
Key recovery attacks on Grain family using BSW sampling

and certain weaknesses of the filtering function

Y. Wei ∗ E. Pasalic † F. Zhang ‡ W. Wu §

Abstract

A novel internal state recovery attack on the whole Grain family of ciphers is
proposed in this work. It basically uses the ideas of BSW sampling along with em-
ploying a weak placement of the tap positions of the driving LFSRs. The currently
best known complexity trade-offs are obtained, and due to the structure of Grain fam-
ily these attacks are also key recovery attacks. It is shown that the internal state of
Grain-v1 can be recovered with the time complexity of about 266 operations using a
memory of about 258.91 bits, assuming availability of 245 keystream sequences each
of length 249 bits generated for different initial values. Moreover, for Grain-128 or
Grain-128a, the attack requires about 2105 operations using a memory of about 282.59

bits, assuming availability of 275 keystream sequences each of length 276 bits generated
for different initial values. These results further show that the whole Grain family,
due to the choice of tap positions mainly, does not provide enough security margins
against internal state recovery attacks. A simple modification of the selection of the
tap positions, as a countermeasure against the attacks described here, is given.

Keywords : Stream cipher, Grain cipher, State recovery attack, BSW sampling.

1 Introduction

The Grain family of stream ciphers was initially developed through the Grain-v0 version,
which was submitted in the initial phase of the eSTREAM project in 2005 [18]. This
design is well suited for hardware restricted environments, and in 2008 Grain-v1 (a tweaked
version of Grain-v0) entered the last evaluation phase being one of the three remaining
candidates in the final hardware portfolio of the eSTREAM project [26]. Grain-v1 employs
an 80-bit secret key and a 64-bit initial value, whereas the number of internal state bits is
160 [19]. To satisfy higher security requirements, a version of Grain-v1, known as Grain-
128, was proposed by the designers in 2006 [20]. This version uses a 128-bit secret key
and a 96-bit initial value. Later, to meet both functionalities of message authentication

∗Guilin University of Electronic Technology, Guilin, P.R. China, e-mail: walker−wei@msn.com.
†University of Primorska, FAMNIT and IAM, Koper, Slovenia, e-mail: enes.pasalic6@gmail.com
‡School of Computer Science and Technology, China University of Mining and Technology, Xuzhou,

Jiangsu 221116, P.R. China, e-mail:zhfl203@cumt.edu.cn.
§Institute of Software, Chinese Academy of Sciences, Beijing 100190, P.R. China, e-mail:

wwl@is.iscas.ac.cn

1

and encryption, the designers presented a modified version Grain-128a at SKEW2011 [2],
whose key length and the length of the initialization vector is the same as for Grain-128.
The number of internal state bits for both Grain-128 and Grain-128a is 256.

The Grain family of stream ciphers has a compact and high-level structure, especially
suitable for hardware constrained applications. The design rationale of the Grain family
is based on the use of two shift registers, that is, one linear feedback shift register (LFSR)
and one nonlinear feedback shift register (NFSR). These registers provide the inputs to a
nonlinear filtering function h whose output is then added to one particular (secret) state
bit of the NSFR to provide the output keystream bit [19, 20, 2]. Due to the simplicity of its
design, the Grain family of stream ciphers has been a favourite target for the application
of diverse cryptanalytic methods. In general, the main cryptanalytic methods applied
to the Grain family of encryption algorithms may be divided into several major groups,
namely into distinguishing attacks [27, 25], algebraic attacks [1], various types of chosen
IV and (dynamic) cube attacks [12, 13, 24], related key chosen IV attacks [11, 10, 14], near
collision and differential fault attacks [28, 9], and internal state recovery attacks [5, 22, 23].

Our technique described here belongs to state (key) recovery attacks that are closely
related to the problem of inverting a one way function y = f(x). Notice that the idea of
Time-Memory trade-off attack (TMTO) was firstly proposed by Hellman in [17], which
combines the exhaustive key attack and the table lookup attack to solve the problem
of inverting one way functions. More precisely, the trade-off curve of TMTO in [17] is
described as TM2 = N2 and P = N , where T is the online time complexity, M is the
memory cost, P is the offline time complexity, and N is the number of possible keys.
Later, some new time-memory-data trade-off (TMDTO) attacks on stream cipher are
respectively presented by Babbage [4] and Golić [16]. The tradeoff curve of Babbage-
Golic attack (i.e., BG-TMDTO attack) can be described as TM = N,P = M and T = D,
where D denotes the data complexity and N is the number of possible internal states. At
Asiacrypt 2000, using multiple data points, Biryukov and Shamir proposed an extension
of TMDTO attacks [6]. The trade-off curve of Biryukov-Shamir attack (BS-TMDTO) in
[6] can be described as TM2D2 = N2 and P = N/D, where 1 ≤ D2 ≤ T .

At FSE 2000, a new sampling technique was proposed by Biryukov, Shamir, and
Wagner (denoted by BSW sampling) [7], which can improve upon the BS-TMDTO attack
by providing a more flexible choice of parameters. The main idea of BSW sampling is to
find an efficient way to generate and enumerate “special” cipher states, from which the
first output segment of keystream bits of the cipher is a fixed string (such as a run of
consecutive zeros). If this can be done for a run of u bits, the sampling resistance of the
cipher is defined to be R = 2−u. Being of no particular importance for small values of
u, this approach may lead to improved trade-off attacks if u is sufficiently large. In [5],
some special states of Grain-v1 were identified giving the sampling resistance R = 2−21.
This resistance allowed the authors to mount an attack on Grain-v1 with online time
complexity of O(270) and memory complexity of O(269) after a precomputation of O(2104)
steps and using O(256) bits of a known keystream sequence.

Recently, at Africacrypt 2014, Ding et al. [15] proposed a generalization of BG-
TMDTO attack, which combines the original BG-TMDTO attack and the BSW sampling
technique given that multiple data is available for the attacker generated from the same

2

Sample (d, d′) Time (off-line) Memory Time (online) Success rate Resource

(1, 256) 2104 269 270 1 [5]

(246, 250) 270 246 272 1 [22]

(1, 267.8) 273.1 262.8 271.4 unresolved [28]

(245.25, 245.25) 269.5 269.5 269.5 1 [15]

(245, 249) 266 258.91 266 1 new

Table 1: Summary on the main attack on Grain-v1 - a single-key framework

secret key and different IV values. The trade-off curve of this attack can be described as
MT = rRN,MD = N,P = M and D = d · d′, where r is an integer (1 ≤ r ≤ R−1), d de-
notes the number of keystream sequences the attacker can capture (generated by the same
key but different IVs), and d′ stands for the length of each sequence. It was shown that
this generalization of BG-TMDTO attack on Grain-v1 and Grain-128 stream ciphers is
rather efficient since the online time, offline time and memory complexity of the attack are
all lower than an exhaustive key search. Even though the data complexity D = d ·d′ > 2K

[15] (see also Table 1 and Table 2), the attack scenario is more realistic compared to the
case when the same amount of output dataD is generated by a fixed secret key and a single
IV. Prior to this work, two major improvements regarding the cryptanalysis of Grain-v1
and Grain-128 were proposed recently in [22, 23], where by employing the normality of
filtering function h the best known trade-off parameters could be obtained (cf. Table 1
and Table 2). Notice that this approach also requires D > 2K , though d, d′ ≪ 2K .

Nevertheless, it appears that the Grain family leaves a lot of space for improvements
to prevent the existence of these special internal states of relatively moderate size. In
particular, due to the choice of tap positions of the Grain variants and the sparseness of
the filtering function, we have been able to reduce the sampling resistance to R = 2−28

for Grain-v1 and to R = 2−46 for Grain-128(a). For Grain-v1 (and similarly for Grain-
128), this is done by manipulating the output keystream bit expression zt =

∑
j∈A bt+j ⊕

h(st+3, st+25, st+46, st+64, bt+63), where A = {1, 2, 4, 10, 31, 43, 56}, with respect to the 7
masking NFSR bits bt+j . Due to the designers selection of the tap positions the masking
NFSR bits do not influence the function h during a certain time interval. This further
implies that these bits can be computed by guessing the remaining state bits involved in
the computation, and in addition the sparseness of h also allows us to retrieve a few more
bits by fixing suitable state bits. Compared to the currently best known attack presented
in [22][15], our approach gives better complexity estimates.

Table 1 and Table 2 summarise relevant previous work and our main attack results
on the Grain variants. Apparently, our attack has smaller time complexity compared to
other approaches, and in general it performs better when all the complexity measures are
taken into account.

The rest of the paper is organized as follows. In Section 2, a brief description of the
structure of Grain family is given. In Section 3, based on a few simple observations, a state
(key) recovery attack is proposed against all Grain variants. Finally, Section 4 concludes

3

Sample (d, d′) Time (off-line) Memory Time (online) Success rate Resource

(1, 259) 2113 259 2113 0.001 [12]

(1, 263) 290 263 290 0.05 [13]

(250, 295) 2111 2111 2116 1 [23]

(269.5, 269.5) 2117 2117 2117 1 [15]

(275, 276) 2105 282.59 2105 1 new

Table 2: Summary on the main attacks on Grain-128(a)- a single-key framework

the paper with a brief discussion concerning the possibility of thwarting similar kind of
attacks as the one presented here.

