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Abstract. The lightweight encryption algorithm (LEA) is a 128-bit
block cipher introduced in 2013. It is based on Addition, rotation, XOR
operations for 32-bit words. Because of its structure, it is useful for sev-
eral devices to achieve a high speed of encryption and low-power con-
sumption. However, side-channel attacks on LEA implementations have
not been examined. In this study, we perform a power analysis attack on
LEA. We implemented LEA with 128-bit key size on FPGA in a straight-
forward manner. Our experimental results show that we can successfully
retrieve a 128-bit master key by attacking a first round encryption.

Keywords: Power Analysis Attack, LEA, ARX, Correlation Power Anal-
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1 Introduction

A new category of cryptanalysis, known as a power analysis attack, was intro-
duced by P. Kocher et al. in 1996 [1]. Power analysis attacks exploits not only
intended information ( e.g., input and output from cryptographic devices), but
also power consumption related to secret information (e.g., secret keys) from
cryptographic devices [2]. This can be accomplished by efficiently comparing
power analysis attacks to conventional cryptanalysis. Thus, investigating not
only cryptographic algorithms, but also their concrete implemenations is criti-
cal.

A new block cipher, called lightweight encryption algorithm (LEA), was in-
troduced in 2013 [3]. It is a 128-bit block cipher designed for fast encryption
based on an addition-rotation-XOR (ARX) design technique. Its round encryp-
tion and key schedule are used exclusively by several ARX operations. It has
three types of key size: 128, 192, and 256 bits. This size determines the number
of round iterations. In [3], researchers investigated several existing attacks for
block ciphers such as differential, linear, and boomerang attacks. They focused
only on security evaluation at the algorithm level. LEA in software and hard-
ware outperformed other block ciphers [3]. However, security evaluations have
not been performed on LEA implementations. Therefore, examing its security
strength against power analysis attacks is essential.
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LEA does not contain S-Box components such as other block ciphers (e.g.,
AES). Instead, it employs ARX operations such as modular addition, rotation
and XOR operations. Several studies have been conducted on side-channel at-
tacks on ARX-based cryptographic algorithms [4], [5], [6]. In [5], the authors con-
ducted an attack on the Skein algorithm using a 64-bit words addition operation.
Although they failed to retrieve all subkeys, their experimental results showed
that the modular addition in the Skein algorithm is vulnerable to side-channel
attacks. The sutides in [4], and [6], investigated the ARX-based SHA-3 cryp-
tographic algorithms, BLAKE and CubeHash. The researchers demonstrated
theoretically the selection function and the number of power analysis that must
be conducted. In addition, they implemented the algorithms on a microproces-
sor. No previous study has conducted security evaluations on ARX-based block
ciphers such as LEA, in a hardware implementation against power analysis at-
tacks.

In this study, we demonstrate power analysis attacks on a hardware imple-
mentation of LEA. We employ correlation power analysis [7], and present details
on the method we use with the selection function for LEA. Based on the the
selection function, we present a practical method for retrieving a 128-bit secret
key during an attacking of the first round encryption of LEA. Our experimental
results indicate that deploying countermeasures to prevent attacks on hardware
implementations is essential.

2 LEA Algorithm

In 2013, Hong et al. introduced a new 128-bit block cipher, known as LEA, for
lightweight encryption [3]. LEA is an ARX-based cryptographic algorithm and
consists of three key sizes of 128, 192, and 256 bits. In this study, we focus on the
128-bit key length. LEA for 128-bit key length possesses 24 rounds, and thus,
contains 24 round keys, denoted as RK;(0 < i < 23).

