suppose the claim is false for some PPT adversary A, we construct a reduction that internally
executes A and breaks the security of the pseudorandom function family F . The reduction simulates the
role of the challenger of the adaptive game when interacting with A. The reduction answers the functional
queries, made by the adversary as follows; the message queries are answered as in Hybrid3.b (or Hybrid4.b).
For every functional query f made by the adversary, the reduction picks τ at random which is then forwarded
to the challenger of the PRF security game. In response it receives R∗. The reduction then computes CE
to be Sym.Enc(Sym.K∗,OneCT.skf ), where OneCT.skf = OneCT.KeyGen(OneCT.SK∗, f ;R∗). The reduction
then proceeds as in the previous hybrids to compute the functional key Ad.skf which it then sends to A.

If the challenger of the PRF game sent R∗ = PRFK∗(τ) back to the reduction then we are in Hybrid3.b

else if R∗ is generated at random by the challenger then we are in Hybrid4.b. From our hypothesis this means
that the probability that the reduction distinguishes the pseudorandom value from random (at the point τ)
is non-negligible, contradicting the security of the pseudorandom function family.

We now conclude the proof of the theorem by showing that Hybrid4.0 is computationally indistinguishable
from Hybrid4.1 based on the adaptive security of the underlying single-ciphertext scheme.

Claim 4. Assuming the adaptive security of the scheme OneCT, we have |AdvA4.0 − AdvA4.1| ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A, such that the claim is false. We design a reduction B that
internally executes A to break the adaptive security of OneCT.

The reduction simulates the role of the challenger of the adaptive public-key FE game. It answers both
the functional as well as message queries made by the adversary as follows. If A makes a functional query f
then it forwards it to the challenger of the adaptively-secure single-ciphertext FE scheme. In return it receives
OneCT.skf . It then encrypts it using the symmetric encryption scheme, where the symmetric key is picked
by the reduction itself, and denote the resulting ciphertext to be CE . The reduction then constructs the
circuit Gf,CE ,τ , with τ being picked at random, as in the previous hybrids. Finally, the reduction computes
the selective public-key functional key of Gf,CE ,τ , where the reduction itself picks the master secret key of
selective public-key FE scheme. The resulting functional key is then sent to A. If A makes a message-pair
query (m0,m1), the reduction forwards this message pair to the challenger of the adaptive game. In response
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it receives CT∗0. The reduction then generates CT∗1 on its own where CT∗1 is the selective FE encryption of
(0λ, 0λ,Sym.K∗, 1). The reduction then sends CT∗ = (CT∗0,CT

∗
1) to A. The output of the reduction is the

output of A.
We note that the reduction is a legal adversary in the adaptive game of OneCT, i.e., for every challenge

message query (m0,m1), functional query f , we have that f(m0) = f(m1): this follows from the fact that
(i) the functional queries (resp., challenge message query) made by the adversary (of Ad) is the same as the
functional queries (resp., challenge message query) made by the reduction, and (ii) the adversary (of Ad) is
a legal adversary. This proves that the reduction is a legal adversary in the adaptive game.

If the challenger sends an encryption of m0 then we are in Hybrid4.0 and if the challenger sends an
encryption of m1 then we are in Hybrid4.1. From our hypothesis, this means that the reduction breaks the
security of OneCT. This proves the claim.

4 From Shallow Circuits to All Circuits

In this section we show that a functional encryption scheme that supports functions computable by shallow
circuits can be transformed into one that supports functions computable by arbitrarily deep circuits. In
particular, the shallow class can be any class in which weak pseudorandom functions can be computed and
has some composition properties.5 For concreteness we consider here the class NC1, which can compute
weak pseudorandom functions under standard cryptographic assumptions such as DDH or LWE (a lower
complexity class such as TC0 is also sufficient under standard assumptions). We focus here on private-key
functional encryption schemes, and note that an essentially identical transformation applies for public-key
scheme.

