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Abstract. Even though Zero-knowledge has existed for more than 30
years, few generic constructions for Zero-knowledge exist. In this paper
we present a new kind of commitment scheme on which we build a novel
and efficient Zero-knowledge protocol for circuit satisfiability. We can
prove knowledge of the AES-key which map a particular plaintext to a
particular ciphertext in less than 4 seconds with a soundness error of
2−40. Our protocol only requires a number of commitments proportional
to the security parameter with a small constant (roughly 5).

1 Introduction

Zero-knowledge was introduced in 1985 by Goldwasser, Micali and Rackoff in
their seminal paper [12] introducing the IP hierarchy for interactive proof sys-
tems and the concept of Zero-knowledge complexity.

Informally, a Zero-knowledge argument is an interactive protocol that allows
a Prover to persuade a Verifier of the validity of some NP statement using
knowledge of some hidden witness. Essentially, the Verifier should learn nothing
more than the fact that the Prover knows a witness that satisfies the statement.

One motivating example is that of graph isomorphism: the NP statement
here is that two graphs are isomorphic. The witness is a permutation held by
the Prover permuting one graph into the other. One obvious way for the Prover
to convince the Verifier would be to send the permutation. However, this reveals
much more information than the one bit of information to be conveyed, namely
whether the graphs are isomorphic or not. Zero-Knowledge proofs are interactive
proof systems ensuring that the Verifier learns only this information and nothing
more.
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Following this ground breaking work, [1] showed that for any relation that
can be proven by an interactive proof systems, it can also be proven in Zero-
knowledge. Thus, the potential for applications of Zero-knowledge are expansive.
A large body of work has shown that specialized efficient constructions for spe-
cific NP relations are possible. However, even though Zero-knowledge has existed
for almost 30 years, generic constructions for Zero-knowledge are very few. More-
over, the generic constructions that do exist, use the relatively impractical Karp
reductions [15] to NP-complete languages [11].

Generic constructions for Zero-knowledge are starting to emerge. The recent
line of work starting with [14] focus on the novel idea of using garbled circuits for
Zero-knowledge proofs of generic statements. This line of work was continued by
Frederiksen et al. in [9] where they build specialized garbling schemes tailored
for Zero-knowledge proofs. The garbling approach communicates at least one
symmetric encryption per And-gatein the circuit. Similary, for security param-
eter κ and circuit size n our protocol exhibit worst case complexity O(nκ). In
contrast to the garbling approach, our protocol only requires a small constant
of bits by And gate (roughly 5). On the other hand, we have [13] with worst
case complexity O(n) when the Prover uses the Scalable Multiparty computa-
tion technique from [8]. However this construction is quite involved and even
9 years after its publication no implementation is provided yet3. Naturally for
large enough circuits [13] will be faster than our construction. Yet we boldly
conjecture that our scheme, given its smaller constants, out performs their (in
terms of execution time) construction for practical application sized circuits like
AES (∼ 40K gates).

Another main selling point for our construction is that it is conceptually sim-
ple: only an understanding of the notion for commitments and XOR-sharing are
necessary to master it. Also, we demonstrate that our construction is practical
by presenting an implementation which exhibit small running times. In partic-
ular we present an example application where the Prover proofs knowledge of
an AES-encryption-key encrypting a particular public plain-text to a particular
public cipher-text. To sum up, our protocol is no novelty in terms of asymptotic
complexity, however we emphasize that the concrete constants are small, its
construction is conceptually simple (an advantage when selling it to non-crypto
experts) and it takes only a moderate effort to implement.

2 Contributions

In this paper, we present a novel approach for achieving generic Zero-knowledge
proofs. Similar to the line of work using garbled circuits, our construction uses the
idea of proving knowledge of a satisfying assignment for a circuit. However our
construction differs from the garbling approach in several ways. Our construction
is very simple and clean using only one primitive, a commitment scheme. Our
construction is similar to [17] which over a field F has complexity O(|F|n) for a

3 Though the authors say an implementation is under way.
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field of size |F| > κ. Their approach operates on a gate by gate basis. As our field
is small Z2 we bundle the entire circuit together obtaining a string of size O(n)
and prove all gates in one go with soundness 1

4 and then we repeat 2κ times.
For a simple construction our scheme can be instantiated in the Random

Oracle Model which is also rather efficient. However this introduces the extra
assumption of the Random Oracle. Recent work on commitments in the standard
model proves to be even more efficient and adds no additional assumptions, see
the PKC 2015 paper in [4] (improving on [7]). Using their scheme makes our
construction gets extremely efficient, since it only relies on encoding for a linear
code like Reed Solomon which can be done efficiently using the FFT-transform.

In a bit more detail, we take a similar approached to the one used in [2,6].
They use Xor operations over individually committed bits to prove statements.
We employ strings in our construction, using a novel way of committing to bit-
strings that enables Zero-knowledge proofs of linear relations. In particular we
present efficient protocols for proving equality and inequality of bits in a string
given two regular commitments to the Xor sharing of that string. From this we
build protocols for circuit satisfiability where a Prover proves to a Verifier that
he has knowledge of a witness w that satisfies the circuit. The Prover does this
by committing to a truth assignment of all gates in the circuit along with some
additional information. Then he proves relationships (corresponding to the gates
of the circuit) between bits in the committed string.

By the hiding property of the commitment the Verifier learns nothing about
the inputs to the circuit. In the end the Prover essentially opens the output bit
of the circuit by proving that the output bit of the circuit committed to is one
and this is essentially the only new information that the Verifier learns.

For a circuit of size n with ι input gates, α and gates and β linear gates our
construction communicates 4α+ β bits of data with soundness one-quarter. To
form a secure protocol with security 2−κ, we repeat our construction 2κ times
realizing a protocol with communication complexity O(κn). We emphasize once
again that the constants involved are small.

3 Commitment with Linear proofs

In this section, we define a commitment scheme which allows a Prover to prove
linear relationships between bit-positions within a string he has committed to.
These relationships include equality and inequality. From the (in)equality proofs
we build a protocol for proving that a set of bit positions xor to a particular value.
The proofs are complete and Honest-Verifier Zero-knowledge. The soundness
only holds with probability one-half. We will use the notation xom(m) to say
that a Prover commits to a message m allowing him to conduct proofs of linear
relations between individual bit positions in m.

The proofs will take the form of a sigma protocol: Three messages are com-
municated, where the Verifier’s challenge will consist of one bit. Proofs within a
single string can be combined similar to how sigma protocols can be combined.
If a commitment would take part in two tests which have distinct challenges,
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then the committed value is revealed. This implies that the soundness of the
proofs cannot be improved.

In the following we are going to work on strings, therefore we need a bit of
notation. Then follows our xor-commitment scheme.

Notation For an l-bit string m we denote mi the i’th bit of m. When a message
m is xor-shared, we denote m0 and m1 the xor-shares of m = m0 ⊕ m1. We
sometimes combine these notations and take m0

i to mean the i’th bit of the 0’th
share of m and similarly for m1

i . Informally, we say two distributions U and V
are indistinguishable if for any x sampled from either U or V at random and for
all probabilistic polynomial time Turing machines A, running A on x making
it guess on which distribution x belongs to is correct with probability 1

2 . For
formal formulation and a detailed treatment of indistinguishability we refer the
reader to [5].