2 Preliminaries

2.1 A brief description of the Grain family of stream ciphers

For the self-completeness of the discussion that follows, we give a brief description con-
cerning the structure of the Grain family of stream ciphers. Due to a varying length of
the secret key and the initialization vector (as well as the length of the registers) used in
different versions, a full specification of the filtering functions used is given in Section 3.1
and Section 3.2.

It is convenient to denote by n the length of the shift registers, alternatively the length
of the secret key. The structure of the Grain cipher is depicted in Figure 1. The LFSR is
updated through a linear feedback polynomial f of degree n and is given by,

st+n = f(st), (1)

where st = (st, st+1, . . . , st+n−1) is the secret state of the LFSR at time t. Similarly, the
NFSR is updated through a nonlinear feedback polynomial g of degree n,

bt+n = st ⊕ g(bt), (2)

where bt = (bt, bt+1, . . . , bt+n−1) is a secret state of the NFSR at time t. The keystream
sequence is generated by combining the secret state bits of both registers in a nonlinear
manner,

zt = h(st,bt)⊕
∑
a∈A

bt+a, (3)

where A ⊂ {0, 1, . . . , n− 1}, and A is fixed for each Grain variant.
The key loading algorithm (KLA) loads an n-bit key into the NFSR and an m-bit

IV vector into the LFSR (at first m stages). Since m < n, the remaining n − m bits of
the LFSR are loaded with some fixed padding scheme P which depends on the version
considered. However, the 2n bit initial secret state is of the form K||IV ||P , where the
first n bits correspond to the content of the NFSR.

4

The key scheduling algorithm (KSA) is run for the first 2n clocks in a non-output
mode, which is formally accomplished by feeding back the output bits zt to the registers.
Thus, the update functions during the KSA are:

st+n = f(st)⊕ zt; bt+n = st ⊕ g(bt)⊕ zt. (4)

After the completion of the KSA, zt is no longer used as a part of the update function
(which is now given by (1) and (2)), it is rather considered as the output keystream bit.

NFSR LFSR

h(bt, st)

g(bt) f(st)

zt

Figure 1: Block description of Grain cipher

2.2 BSW Sampling and a generalization of the BG-TMDTO attack

The concept of BSW-sampling was firstly introduced by Biryukov, Shamir, and Wagner in
[7], which can be used to obtain wider choices of trade-off parameters for the BS-TMDTO
attack. In general, the BSW sampling trade-off works if the following assumption is
satisfied for a given cipher.

Assumption 1 For a given stream cipher with n = log2N bits of internal state, given a
value of n−l particular (special) state bits of the cipher and the first l bits of the keystream
sequence generated from the (partially unknown) internal state, then the remaining l bits
of the internal state can be recovered directly (and efficiently).

Assume that the sampling resistance of a given stream cipher isR = 2−l. The adversary
can then use a family of one-way functions f ′ : {0, 1}n−l → {0, 1}n−l as follows [7]:

Step 1 Fix a specific function by choosing an l-bit string S as the first l bits of the
keystream sequence, e.g. take 0l.1

Step 2 Given S and an (n− l)-bit input value x as a part of the secret state, recover
the remaining l bits of the secret state using Assumption 1.

Step 3 Clock the cipher n times, thus generating an n-bit output string S|y.
Step 4 Output y.

1Without loss of generality we consider the all-zero sequence of length l though any other string may
be used as well.

5

Actually, these functions map (n−l)-bit of states to (n−l)-bit keystream segments, re-
stricted to a subset of so-called special states. Finally, givenD bits of the actual keystream,
the expected number of special states encountered is DR. Therefore, the adversary can
only consider the cost of inverting f ′ : {0, 1}n−l → {0, 1}n−l rather than inverting the full
state of the cipher.

At Africacrypt 2014 [15], Ding et al. combined the BG-TMDTO attack with the BSW
sampling technique to mount a new TMDTO attack, which is called here a generalization
of the BG-TMDTO attack. The main idea of this generalization is the use of multiple data
points, thus the keystream segments available for cryptanalysis are generated by the same
key and different IVs. More precisely, for a given stream cipher, assume the adversary
can collect a set of d keystream sequences generated by the same secret key but different
IVs, and the length of each sequence is d′ bits. Hence, the set of samples available for the
attack consists of approximately D = d× d′ keystream segment samples each of length 2n
bits.

Below, for self-completeness, we briefly describe the generalization of BG-TMDTO
attack, its offline and online phase.

The Offline phase[15]
Randomly collect r strings S1, · · · , Sr, where each string consists of l bits and 1 ≤ r ≤

R−1. For each fixed string Si, perform the following steps.
Step 1 Randomly collect θ strings I1, · · · , Iθ , each Ij being of length n− l bits.
Step 2 By treating Ij as n − l particular state bits and Si as the first l bits of the

keystream, compute the remaining l bits of the secret state, and clock the stream cipher
n times to generate an n-bit keystream segment. Moreover, put this pair (n-bit internal
state, n-bit keystream segment) in the table Ti corresponding to Si.

The Online phase[15]
For each 2n-bit keystream segment sample, check the first l bits of the sample and

one of r strings S1, · · · , Sr. If the match is not found, then go to check the next 2n-bit
keystream segment sample. If the match is obtained, then perform the following steps.

Step 1 For each match (say Si), check if the first n-bit keystream segment exists in
the second column of the corresponding table (i.e., Ti). If it does not exist, consider the
next 2n-bit keystream segment sample. If there is an agreement of these n bits, record
the corresponding n-bit internal state in the first column of the table, clock the cipher 2n
times to generate 2n keystream bits, and then compare the output with the sample. If these
are identical, go to the output (a). Otherwise, consider the next 2n-bit keystream segment
sample.

Step 2 If none of the keystream segment samples give a match, go to the output (b).
Output: (a) recorded n-bit internal state; or (b) a flag that returns the algorithm is

failed.
The trade-off curve of this generalization of BG-TMDTO attack can be described as

MT = rRN,MD = N,P = M and D = d · d′, where r is a integer (1 ≤ r ≤ R−1), T is
the online time complexity, M is the memory cost, P is the offline time complexity, and
N is the number of possible keys [15]. Notice that there exists an important assumption
for this attack, that is, the availability of d keystream sequences each of length d′ bits
generated using different initial values, where d ≪ 2m, d′ ≪ 2N , and m stands for the

6

size of initial value vector. In this case, the keystream segment samples D = d × d′ even
can be larger than 2N . For instance, in [15], it is shown the internal state of Grain-v1
can be recovered with the time complexity of about 269.5 operations using a memory of
about 269.5 bits, assuming availability of 245.25 keystream sequences each of length 245.25

bits generated for different initial values, where D = d× d′ = 245.25 × 245.25 = 290.5 > 280.

3 Internal state recovery attacks on Grain family

In this section, we describe an application of BSW sampling on Grain family used for
mounting state recovery attacks on the variants of the Grain cipher. It was originally
noticed [5] that Grain-v1 allows the attacker to recursively recover the secret key once the
whole secret state at some instance t has been revealed. The importance of this fact lies
in the fact that even though we are formally referring to internal state recovery attacks
it should be understood that we at the same time refer to key recovery attack as well. A
similar observation also applies to Grain-128 and Grain-128a, see [8] and [10].

3.1 Attacking Grain-v1

The internal secret state of Grain-v1 has 160 bits, and it consists of an 80-bit LFSR,
(denoted as (s0, · · · , s79)) and an 80-bit NFSR, (denoted as (b0, · · · , b79)). The update
functions of the LFSR and NFSR are, respectively, described as follows:

st+80 = st+62 ⊕ st+51 ⊕ st+38 ⊕ st+23 ⊕ st+13 ⊕ st,

bt+80 = st ⊕ bt+62 ⊕ bt+60 ⊕ bt+52 ⊕ bt+45 ⊕ bt+37 ⊕ bt+33 ⊕ bt+28 ⊕ bt+21 ⊕ bt+14

⊕bt+9 ⊕ bt ⊕ bt+63bt+60 ⊕ bt+37bt+33 ⊕ bt+15bt+9 ⊕ bt+60bt+52bt+45

⊕bt+33bt+28bt+21 ⊕ bt+63bt+45bt+28bt+9 ⊕ bt+60bt+52bt+37bt+33

⊕bt+63bt+60bt+21bt+15 ⊕ bt+63bt+60bt+52bt+45bt+37

⊕bt+33bt+28bt+21bt+15bt+9 ⊕ bt+52bt+45bt+37bt+33bt+28bt+21. (5)

The output function is defined as

zt = h(st+3, st+25, st+46, st+64, bt+63)⊕
∑
j∈A

bt+j , (6)

where A = {1, 2, 4, 10, 31, 43, 56}. The output bit zt is filtered by a nonlinear function h(x)
given by,

h(x) = x1⊕x4⊕x0x3⊕x2x3⊕x3x4⊕x0x1x2⊕x0x2x3⊕x0x2x4⊕x1x2x4⊕x2x3x4, (7)

where the variables x0, x1, x2, x3, x4 of h(x) correspond to the tap positions st+3, st+25,
st+46, st+64, bt+63, respectively.