While we present a direct reduction below, we notice that this property can be derived from the trans-
formation in Section 3, by recalling some properties of Gurbunov et al.’s [GVW12] single-key functional
encryption scheme. One can verify that their setup algorithm can be implemented in NC1 (under the as-
sumption that it can evaluate weak pseudorandom functions), regardless of the depth of the function being
implemented. This property carries through even after applying the function privacy transformation of Brak-
erski and Segev [BS15]. Lastly, to implement our approach we need a symmetric encryption scheme with
decryption in NC1, which again translates to the evaluation of a weak pseudorandom function [NR04,BPR12].

(Computational) Randomized encodings [IK00, AIK05]. A (computational) randomized encoding
scheme for a function class F consists of two PPT algorithms (RE.Encode,RE.Decode). The PPT algorithm
RE.Encode takes as input (1λ, F, x, r), where λ is the security parameter, F : {0, 1}λ → {0, 1} is a function in
F , instance x ∈ {0, 1}λ and randomness r. The output is denoted by F̂ (x; r). The PPT algorithm RE.Decode
takes as input F̂ (x; r) and outputs y = F (x).

The security property states that there exists a PPT algorithm Sim that takes as input (1λ, F (x)) and
outputs SimOutF (x) such that any PPT adversary cannot distinguish the distribution {F̂ (x; r)} from the
distribution {SimOutF (x)}. The following corollary is derived from applying Yao’s garbled circuit technique
using a weak PRF based encryption algorithm.

Corollary 1. Assuming a family of weak pseudorandom functions that can be evaluated in NC1, there exists
a randomized encoding scheme (RE.Encode,RE.Decode) for the class of polynomial size circuits, such that
RE.Encode is computable in NC1.

Our transformation. Let NCFE = (NCFE.Setup,NCFE.KeyGen,NCFE.Enc,NCFE.Dec) be a private-key
functional encryption scheme for the class NC1. We assume that NCFE supports functions with multi-
bit outputs, as otherwise it is always possible to produce a functional key for each output bit separately.
We also use a pseudorandom function family denoted by F = {PRFK(·)}K∈K and a symmetric encryption

5Similarly to the class WEAK defined in [App14].
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scheme SYM = (Sym.Setup,Sym.Enc,Sym.Dec). We construct a private-key functional encryption scheme
PFE = (PFE.Setup,PFE.KeyGen,PFE.Enc,PFE.Dec) as follows.

• The setup algorithm: On input 1λ the algorithm PFE.Setup samples and outputsMSK ← NCFE.Setup(1λ).

• The key-generation algorithm: On input the secret key MSK and a circuit F , the algorithm
PFE.KeyGen first samples CE ← {0, 1}`1(λ) and τ ← {0, 1}λ uniformly and independently. Then,
it computes a functional key SKG ← NCFE.KeyGen(MSK,GF,CE ,τ ), where the function GF,CE ,τ is
defined in figure 2, and outputs (SKG, F, CE , τ).

• The encryption algorithm: On input the secret key MSK and a message x, the algorithm PFE.Enc
first samples KP ← {0, 1}λ, and then computes and outputs C ← NCFE.Enc(MSK, (x,KP , 0

λ, 0)).

• The decryption algorithm: On input a functional key SKF = (SKG, F, CE , τ) and a ciphertext C,

the decryption algorithm PFE.Dec computes F̂ (x)← NCFE.Dec(SKG, (F,CE , τ), C) and then outputs

RE.Decode(F̂ (x)).

Gf,CE,τ (x,KP ,KE, β):

1. If β = 1 output Sym.DecKE (CE).

2. Otherwise, output F̂ (x;PRFKP (τ)) = RE.Encode(F, x;PRFKP (τ)).

Figure 2: The function Gf,CE ,τ .