Commitment scheme supporting linear proofs We will now give the details of
our commitment scheme supporting linear proofs. Our scheme relies on any
classical commitment scheme from the literature with the desired Hiding and
Binding properties, we denote it com(). In following we describe how we commit
to messages and open our commitments.

To commit to a string m ∈ {0, 1}l we first choose a string r ∈ {0, 1}l uni-
formly at random and set m0 = r and m1 = m ⊕ r. Then we commit to both
strings using the classical commitment scheme to form xom(m) = (com(m0), com(m1)).

To open an xom(m) entirely we open both classical commitments and reveal
m. The commitment protocol is depicted in Figure 1.

Φcommit(m)

Prover Verifier

r ∈R {0, 1}l

m0 = r,m1 = m⊕ r
com(m0), com(m1)

xom(m) = (com(m0), com(m1))

Fig. 1. Commit

3.1 Partial opening

In cases where we wish to do linear proofs, we will open the commitment partially
meaning that we only open one of the standard commitments associated to
xom(m). We denote Reveal(M, t) the action of a Prover opening the value of the
standard commitment com(mt).
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3.2 Properties with xom(·)

We give here a set of theorems stipulating important but strait forward facts
regarding XOR shared strings.

Theorem 1. For a given string m ∈ {0, 1}l and k ∈ {0, 1} let Vk be the distri-
bution on strings {

mk | m = m0 ⊕m1,m0 = r, r ∈R {0, 1}l
}

Vk is indistinguishable from the uniform distribution U on {0, 1}l.
Proof. The proof follows trivially from r being chosen uniformly at random.

Definition 1. We say a bit string m′ ∈ {0, 1}l looks independent of another
string m if the distribution from which m′ was drawn is indistinguishable from
the uniform distribution U on {0, 1}l.
Theorem 2. If two bit position mi and mj are equal for a string m = m0⊕m1

then exists δ such that δ = m0
i ⊕m0

j = m1
i ⊕m1

j .

Proof.

0 = mi ⊕mj = m0
i ⊕m0

j ⊕m1
i ⊕m1

j ⇒ m0
i ⊕m0

j = m1
i ⊕m1

j
def
= δ.

Theorem 3. For two bit positions mi and mj the view (δ,mk) looks independent

of m as long as m1−k stays hidden.

Proof. By Theorem 1. mk is independent of m and δ = mk
i ⊕mk

j , thus no new
information is revealed.

Theorem 4. For two bit positions mi and mj, if mi 6= mj then there exists ε

such that ε = m0
i ⊕m0

j = 1⊕m1
i ⊕m1

j .

Proof.

1 = mi ⊕mj = m0
i ⊕m0

j ⊕m1
i ⊕m1

j ⇒ m0
i ⊕m0

j = 1⊕m1
i ⊕m1

j
def
= ε.

Theorem 5. For two bit positions mi and mj the view (ε,mk) is independent

if m as long as m1−k stays hidden.

Proof. Again by Theorem 1 mk is independent of m. If k = 0 then ε = m0
i⊕m0

j in
which case ε can be perfectly simulated from what is already revealed. Similarly
if k = 1 then, ε = 1⊕m1

i ⊕m1
j which can be perfectly simulated too.

In the following we will use the Theorems above to generate proofs for linear
relationships between independent positions in a string m that a Prover has
committed to.
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4 Zero Knowledge with weak soundness

In our first result we show how to do an honest Verifier zero knowledge equality
proof between two bit positions of a string m given xom(m). The basic idea is as
follows: we will exploit Theorem 2 saying that if the bits mi and mj are equal

then there exists a δ such that m0
i ⊕m0

j = m1
i ⊕m1

j = δ. On the other hand,
if mi 6= mj by Theorem 4 then no such δ exists. The protocol is depicted in
Figure 2.

Informally, observe that by Theorem 3 the view (δ,mb
i ,m

b
j) looks independent

of the value of mi and mj as long as (m1−b
i ,m1−b

j ) stay hidden. For completeness

we observe that if the statement is true e.g. mi = mj then δ = mb
i⊕mb

j , b ∈ {0, 1}
and the Verifier accepts. For soundness consider the first step of the protocol:
the Prover will reveal δ. This reveals no information and forces a cheating Prover
to prepare to answer a b′ such that mb′

i ⊕mb′

j 6= δ. Then the Verifier will select a
b at random for which the Prover can only reply correctly if b = b′. This ensures
that a cheater gets caught with probability one-half. The soundness is evident
since any challenge can be easily answered. It is Zero-knowledge since the values
of (δ,mb

i ,m
b
j) are independent of the bits mi and mj .

4.1 Protocol for equality

In this Section we formally prove the protocol in Figure 2 Honest Verifier zero
knowledge with soundness 1

2 . For a string m ∈ {0, 1}l let M = xom(m) =
(com(m0), com(m1)), we show how to prove for a given i, j that mi = mj .

ΦEquality(M, i, j)

Prover Verifier

δ := m0
i ⊕m0

j

δ

ε ∈R {0, 1}
ε

Reveal(M, ε)

if mε
i⊕mε

j = δ accept
else reject

Fig. 2. Protocol for proof of Equality given an xom(m) to a message m. More precisely,
the M = {m0,m1, (com(m0), com(m1))} given as input is taken to mean that the Prover
already committed to a message m and the Verifier received the commitment.

Theorem 6. The protocol in Figure 2 is Honest Verifier Zero Knowledge with
soundness 1

2 .
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Proof. We show completeness, soundness and Honest Verifier Zero knowledge.
Completeness:
To show completeness, we show that an honest Verifier will be convinced by an
honest Prover. Therefore, assuming mi = mj , we consider two cases:
case 1 : if m0

i = m0
j then m1

i = m1
j in which case δ = 0 = m0

i ⊕m0
j = m1

i ⊕m1
j

and thus the check the Verifier make is true for both choices of ε and thus he
accepts.
case 2 : if on the other hand m0

i 6= m0
j then m1

i 6= m1
j in which case δ = 1 =

m0
i⊕m0

j = m1
i⊕m1

j and the Verifier accepts. These cases are exhaustive assuming
that mi = mj .
Soundness:
To show soundness holds with probability one-half, we consider a cheating Prover
and show that an honest Verifier accepts with probability at most one-half. That
is, lets assume mi 6= mj and consider a Prover try to convince the Verifier
otherwise. If m0

i 6= m0
j then m0

i ⊕ m0
j 6= m1

i ⊕ m1
j and therefore for any δ ∈

{0, 1} there exists a value ε such that the Verifier will not accept by Theorem 4.
Therefore, such a cheater is detected with probability 1/2.
Honest Verifier Zero-Knowledge:
To prove Zero Knowledge for a Verifier, we give a simulator that generates the
view (com(m0, com()1), δ,mb) which is indistinguishable from a real execution.