Grain-v1 is initialized with a 64-bit IV injected directly into the LFSR (the remaining
bits of the LFSR are assigned value one), and an 80-bit key that is loaded into the NFSR.
Then the cipher is clocked 160 times without producing any keystream, but feeding the
output bits back into both the LFSR and the NFSR.

7

Notice that the NFSR bit bt+63 will be updated through the nonlinear feedback (5),
and this bit affects the computation of zt. To obtain more equations that indicate the
relationship between the state bits and zt, our strategy is to eliminate the dependence on
bt+63 in zt. From (6), it is clear that the dependency of zt on bt+63 is equivalent to the
dependency of h(x) on the variable x4. More precisely, by setting certain constraints on
the secret bits of the LFSR we deduce two linear operation modes (OM) 2 of the cipher:

1. (OM 1) Let x2 = 0, x3 = 1 (i.e., st+46 = 0, st+64 = 1), then h(x) = x0 ⊕ x1,

2. (OM 2) Let x0 = 1, x1 = 0, x2 = 1 (i.e., st+3 = 1, st+25 = 0, st+46 = 1), then
h(x) = x3.

Then using (6), the value of bt+10 can be computed directly from the values of zt and the
11 other state variables occurring in the output equation. Combining this observation in
the framework of OM 1, we can compute bt+10, for t = 0, . . . , 15, as follows:

b10 = z0 ⊕ b1 ⊕ b2 ⊕ b4 ⊕ b31 ⊕ b43 ⊕ b56 ⊕ s3 ⊕ s25, where s46 = 0, s64 = 1, (8)

...

b25 = z15 ⊕ b16 ⊕ b17 ⊕ b19 ⊕ b46 ⊕ b58 ⊕ b71 ⊕ s18 ⊕ s40, where s61 = 0, s79 = 1.

Consequently, 32 constraint secret bits are assigned for which h(x) = x0 ⊕ x1, that is, we
need to set s46 = s47 = · · · = s61 = 0 and s64 = s65 = · · · = s79 = 1 using OM 1. The
remaining assignment of the special state bits depends on the tap positions of the driving
LFSR.

The distance distribution of the LFSR’s tap positions st+3, st+25, st+46, st+64, st+79

yields the following differences {25 − 3 = 22, 46 − 25 = 21, 64 − 46 = 18, 79 − 64 = 15}.
Notice that the latest updated bit of the LFSR st+79 is also taken into account since
st+79 will be shifted to the position of st+64 after exactly (79 − 64) + 1 = 15 + 1 = 16
clocks (steps). After these 16 clocks, we derive further constraints using OM 2. We notice
that the tap position difference 64 − 46 = 18 implies that during the next 2 clocks the
bits s62 and s63 will arrive at position s46 and therefore these bits must be set to one in
order to satisfy OM 2. Furthermore, since in this mode we also have the condition that
st+3 = 1, st+25 = 0, which for t = 16, 17, implies assigning 4 more bits to the above values.
So far, 32 + 6 =38 state bits have been specified. Similarly, taking into account the tap
position differences 25− 3 = 22, 46− 25 = 21, we have been able to specify 13 more state
bits that satisfy the requirements for the two operation modes. Thus, in total 51 bits have
been specified. A full specification of these special state bits of the LFSR is summarised
in Table 3. Here, “ ∗ “ means an unspecified bit and there are 29 unspecified bits in total.

The next step is, based on the already assigned state bits (51 in total), to recover
25 secret bits of the NFSR and the 3 secret bits of the LFSR (namely s0, s1 and s2) by
additionally assigning 81 bits of the secret state. The process of recovering secret state
bits of the NFSR, by further specifying suitable state bits, is pretty straightforward. For
instance, to compute b10 using (8) it is enough to assign seven bits b1, b2, b4, b31, b43, b56, s3

2Note that (OM 1) has the same linear relation as the property 2 in [21], but (OM 2) has completely
different linear relation compared to the property 2 in [21]

8

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
s16 s17 s18 s19 s20 s21 s22 s23 s24 s25 s26 s27 s28 s29 s30 s31

∗ ∗ ∗ 1 1 1 1 1 1 1 1 1 1 1 1 ∗
s32 s33 s34 s35 s36 s37 s38 s39 s40 s41 s42 s43 s44 s45 s46 s47

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0

s48 s49 s50 s51 s52 s53 s54 s55 s56 s57 s58 s59 s60 s61 s62 s63

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

s64 s65 s66 s67 s68 s69 s70 s71 s72 s73 s74 s75 s76 s77 s78 s79

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 3: Special state bits of the LFSR

for a given output z0. The whole process of computing 28 secret state bits by additionally
specifying 81 bits of the secret state is depicted in Table 4. For convenience of the reader,
we analyse in detail a more involved procedure of recovering the secret bit b29 to b0 in
Appendix A, which corresponds to the step 16 to the step 27 in Table 4.

The above discussion, along with Table 3 and Table 4, implies the following result.

Lemma 1 Given the value of 132 particular (special) state bits of Grain-v1 and the first
28 keystream output bits generated from the internal state, then the remaining 28 bits of
the internal state can be recovered directly.

3.1.1 The complexity estimates

The attack has two phases, i.e., the preprocessing phase (off-line) and the internal state
recovery phase (on-line). A trade-off parameter l used in both phases gives a flexibility
of adjusting different complexities of the attack, that is, to choose a suitable point on the
TMDTO (time-memory-data-trade-off) curve. The preprocessing phase contains the steps
depicted below, under the assumption that the cipher generates a keystream sequence
with the 28-zero prefix. Notice that during this phase, apart from having specified 51
special state bits and recovering 28 bits of the secret state by using Lemma 1, in addition
l bits of the secret state are guessed.

Input: The trade-off parameter l, 2 ≤ l ≤ 15.
Step 1: Set s19 = 1, · · · , s30 = 1; s41 = 0, · · · , s61 = 0; s62 = 1, · · · , s79 = 1
(51 constraint bits in total, see Table 3), and s3 = 0, · · · , sl+2 = 0.

Step 2: Based on the above constraints, for each of 2160−51−28−l = 281−l

possible patterns of the internal state of Grain-v1 perform the steps below:

(1) For each given pattern, deduce the bits b0, b10, · · · , b30, b77, · · · , b79, s0, s1, s3
(28 bits in total) by using Table 3 and Table 4, cf. Lemma 1.
(2) Perform a backward computation recursively to recover the initial state
consisting of an 80-bit secret key, a 64-bit initial value, and a 16-bit padding

9

Step Recovered bit Fixed NFSR and LFSR bits Constraint conditions

0 b10 b1, b2, b4, b31, b43, b56, s3 z0 = 0, s46 = 0, s64 = 1
1 b11 b3, b5, b32, b44, b57, s4 z1 = 0, s47 = 0, s65 = 1
2 b12 b6, b33, b45, b58, s5 z2 = 0, s48 = 0, s66 = 1
3 b13 b7, b34, b46, b59, s6 z3 = 0, s49 = 0, s67 = 1
4 b14 b8, b35, b47, b60, s7 z4 = 0, s50 = 0, s68 = 1
5 b15 b9, b36, b48, b61, s8 z5 = 0, s51 = 0, s69 = 1
6 b16 b37, b49, b62, s9, s31 z6 = 0, s52 = 0, s70 = 1
7 b17 b38, b50, b63, s10, s32 z7 = 0, s53 = 0, s71 = 1
8 b18 b39, b51, b64, s11, s33 z8 = 0, s54 = 0, s72 = 1
9 b19 b40, b52, b65, s12, s34 z9 = 0, s55 = 0, s73 = 1
10 b20 b41, b53, b66, s13, s35 z10 = 0, s56 = 0, s74 = 1
11 b21 b42, b54, b67, s14, s36 z11 = 0, s57 = 0, s75 = 1
12 b22 b55, b68, s15, s37 z12 = 0, s58 = 0, s76 = 1
13 b23 b69, s16, s38 z13 = 0, s59 = 0, s77 = 1
14 b24 b70, s17, s39 z14 = 0, s60 = 0, s78 = 1
15 b25 b71, s18, s40 z15 = 0, s61 = 0, s79 = 1
16 b29 b75 z19 = 0, s22 = 1, s44 = 0, s65 = 1
17 b30 b76 z20 = 0, s23 = 1, s45 = 0, s66 = 1
18 b77 − z21 = 0, s24 = 1, s46 = 0, s67 = 1
19 s0 b72, b73 z16 = z17 = z25 = 0, s19 = s20 = s28 = 1

s41 = s42 = s50 = 0, s62 = s63 = s71 = 1
20 s1 b74 z17 = z18 = z26 = 0, s20 = s21 = s29 = 1

s42 = s43 = s51 = 0, s63 = s64 = s72 = 1
21 b28 − z27 = 0, s30 = 1, s52 = 0, s73 = 1
22 s2 − z18 = 0, s21 = 1, s43 = 0, s64 = 1
23 b27 − z26 = 0, s29 = 1, s51 = 0, s72 = 1
24 b26 − z25 = 0, s28 = 1, s50 = 0, s71 = 1
25 b78 − z22 = 0, s25 = 1, s47 = 0, s68 = 1
26 b79 − z23 = 0, s26 = 1, s48 = 0, s69 = 1
27 b0 − z24 = 0, s27 = 1, s49 = 0, s70 = 1

Table 4: The deduced state bits of Grain-v1

value. Note that the 16-bit padding value is a 16-bit string of ones used in
the key initialization of Grain-v1 cipher [19]. Then accordingly, generate a
160-bit keystream segment, and memorize the three values (the initial state,
the observed state, the 160-bit keystream segment).