The correctness of the above scheme easily follows from that of its underlying building blocks, and in the
remainder of this section we provide a sketch for proving the following theorem:

Theorem 3. Assuming that: (1) NCFE is a selectively-secure private-key functional encryption scheme for
NC1, (2) SYM is a symmetric encryption scheme with pseudorandom ciphertexts whose decryption circuit is
in NC1, (3) PRF is a weak pseudorandom function family which can be evaluated in NC1, and (4) (RE.Encode,
RE.Decode) is a randomized encoding scheme with encoding in NC1, then PFE is a selectively-secure private-
key functional encryption scheme for P .

Proof Sketch. The proof proceeds by a sequence of hybrids. For simplicity, we consider the case when the
adversary submits a single challenge pair (m0,m1), and the argument can be easily generalized to the case
of multiple challenges.

Hybrid0: This corresponds to the real experiment where the challenger sends an encryption of m0 to the
adversary.

Hybrid1: For every functional query F , the challenger replaces CE with a symmetric encryption Sym.Enc(

KE , F̂ (m0;PRFKP (t)) in the functional key for F . By a sequence of intermediate hybrids (as many as the
number of function queries), Hybrid1 can be shown to be computationally indistinguishable from Hybrid0

based on the pseudorandom ciphertexts property of the symmetric encryption scheme.

Hybrid2: The challenge ciphertext will consist of an encryption of (m0, 0,KE , 1) instead of (m0,KP , 0
λ, 0).

This hybrid is computationally indistinguishable from Hybrid1 by the security of the underlying functional
encryption scheme.

Hybrid3: For every function query F , the challenger replaces CE in all the functional keys with Sym.Enc(KE ,

F̂ (m0; r)) for a uniform r. By a sequence of intermediate hybrids (as many as the number of function queries),
Hybrid3 can be shown to be computationally indistinguishable from Hybrid2 based on the security of PRF.
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Hybrid4: Finally, for every function query F , the challenger replaces F̂ (m0; r) in the ciphertext hardwired
in the functional key for F by the simulated randomized encoding Sim(1λ, F (m0)). By a sequence of inter-
mediate hybrids (as many as the number of function queries), Hybrid4 can be shown to be computationally
indistinguishable from Hybrid3 based on the security of randomized encodings. Note that the this hybrid does
not depend on whether m0 or m1 was encrypted since for all function queries F it holds that F (m0) = F (m1),
and this proves the security of PFE .
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A Preliminaries (Cont.)

A.1 Private-Key Functional Encryption

A private-key functional encryption (FE) scheme Priv over a message space M = {Mλ}λ∈N and a func-
tion space F = {Fλ}λ∈N is a tuple (Priv.Setup,Priv.KeyGen,Priv.Enc,Priv.Dec) of PPT algorithms with the
following properties:

• Priv.Setup(1λ): The setup algorithm takes as input the unary representation of the security parameter,
and outputs a secret key Priv.MSK.

• Priv.KeyGen(Priv.MSK, f): The key-generation algorithm takes as input the secret key Priv.MSK and
a function f ∈ Fλ, and outputs a functional key Priv.skf .

• Priv.Enc(Priv.MSK,m): The encryption algorithm takes as input the secret key Priv.MSK and a message
m ∈Mλ, and outputs a ciphertext CT.

• Priv.Dec(Priv.skf ,CT): The decryption algorithm takes as input a functional key Priv.skf and a ci-
phertext CT, and outputs m ∈Mλ ∪ {⊥}.

In terms of correctness, we require that there exists a negligible function negl(·) such that for all sufficiently
large λ ∈ N, for every message m ∈Mλ, and for every function f ∈ Fλ it holds that

Priv.Dec(Priv.KeyGen(Priv.MSK, f),Priv.Enc(Priv.MSK,m)) = f(m)

with probability at least 1 − negl(λ), where Priv.MSK ← Priv.Setup(1λ), and the probability is taken over
the random choices of all algorithms.

We consider the standard selective and adaptive indistinguishability-based notions for private-key func-
tional encryption (see, for example, [BS15]). Intuitively, these notions ask that encryptions of any two
messages, m0 and m1, should be computationally indistinguishable given access to functional keys for any
function f such that f(m0) = f(m1) and to an encryption oracle.