Simulator MEq
V ∗

1 Pick m, r ∈ R{0, 1}l s.t. mi = mj and set m0 = r,m1 = m ⊕m0.
2 Compute δ ← m0

i ⊕m0
j and output C = (com(m0), com(m1), δ)

3 Accept to receive the ε ∈ {0, 1}
4 Open the commitment com(mε).

Fig. 3. Simulator for equality

Consider the simulator in Figure 3. We argue that the view generated is
indistinguishable from a real execution by noticing that it performs the exact
same steps as an honest Prover does. From this, we conclude that the view
(com(m0), com(m1), δ,mb) is indistinguishable from a real execution.

It follows that the above Zero-knowledge proof is for a quite trivial statement,
namely that there exists a string m such that mi = mj . We will use this primitive
as a building block in more complicated proofs as we shall see shortly.

4.2 Parallel equality proofs

The scheme above allows the Prover to prove equality for multiple positions
{(ik, jk)}k, however keep in mind that the challenge ε used has to be the same
otherwise the bits mi and mj are revealed. For an xor-commitment M = xom(m)
and for a set of pairs of indices {(iv, jv)}v=1,...,t into m we can prove all pairs
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of positions equal with soundness one-half. We summarise the construction for
parallel equality in Figure 4.

Φpeq(M, {(iv, jv)}v=1,...,t)

Prover Verifier

δr := m0
ir ⊕m0

jr

∆ := δ1, · · · , δt
∆

ε ∈R {0, 1}
ε

Reveal(M, ε)

if ∀v,mε
iv⊕mε

jv = ∆v

accept else reject

Fig. 4. Parallel Equality

As before we take M = {m0,m1, (com(m0), com(m1))} as input to mean
an XOR commitment already happened beforehand. For the paired index set
I = {(ir, jr)}r=1,...,t we generate the δr and send a string ∆ = δ1, ..., δt rather
than one bit, to the Verifier. Also, the Verifier now checks t positions one for
each bit in ∆.

Following the same reasoning as for the equality protocol in Figure 2 our
protocol for parallel equality in Figure 4 is also Honest Verifier Zero Knowledge
with soundness one-half. The proof is omitted here as a later proof will show
something even stronger.

4.3 Proof of inequality

The proof of inequality is very similar to the equality proof. The main difference
is that there exists a ε such that for any b ∈ {0, 1}, ε = mb

i ⊕mb
j ⊕ b instead if

the δ = m0
i ⊕m0

j as before. We put the protocol and its proof in Appendix C.

4.4 The Linear Zero Knowledge proof

In the previous sections we have seen how to do equality and inequality proofs
of bits in a committed message. We can combine these two in one protocol to
convince our Verifier that a set of bit positions XOR to a particular value, which
covers equality and inequality as special cases.

Now motivated we describe a protocol for convincing a Verifier that a set of
bit-position will XOR to a particular value. As before the Prover commits to
a message m producing M = {m0,m1, (com(m0), com(m1))}. Additionally the
input of the protocol will be two things. The first thing will be a set of indices,
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I, and the second will be the expected value, b, that the bit positions mi, i ∈ I
are supposed to XOR to. More precisely, our protocol shall prove:

(
⊕
i∈I

mi) = b

This captures our previous protocols for (in)equality. E.g. we see that equality
is covered by putting two elements in the set and setting the expected value to
0. By expecting a one instead we have inequality. In addition, by only putting a
single index in the set, it is a proof that mi is equal to the given expected value
without revealing anything else. Essentially we can open a single bit position
in this way. Figure 5 below depicts our protocol for proving the XOR relation
between bit positions.

ΦLZK(M, I, b)

Prover Verifier

δ :=
⊕
i∈I

m0
i

δ
ε ∈R {0, 1}

ε

Reveal(M, ε)

if
⊕
i∈I

mε
i = δ⊕ (b∧ ε)

accept else reject

Fig. 5. Linear Zero-knowledge

Theorem 7. The Linear Zero-knowledge protocol in Figure 5 is Honest Verifier
Zero-knowledge.

Proof. We show Completeness, Soundness error one half and Honest verifier zero
knowledge.

Completeness Assuming honest parties the Prover sends δ created as stipulated
while also the claim to be proven holds. We consider four cases based on whether
we are proving even (b = 0 in analogues to equality) or odd (b = 1 in analogues
to inequality) parity with challenge ε ∈ {0, 1}. In more detail we consider (b =
0, ε = 0), (b = 0, ε = 1), (b = 1, ε = 0) and (b = 1, ε = 1). We collapse the two
first cases to one case b = 0.
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b = 0:

0 = (
⊕
i∈I

mi) =
⊕
i∈I

(m0
i ⊕m1

i )

⇒⊕
i∈I

m0
i =

⊕
i∈I

m1
i = δ

Because b = 0 our Verifier checks that

δ =
⊕

i∈Im
ε
i =

⊕
i∈Im

0
i =

⊕
i∈Im

1
i

Thus the Verifier accepts.
b = 1:

We are proving odd parity in this case, that is the bit positions mi, i ∈ I has
an odd number of one bits. Thus there is no common δ between the XOR of m0

i

and m1
i , i ∈ I in similarity to the inequality we have:

1 = (
⊕

i∈Imi) =
⊕

i∈I(m
0
i ⊕m1

i )
⇒⊕

i∈Im
0
i = 1⊕⊕ i∈Im

1
i = δ

That is whether δ = 1 ⊕⊕ i∈Im
ε
i is now dependent on ε and the fact that we

are proving odd parity, b = 1. Hence our Verifier now checks:

δ = (
⊕

i∈Im
ε
i)⊕ (b ∧ ε)

And accepts.

Soundness Assuming the claim is false,
⊕

i∈I mi 6= b, our cheating Prover will
attempt to convince the Verifier otherwise. We will show such a Prover succeeds
with probability one half.

Sending the δ =
⊕

i∈Im
0
i ⊕ ε′ to the Verifier the Prover can reply correctly

only for one ε′ ∈ {0, 1}, namely if

δ = (b ∧ ε′)⊕
⊕

i∈Im
ε′

i .

Thus with probability one half the Verifier sends ε 6= ε′ in which case sending
mε (to satisfy the commitment in M) the Verifier sees an inconsistency with δ
and aborts. Thus by case analysis we have established that the cheating Prover
is caught with probability one half.

Honest Verifier Zero-knowledge We give here a simulator producing the ex-
act same distribution as in the protocol in Figure 6. This simulator performs
the exact steps of the Honest Prover expect choosing the underlying message
at random. By the hiding property of the underlying commitment the view
(δ, com(m0), com(m1),mε) exhibit the same flavor of indistinguishability as the
hiding property for the underlying commitment scheme. E.g. if the commitment
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Simulator MLZK
V ∗

1 Pick at random mi, r ∈ {0, 1}l, i ∈ I.

2 Compute δ =
⊕
i∈I

m0
i and output (com(m0), com(m1), δ) to the Verifier V ∗.

3 Accept ε in{0, 1}.
4 Open com(mε)

Fig. 6. Simulator for Linear Zero Knowledge

is computationally hiding then the output distribution of our simulator is com-
putationally indistinguishable from the uniform distribution on the set of strings
of the same length.