Step 3: Output a three column table T with 281−16−l = 265−l rows. Notice
that the size of the table is reduced by a factor 2−16 since the same padding
scheme is used, thus applying some sort of 16-bit filtering condition.

10

For Grain-v1, we assume the availability of 2r keystream sequences each of length 2s

bits generated using different initial values, where 2r ≪ 264 and 2s ≪ 280. Within this
sample of 2r+s bits in total it is expected that 2r+s−28 many segments has the prefix
consisting of 28 zeros, but similarly to [22] we only collect the segments with a desired
prefix thus ignoring segments with other prefixes. This means that the observed data is
actually 2r+s bits but only a portion of 2r+s−28 bits is used.

The online phase of the attack consists of the steps described below.

Inputs: The trade-off parameter l, 2 ≤ l ≤ 15, and the table T from the
off-line phase.

Step a: Construct a sample space consisting of [2
r+s−28

320] different 320-bit
keystream segments generated by Grain-v1, with a 28-zero prefix.

Step b: For each 320-bit segment of the [2
r+s−28

320] samples, perform the steps
below:

(1) If the first 160 bits of the segment match with some entry in the third
column of T, say S∗, retrieve this internal state S∗.

(2) Using this internal state S∗, generate a 320-bit keystream segment. If the
generated 320-bit keystream segment and the considered sample segment are
identical, then the internal state S∗ is the correct one. Otherwise, repeat the
procedure with the next sample.

The complexity analysis of the attack is as follows. Similarly to the complexity evaluation
in [22], taking into account the sample keystream segments having 28-zeroes as a prefix,
we have that the data requirement is about 2r+s = 251+28+l = 279+l bits. This means that
the special state bits of the LFSR (51 bits in total) in Table 3 will occur with probability
1. This amount of data also implies that a unique secret state (and consequently the
secret key) is recovered since the probability of recovering a wrong secret state is about
279+l−320 = 2−241+l ≈ 0. The time complexity of the preprocessing phase is O(281−l) oper-
ations, which corresponds to Step 2 above. The memory complexity of the preprocessing
phase is about 265−l × 160× 3 ≈ 273.91−l bits.

The time complexity of the internal state recovery (on-line phase) is about 251+l op-
erations. One should remark that these operations are simple table look-ups if a state
recovery attack is performed, whereas in the case of a key recovery attack the operations
are more complex due to the backward computation of the secret key bits. The mem-
ory complexity of the internal state recovery (on-line phase) is about 273.91−l bits, which
corresponds to the size of the table T.

In particular, if for instance l = 15, then the size of the observed sample is about 294

bits, e.g. the availability of 245 keystream sequences each of length 249 bits generated
for different initial values is assumed. The time complexity of preprocessing is about
266 operations and the memory complexity of this phase is about 258.91 bits. The time
complexity of the internal state recovery (on-line phase) is also about 266 operations. The
space complexity of the internal state recovery (on-line phase) is also about 258.91 bits.
The success rate of this attack is one. The attack parameters are summarized in Table 1.

11

Remark 1 The core idea of our attack is to first eliminate the dependence on bt+63 (i.e.,
the variable x4) in zt. Actually, we can use another strategy to eliminate this dependence.
For instance, by letting x2 = 0, we would have h(x) = x1⊕x4⊕x0x3⊕x3x4. It is clear that
x3 ·h(x) = (x0⊕x1)x3. Then, by additionally requiring that zt = 0 and

∑
j∈A bt+j = 0, we

have (st+3⊕st+25) ·st+64 = 0 so that the dependence on bt+63 in zt (or h(x)) is eliminated.
Therefore, a similar attack on Grain-v1 can be mounted using the above observations.

3.2 Attacking Grain-128

The internal state of Grain-128 has 256 bits, which consists of a 128-bit LFSR (denoted
as (s0, · · · , s127)) and a 128-bit NFSR (denoted as (b0, · · · , b127)). The update functions
of both the LFSR and NFSR are respectively defined as follows.

st+128 = st ⊕ st+7 ⊕ st+38 ⊕ st+70 ⊕ st+81 ⊕ st+96 (9)

bt+128 = st ⊕ bt ⊕ bt+26 ⊕ bt+56 ⊕ bt+91 ⊕ bt+96 ⊕ bt+3bt+67 ⊕ bt+11bt+13

⊕bt+17bt+18 ⊕ bt+27bt+59 ⊕ bt+40bt+48 ⊕ bt+61bt+65 ⊕ bt+68bt+84

The output function is defined as

zt =
∑
j∈A

bt+j ⊕ h(bt+12, st+8, st+13, st+20, bt+95, st+42, st+60, st+79, st+95)⊕ st+93,

where A = {2, 15, 36, 45, 64, 73, 89}. Similarly to Grain-v1, the output bit zt is also filtered
by a nonlinear function h(x0, · · · , x8), where

h(x0, · · · , x8) = x0x1 ⊕ x2x3 ⊕ x4x5 ⊕ x6x7 ⊕ x0x4x8.

The variables (x0, x1, x2, x3, x4, x5, x6, x7, x8), respectively, correspond to the tap positions

bt+12, st+8, st+13, st+20, bt+95, st+42, st+60, st+79, st+95 (or st+94).

Grain-128 is initialized with a 96-bit IV that are input to the LFSR (the remaining bits
of the LFSR are filled with ones), whereas the secret 128-bit key is loaded into the NFSR.
Then the cipher is clocked 256 times without producing any keystream, but feeding the
output bits back into both the LFSR and the NFSR.

The main difference between Grain-128 and Grain-128a is a modification of the NFSR
update function given by,

st+128 = st ⊕ st+7 ⊕ st+38 ⊕ st+70 ⊕ st+81 ⊕ st+96, (10)

bt+128 = st ⊕ bt ⊕ bt+26 ⊕ bt+56 ⊕ bt+91 ⊕ bt+96 ⊕ bt+3bt+67 ⊕ bt+11bt+13

⊕bt+17bt+18 ⊕ bt+27bt+59 ⊕ bt+40bt+48 ⊕ bt+61bt+65 ⊕ bt+68bt+84

⊕bt+22bt+24bt+25 ⊕ bt+70bt+78bt+82 ⊕ bt+88bt+92bt+93bt+95.

Its pre-output function is defined as,

yt =
∑
j∈A

bt+j ⊕ h(bt+12, st+8, st+13, st+20, bt+95, st+42, st+60, st+79, st+94)⊕ st+93,

12

where A = {2, 15, 36, 45, 64, 73, 89}. The pre-output function yt(·) shares the same filtering
nonlinear function h(x0, · · · , x8) as Grain-128, where

h(x0, · · · , x8) = x0x1 ⊕ x2x3 ⊕ x4x5 ⊕ x6x7 ⊕ x0x4x8.

In difference to Grain-128, the variables x0, x1, x2, x3, x4, x5, x6, x7, x8 of the filtering non-
linear function in Grain-128a correspond to the tap positions bt+12, st+8, st+13, st+20,
bt+95, st+42, st+60, st+79, st+94, respectively (the bit st+95 is replaced by st+94).

Grain-128a has two different modes of operation, i.e., the first mode is with authen-
tication (IV0 = 1), whereas the second mode is without authentication (IV0 = 0). For
IV0 = 1, the keystream output function is defined as zt = y64+2t, (t ≥ 0), i.e., every sec-
ond pre-output bit is used as the keystream bit. Notice that the first 64 pre-output bits
and the other half of Grain-128a are used for generating the MAC, see [3]. Moreover, for
IV0 = 0, the keystream output function is defined as zt = yt, for t ≥ 0, i.e., the pre-output
bits of Grain-128a are directly used as the keystream bits.

3.2.1 Attack details for Grain-128 or Grain-128a without authentication

Note that both Grain-128 and Grain-128a share the same filtering function h. The vari-
ables x0, x1, x2, x3, x4, x5, x6, x7, x8 respectively correspond to the tap positions

bt+12, st+8, st+13, st+20, bt+95, st+42, st+60, st+79, st+94 (or st+95).

Since the approach taken here goes along the same lines as previously described for Grain-
v1, we give just a rough guidelines of these steps. More precisely, if we let x0 = 0, x5 = 0
(i.e., bt+12 = 0, st+42 = 0), then we have h(x) = x2x3 ⊕ x6x7, which does not depend on
x4. In this case we assign bt+12 = 0, st+42 = 0, for t = 0, . . . , 41 and t = 46, . . . , 49, thus
specifying 92 bits of the secret state in total. Similarly, from the structure of Grain-128
and Grain-128a without authentication, we observe that the internal state variables satisfy
the following equation,

bt+89 = zt ⊕ bt+2 ⊕ bt+15 ⊕ bt+36 ⊕ bt+45 ⊕ bt+64 ⊕ bt+73 ⊕ st+93 ⊕ st+13st+20 ⊕ st+60st+79,

where bt+12 = 0, st+42 = 0 and t ∈ {0, · · · , 41, 46, . . . , 49}. Moreover, using the above
relationship and by additionally specifying 118 secret state bits, we are able to deduce 46
bits of the internal state of Grain-128 or Grain-128a without authentication directly. The
whole procedure is summarized in Table 5 and Table 6, see Appendix B.