Definition 4 (Selective security). A private-key functional encryption scheme Π = (Sel.Setup,Sel.KeyGen,
Sel.Enc,Sel.Dec) over a function space F = {Fλ}λ∈N and a message space M = {Mλ}λ∈N is selectively
secure if for any PPT adversary A there exists a negligible function negl(·) such that

AdvSelΠ,A(λ) =
∣∣∣Pr[ExptSelΠ,A(λ, 0) = 1]− Pr[ExptSelΠ,A(λ, 1) = 1]

∣∣∣ ≤ negl(λ),

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N the experiment ExptSelΠ,A(1λ, b), modeled
as a game between the adversary A and a challenger, is defined as follows:

1. Setup phase: The challenger samples Sel.MSK← Sel.Setup(1λ).

2. Message queries: On input 1λ the adversary submits ((m
(0)
1 , . . . ,m

(0)
p ), (m

(1)
1 , . . . ,m

(1)
p )) for some

polynomial p = p(λ). The challenger replies with (c1, . . . , cp), where ci ← Sel.Enc(Sel.MSK,m
(b)
i ) for

every i ∈ [p].

3. Function queries: The adversary adaptively queries the challenger with any function f ∈ Fλ such

that f(m
(0)
i ) = f(m

(1)
i ) for every i ∈ [p]. For each such query, the challenger replies with Sel.skf ←

Sel.KeyGen(Sel.MSK, f).
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4. Output phase: The adversary outputs a bit b′ which is defined as the output of the experiment.

Definition 5 (Adaptive security). A private-key functional encryption scheme Π = (Ad.Setup,Ad.KeyGen,
Ad.Enc,Ad.Dec) over a function space F = {Fλ}λ∈N and a message space M = {Mλ}λ∈N is adaptively
secure if for any PPT adversary A there exists a negligible function negl(·) such that

AdvAdΠ,A(λ) =
∣∣∣Pr[ExptAdΠ,A(λ, 0) = 1]− Pr[ExptAdΠ,A(λ, 1) = 1]

∣∣∣ ≤ negl(λ),

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N the experiment ExptAdΠ,A(λ, b), modeled
as a game between the adversary A and a challenger, is defined as follows:

1. Setup phase: The challenger samples Ad.MSK← Ad.Setup(1λ).

2. Query phase: The adversary adaptively queries the challenger with message queries and function
queries, in an arbitrary order, as follows:

• Message queries: The adversary submits (m0,m1) such that f(m0) = f(m1) for all function
queries f made so far. The challenger replies with CT = Ad.Enc(Ad.MSK,mb).

• Function queries: The adversary submits a function f such that f(m0) = f(m1) for all message
queries (m0,m1) made so far. The challenger replies with Ad.skf ← Ad.KeyGen(Ad.MSK, f).

3. Output phase: The adversary outputs a bit b′ which is defined as the output of the experiment.

B Our Transformation in the Private-Key Setting

The exact same transformation as above works in the private-key setting as well. Namely, given a private-key
selectively secure FE, we obtain a private-key adaptively secure FE. The transformation is identical with the
obvious exception that there is no public-key, and the master secret key is used for both encryption and key
generation. We denote the selectively-secure FE that we use by Sel = (Sel.Setup,Sel.KeyGen,Sel.Enc,Sel.Dec).
The adaptively-secure FE that we construct is denoted by Ad = (Ad.Setup,Ad.KeyGen,Ad.Enc,Ad.Dec).

• The setup algorithm: On input 1λ, the algorithm Ad.Setup executes Sel.Setup(1λ) to obtain Sel.MSK.
Output Ad.MSK = Sel.MSK.

• The key-generation algorithm: On input secret key Ad.MSK = Sel.MSK and a function f , the
algorithm Ad.KeyGen first samples a uniformly random string CE ← {0, 1}`1(λ) and a uniformly random
tag τ ← {0, 1}`2(λ). It then computes Sel.skG ← Sel.KeyGen(Sel.MSK, Gf,CE ,τ ) and outputs Ad.skf =
Ad.skG, where Gf,CE ,τ is as defined in Figure 3.