Motivated by our parallel proofs for (in)equality in the previous section we
give a protocol for packing multiple Linear Zero Knowledge proofs (LZK’s) to-
gether at no extra cost still using only one commitment. It is depicting in Figure 7
which in more details is a protocol showing how to pack multiple LZK proofs
together into one protocol still using only one xom(·). Formally, we pack t in-
stances of the LZK protocol into one protocol taking a set of pairs of indices
and expected values. As with parallel equality we now send a string ∆ = δ1, ..., δt
rather than a single bit in the first step of the protocol. Also, the Verifier checks
t sets of indices against t expected values.

ΦPLZK(M, {(Iv, bv) | Iv ⊆ {1, . . . , l}, bv ∈ {0, 1}}v=1,...,t)

Prover Verifier

δr :=
⊕
i∈Ir

m0
i

∆ := (δ1, . . . , δt)
∆

ε ∈R {0, 1}
ε

Reveal(M, ε)

if ∀v,⊕
i∈Iv m

ε
iv = ∆v⊕ (bv ∧ ε)

accept else reject

Fig. 7. Parallel Linear Zero-knowledge

Theorem 8. The protocol in Figure 7 is Honest Verifier zero knowledge with
soundness error 1

2

Proof. We prove completeness, soundness and Honest Verifier Zero Knowledge.
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Completeness We show the Verifier accepts if both Prover and Verifier are hon-
est. By Theorem 8 the Verifier accepts for each δi. Thus he accepts for ∆

Soundness The Prover cheats in at least one bit position and by Theorem 8 he
get caught with probability one half. As bit positions are independent the Prover
only decreases his success probability by cheating in multiple positions. Thus we
conclude we have soundness one error probability one half.

Honest Verifier Zero Knowledge We give a simulator producing the values the
Verifier sees distributed perfectly as in our protocol in Figure 7.

Simulator MPLZK
V ∗

1 Sample m, r ∈R {0, 1}l with the restriction that for v = 1, ..., t : ⊕i∈Ivmi = bv
let m0 = r,m1 = m ⊕m0a.

2 Compute ∆ = δ1, ..., δt, δv = ⊕i∈Ivm0
i .

3 Output (com(m0), com(m1),∆).
4 Accept to receive the ε ∈ {0, 1}
5 Open commitment com(mε).

a we assume the restrictions in Iv are satisfiable with no contradicting assignments
to bit positions in m.

Fig. 8. Simulator for Linear Zero Knowledge

5 And-proof

In this section, we wish to be able to prove that for an xom(m) to a string m
and for three indices (i, j, k) of the string, it holds that mi ∧mj = mk. This will
be done by using a helper triple of values that will be made explicitly for this
purpose.

To construct such a proof, we will exploit the following relationship:

x ∧ y = z if and only if z = Maj(x, y, 0).

We will have an additional three bits per And-gate which will be a random
permutation of the two input values and zero. The protocol for the proof is
depicted in Figure 10 and proceeds as follows: the Verifier will for each And-
gate, randomly ask that the Prover to either show that the three committed bits
are a permutation of the two inputs and zero or show that the majority of the
three additional bits is the value of the output value (e.i. an And-gate cf. the
relationship above). If the bits do not form a valid triple then the Prover will fail
one of two tests. The equality tests that are involved in either Permutation test
or majority test above can be cheated with probability one-half. Thus in overall
a cheating Prover will get caught with probability one-quarter.
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b = 0 b = 1

Cheating Prover
Decision Tree

ε = 0 ε = 1 ε = 0 ε = 1

Fig. 9. Overview of the choices a cheating Prover will have in the And-protocol in
Figure 10: he can prepare to respond correctly for one choice of b but not the other.
Also, for the equality proofs he can prepare to respond correctly for one of values in
the ε challenge. Thus in three of four cases the cheating Prover wins.

The proof that this protocol is Honest Verifier Zero-knowledge follows from
a later proof where we where we combine all our constructs to prove circuit
satisfiability. First we will describe a circuit notation before getting to that.

5.1 Circuit notation

In this section, we define a circuit notation which is convenient for our zero-
knowledge proofs. We consider circuit over the AND,XOR basis. Indices will
be used to identify wires, we assume the description C of a circuit includes a
public index set I enumerating the wires. When there is a fork in the circuit,
the input of the fork and the outputs of the fork will share the same index. Each
pair of wires which are not forked will have different indices. The Xor gates will
be represented as a triple of values where the first two values will be the index
of the input wires and the third will be the index of the output wire. An And
gate will consist of 3 indices, the first and second values will be the input wires
and the third value will be the index of the output wire.

We denote l the number of wires and α as the number of and gates.

5.2 The Protocol for circuit satisfiability

Our main result and protocol for circuit satisfiability is given in Figure 12 and
we give proof of that the protocol is Complete, Sound and Honest Verifier Zero-
knowledge in this Section. In the following Section 6 we show this protocol when
repeated multiple times realize the Universally Composable Secure. Thus the
observant reader may find that the protocol presented here could be simpler
while still achieving Honest Verifier Zero-knowledge.

We assume a public circuit known to both Verifier and Prover. In addition the
Prover knows a witness w satisfying the circuit. The circuit consists of AND and
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ΦPMul(M, i, j, k, i′, j′, k′)

Prover V erifier

b b ∈R {0, 1}

If b = 0:

ΦTriplet

π ∈R S3 s.t.
(e, f, g) = π(i′, j′, k′) =⇒ (me,mf ,mg) = (mi,mj , 0)

π
(e, f, g)← π(i′, j′, k′) (e, f, g)← π(i′, j′, k′)

S ← {({i, e}, 0), ({j, f}, 0), ({g}, 0)}
ΦPLZK(M,S)

If b = 1:

ΦMajority

µ ∈R S3 s.t.
(e, f, g) = µ(i′, j′, k′) =⇒ (me,mf ,mg) = (z, z, ·)a

µ
(e, f, g)← µ(i′, j′, k′) (e, f, g)← µ(i′, j′, k′)

S ← {({k, e}, 0), ({k, f}, 0)}
ΦPLZK(M,S)

a µ is assigned a permutation that takes the majority of zeros or ones z
in the triplet (mi,mj ,mk′) and places that value in the first two entries
of the triplet µ(mi,mj ,mk′) = (z, z, ·). The last entry can be any value
ensuring there is always a choice to be made here.

Fig. 10. Multiplication protocol

XOR gates. Essentially the Verifier commits to her challenge, then the Prover
communications a set of permutations, one for each And-gate, and also prepares
a set of linear relation S to be proven in parallel. In the end all the relation in
S are proven using ΦPLZK.

First, the Verifier will commit to his challenge. Then both Prover and Verifier
initialize a set S to be empty. The Prover will generate a string containing the
input bits satisfying the circuit followed by the output bit of each gate in the
circuit. Following these circuit values is some additional information: for each
And-gate, the Prover generates a helper triple which are a permutation of the
inputs and the 0 value. The Prover will store the permutation and also find the
permutation which permutes the helper triple such that the two first elements
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A B
4

3

1

2

5

6

7

8

Λ = {(A, 3, 4, 6), (B, 6, 7, 8)}
χ = {(1, 2, 5), (5, 6, 7)}

Fig. 11. Circuit representation example

of the permuted triple equal the output of the And gate. The helper triple is
appended to the string.