Lemma 2 Given the value of 210 particular state bits of Grain-128 (or Grain-128a with-
out authentication model) and the corresponding 46 keystream output bits generated from
the internal state, then the remaining 46 bits of the internal state can be recovered directly.

3.2.2 The complexity analysis

Similarly to the internal state recovery attack on Grain-v1, the attack on Grain-128 or
Grain-128a without authentication also has the preprocessing phase (off-line) and the

13

internal state recovery phase (on-line). In this case, we assume that the cipher gen-
erates a keystream segment with 46-zero in a 50-bit prefix, where zt = 0, for t =
0, . . . , 41, 46, . . . , 49.

The preprocessing phase contains the following steps.

Input : The trade-off parameter l, 0 ≤ l ≤ 13.

Step 1: Set bt+12 = 0, st+42 = 0, for t ∈ {0, . . . , 41, 46, . . . , 49}, and s13 =
0, . . . , sl+12 = 0.

Step 2: Based on the above constraints, for each of 2256−46×2−46−l = 2118−l

possible patterns of internal state of Grain-128 perform the steps below:

(1) For each given pattern, compute the bits b0, b1, b89, . . . , b127, s6, s9, . . . , s12,
by using Table 5 and Table 6, cf. Lemma 2.

(2) Recover the initial state (i.e.,128-bit secret key, 96-bit initial value, and 32-
bit padding value). Note that the 32-bit padding value is a 32-bit one string
(or consists of a single 0 and 31 ones - Grain-128a). Then accordingly, generate
a 256-bit keystream segment by Grain-128 (or Grain-128a), and memorize the
triplet (the initial state, the observed state, 256-bit keystream segment).

Step 3: Output the three column table T containing 2118−l−32 = 286−l rows.

Similarly to the on-line attack procedure for Grain-v1, the internal state recovery consists
of the following steps.

Input: The trade-off parameter l, 0 ≤ l ≤ 13, and the table T created in the
preprocessing phase.

Step a: Collect a sample space generated by Grain-128(a) consisting of [2
r+s−46

512]
different 512-bit keystream segment with 46-zero in the 50-bit prefix by Grain-
128 (or Grain-128a), where zt = 0, for t = (0, · · · , 41, 46, · · · , 49).

Step b: For each 512-bit segment of [2
r+s−46

512] samples, perform the steps
below:

(1) If the first 256 bits of the segment matches with the third column in T,
retrieve the corresponding internal state S∗ from the table.

(2) Using the internal state S∗, generate a new 512-bit keystream segment.
Moreover, check the new 512-bit keystream segment with the considered sam-
ple segment. If the two 512-bit keystream segments are identical, then the
internal state S∗ is the correct one. Otherwise, repeat the procedure with the
next sample segment.

The complexity estimates are summarized below under the assumption that a sample
collection of about 2r+s = 246+46×2+l = 2138+l bits is available to the attacker. The
preprocessing phase has the following complexities :

14

• Time complexity : It corresponds to Step 2 and requires 2118−l operations for con-
structing the table T.

• Memory complexity: To store the table T 286−l × 256× 3 ≈ 295.59−l bits of memory
are required.

The on-line phase of the attack is characterized by the following complexity estimates:

• Time complexity : The internal state (key) recovery requires 292+l operations.

• Memory complexity: The size of the input table T which is 295.59−l bits.

Moreover, an ”optimal” choice of the trade-off parameter l = 13 gives the following
complexity estimates. The complexity of the sample collection is about 2151 bits, e.g.
availability of 275 keystream sequences each of length 276 bits generated for different
initial values. The time complexity of the preprocessing phase is about 2105 operations,
whereas the memory complexity is about 282.59 bits. The time complexity of the internal
state (key) recovery (online phase) is about 2105 operations using table T of 282.59 bits as
the input, see Table 2. As before, the success rate of this attack is one.

4 Summary

In this work a simple but powerful attack on Grain family of ciphers was presented. To
resist the new attack, the design must be more robust against the possibility of recovering
modest number of internal state bits under certain constraint conditions. For Grain-
v1, whose output function is zt =

∑
j∈A bt+j ⊕ h(st+3, st+25, st+46, st+64, bt+63), where

A = {1, 2, 4, 10, 31, 43, 56}, the problem seems to be the placement of the NFSR bit st+56

which has a long delay before its update. In order to thwart BSW like attacks, we suggest
a replacement of the tap position 56 in A = {1, 2, 4, 10, 31, 43, 56}. For instance, if a
tap position i, for 70 < i < 79, is used instead, then the adversary may only deduce
about 79− i equations (internal state bits) by using the constraint conditions as discussed
in this article. Similarly, for Grain-128 and Grain-128a, the tap position 89 in A =
{2, 15, 36, 45, 64, 73, 89} may be replaced by some other tap position, for instance the
output may be taken at position i, where 120 < i < 127.

References

[1] Afzal, M., and Masood, A.: Algebraic Cryptanalysis of a NLFSR Based Stream Ci-
pher. In: Information and Communication Technologies: From Theory to Applica-
tions (ICTTA 2008), Umayyad Palace, Damascus, Syria, pp. 1-6, 2008.

[2] Agren, M., Hell, M., Johansson, T., and Meier,W.: A New Version of Grain-128 with
Authentication. In: Symmetric Key Encryption Workshop (SKEW) 2011, Lyngby,
Denmark, Feb. 2011. Available: http://skew2011.mat.dtu.dk/

15

[3] Agren, M., Hell, M., Johansson, T., and Meier, W.: A New Version of Grain-128 with
Optional Authentication. International Journal of Wireless and Mobile Computing,
vol. 5, no. 1, pp. 48–59, 2011.

[4] Babbage, S.: Improved exhaustive search attacks on stream ciphers. In: Euro-
pean Convention on Security and Detection 1995. IEE Conference Publication, pp.
161C166. IEEE Press, New York, 1995.

[5] Bjorstad, T.: Cryptanalysis of Grain using Time/Memory/Data Tradeoffs. Available
at: http://www.ii.uib.no/ tor/pdf/grain.pdf

[6] Biryukov, A., and Shamir, A.: Cryptanalytic Time/Memory/Data Tradeoffs for
Stream Ciphers. In Proceedings of ASIACRYPT 2000. LNCS vol. 1976, Springer-
Verlag, pp. 1-13, 2000.

[7] Biryukov, A., Shamir, A., and Wagner, D.: Real Time Cryptanalysis of A5/1 on a
PC. In: Proceedings of FSE 2000, LNCS vol. 1978, pp. 1-18, Springer, Heidelberg,
2001.

[8] Banik, S., Maitra, S., and Sarkar, S.: Some Results on Related Key-IV Pairs of Grain.
In: Security, Privacy, and Applied Cryptography Engineering (SPACE 2012). LNCS,
vol. 7644, pp. 94-110. Springer, Heidelberg, 2012.

[9] Banik, S., Maitra, S., and Sarkar, S.: A Differential Fault Attack on the Grain Family
of Stream Ciphers. In: Proc. 14th Int. Workshop on Cryptographic Hardware and
Embedded System CHES 2012. LNCS, vol. 7428, pp. 122-139. Springer, Heidelberg,
2012.

[10] Banik, S., Maitra, S., Sarkar, S., and Sonmez, T.: Chosen IV Related Key Attack
on Grain-128a. In: ACISP 2013. LNCS, vol. 7959, pp. 13-26. Springer, Heidelberg,
2013.

[11] Canniere, C., Kucuk, O., and Preneel, B.: Analysis of Grains Initialization Algo-
rithm. In: AFRICACRYPT 2008. LNCS, vol. 5023, pp. 276-289, Springer, Heidelberg,
2008.

[12] Dinur, I. and Shamir, A.: Breaking Grain-128 with Dynamic Cube Attacks. In: Fast
Software Encryption - FSE’2011. LNCS, vol. 6733, pp. 167-187. Springer, Heidelberg,
2011.

[13] Dinur, I., Guneysu, T., Paar, C., Shamir, A. and Zimmermann, R.: An Experimen-
tally Verified Attack on Full Grain-128 Using Dedicated Reconfigurable Hardware. In:
Progress in Cryptology - ASIACRYPT’2011. LNCS, vol. 7073, pp. 327-373. Springer,
Heidelberg, 2011.

[14] Ding, L., Guan, J.: Related Key Chosen IV Attack on Grain-128a Stream Cipher.
IEEE Transactions on Information Forensics and Security, vol. 8, no. 5, pp. 803-809,
2013.

16

[15] Ding, L., Jin, C., Guan, J., and Qi, C.: New Treatment of the BSW Sampling and Its
Applications to Stream Ciphers In: AFRICACRYPT 2014, LNCS 8469, pp. 136-146,
Springer International Publishing Switzerland, 2014.

[16] Golić, J.D.: Cryptanalysis of alleged A5 stream cipher. In: EUROCRYPT 1997.
LNCS, vol. 1233, pp. 239C255. Springer, Heidelberg, 1997.