Gf,CE,τ (OneCT.SK,K, Sym.K, β):

1. If β = 0 output OneCT.skf ← OneCT.KeyGen(OneCT.SK, f ;PRFK(τ)).

2. Otherwise, output Sym.Dec(Sym.K, CE).

Figure 3: The function Gf,CE ,τ .

• The encryption algorithm: On input secret key Ad.MSK = Sel.MSK and a message m, the algorithm
Ad.Enc samples OneCT.SK by executing OneCT.Setup(1λ) and K ← Kλ. Then, it outputs CT =
(CT0,CT1), where

CT0 ← OneCT.Enc(OneCT.SK,m)

CT1 ← Sel.Enc(Sel.MSK,M = (OneCT.SK,K, 0λ, 0)).
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• The decryption algorithm: On input a functional key Ad.skf = Sel.skG and a ciphertext CT =
(CT0,CT1), the decryption algorithm Ad.Dec first computes OneCT.skf ← Sel.Dec(Sel.skG,CT1).
Then, it computes m← OneCT.Dec(OneCT.skf ,CT0) and outputs m.

The correctness is straightforward. The proof of security in this case is slightly more complicated than its
public-key counterpart. Since in the symmetric setting, the adversary is allowed to make multiple message
queries, we have to employ a sequence of hybrids, handling each message query at a time. Each of these
hybrids is identical to our proof of Theorem 2 above. We prove the following theorem.

Theorem 4. Assuming that: (1) Sel is a selectively-secure private-key functional encryption scheme, (2)
OneCT is an adaptively-secure single-ciphertext private-key functional encryption scheme, (3) SYM is a
symmetric encryption scheme with pseudorandom ciphertexts, and (4) F is a pseudorandom function family,
then Ad is an adaptively-secure private-key functional encryption scheme.

Proof. We show that any PPT adversary A succeeds in the adaptive security game of Ad with only negligible
probability. We will show this in a sequence of hybrids. We denote the advantage of the adversary in Hybridji
to be the probability that the adversary outputs 1 in that hybrid and this quantity is denoted by AdvAi,j .

We define the hybrids, Hybridji.b, for j ∈ [p], i ∈ [4], and b ∈ {0, 1}, where p denotes the number of
message queries made by A. We then prove the following quantities:

1. |AdvA0 − AdvA1.0,1| ≤ negl(λ).

2. |AdvAi.0,j − AdvAi+1.0,j | ≤ negl(λ), for all i ∈ [3], j ∈ [p].

3. |AdvAi.1,j − AdvAi+1.1,j | ≤ negl(λ), for all i ∈ [3], j ∈ [p].

4. |AdvA4.0,j − AdvA4.1,j | ≤ negl(λ), for all j ∈ [p].

5. |AdvA1.0,j+1 − AdvA1.1,j | ≤ negl(λ), for all j ∈ [p− 1].

6. |AdvA1.1,p − AdvA5 | ≤ negl(λ).

We now describe the hybrids.

Hybrid0: This corresponds to the real experiment when the challenger uses the encryption oracle, parame-
terized by bit 0, to generate the challenge ciphertexts. That is, for all message queries of the form (m0,m1),
the challenger sends an encryption of m0 to the adversary. The output of this hybrid is the same as the
output of the adversary.

Hybridj1.b for b ∈ {0, 1}, j ∈ [p]: This is the same as the hybrid Hybridj−1
1.b (if j = 1 then we refer to

Hybrid0) except that the challenger encrypts the bth message in the jth message pair query submitted by the
adversary. More precisely, the only change is the following: If the adversary submits the jth message pair
(m0,m1) to the challenger, the challenger then sends the challenge ciphertext CT∗ back to the adversary,
where CT∗ is the encryption of message mb. We observe that the hybrid Hybrid1

1.0 is identical to Hybrid0 and
also, Hybridj−1

1.1 is identical to Hybridj1.0, for j ∈ [p] and j > 1.