2.1 Structure of LEA

Fig. 1 shows that the i-th round function with a 128-bit key length. Tj ; , 5 rep-

resents four 32-bit sub-keys of the i-th round key RK;. These keys are provided

by the key scheduling component. Each round function is calculated as follows:
X < ROLy (X} & T) B (X] & 7))
Xi{t" — RORs (X{ o T)) B (X, e TY))
X3t — ROLs (Xi @ T3) B (XS T7))
X e X

where ROL;(x) and ROR;(x) denote the i-th left and right rotations, respec-

tively, on a 32-bit value . A 128-bit plaintext P is denoted as a concatenation of

32-bit words, such that P = (X{, X, X9, X9). In the same manner, a ciphertext
C is represented as C' = (X3, X73, X33, X3?).
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Fig. 1. LEA Structure

2.2 Key Schedule

In the key schedule of LEA, the following four constants are used:

0[0] = Oxc3efe9db
8[1] = 0x44626b02
0[2] = 0x79e27c8a
5[3] = 0x78df30ec.
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A 128-bit master key K is represented as a concatenation of 32-bit words as

follows:

K= (T, ' 11, T3

9)

Based on the master key, a 192-bit round key RK; = (T¢, T}, T8, T{, TE, T}) is
generated for 0 < i < 23 as follows:

T¢ «— ROL; (Ty' B ROL;(6[i mod 4]))

T{ — ROL3 (T{~' 8 ROL;41(3[i mod 4]))
T} — ROLg (T~ B ROL;42(3[i mod 4]))
T — ROL;1 (T3 "B ROL;15(5]i mod 4]))

RK; «— (T¢, T}, T8, Ti, Ta, T}).

(10)
(11)
(12)
(13)
(14)
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Each 32-bit subkey of the round keys is calculated independently of other 32-bit
subkey, so if we can retrieve a 32-bit subkey (e.g. Tj}), then we can easily compute
a part of a master key, To_l.

3 Power Analysis Attack on LEA

In this section, we present how we retrieve a 128-bit master key by attacking the
first round encryption. In this study, we use correlation power analysis (CPA)
based on a linear relationship between measured power consumption and an
intermediate value. The intermediate value is usually calculated by means of
a selection function. There are several ways to map the value based on power
model, such as the hamming weight, the hamming distance model, etc.

3.1 Selection Function

In this study, we use the hamming distance model as a selection function, because
our target implementation is a hardware platform and the hamming distance
model is usually well correlated for a hardware implementation [8].

The four 32-bit subkeys of the first round key, Ty, 11,15, T3, are our primary
targets for retrieval by CPA. For simplicity in the remainder of this paper, we
omit the symbol i to represent a round. Fig. 1 reveals that targeting only a single
32-bit subkey is difficult. Instead, we must target two pairs of subkeys for each
CPA: (Tp,Th), (T1,T2), and (T1,T3). In addition, we assume that plaintext and
ciphertext are known value. Therefore, we can calculate the hamming distance
value between X{ and X§ = ROLg ((X§ ® To) B (X{ ®T1)) by deducing the
Ty and T values. We must then produce a 232 x 232 hamming distance value for
every Ty and T; value. However, applying this method to accomplish a power
analysis attack is not feasible.

Instead of calculating the 32-bit hamming distance value, we divide the sub-
keys pair (Tp,T1) into four 8-bit partial subkeys. We then produce four types of
8-bit hamming distance values for each z-th (0 < z < 3) partial subkey h. as
follows:

hz = RORg(ROLo(X0((s(241)-1)—s2]) ©
ROLy((Xg((s(s11)-1)-82] @ To[(8(z+1)-1)—82]) B
(XD8(41)-1)—82] D T1(8(z+1)-1)—82))))» (15)

where X[,y denotes a bit string cut from the a-th to the b-th bit of X;. Each
type of hamming distance value can be calculated by estimating two 8-bit partial
subkeys. For example, h; is produced for all possible values of Ty7_o) and T'[7_g
from Eq. 15.