[17] Hellman, M.: A cryptanalytic time-memory trade-off. IEEE Transactions on Infor-
mation Theory, vol. 26, no.4, 401C406, 1980.

[18] Hell, M., Johansson, T., and Meier, W.: Grain - A Stream Cipher for Con-
strained Environments. ECRYPT Stream Cipher Project Report, 2005. Available:
http://www.ecrypt.eu.org/stream

[19] Hell, M., Johansson, T., and Meier, W.,: Grain: A Stream Cipher for Constrained
Environments. International Journal of Wireless and Mobile Computing, vol. 2, no.
1, 2007. pp. 86-93, 2007.

[20] Hell, M., Johansson, T., Maximov,A., and Meier, W.: A Stream Cipher Proposal:
Grain-128. In: IEEE International Symposium on Information Theory ISIT 2006,
Seattle, Washington, USA, pp.1615-1618, 2006.

[21] Lee, Y., Jeong, K., Sung, J., and Hong, S.: Related-Key Chosen IV Attacks on
Grain- v1 and Grain-128. In: ACISP 2008, LNCS, vol. 5107, pp. 321-335, Springer,
Heidelberg, 2008.

[22] Mihaljevic, M., Gangopadhyay, S., Paul, G., and Imai, H.: Internal State Recovery
of Grain-v1 Employing Normality Order of the Filter Function. IET Information
Security, vol.6, no.2, pp.55-64, 2012.

[23] Mihaljevic, M., Gangopadhyay, S., Paul, G., and Imai, H.: Generic Cryptographic
Weakness of K-normal Boolean Functions in Certain Stream Ciphers and Cryptanal-
ysis of Grain-128. Periodica Mathematica Hungarica, vol. 65, no. 2, pp. 205-227, 2012.

[24] Rahimi, M., Barmshory, M., Mansouri, M., and Aref, M.: Dynamic Cube
Attack on Grain-v1. Cryptology ePrint Archive: Report 2013/268. Available:
http://eprint.iacr.org/2013/268

[25] Stankovski, P.: Greedy Distinguishers and Nonrandomness Detectors. In: Progress in
Cryptology-INDOCRYPT 2010. LNCS, vol. 6498, pp. 210-226. Springer, Heidelberg,
2010.

[26] The ECRYPT Stream Cipher Project. eSTREAM Portfolio Revision, 2008. Available:
http://www.ecrypt.eu.org/stream

[27] Zhang, H., and Wang, X.: Cryptanalysis of Stream Cipher Grain Family, Cryptology
ePrint Archive, Report 2009/109. Available: http://eprint.iacr.org/.

[28] Zhang, B., Li, Z.: Near Collision Attack on the Grain v1 Stream Cipher. In: proceed-
ings of FSE 2013, LNCS, vol. 8424, pp. 518-538, Springer, Heidelberg, 2014.

17

Appendix A (The step 16 to the Step 27 in Table 4)

The step 16 in Table 4 aims at recovering the secret bit b29 of the NFSR. We compute
bt+10 in OM 2 for t=19,

b29 = z19 ⊕ b20 ⊕ b21 ⊕ b23 ⊕ b50 ⊕ b62 ⊕ b75 ⊕ s83, where s22 = 1, s44 = 0, s65 = 1.
Using the update function of LFSR, we have
s83 = s65 ⊕ s54 ⊕ s41 ⊕ s26 ⊕ s16 ⊕ s3.
Hence we only need to guess one new bit b75 to compute b29.

The step 17 in Table 4 aims at recovering the secret bit b30 of the NFSR. We compute
bt+10 in OM 2 for t = 20,

b30 = z20 ⊕ b21 ⊕ b22 ⊕ b24 ⊕ b51 ⊕ b63 ⊕ b76 ⊕ s84, where s23 = 1, s45 = 0, s66 = 1.
Using the update function of LFSR, we have
s84 = s66 ⊕ s55 ⊕ s42 ⊕ s27 ⊕ s17 ⊕ s4.
Hence we only need to guess one new bit b76 to compute b30.

The step 18 in Table 4 aims at recovering the secret bit b77 of the NFSR. We compute
bt+56 in OM 2 for t = 21,

b77 = z21 ⊕ b22 ⊕ b23 ⊕ b25 ⊕ b52 ⊕ b64 ⊕ b31 ⊕ s85, where s24 = 1, s46 = 0, s67 = 1.
Using the update function of LFSR, we have
s85 = s67 ⊕ s56 ⊕ s43 ⊕ s28 ⊕ s18 ⊕ s5.
Hence we need to guess no more new bit to compute b77.

The step 19 in Table 4 aims at recovering the secret bit s0 of the LFSR. Notice that,
b35 = z25 ⊕ b26 ⊕ b27 ⊕ b29 ⊕ b56 ⊕ b68 ⊕ b81 ⊕ s89, where s21 = 1, s43 = 0, s64 = 1.
b26 = z16 ⊕ b17 ⊕ b18 ⊕ b20 ⊕ b47 ⊕ b59 ⊕ b72 ⊕ s80, where s19 = 1, s41 = 0, s62 = 1.
b27 = z17 ⊕ b18 ⊕ b19 ⊕ b21 ⊕ b48 ⊕ b60 ⊕ b73 ⊕ s81, where s20 = 1, s42 = 0, s63 = 1.
On the other hand, we have
s80 = s62 ⊕ s51 ⊕ s38 ⊕ s23 ⊕ s13 ⊕ s0.
s81 = s63 ⊕ s52 ⊕ s39 ⊕ s24 ⊕ s14 ⊕ s1.
s89 = s71 ⊕ s60 ⊕ s47 ⊕ s32 ⊕ s22 ⊕ s9.
b81 = s1 ⊕ b63 ⊕ b61 ⊕ b53 ⊕ b46 ⊕ b38 ⊕ b34 ⊕ b29 ⊕ b22 ⊕ b15 ⊕ b10 ⊕ b1 ⊕ b64b61 ⊕ b38b34 ⊕

b16b10 ⊕ b61b53b46 ⊕ b34b29b22 ⊕ b64b46b29b10 ⊕ b61b53b38b34⊕ b64b61b22b16⊕ b64b61b53b46b38⊕
b34b29b22b16b10 ⊕ b53b46b38b34b29b22.

Moreover, we have
b35 = z25⊕z16⊕b17⊕b18⊕b20⊕b47⊕b59⊕b72⊕s62⊕s51⊕s38⊕s23⊕s13⊕s0⊕z17⊕b18⊕

b19⊕b21⊕b48⊕b60⊕b73⊕s63⊕s52⊕s39⊕s24⊕s14⊕s1⊕b29⊕b56⊕b68⊕s1⊕b64⊕b61⊕b53⊕b46⊕
b38⊕b34⊕b29⊕b22⊕b16⊕b10⊕b1⊕b64b61⊕b38b34⊕b16b10⊕b61b53b46⊕b34b29b22⊕b64b46b29b10⊕
b61b53b38b34 ⊕ b64b61b22b16 ⊕ b64b61b53b46b38 ⊕ b34b29b22b16b10 ⊕ b53b46b38b34b29b22 ⊕ s89

Therefore, we have
s0 = b35⊕z25⊕z16⊕b17⊕b18⊕b20⊕b47⊕b59⊕b72⊕s62⊕s51⊕s38⊕s23⊕s13⊕z17⊕b18⊕

b19⊕b21⊕b48⊕b60⊕b73⊕s63⊕s52⊕s39⊕s24⊕s14⊕b29⊕b56⊕b68⊕b64⊕b61⊕b53⊕b46⊕b38⊕
b34⊕b29⊕b22⊕b16⊕b10⊕b1⊕b64b61⊕b38b34⊕b16b10⊕b61b53b46⊕b34b29b22⊕b64b46b29b10⊕
b61b53b38b34 ⊕ b64b61b22b16 ⊕ b64b61b53b46b38 ⊕ b34b29b22b16b10 ⊕ b53b46b38b34b29b22 ⊕ s89.

18

It is clear that we need to guess two new bits (b72, b73) for obtaining the bit s0.

The step 20 in Table 4 aims at recovering the secret bit s1 of the LFSR. Similarly, we
can deduce that we only need to guess one new bits b74 for obtaining the bit s1 by using
exactly the same way as step 19.

The step 21 in Table 4 aims at recovering the secret bit b28 of the NFSR. We compute
bt+1 in OM 2 for t = 27,

b28 = z27 ⊕ b29 ⊕ b31 ⊕ b37 ⊕ b58 ⊕ b70 ⊕ b83 ⊕ s91, where s30 = 1, s52 = 0, s73 = 1.
Using the update function of LFSR and NFSR, we have
s91 = s73 ⊕ s62 ⊕ s49 ⊕ s34 ⊕ s24 ⊕ s11.
b83 = s3 ⊕ b65 ⊕ b63 ⊕ b55 ⊕ b48 ⊕ b40 ⊕ b36 ⊕ b31 ⊕ b24 ⊕ b17 ⊕ b12 ⊕ b3 ⊕ b66b63 ⊕ b40b36 ⊕

b18b12 ⊕ b63b55b48 ⊕ b36b31b24 ⊕ b66b48b31b12 ⊕ b63b55b40b36⊕ b66b63b24b18⊕ b66b63b55b48b40⊕
b36b31b24b18b12 ⊕ b55b48b40b36b31b24.