Hybridj2.b for b ∈ {0, 1}, j ∈ [p]: This is identical to Hybridj1.b except for the following change. The chal-
lenger replaces CE in every functional key, corresponding to the query f made by the adversary, with
a symmetric encryption of OneCT.skf , where OneCT.skf is the output of OneCT.KeyGen(OneCT.SK∗, f ;
PRFK∗(τ)) and K∗ is a PRF key sampled from the key space K. Further the symmetric encryption is com-
puted with respect to Sym.K∗, where Sym.K∗ is the output of Sym.Setup(1λ) and τ is the tag associated
to the functional key of f . We emphasize that the same Sym.K∗ and K∗ is used while generating all the
functional keys.

Claim 5. Assuming the pseudorandom ciphertexts property of SYM, for every PPT adversary A, for b ∈
{0, 1}, j ∈ [p], we have |AdvA1.b,j − AdvA2.b,j | ≤ negl(λ).
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Proof. Suppose there exists an adversary such that the difference in the advantages is non-negligible,
then we construct a reduction that can break the security of SYM. The reduction internally executes
the adversary by simulating the role of the challenger in the adaptive private-key FE game. It answers
both the message and the functional queries made by the adversary as follows. The reduction first exe-
cutes OneCT.Setup(1λ) to obtain OneCT.SK∗ It then samples K∗ from K. Further, the reduction generates
Sel.MSK, which is the output of Sel.Setup(1λ) and Sym.K∗, which is the output of Sym.Setup(1λ). When
the adversary submits a functional query f , the reduction first picks τ at random. The reduction executes
OneCT.KeyGen(OneCT.SK∗, f ;PRF(K∗(τ))) to obtain OneCT.skf . It then sends OneCT.skf to the challenger
of the symmetric encryption scheme. The challenger returns back with CE , where CE is either a uniformly
random string or it is an encryption of OneCT.skf . The reduction then generates a selectively-secure FE
functional key of Gf,CE ,τ and denote the result by Sel.skG which is sent to the adversary. The message

queries made by the adversary are handled as in Hybridj1.b. That is, the adversary submits the ith message-
pair query of the form (mi

0,m
i
1) and the reduction sends CT∗ = (CT∗0,CT

∗
1) back to the adversary, where

CT∗0 = OneCT.Enc(OneCT.SK∗,mbi) and CT∗1 = Sel.Enc(Sel.MSK, (0λ, 0λ,Sym.K∗, 1)); we define bi = 1 for
i < j, bj = b and for i > j, we have bi = 0.

If the challenger of the symmetric key encryption scheme sends a uniformly random string back to the
reduction every time the reduction makes a query to the challenger then we are in Hybridj1.b, otherwise we

are in Hybridj2.b. Since the adversary can distinguish both the hybrids with non-negligible probability, we
have that the reduction breaks the security of the symmetric key encryption scheme with non-negligible
probability. This proves the claim.

Hybridj3.b for b ∈ {0, 1}, j ∈ [p]: The challenger modifies the jth challenge ciphertext CT∗ = (CT∗0,CT
∗
1).

In particular it generates CT∗1 using the message (0λ, 0λ,Sym.K∗, 1) instead of (OneCT.SK∗,K∗, 0λ, 0). The
ciphertext component CT∗0 is generated the same way as in the previous hybrid, Hybridj2.b. More for-

mally, the jth challenge ciphertext is now CT∗ = (CT∗0 = OneCT.Enc(OneCT.SK∗,mj
b), CT

∗
1 = Sel.Enc(

Sel.MSK, (0λ, 0λ,Sym.K∗, 1)). The rest of the hybrid is the same as the previous hybrid, Hybridj2.b.

Claim 6. Assuming the selective security of Sel, for every PPT adversary A, for b ∈ {0, 1}, j ∈ [p], we have
|AdvA2.b,j − AdvA3.b,j | ≤ negl(λ).