The Prover xor-commits to this string. Then, the Verifier will decide which
test to perform for the And-gates. That is, the Verifier flips a coin deciding
whether to check if the associated helper triple (to each And gate) is a valid
permutation of its input with the value 0 or if at least two of those values are
equal to the value of the output (of the And gate). The Prover
will reveal the appropriate permutations and they will add the appropriate lin-
ear tests to the set S verifying the selected property (permutation or majority
equals output bit) for each And-gate. We will then insert the linear tests for Xor
relations into the set S. The tests added to the S are all proved in parallel at once
using ΦPLZK. The challenge used will be the value which the Verifier committed
to at the beginning of the protocol.

In full detail our protocol for circuit satisfiability goes as in Figure 12.

5.3 Generating the set S

This Section describes how the set S of linear relations in the last step of protocol
ΦWZK is carried out given the previous steps has taken place, see Figure 12. The
set S depends only on the structure of public circuit C and is generated by both
parties. For each gate in C indexed by h ∈ [l] we let ih, jh, kh be the indices into
the string M (and m as it is a prefix of M) corresponding to the two input bits
and output bit respectively. Also, if h is an And-gate there exists an r (think
the rth And-gate) for the helper triple such that (l + 3r, l + 3r + 1, l + 3r + 2)
denote the indices in M for the helper triple corresponding to h. Also we abuse
our notation a bit and take (er, fr, gr) = µr(Ml+3r,Ml+3r+1,Ml+3r+2) to be
the concrete bit values (not indices) for the majority permutation. We proceed
generating S as follows based on the type of gate h is4:

4 The ordering of gates are are part of the public circuit description C cf. Section 5.1
and thus are the same for an honest Verifier and Prover.
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ΦWZK

Prover Verifier
Circuit C

(1− b)(Π) + b(M),∆

Open com(ε)

Open com(M ε)

(com(M0), com(M1))

com(ε)

b ∈ {0, 1}

Initialize The Prover and Verifier takes as input a circuit C of size |C| = α + β
with α And-gates and β linear gates. The circuit will have exactly one output
bit. The Prover takes additionally a witness x which is a satisfying assignment
to the circuit input gates.

Verifier The Verifier samples challenges ε, b ∈R {0, 1} uniformly at random, for
the equality proofs that follows. The Verifier commits to ε sending com(ε) to
the Prover.

Prover [ evaluation ] The circuit C has an ordering of its wires such that for
each index i ∈ I mi uniquely defines a particular wire. Thus using his witness
x the Prover generates the string m = m0...ml−1 and sets m a prefix of M .
That is Mi = mi for i ∈ [l].

Prover [ helper triple ] For And-gates r = 0, ..., a − 1 we have (mir ,mjr ,mkr )
s.t. mir ∧ mjr = mkr . The Prover selects a random permutation πr ∈ S3

and creates a helper triple (Ml+3r,Ml+3r+1,Ml+3r+2) = πr(mir ,mjr , 0). Let
Π denote this set of permutations Π = {πr}r=0,...,a−1.

Prover [ majority permutation ] Also, the Prover find a Majority permuta-
tion µr such that if (er, fr, gr) = µr(Ml+3r,Ml+3r+1,Ml+3r+2) then mkr = er
and also mkr = fr

a. Let M denote this set of majority permutations
M = {µr}r=0,...,a−1.

Prover When Prover has formedM = m(π0(mi0 ,mj0 ,mk0
), ..., πa−1(mia−1

,mja−1

,mka−1
)) of length L he selects a string r ∈ {0, 1}L uniformly at random and

create M0 = r, M1 = M ⊕ r. Then he invokes the Ideal functionality FCOM

twice, sending an Xor commitment (com(M0),com(M1)) to the Verifier.
Verifier Sends b in clear to the Prover.
Prover If b = 0 he sends Π to the Verifier, if b = 1 he sends M.
Prover — Verifier Both run the protocol in Figure 7 with

M, com(M0), com(M1) and the set S = {(Ir, br)}r=0,...,l as inputs with a
twist: the Verifier will also open his challenge to ε when sending it in step 2
and the Prover checks the commitment and aborts if the open operations fails.
See Section 5.3 on how S is generated.

a For the honest Prover such a permutation exists cf. the discussion in Section 5

Fig. 12. Zero-knowledge with Soundness one-half.

Xor gate The gate at h is an Xor gate thus we added add ({ih, jh,mkh
}, 0) to

S proving that the three bit positions Xor to zero.
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And gate The gate at h is an And gate we add either {({ih, l+3r}, 0), ({jh, l+
3r+1}, 0), ({kh}, 0)} or ({kh, ar}, 0), ({kh, br}, 0) depending on whether b = 0
or b = 1 in the Verifier challenge.

6 Weak Zero-knowledge

In this section we show our main protocol, in Figure 12, is Honest Verifier Zero-
knowledge

Theorem 9. ΦWZK is Honest Verifier Zero-knowledge.

Proof. We show completeness, soundness and zero-knowledge for the protocol in
Figure 12.

Completeness We will invoke ΦPLZK in Figure 7 in the end thus if we prove
the set S = {(Ir, br)}r=1,...,l is conflict free (e.g. for no i, j we prove mi =
mj ∧mi 6= mj) and stipulates the structure of C completeness follows from
Theorem 8. We proceed in the structure of C. For each gate indexed by
h we have corresponding mih

,mjh
,mkh

. If h points at the rth And gate it
holds that mih

∧ mjh
= mkh

and regardless the choice of b ∈ {0, 1} the
Verifier accepts. To see this consider b = 0: We add {({ih, l+3r}, 0), ({jh, l+
3r+ 1}, 0), ({kh}, 0)} to S. That is, we check that (mih

,mjh
, 0) = πr(Ml+3r,

Ml+3r+1, 0) which is correct by construction of M . If on the other hand b = 1
we add to S = ({kh, ar}, 0), ({kh, br}, 0) checking that (mi,mj , 0) = (z, z, ·)
for z = Maj(π(mih

,mjh
, 0) = mkh

which succeeds because the Prover is
honest and actually does input an And gate. For Xor gates we add to the
set S, ({ih, jh,mkh

}, 0) checking that the output bit and the two input wires
of an Xor gate XOR to zero. Conflict freeness follows from C being a valid
circuit and the construction of S follows the structure of C.

b = 0 b = 1

Cheating Prover
Decision Tree

ε = 0 ε = 1 ε = 0 ε = 1

Soundness For a cheating Prover we show that he convinces the Verifier with
probability at most 3

4 . For Xor gates soundness 1
2 trivially follows from The-

orem 8. Consider the rth And gates in C indexed by h we have mih ∧
mjh 6= mkh and the Prover will try to convince the Verifier otherwise. Since
mih ∧mjh 6= mkh both conditions (mi,mj , 0) = (z, z, ·) and (mih ,mjh , 0) =
πr(M

l+3r, M l+3r+1, 0) will not hold at the same time. However the Prover
can prepare the auxiliary triple (M l+3r, M l+3r+1,M l+3r+2) such that he
can win in one if the cases. Thus for either b = 0 or b = 1 the Prover is sure
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to convince the Verifier and in the other case he needs to cheat the equality
test which from Theorem 8 he can do with probability one-half. As b is cho-
sen independent and uniformly at random the probability that a cheating
Prover convinces a Honest Verifier is three quarters.