Hence we need to guess no more new bit to compute b28.

The step 22 in Table 4 aims at recovering the secret bit s2 of the LFSR. We compute
st+64 in OM 2 for t = 18,

s82 = z18 ⊕ b19 ⊕ b20 ⊕ b22 ⊕ b28 ⊕ b49 ⊕ b61 ⊕ b74, where s21 = 1, s43 = 0, s64 = 1.
Using the update function of LFSR, we have
s82 = s64 ⊕ s53 ⊕ s40 ⊕ s25 ⊕ s15 ⊕ s2.
Hence we need to guess no more new bit to compute s2.

The step 23 in Table 4 aims at recovering the secret bit b27 of the NFSR. We compute
bt+1 in OM 2 for t = 26,

b27 = z26 ⊕ b28 ⊕ b30 ⊕ b36 ⊕ b57 ⊕ b69 ⊕ b82 ⊕ s90, where s29 = 1, s51 = 0, s72 = 1.
Using the update function of LFSR and NFSR, we have
s90 = s72 ⊕ s61 ⊕ s48 ⊕ s33 ⊕ s23 ⊕ s10.
b82 = s2 ⊕ b64 ⊕ b62 ⊕ b54 ⊕ b47 ⊕ b39 ⊕ b35 ⊕ b30 ⊕ b23 ⊕ b16 ⊕ b11 ⊕ b2 ⊕ b65b62 ⊕ b39b35 ⊕

b17b11 ⊕ b62b54b47 ⊕ b35b30b23 ⊕ b65b47b30b11 ⊕ b62b54b39b35⊕ b65b62b23b17⊕ b65b62b54b47b39⊕
b35b30b23b17b11 ⊕ b54b47b39b35b30b23.

Hence we need to guess no more new bit to compute b27.

The step 24 in Table 4 aims at recovering the secret bit b26 of the NFSR. We compute
bt+1 in OM 2 for t = 25,

b26 = z25 ⊕ b27 ⊕ b29 ⊕ b35 ⊕ b56 ⊕ b68 ⊕ b81 ⊕ s89, where s28 = 1, s50 = 0, s71 = 1.
Using the update function of LFSR and NFSR, we have
s89 = s71 ⊕ s60 ⊕ s47 ⊕ s32 ⊕ s22 ⊕ s9.
b81 = s1 ⊕ b63 ⊕ b61 ⊕ b53 ⊕ b46 ⊕ b38 ⊕ b34 ⊕ b29 ⊕ b22 ⊕ b15 ⊕ b10 ⊕ b1 ⊕ b64b61 ⊕ b38b34 ⊕

b16b10 ⊕ b61b53b46 ⊕ b34b29b22 ⊕ b64b46b29b10 ⊕ b61b53b38b34⊕ b64b61b22b16⊕ b64b61b53b46b38⊕
b34b29b22b16b10 ⊕ b53b46b38b34b29b22.

Hence we need to guess no more new bit to compute b26.

19

The step 25 in Table 4 aims at recovering the secret bit b78 of the NFSR. We compute
bt+56 in OM 2 for t = 22,

b78 = z22 ⊕ b23 ⊕ b24 ⊕ b26 ⊕ b53 ⊕ b65 ⊕ b32 ⊕ s86, where s25 = 1, s47 = 0, s68 = 1.
Using the update function of LFSR, we have
s86 = s68 ⊕ s57 ⊕ s44 ⊕ s29 ⊕ s19 ⊕ s6.
Hence we need to guess no more new bit to compute b78.

The step 26 in Table 4 aims at recovering the secret bit b79 of the NFSR. We compute
bt+56 in OM 2 for t = 23,

b79 = z23 ⊕ b24 ⊕ b25 ⊕ b27 ⊕ b54 ⊕ b66 ⊕ b33 ⊕ s87, where s26 = 1, s48 = 0, s69 = 1.
Using the update function of LFSR, we have
s87 = s69 ⊕ s58 ⊕ s45 ⊕ s30 ⊕ s20 ⊕ s7.
Hence we need to guess no more new bit to compute b78.

The step 27 in Table 4 aims at recovering the secret bit b0 of the NFSR. We compute
bt+56 in OM 2 for t = 24,

b80 = z24 ⊕ b25 ⊕ b26 ⊕ b28 ⊕ b55 ⊕ b67 ⊕ b34 ⊕ s88, where s27 = 1, s49 = 0, s70 = 1.
Using the update function of LFSR and NFSR, we have
s88 = s70 ⊕ s59 ⊕ s46 ⊕ s31 ⊕ s21 ⊕ s8.
b80 = s0 ⊕ b62 ⊕ b60 ⊕ b52 ⊕ b45 ⊕ b37 ⊕ b33 ⊕ b28 ⊕ b21 ⊕ b14 ⊕ b9 ⊕ b0 ⊕ b63b60 ⊕ b37b33 ⊕

b15b9 ⊕ b60b52b45 ⊕ b33b28b21 ⊕ b63b45b28b9 ⊕ b60b52b37b33 ⊕ b63b60b21b15 ⊕ b63b60b52b45b37 ⊕
b33b28b21b15b9 ⊕ b52b45b37b33b28b21.

Hence we need to guess no more new bit to compute b0.

Appendix B (Recovered bits in Table 5 and Table 6)

For the output function of Grain-128, if we let x0=0, x5=0 (i.e., bt+12 = 0, st+42 = 0),
then we have zt = bt+2⊕ bt+15⊕ bt+36⊕ bt+45⊕ bt+64⊕ bt+73⊕ bt+89⊕ st+93⊕ st+13st+20⊕
st+60st+79.

The step i (i = 0, · · · , 34) in Table 5 (or Table 6) aims at recovering the secret bit
bi+89 of the NFSR. We compute bt+89 for t = i,

bi+89 = zi⊕bi+2⊕bi+15⊕bi+36⊕bi+45⊕bi+64⊕bi+73⊕si+93⊕si+13si+20⊕si+60si+79,where
bi+12 = 0, si+42 = 0.

Clearly, we only need to guess bits bi+2, bi+15, bi+36, bi+45, bi+64, bi+73, si+93, si+13, si+20,
si+60, si+79 to compute bi+89, which is showed in Table 5 (or Table 6).

The step 35 in Table 6 aims at recovering the secret bit s9 of the LFSR. We compute
bt+89 for t = 48,

b137 = z48⊕b50⊕b63⊕b84⊕b93⊕b112⊕b121⊕s141⊕s61s68⊕s108s127,where b60 = 0, s90 = 0.
Using the update function of LFSR and NFSR, we have
s141 = s13 ⊕ s20 ⊕ s51 ⊕ s83 ⊕ s94 ⊕ s109.
b137 = s9 ⊕ b9 ⊕ b35 ⊕ b65 ⊕ b100 ⊕ b105 ⊕ b12b76 ⊕ b20b22 ⊕ b26b27 ⊕ b36b68 ⊕ b49b57 ⊕

b70b74 ⊕ b77b93 ⊕ b31b33b34 ⊕ b79b87b91 ⊕ b97b101b102b104.

20

Hence we need to guess no more new bit to compute s9.

The step 36 in Table 6 aims at recovering the secret bit s10 of the LFSR. We compute
bt+89 for t = 49,

b138 = z49 ⊕ b51 ⊕ b64 ⊕ b85 ⊕ b94 ⊕ b113 ⊕ b122 ⊕ s142 ⊕ s62s69 ⊕ s109s128, where b61 =
0, s91 = 0.

Using the update function of LFSR and NFSR, we have
s128 = s0 ⊕ s7 ⊕ s38 ⊕ s70 ⊕ s81 ⊕ s96.
s142 = s14 ⊕ s21 ⊕ s52 ⊕ s84 ⊕ s95 ⊕ s110.
b138 = s10 ⊕ b10 ⊕ b36 ⊕ b66 ⊕ b101 ⊕ b106 ⊕ b13b77 ⊕ b21b23 ⊕ b27b28 ⊕ b37b69 ⊕ b50b58 ⊕

b71b75 ⊕ b78b94 ⊕ b32b34b35 ⊕ b80b88b92 ⊕ b98b102b103b105.
Hence we need to guess two new bits s0, s7 to compute s10.

The step 37 in Table 6 aims at recovering the secret bit b124 of the NFSR. We compute
bt+89 for t = 35,

b124 = z35⊕b37⊕b50⊕b71⊕b80⊕b99⊕b108⊕s128⊕s48s55⊕s95s114,where b47 = 0, s77 = 0.
Using the update function of LFSR, we have
s128 = s0 ⊕ s7 ⊕ s38 ⊕ s70 ⊕ s81 ⊕ s96.
Hence we need to guess no more new bit to compute b124.

The step 38 in Table 6 aims at recovering the secret bit b125 of the NFSR. We compute
bt+89 for t = 36,

b125 = z36⊕b38⊕b51⊕b72⊕b81⊕b100⊕b109⊕s129⊕s49s56⊕s96s115,where b48 = 0, s78 = 0.
Using the update function of LFSR, we have
s129 = s1 ⊕ s8 ⊕ s39 ⊕ s71 ⊕ s82 ⊕ s97.
Hence we need to guess two new bits s1, s8 to compute b125.