Proof. Suppose the claim is not true for some PPT adversary A, we construct a reduction that breaks
the security of Sel. Our reduction will internally execute A by simulating the role of the challenger of the
adaptive FE game.

For every i ∈ [p], the reduction does the following. It first executes OneCT.Setup(1λ) to obtain OneCT.SK∗i .
It then samples K∗i from K. It also executes Sym.Setup(1λ) to obtain Sym.K∗i . If i 6= j, the reduction then
sends the message pair

(
(OneCT.SK∗i , K

∗
i , 0λ, 0)), (OneCT.SK∗i ,K

∗
i , 0

λ, 0)
)

to the challenger of the selective

game and if i = j, the reduction instead sends the message pair
(
(OneCT.SK∗j ,K

∗
j , 0

λ, 0), (0λ, 0λ,Sym.K∗j , 1)
)
.

For the ith message query, the challenger responds back with the challenge ciphertext CT∗1,i.
The reduction is now ready to interact with the adversary A. If A makes a functional query f then the

reduction constructs the circuit Gf,CE ,τ as in Hybridj2.b. It then queries the challenger of the selective game
with the function G and in return it gets the key Sel.skG. The reduction then sets Ad.skf to be Sel.skG
which it then sends back to A. The message queries made by A are handled as follows. When A submits
the ith message pair (mi

0,m
i
1), the reduction executes OneCT.Enc(OneCT.SK∗i ,m

i
0) to obtain CT∗0,i. It then

sends the ciphertext CT∗ = (CT∗0,i,CT
∗
1,i) to the adversary. The output of the reduction is the output of A.

We claim that the reduction is a legal adversary in the selective security game of Sel. To argue this, note
that we only need to consider the jth message query since the left and the right messages in all other message
queries are the same. For the jth message query (M0 = (OneCT.SK∗j ,K

∗
j , 0

λ, 0), M1 = (0λ, 0λ,Sym.K∗j , 1)) and
every functional query of the form Gf,CE ,τ made by the reduction, we have that Gf,CE ,τ (M0) = Gf,CE ,τ (M1):
By definition, Gf,CE ,τ (M0) is the functional key of f , with respect to key OneCT.SK∗j and randomness
PRFK∗

j
(τ). Further, Gf,CE ,τ (M1) is the decryption of CE which is nothing but the functional key of f , with

respect to key OneCT.SK∗j and randomness PRFK∗
j
(τ). This proves that the reduction is a legal adversary in

the selective security game.
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If the challenger of the selective game sends back an encryption of (OneCT.SK∗j ,K
∗
j , 0

λ, 0) then we are in

Hybridj2.b else if the challenger encrypts (0λ, 0λ,Sym.K∗j , 1) then we are in Hybridj3.b. By our hypothesis, this
means the reduction breaks the security of the selective game with non-negligible probability that contradicts
the security of Sel. This completes the proof of the claim.

Hybridj4.b for b ∈ {0, 1}, j ∈ [p]: For every functional query f made by the adversary, the challenger gen-
erates CE by executing Sym.Enc(Sym.K∗,OneCT.skf ), with OneCT.skf being the output of OneCT.KeyGen(
OneCT.SK∗, f ;R), where R is picked at random. The rest of the hybrid is the same as the previous hybrid.

Claim 7. Assuming the security of the pseudorandom function family F , for every PPT adversary A, for
b ∈ {0, 1}, j ∈ [p], we have |AdvA3.b,j − AdvA4.b,j | ≤ negl(λ).

Proof. Suppose the claim is false for some PPT adversary A, we construct a reduction that internally
executes A and breaks the security of the pseudorandom function family F . The reduction simulates the
role of the challenger of the adaptive game when interacting with A. The reduction answers the functional
queries, made by the adversary as follows; the message queries are answered as in Hybridj3.b (or Hybridj4.b).
For every functional query f made by the adversary, the reduction picks τ at random which is then forwarded
to the challenger of the PRF security game. In response it receives R∗. The reduction then computes CE
to be Sym.Enc(Sym.K∗,OneCT.skf ), where OneCT.skf = OneCT.KeyGen(OneCT.SK∗, f ;R∗). The reduction
then proceeds as in the previous hybrids to compute the functional key Ad.skf which it then sends to A.