Zero-knowledge See the simulator in Figure 13. By the hiding property of the
commitment scheme the Verifier cannot distinguish the commitments sent
by the Prover from the simulated ones. The ∆ will have the same distribution
as in the real execution by the random choice of m. The distribution on the
string M ε is going to be uniformly distributed as in the real protocol but
may have inconsistent bits if the Prover fails both guess on b and ε thus we
rewind. Also if there is any Xor gates in C and the ε′ guess failed we rewind.
Otherwise the Honest Verifier will accept and the conversation is distributed
as in the real case.

Simulator MWZK
V ∗

Wait for commitment The Simulator accepts com(ε).
Message The simulator picks ε′, b′ ∈R {0, 1} and m ∈ {0, 1}l. It then generates a

string M = m and for each And gate index by h it randomly picks a permuta-
tion πr adds a helper triple it can answer for b′: if b′ = 0 it prepares for the per-
mutation test (Ml+3r,Ml+3r+1,Ml+3r+2) = πr(mih

,mjh
, 0) otherwise it pre-

pares for the majority test (Ml+3r,Ml+3r+1,Ml+3r+2) = µr(πr(mih
,mjh

, 0)).
It outputs (com(M0), com(M1)).

And challenge The simulator accepts b.
Permutations and ∆ The simulator builds the set S following the structure of

C using m as the string. However as there is no proper witness in m, some
gate(s) will be inconsistent in the sense that for gate h, mih

�mjh
6= mkh

. For

inconsistent gates the simulator build δi = ⊕i∈Ihmε′
i ) ⊕ (bh ∧ ε′). Thus the

Verifier accepts for ε′. Notice the number of inconsistent gates increases if the
guess b′ on b was wrong with all the tests for the And gates. Because now he has
to provide πr or µr which are inconsistent with the helper triples. However if
we get the b = b′ these gates will be successful regardless of ε by construction.

Xor challenge The simulator accepts ε.
rewind? If both b 6= b′ and ε 6= ε′ then simulator rewinds V ∗ to the beginning.

Also if the guess on ε was wrong and there is any Xor gates in C the simulator
rewinds.

Open The Simulator opens M ε.

Fig. 13. Honest Verifier Zero-knowledge simulator for ΦWZK
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7 Zero-knowledge for circuit satisfiability

To elevate our Weak Zero-knowledge protocol to have less soundness error we
run multiple instances of the Weak protocol in parallel. We show that for security
parameter κ we can construct a Universally Composable Secure protocol in the
framework by Canetti [3]. We follow the style and flavour of UC advocated in
[5]. We give the ideal functionality we which to realize in Figure 14.

FZK

(witness, C, w, sid)

(proven, C, sid)

–

Fig. 14. Zero Knowledge Functionality

ΦZK

Prover Verifier
Circuit C

(1− b)(Π) + b(M),∆

Open com(ε)

Open com(M ε)

(com(M0), com(M1))

com(ε)

b ∈ {0, 1}

id

id

The Prover and the Verifier run the zero-knowledge protocol with weak soudness k
times. The verifier accepts if he accepted in each instance.

Fig. 15. Universally Composable Secure Protocol for Zero Knowledge

Theorem 10. ΦZK securely realizes FZK in the FCOM hybrid model for any static,
active adversary.

Proof. We construct a simulator SZK such that every poly-time environment Z
cannot distinguish between the real protocol system FCOM composed with ΦZK or
FZK composed with SZK. The Simulator will play the role of the honest party. We
give below two (sub)simulators one for a corrupt Prover and one for a corrupt
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Verifier. SZK will determine which to run when the environment Z stipulates
which player is corrupt.

7.1 Corrupt Prover

The simulator proceeds in two steps.
First, the simulator runs each instance of the weak zero-knowledge protocol

in parallel: He sends the committed message for the commitment of the challenge
to the environment. The simulator awaits the commit messages for each of the
xor-commitments. The simulator then selects a random bit which selects the
permutation or majority test, records it and sends it to the environment. The
simulator records the value sent to him for the given test. The simulator then
selects a random ε ∈R {0, 1} and sends a reveal command for the commitment
functionality for the given ε. The simulator awaits that the environment sends
the reveal command intended for the M ε. The simulator then records if a given
instance would result in a verifier accepting or rejecting.

Second, if for any instance, a verifier would reject. The simulator aborts.
Otherwise, he scans each instance looking for one where the substring associated
to the circuit contains a valid assignment to the circuit which has output one.
If no witness is found the simulator aborts. The simulator selects one of those
inputs and feeds it to FZK. This completes the description of the simulator.

We will proceed to show that SZK ◦FZK
stat≡ ΦZK ◦ FCOM. We can see that

the messages sent by the verifier to the prover in the real world are perfectly
indistinguishable from those sent by the simulator to the environment. The only
thing the environment can use to distinguish between these two cases is the
output. Now there are three cases, when an abort occurs due to rejection in an
instance, when a valid witness is provided for one of the instances and finally
when no witness is provided. When an abort occurs due to a failed test, the
probability that this view would have been generated is the same in both worlds.
The same applies when a witness is provided in one of the xor-commitments.
The only case that the views are distinguishable is when the environment passes
each instance without providing a valid witness. Fortunately, by soundness of
the weak zero-knowledge protocol, this only occurs with negligible probability.
Thus, we have that the views are statistically indistinguishable.

7.2 Corrupt Verifier

On receiving the message proven from the ideal functionality the simulator
runs prepare to simulator many instances of the Prover. He awaits the commit
command for ε. The simulator then sends the commit commands for the xor-
commitments. He awaits the choice of test from the environment. With knowl-
edge of both ε and the choice of test, the simulator can construct ∆ and per-
mutations which an honest verifier would accept. When finally the environment
sends the open command for ε, the simulator sends the reveal message for the
given commitment to the receiver. By Theorem 3, the string revealed looks in-
dependent in the real world. Thus, the distribution of the revealed string is the
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same in both the real and ideal world. As a result, the real and ideal worlds are
indistinguishable. An overview of the Simulator is given in Figure 17.

SProver
WZK

FWZK

Z

The Simulator SProverZK creates the view a corrupt Prover sees for the environment
Z which is indistinguishable from the real protocol execution, while providing the

input of the Prover to the ideal functionality.

Initialize Upon receiving a circuit C from the environment the Simulator samples
ε ∈R {0, 1}

Commit The simulator honestly commits to ε creating com(ε).
Prover commits The environment provides commitments com(M0) and com(M1)

to the simulator. By extractability of the ideal commitment functionality FCOM

the message M = M0 ⊕M1 is computed by SProverZK .
Follow protocol After this step the simulator complete the protocol with the

environment.
Invoke Ideal FZK with witness w which is a prefix of M . The ideal functionality

outputs to the environment the message for the honest Verifier.

Fig. 16. Simulator in case of a corrupted Prover
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SV erifier
WZK

FWZK

Z

The Simulator SV erifierZK creates the view a corrupt Verifier sees for the
environment Z which is indistinguishable from the real protocol execution given

the (proven, C, pid) output from the ideal functionality.