The number of possible candidates for the pair is 28 x 28 = 65536, derived
from (Top7—o), Tir—0)) = (0,0),(0,1),---,(0,255),---,(255,255). Using h., we
can derive four 8-bit partial subkey from the lowest byte (Ty7—o), T1[7—0)) to the
highest byte (Tp(31—24], T1[31—24]) sequentially by CPA. In addition, the remain-
ing subkey pair (T7,7T%) and (T1,T3) can be derived using the same method.
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3.2 Key Guessing

Because of the number of possible key candidates for each pair is 65536, we must
conduct CPA 65536 times for each key candidates. In addition, because of the
structure of the LEA encryption, the hamming distance value is the same for two
key pairs. For example, two pairs of keys, (Tyi7—q), T1[7—q)) and (T6[770]7 T’[7 0])
always produce the same hamming distance value. In other words, one additional
pairs of values always exists that satisfies the following:

hy = I,
(X0pr—o) ® Tojr—o))B _ (Xop7—o) © Topr—op BB

0 - 0 / (16)
(Xipr—o @ Thpr—0)  (Xipr—o) @ T1j7—q))-

We determined that a necessary and sufficient condition for Eq. 16 is (T6[7_0] , T1/[7—0]) =
(Togr—o)s Thpr—0)) ot (Tip_ops Tij7_gp) = (Topr—o) ® 27, Tajz—g) ® 27). To prove the
condition, we simplify the problem as the following theorem.

Theorem 1.

(adz)+(bdy) =(a®2)+ (bdw) mod 2" ,Va,b e {0,1}" (17)
S=zady=w)or (x®z=2""andydw=2""1). (18)

Proof. 1) First, we show that Eq. 18 implies Eq. 17 based on the as following:

(a@ )+ (b y) mod 2"
=(a®z)+ (bdy)+2" mod 2"
=(a®z)+2" '+ (bDy) + 2" mod 2"
=(@2ze2" N+ (boy®+2""") mod 2"
=(a®z)+ (b®dw) mod 2".

ii) Next, we prove that Eq. 17 implies Eq. 18 is equivalent to the following
equation:

(x#zory#w)and (zPz#2" Lorydw #£2"1)
=@®z)+ 0dy) # (a®2)+ (b®w) mod 2™ ;Ja,b € {0,1}" (19)

Eq. 19 can be proved by contradiction. Four possible cases exist as follows:

— Casel: (x+#2)and (z®z#2"1)
Case 2 : (z # z) and (y ®w # 2" 1)
— Case 3: (y#w) and (y dw # 2"~ 1)
Case 4 : (y # w) and (z @ 2z #2"71)

8 8
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Case 1 We assume that Eq. 17 is true and let b be y and w. We then derive

(a®2)+ (ydy) = (ad2)+ (ydw), and
(adz)+(way) =(adz)+ (wow). (20)

By substitution, we derive the following;:

(a@z)—(a®z)=(a®z2)— (a®x) mod 2"
2-(a®x)=2(a® z) mod 2".

a®x=adzmod 2" 1.

Finally, we derive = z @ 2"~ or = 2. However, this contradicts the suppo-
sition of the Case 1. Thus, the supposition is false.

Case 2 We assume that Eq. 17 is true. From the proof of the Case 1, we then
derive £ = z ® 277 L. If we let a as x, we then derive the following:

(z@x)+ 0y =(®2" '@ 2)+ (b w) mod 2"
bdy=2""14 (b w) mod 2"
bdy=2"1®bdw mod 2".

Therefore, y = w @ 2"~ ! which is a contradiction of the supposition of the Case
2.

Case 3, 4 If we change x to y, z to w, and a to b, Casee 3 and 4 become the
same as Cases 1 and 2, respectively.

4 Experimental Results

We implemented the LEA algorithm with 128-bit key length on the Side-channel
Attacks Standard Evaluation BOard (SASEBO-GII) [9] in a straightforward
manner. The LEA algorithm was processed by means of Xilinx FPGA (Virtex
5) on the board. In addition, the round keys were generated by an on-the-fly
method. Thus, each round of the LEA was processed in a cycle. We captured
power traces to include in the first two rounds of encryption. This was easily
performed by determining the range of the first two rounds from the traces by
observing two distinct power consumption patterns. Table 1 shows the details of
our experimental environment.