If the challenger of the PRF game sent R∗ = PRFK∗(τ) back to the reduction then we are in Hybridj3.b
else if R∗ is generated at random, for every query τ , by the challenger then we are in Hybridj4.b. From our
hypothesis this means that the probability that the reduction distinguishes the pseudorandom values from
random values is non-negligible, contradicting the security of the pseudorandom function family F .

We now show that Hybridj4.0 is computationally indistinguishable from Hybridj4.1.

Claim 8. Assuming the adaptive security of OneCT, for j ∈ [p], for every PPT adversary A we have
|AdvA4.0,j − AdvA4.1,j | ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A, such that the claim is false. We design a reduction that
internally executes A to break the adaptive security of OneCT.

The reduction simulates the role of the challenger of the adaptive private-key FE game. It answers both
the functional as well as message queries made by the adversary as follows. If A makes a functional query
f then it forwards it to the challenger of the adaptively-secure single-ciphertext FE scheme. In return it
receives OneCT.skf . It then encrypts it using the symmetric encryption scheme, where the symmetric key is
picked by the reduction itself, and denote the resulting ciphertext to be CE . The reduction then constructs
the circuit Gf,CE ,τ as in the previous hybrids. Finally, the reduction computes the selective private-key
functional key of Gf,CE ,τ , where the reduction itself picks the master secret key of selective private-key FE
scheme. The resulting functional key is then sent to A. The message queries are handled as follows. Suppose
the adversary A makes the ith message-pair query (mi

0,m
i
1). If i 6= j, then the reduction answers the query

himself. That is, B samples the single-ciphertext FE master key OneCT.SKi and PRF key Ki by himself. It
then computes a single-ciphertext FE encryption of mbi using OneCT.SKi and denote the result by CTi0: we
define bi = 1 if i < j and bi = 0 if i > j. Further, it computes a (selective) private-key FE encryption of
(OneCT.SKi,Ki, 0

λ, 0), which is represented by CTi1. The challenger sends the ciphertext CTi = (CTi0,CT
i
1)

to A. When i = j, the reduction forwards the message pair (mj
0,m

j
1) to the challenger of the adaptive game.

In response it receives CT∗0. The reduction then generates CT∗1 on its own where CT∗1 is the selective FE
encryption of (0λ, 0λ,Sym.K∗, 1). The reduction then sends CT∗ = (CT∗0,CT

∗
1) to A. The output of the

reduction is the output of A.
We note that the reduction is a legal adversary in the adaptive game of OneCT, i.e., for the message query

(mj
0,m

j
1), functional query f , we have that f(mj

0) = f(mj
1): this follows from the fact that (i) the functional

queries (resp., challenge message query) made by the adversary (of Ad) is the same as the functional queries
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(resp., challenge message query) made by the reduction, and (ii) the adversary (of Ad) is a legal adversary.
This proves that the reduction is a legal adversary in the adaptive game.

If the challenger sends an encryption of m0 then we are in Hybridj4.0 and if the challenger sends an

encryption of m1 then we are in Hybridj4.1. From our hypothesis, this means that the reduction breaks the
security of OneCT. This proves the claim.

Hybrid5: This corresponds to the real experiment when the challenger uses the encryption oracle, parame-
terized by bit 1, to generate the challenge ciphertexts. That is, for all message queries of the form (m0,m1),
the challenger sends an encryption of m1 to the adversary. The output of this hybrid is the same as the
output of the adversary. We note that this hybrid is identical to the hybrid Hybridp1.1.

The above claims imply that Hybrid0 is computationally indistinguishable from Hybrid5 which proves the
adaptive security of Ad. This completes the proof of theorem.
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