Initialize Upon receiving (proven, C, sid) from the ideal functionality the Simu-
lator computes L = l + 3α, where l is the number of wires in C and α is the
number of And-gates in C.

Accept Challenge Commitment Upon receiving com(ε) from the environment,
the simulator stores ε. The simulator picks M ε ∈R {0, 1}L, and to gener-
ate a ∆ = δ1, ..., δl string that it can answer it does the following: First it
generates the set S = {(Iv, bv)}v−1,...,l as in Section 5.3. Then it computes
δv =

⊕
i∈Iv M

ε
i ⊕ (bv ∧ ε). The simulator set M1−ε = 0L.

Commit The Simulator sends (com(M0), com(M1)) to the environment.
Completes the protocol The simulator completes the protocol with the envi-

ronment.

Fig. 17. Simulator in case of the corrupted Verifier

8 Empirical studies

The protocol has been implemented in C for fine grained control over the Big-Oh
constants. The implementation is available at
http://tinyurl.com/om6vvh6

Our test setup is two machines acting as Prover and Verifier connected on a
GigaBit ethernet network of our department. Our machines has 8 GigaBytes of
memory and Intel(R) Core(TM) i7-3770K CPU @ 3.50GHz with 8 cores.

Our primary benchmark application is that of AES. We have an optimized
AES-circuit5 with 6800 And-gates and 26816 linear gates taking 50 ms with
soundness one-half. Communication complexity is 4 bits per And-gate and 1 bit
per linear gate for soundness one quarter. Below we see execution time increase
with the number of And-gates.

9 Conclusions

We have presented an information theoretic construction extending commit-
ments to zero knowledge proofs. We show that when our construction builds

5 Thanks to Nigel Smart and his team at Bristol,
https://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/.
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on top of a UC-secure commitment scheme it is UC-secure. The flavor of sup-
ported proofs are circuit satisfiability. The statement to be proven is a circuit
for which the Prover knows a satisfying assignment for the input gates. On the
theoretical side our scheme exhibits small constants in addition to the underlying
commitment scheme.

We have an implementation of our scheme using UC commitments in the
Random Oracle Model, where the oracle is implemented by SHA-512. We can
prove knowledge of an AES-key encrypting a particular plaintext to a particular
ciphertext in less than 500 milliseconds with soundness error 1

240 .
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A Reproducing our empirical studies

We have implemented our protocol described in Figure 12 for Weak Zero-knowledge.
The implementation can be found at
http://tinyurl.com/om6vvh6

A.1 Software structure

The software project is written from scratch using only few dependencies on the
system like some libstdc functionality. We do this in order to have fine grained
control of the performance of our program. The structure is as follows:

platform Inside the platform directory we have all the OS/HW dependent
code
common Inside common we have library code needed to implement the proto-
col, including network management in CArena and data-structures in project
ds.
empiricalZK holds two projects: RTZ14 which is the code for protocol de-
scribed in this paper. IKOS will later be populated with an efficient imple-
mentation of the MPC in the HEAD idea which is in its infant stage right
now. We wish to publish a comparison between IKOS and RTX14 (this pro-
tocol) in a follow up paper.

All projects are GNU Auto-Make/Conf projects producing a static library and
some also an executable. Each project defines a configuration item with version
control for maintenance.

A.2 Dependencies

The code is written with in C for speed and portability. It includes work by
Nayuki Minase published at http://www.nayuki.io/page/fast-sha2-hashes-in-x86-
assembly.

The build system on FreeBSD 10, OSX and GNU Linux requires:

GNU Bash 4.3.11(2)
Automake 1.14
Autoconf 2.69

Or on Windows 8/10 a working Community version of Visual Studio Express
2013 or later is required.

A.3 Getting the Source

Install git on your system and do

git clone http://tinyurl.com/om6vvh6

(you may need to replace this by the actual url).
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A.4 Building from Source code, FreeBSD, Linux and OSX

On these systems building the source is done by changing directory to where
you have checked out the source and locating the build.sh script.

user@host $ ./build.sh release

Will build the prover executable in empiricalZK/rtz14/linux/src/prover.

A.5 Building from Source code, Windows 8/10

On Windows we have a test solution that as a bi-product of running the test pro-
grams also produces the prover.exe in empiricalZK/rtz14/win64/rtz14/Release/prover.exe.

You can run this executable from a Command Prompt invoking it with no
argument to see your options and for running it providing arguments to do a
Zero-knowledge proof.

A.6 Reproducing our results

Our benchmark application is proving knowledge of a particular AES key given
a public plaintext and ciphertext. The structure of the circuit we prove to satisfy
is depicted in Figure 18. The circuit includes public constant assignments for the
plaintext and the Prover convinces the Verifier that he has knowledge of an Aes-
Key encrypting this particular plaintext to a ciphertext built into the circuit.
That is, our binary AES is extended with the top-triangle on Figure 18 which
is a small comparison circuit with public constants stipulating the expected
ciphertext and comparing with the output of the AES circuit (the larger triangle
below it). In the end all the Verifier learns is that the prover has a witness
w making the (public) circuit true, thus encrypting the given plaintext to the
expected ciphertext.

Our lab computers has the following specifications:

CPU: i7-3770K CPU @ 3.50GHz with 8 cores

Mem: 8Gb of Ram

Net: Gigabit LAN

OS: 3.13.0-59-generic #98-Ubuntu SMP Fri Jul 24

21:05:26 UTC 2015 x86_64 x86_64 x86_64 GNU/Linux

for both Verifier and Prover. On the machine intended for the Prover do

./rtz14 -circuit ../test/AES -witness 00000000000000000000000000000000

-port 2020

This will start a prover process listening for a Verifier to connect. The circuit in
../test/AES is the following and we prove in this case that we have knowledge of
a key (this witness above which is the zero key) encrypting the all zero plaintext
(that is 16 zero bytes) to the AES ciphertext under the zero key, namely:
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plaintext key/witness

Comparison circuit epilog
checking for the expected
ciphertext. One bit of out-
put to be proven 1 in the
end.

AES Circuit

The one bit output
the Verifier learns

Fig. 18. A modified binary AES circuit for proving knowledge of a key encrypting a
particular plaintext to a particular ciphertext.

0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 1

1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 1

1 1 1 1 0 1 1 1 0 1 0 1 0 0 0 1

0 0 1 1 0 1 0 0 1 1 0 1 1 1 0 0

0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0

0 1 0 1 1 1 1 1 1 0 0 1 1 0 1 0

0 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0

1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 0

To start the Verifier you need the ip address of the Prover, assuming it is
xxx.yyy.zzz.www execute the following on the Verifier Machine:

./rtz14 -circuit ../test/AES -port 2020 -ip xxx.yyy.zzz.www

The process uses the -witness argument to distinguish whether to run as Prover
or Verifier. This proves with error probability 3/4 that the prover knows such
a witness. Because of completeness this will always succeed if the Prover inputs
the correct witness, otherwise the Verfier only accepts with a 75% probability.
In a real word application the protocol will be repeated 3κ times (for κ = 256)
to ensure 2−κ probability that a cheating Prover wins. Our experiment above
runs in 3ms on our test machines thus for security parameter κ we expect a real
world running time of 9κms ≈ 2.5 seconds.
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B Concrete example: ZK-proof that (x1 ∧ x2)⊕ (x3 ⊕ x4)
is satisfiable

We will give an example here where a Prover proves in Zero-knowledge that he
knows a satisfying assignment for the circuit (x1 ∧ x2) ⊕ (x3 ⊕ x4). In fact the
steps illustrated by this example is those of ΦPMul in Figure 10. We will abuse
notation a bit for a cleaner presentation. Openings of all protocols invoked in the
follow should be pick up and done in the very end. That is, when we invoke e.g.
the protocol for equality the xom commitment is opened. However this should in
a real execution be postponed to the very end for the proof of the entire circuit.