Fig. 2 shows the power consumption trace that includes the first round of the
LEA from our LEA implementation. We captured 50,000 traces using randomly
generated plaintext. In addition, the number of sample points for power traces
in each cycle is:

1 x 10% points/s
24 x 106 cycles/s ~—

(21)
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Table 1. Experimental environment

Target Module | Xilinx FPGA (Virtex 5)
Digital Oscilloscope |LeCroy WaveRunner 6Zi

Sampling Frequency 1GSa/s
Probe (power) | Coaxial cable (50-Ohm)
Amp. 10-1000MHz LNA

0.5 i

Voltage(V)

15 I I I I I I I I I I I
100 200 300 400 500 600 700 800 900 1000 1100 1200

Time instant

Fig. 2. Power consumption from the LEA implementation

Fig. 3 (a) shows CPA results based on 50,000 power traces for (Toi7—o)|T1[7—0))-
The X-axis indicates time and the Y-axis indicates the correlation coefficient for
each possible key guess. The black line represents correlation peaks for the correct
concatenated two partial subkeys, whereas gray lines show wrong key guesses.
Fig. 3 (a) shows that distinguishing the correct key is possible. Only one correct
key seems to exist. However, another key exists that have the same value as
the absolute value of the correlation coefficient shown in Fig. 3 (b). In addition,
another key exists that has the same value of correlation as we mentioned in the
previous section. We confirmed the theorem based on the result of CPA.

From Fig. 3 (b), the correct key pairs for Toj7_o) and Ty 7o) are (Topr—o)| Tijr—0)) =
(022B,02A3) and (Typ7—o)|Tij7—0)) = (02AB, 0223), respectively, which have the
same absolute value of correlation, 0.08847. In the same manner, we retrieved
two sets of key pairs for (Ty7—o, Tor—o)), and (Ta7—op, Tai7—07). We do not yet
know which is the correct key pair..

We first retrieved two possible correct key pairs at the [7 — 0] bit position.
We calculated the hamming distance value for the next bit position, [15 — §]. In
addition, we already know two possible values at [7 — 0]. Therefore, generating
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Fig. 3. CPA Result : (a) Corelation on time domain, (b) Absolute value of correlation
on key candidates
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Fig. 4. CPA Result using two possible key candidates

two types of hamming distance values for the bit position [15 — 0] is feasible.
The possible number of key pairs is 2'6. We used the hamming distance value
for the bit position [15 — 0] instead of [15 — 8] to determine the next key pairs.
This method usually increases the correlation value in CPA [10]. However, we
deployed a method to identify correct key pairs at [7—0] and two possible correct
key pairs at [15 — 8] simultaneously.

Flg 4 (a) and (b) show the CPA results of (TO[1578] |T1[1578]) using (TO[1578] |T1[1578]) =
(022B,02A3), and (Tops—g)|Tips—g) = (0vAB,0223), respectively. The peaks
in Fig. 4 (b) are higher than those in Fig. 4 (a). Therefore, we can determine the
correct key for (Tyr7_q)|Ti7—0]). The absolute value of the correlation is 0.102
and 0.077 in Fig. 4 (a) and (b), respectively. In addition, the overall value for all
key candidates are higher in Fig. 4 (b) than in (a). Other key pairs at different bit
positions (such as [15— 8] and [23 — 16]) can be retrived in the same manner. Fi-
nally, we retrieved a correct Tyo3_ o], T1[23—0], T2[23—0]; T3[23—0] and two possible
correct key pairs for Ty[31_24), T1[31—24], To[31—24], T3[31—24]- We then calculated
two possible 128-bit master keys from a reversed key scheduling process. The
correct master key from two keys was simply retrieved by brute force.
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Conclusion

LEA is 128-bit lightweight block cipher introduced in WISA 2013. However,
the authors investigated security evaluation of LEA on a theoretical basis only.
LEA can be implemented in various platforms having throughput and a small
size. We first investigated its security strength against power analysis attacks
on a hardware implementation. Our results showed that LEA implementation
reamins vulnerable to power analysis attacks. According to our research, this
is the first experimental result of an LEA hardware implementation. Based on
our results, implementing LEA with countermeasures is essential. For a future
study, we plan to investigate other types of platforms and compare performance
between countermeasure and non-countermeasure implementations.
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