The step 39 in Table 6 aims at recovering the secret bit b126 of the NFSR. We compute
bt+89 for t = 37,

b126 = z37⊕b39⊕b52⊕b73⊕b82⊕b101⊕b110⊕s130⊕s50s57⊕s97s116,where b49 = 0, s79 = 0.
Using the update function of LFSR, we have
s130 = s2 ⊕ s9 ⊕ s40 ⊕ s72 ⊕ s83 ⊕ s98.
Hence we need to guess one new bits s2 to compute b126.

The step 40 in Table 6 aims at recovering the secret bit b127 of the NFSR. We compute
bt+89 for t = 38,

b127 = z38⊕b40⊕b53⊕b74⊕b83⊕b102⊕b111⊕s131⊕s51s58⊕s98s117,where b50 = 0, s80 = 0.
Using the update function of LFSR, we have
s131 = s3 ⊕ s10 ⊕ s41 ⊕ s73 ⊕ s84 ⊕ s99.
Hence we need to guess one new bits s3 to compute b127.

The step 41 in Table 6 aims at recovering the secret bit s11 of the LFSR. We compute
bt+89 for t = 46,

b135 = z46⊕b48⊕b61⊕b82⊕b91⊕b110⊕b119⊕s139⊕s59s66⊕s106s125,where b58 = 0, s88 = 0.

21

Using the update function of LFSR and NFSR, we have
s139 = s11 ⊕ s18 ⊕ s49 ⊕ s81 ⊕ s92 ⊕ s107.
b135 = s7⊕b7⊕b33⊕b63⊕b98⊕b103⊕b10b74⊕b18b20⊕b24b25⊕b34b66⊕b47b55⊕b68b72⊕

b75b91 ⊕ b29b31b32 ⊕ b77b85b89 ⊕ b95b99b100b102.
Hence we need to guess no more new bit to compute s11.

The step 42 in Table 6 aims at recovering the secret bit s12 of the LFSR. We compute
bt+89 for t = 47,

b136 = z47⊕b49⊕b62⊕b83⊕b92⊕b111⊕b120⊕s140⊕s60s67⊕s107s126,where b59 = 0, s89 = 0.
Using the update function of LFSR and NFSR, we have
s140 = s12 ⊕ s19 ⊕ s50 ⊕ s82 ⊕ s93 ⊕ s108.
b136 = s8⊕b8⊕b34⊕b64⊕b99⊕b104⊕b11b75⊕b19b21⊕b25b26⊕b35b67⊕b48b56⊕b69b73⊕

b76b92 ⊕ b30b32b33 ⊕ b78b86b90 ⊕ b96b100b101b103.
Hence we need to guess no more new bit to compute s12.

The step 43 in Table 6 aims at recovering the secret bit s6 of the LFSR. We compute
bt+89 for t = 41,

b130 = z41⊕b43⊕b56⊕b77⊕b86⊕b105⊕b114⊕s134⊕s54s61⊕s101s120,where b53 = 0, s83 = 0.
Using the update function of LFSR and NFSR, we have
s134 = s6 ⊕ s13 ⊕ s44 ⊕ s76 ⊕ s87 ⊕ s102.
b130 = s2⊕ b2⊕ b28⊕ b58⊕ b93⊕ b98⊕ b5b69⊕ b13b15⊕ b19b20⊕ b29b61⊕ b42b50⊕ b63b67⊕

b70b86 ⊕ b24b26b27 ⊕ b72b80b84 ⊕ b90b94b95b97.
Hence we need to guess no more new bit to compute s6.

The step 44 in Table 6 aims at recovering the secret bit b0 of the NFSR. We compute
bt+89 for t = 39,

b128 = z39⊕b41⊕b54⊕b75⊕b84⊕b103⊕b112⊕s132⊕s52s59⊕s99s118,where b51 = 0, s81 = 0.
Using the update function of LFSR and NFSR, we have
s132 = s4 ⊕ s11 ⊕ s42 ⊕ s74 ⊕ s85 ⊕ s100.
b128 = s0⊕ b0⊕ b26⊕ b56⊕ b91⊕ b96⊕ b3b67⊕ b11b13⊕ b17b18⊕ b27b59⊕ b40b48⊕ b61b65⊕

b68b84 ⊕ b22b24b25 ⊕ b70b78b82 ⊕ b88b92b93b95.
Hence we need to guess one new bits s4 to compute b0.

The step 45 in Table 6 aims at recovering the secret bit b1 of the NFSR. We compute
bt+89 for t = 40,

b129 = z40⊕b42⊕b55⊕b76⊕b85⊕b104⊕b113⊕s133⊕s53s60⊕s100s119,where b52 = 0, s82 = 0.
Using the update function of LFSR and NFSR, we have
s133 = s5 ⊕ s12 ⊕ s43 ⊕ s75 ⊕ s86 ⊕ s101.
b129 = s1⊕ b1⊕ b27⊕ b57⊕ b92⊕ b97⊕ b4b68⊕ b12b14⊕ b18b19⊕ b28b60⊕ b41b49⊕ b62b66⊕

b69b85 ⊕ b23b25b26 ⊕ b71b79b83 ⊕ b89b93b94b96.
Hence we need to guess one new bits s5 to compute b1.

22

Step Recovered bit Fixed NFSR and LFSR bits Constraint conditions

0 b89 b2, b64, b73, s13, s20, s93 z0 = 0, b12 = 0, s42 = 0

1 b90 b3, b65, b74, s14, s21, s94 z1 = 0, b13 = 0, s43 = 0

2 b91 b4, b66, b75, s15, s22, s95 z2 = 0, b14 = 0, s44 = 0

3 b92 b5, b67, b76, s16, s23, s96 z3 = 0, b15 = 0, s45 = 0

4 b93 b6, b68, b77, s17, s24, s97 z4 = 0, b16 = 0, s46 = 0

5 b94 b7, b69, b78, s18, s25, s84, s98 z5 = 0, b17 = 0, s47 = 0

6 b95 b8, b70, b79, s19, s26, s85, s99 z6 = 0, b18 = 0, s48 = 0

7 b96 b9, b71, b80, s27, s86, s100 z7 = 0, b19 = 0, s49 = 0

8 b97 b10, b72, b81, s28, s87, s101 z8 = 0, b20 = 0, s50 = 0

9 b98 b11, b54, b82, s29, s102 z9 = 0, b21 = 0, s51 = 0

10 b99 b55, b83, s30, s103 z10 = 0, b22 = 0, s52 = 0

11 b100 b56, b84, s31, s104 z11 = 0, b23 = 0, s53 = 0

12 b101 b57, b85, s32, s105 z12 = 0, b24 = 0, s54 = 0

13 b102 b86, s33, s92, s106 z13 = 0, b25 = 0, s55 = 0

14 b103 b87, s34, s107 z14 = 0, b26 = 0, s56 = 0

15 b104 b88, s35, s108 z15 = 0, b27 = 0, s57 = 0

16 b105 s36, s109 z16 = 0, b28 = 0, s58 = 0

17 b106 b62, s37, s110 z17 = 0, b29 = 0, s59 = 0

18 b107 b63, s38, s111 z18 = 0, b30 = 0, s60 = 0

19 b108 s39, s112 z19 = 0, b31 = 0, s61 = 0

20 b109 s40, s113 z20 = 0, b32 = 0, s62 = 0

21 b110 s41, s114 z21 = 0, b33 = 0, s63 = 0

22 b111 s115 z22 = 0, b34 = 0, s64 = 0

23 b112 s116 z23 = 0, b35 = 0, s65 = 0

24 b113 s117 z24 = 0, b36 = 0, s66 = 0

25 b114 s118 z25 = 0, b37 = 0, s67 = 0

26 b115 s119 z26 = 0, b38 = 0, s68 = 0

27 b116 s120 z27 = 0, b39 = 0, s69 = 0

28 b117 s121 z28 = 0, b40 = 0, s70 = 0

Table 5: The deduced state bits of Grain-128 and Grain-128a

23

Step Recovered bit Fixed NFSR and LFSR bits Constraint conditions

29 b118 s122 z29 = 0, b41 = 0, s71 = 0

30 b119 s123 z30 = 0, b42 = 0, s72 = 0

31 b120 s124 z31 = 0, b43 = 0, s73 = 0

32 b121 s125 z32 = 0, b44 = 0, s74 = 0

33 b122 s126 z33 = 0, b45 = 0, s75 = 0

34 b123 s127 z34 = 0, b46 = 0, s76 = 0

35 s9 − z48 = 0, b60 = 0, s90 = 0

36 s10 s0, s7 z49 = 0, b61 = 0, s91 = 0

37 b124 − z35 = 0, b47 = 0, s77 = 0

38 b125 s1, s8 z36 = 0, b48 = 0, s78 = 0

39 b126 s2 z37 = 0, b49 = 0, s79 = 0

40 b127 s3 z38 = 0, b50 = 0, s80 = 0

41 s11 − z46 = 0, b58 = 0, s88 = 0

42 s12 − z47 = 0, b59 = 0, s89 = 0

43 s6 − z41 = 0, b53 = 0, s83 = 0

44 b0 s4 z39 = 0, b51 = 0, s81 = 0

45 b1 s5 z40 = 0, b52 = 0, s82 = 0

Table 6: The deduced state bits of Grain-128 and Grain-128a

24