B.1 Step 1:

Generate a string a string w of length n+ 3a. All bit positions in this string are
set to ⊥ initially. Recall n is the number of input wires and gates all together in
the circuit. a is the number of and gates are present in the circuit. We will need
the Prover to commit to some helper triples for each and gate. As we have 4
input wires, 3 gates one of which are an and gate we have our string w of length
10, as n = 7 and a = 1. w = (⊥,⊥,⊥,⊥⊥,⊥,⊥,⊥,⊥,⊥).

B.2 Step 2: Generate satisfying assignment with output one

In the first step, the Prover generates a satisfying assignment for the circuits.
In essence he selects a valid assignment for the circuit which outputs 1. Input
these values in the string.

– x5 = x1 ∧ x2
– x6 = x3 ⊕ x4
– x7 = x5 ⊕ x6
– x1 = 1, x2 = 1, x3 = 0, x4 = 0
– x5 = 1, x6 = 0
– x7 = 1

– foreach i ∈ {1, . . . , 7}, wi ← xi

w = (1, 1, 0, 0, 1, 0, 1,⊥,⊥,⊥)
As there is one And gate in the circuit we have left room for at one helper

triple, that what the three ⊥ are placeholders for.

B.3 Step 3: Append permutation of inputs for And gates and
include permutations in set

In the second step, for each And triple, the Prover generates a random permuta-
tion π. The only And triplet is of the form (p, i, j, k) = (1, 1, 2, 5) where p is the
index of the And triple, i, j are the indices of the input operands to the And gate
and k is where the result is. That is the Prover prepares to convince the Verifier
of the And relationship m1 ∧m2 = m5 by appending a random permutation as
follows:
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– suppose π was randomly selected to be π(1, 2, 3) = (2, 3, 1)
– (d1, d2, d3)← (2, 3, 1) = π(1, 2, 3)
– (wz+d1 , wz+d2 , wz+d3) = wz+2, wz+3, wz+1 ← (w1, w2, 0)
– µ will be chosen such that µ(1, 2, 3) ∈ {(2, 3, 1), (3, 2, 1)}
– Prover sets Π ← Π · (c, π)
– Prover sets P ← P · (c, µ)

w = (1, 1, 0, 0, 1, 0, 1, 1, 1, 0)

B.4 Step 4: use commitment with linear proofs to commit to circuit
and helper triples

In the third step, the Prover xor commits to this constructed message w with
the circuit and the helper triples. That is he applies Φcommit(w) such that both
Prover and Verifier obtain:

– W = xom(w) := (com(w0), com(w1))

B.5 Step 5: Permutation test selection

In this step, the Verifier selects which permutation test will be used for the multi-
plicative proof. In particular, will the Verifier check that (mn+1,mn+2m,mn+3)
is a permutation of (m1,m2, 0) or that a received permutation p ∈ S3, such that
for d1, d2, d3 := π(1, 2, 3) that such that m5 = mn+d1 ∧ m5 = mn+d2 . In this
case, it would be m5 = m10, m5 = w9 (since m(1, 2, 3) = (3, 2, 1))

– The Verifier selects which test to do

B.6 Step 6: Prover circuit commitment

This step combines the first part of the equality test for the and triples and the
equality tests. The Prover will reveal the δ for the different proofs of equality.
This forces -due to the proof of equality- a dishonest Prover to decide which
challenge he can’t respond to. If we think of this protocol as a sigma protocol,
this is the point where the Prover has finished committing to his values.

1. If triplet challenge was selected
2. The Prover sends the permutation π of (w1, w2, 0)
3. The Prover and Verifier now executes ΦEq(W, 1, 9) ΦEq(W, 2, 10) ΦZeq(W, 8).

If all three tests passes the Verifier accepts.

1. If the Majority challenge was selected
2. Prover sends µ e.g. say (2, 3, 1) to Verifier.
3. Now since the helper triple is in index 8,9,10 this permutation translates into

the triple (w9, w10, w8)
4. The Prover and Verifier now executes ΦEq(W, 1, 9) ΦEq(W, 2, 10) and the

Verifier accepts if both equality tests passes.
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B.7 Step 6: The linear gates

We still need the Prover to prove the two Xor gates in the circuit. That is we
need to prove w0

3⊕w0
4⊕w0

6 = w1
3⊕w1

4⊕w1
6 and that w0

5⊕w0
6⊕w0

7 = w1
5⊕w1

6⊕w1
7.

This can be done using the generalized equality box ΦLZK(W, {(I1, 0), (I2, 0)})
where I1 = {3, 4, 6} and I2 = 5, 6, 7.

Recall the circuit is public and at this point the Prover has shown the rela-
tionships between bit positions of the circuit encoded in w. Thus the Verifier is
convinced that w10 will hold the result.

B.8 Step 7: The final step

In the final step the Prover shows that w10 equals one.
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C Inequality protocol and proofs

M = xom(m) = (com(m0), com(m1)) Prover inequality between two bits of the
committed string.

ΦInequality(M, i, j)

Prover Verifier
δ := m0

i ⊕m0
j

δ

ε ε ∈R {0, 1}

Reveal(M, ε)

if v ⊕ mε
i ⊕ mε

j = δ
accept else reject

Fig. 19. Inequality

C.1 Zero-knowledge

Completeness: Since mi 6= mi, we can see that
case 1 : if mi

0 = mj
0 then mi

1 6= m1
j in which case ε = 0 = mi

0⊕mj
0 = mi

1⊕m1
j⊕1.

case 2 : if mi
0 6= mj

0 then mi
1 = m1

j in which case ε = 1 = mi
0⊕mj

0 = mi
1⊕m1

j⊕1.

Soundness: if x = y then mi
0 ⊕mj

0 = mi
1 ⊕m1

j and therefore for any value of
ε there exists a value v such that the Verifier will not accept. As such a cheater
is detected with probability 1/2.

Honest Verifier Zero-Knowledge: To prove the protocol is zero-knowledge
for a Verifier we give the description of a simulator MNeq

V ∗ that generates a view
(δ,mb) indistinguishable from a real execution.

Simulator MNeq
V ∗ (i, j)

1 Pick at random m, r ∈ {0, 1}l,mi 6= mj .
2 Compute δ = m0

i ⊕m0
j and output (com(m0), com(m1), δ) to the Verifier V ∗.

3 Accept ε in{0, 1}.
4 Open com(mε)

Fig. 20. Simulator for Linear Zero Knowledge
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The Simulator follows the protocol with no knowledge of a particular witness
w.
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