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Abstract. The Learning Parity with Noise problerh®N) is appealing in cryptography as it is considered to
remain hard in the post-quantum world. It is also a good @atdifor lightweight devices due to its simplicity.
In this paper we provide a comprehensive analysis of theiegisPN solving algorithms, both for the general
case and for the sparse secret scenario. In practicé,tNebased cryptographic constructions use as a refer-
ence the security parameters proposed by Levieil and Folgutefor these parameters, there remains a gap
between the theoretical analysis and the practical corntjgsxf the algorithms we consider. The new theoreti-
cal analysis in this paper provides tighter bounds on theptexity of LPN solving algorithms and narrows this
gap between theory and practice. We show that for a sparset skeere is another algorithm that outperforms
BKW and its variants. Following from our results, we furthergmse practical parameters for different security
levels.

1 Introduction

The Learning Parity with Noise problerh®N) is a well-known problem studied in cryptography, coding
theory and machine learning. In th®N problem, one has access to queries of the form), wherev

is a random vector and the inner product betweand a secret vectaris added to some noise to obtain
c. Given these queries, one has to recover the valge ®d, the problem asks to recover a secret vector
sgiven access to noisy inner products of itself with randoictmes.

It is believed thatl PN is resistant to quantum computers so it is a good altern&tivbe number-
theoretic problems (e.g. factorization and discrete lidigaw) which can be solved easily with quantum
algorithms. Also, due to its simplicity, it is a nice candigléor lightweight devices. As applications where
LPN or LPN variants are deployed, we first have the HB family of autlwatibn protocols: HB[[28],
HB* [29], HB™ ™ [11], HB¥ [22] andAUTH [32]. An LPN-based authentication scheme secure against
Man-in-the-Middle was presented in Crypto 2013|[37]. Themealso several encryption schemes based
on LPN: Alekhnovich [3] presents two public-key schemes that ypicone bit at a time. Later, Gilbert,
Robshaw and Seurin_[22] introduce LPN-C, a public-key epitoyn scheme proved to dé&lD-CPA.
Two schemes that improve upon Alekhnovich’s scheme aredotred in[[17] and [16]. In PKC 2014,
Kiltz et al. [31] propose an alternative scheme[ta [17]. Dad &audenay[[19] introduce HELEN, an
LPN-based public-key scheme for which they propose concreageters for different security levels.

A PRNG based ohPN is presented iri |8] and [4].

The LPN problem can also be seen as a particular case diwte [40] problem where we work in
Z. While in the case of WE the reduction from hard lattice problems attests the hasi [, 10),39],
there are no such results in the casé€BN. The problem is believed to be hard and is closely related to
the long-standing open problem of efficiently decoding mandinear codes.

In the current literature, there are few references wheonites to the analysis @PN. The most well-
known algorithm iSBKW [9]. When introducing the HB protocol [29], which relies on the hardness of
LPN, the authors propose parameters for different levels afrig@ccording to th&8KW performance.
These parameters are shown later to be weaker than thaugtl[3 Fossorier et al[ [21] provide a
new variant that brings an improvement over Bi€¢W algorithm. Levieil and Fouqué [35] also give a
formal description of thé8KW algorithm and introduce two improvements over it. For ttagorithm
based on the fast Walsh-Hadamard transform, they provigldetrel of security achieved by different
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instances of PN. This analysis is referenced by most of the papers that meg&efitheLPN problem.
While they offer a theoretical analysis and propose secarampeters for different levels of security, the
authors do not discuss how their theoretical bounds contpgreactical results. As we will see, there is
a gap between theory and practice. In the domain of machemeitey, [2%,42] also cryptanalyse thEN
problem. The best algorithm for solvind®N was presented at Asiacrypt 20141[25]. This new variant of
BKW uses covering codes as a novelty.

While these algorithms solve the general case when we haaedam secret, in the literature there
is no analysis and implementation done for an algorithmigfigcconceived for the sparse secret case,
i.e. the secret has a small Hamming weight.

The BKW algorithm can also be adapted to solve th¢E problem in exponential time. Implemen-
tation results and improvements of it were presentedlifI€]2 In terms of variants of PN, we have
Ring-LPN [26] and SubspackPN [32]. As an application for Ring-PN we have the Lapin authentica-
tion protocol [26] and its cryptanalysis inl[6,24].

Motivation & Contribution. Our paper comes to address exactly the aforementioned opklems, i.e.
the gap between theory and practice and the analysisldPBrsolving algorithm that proves to be better
thanBKW and its variants in the case of a sparse secret. First, wergrée current existingPN solving
algorithms in a unified framework. For these algorithms, wejale experimental results and give a better
theoretical analysis that brings an improvement over the&kwbL evieil and Fouque [35]. Furthermore,
we implement and analyse three new algorithms for the casrene secret is sparse. Our results
show that for a sparse secret tBEW family of algorithms is outperformed by an algorithm thaesis
Gaussian elimination. Our motivation is to provide a th&oat analysis that matches the experimental
results. Although this does not prove tha&N is hard, it gives tighter bounds for the parameters used
by the aforementioned cryptographic schemes. It can alsséé to have a tighter complexity analysis
of algorithms related ta PN solving. Our results were actually used in][25] and alsoli&E solving

in [18].

Organization. In Sectior 2 we introduce the definition bPN and present the maitPN solving algo-
rithms. We also present the main ideas of how the analysiscaaducted in[[35]. We introduce novel
theoretical analyses and show what improvements we briggatior 8. Besides analysing the current
existing algorithms, we propose three new algorithms aradyaa their performance in Sectibh 4. In
Sectior[ b, we provide the experimental results for the d@lyms described in Sectidd 3[& 4. We com-
pare the theory with the practical results and show theriggd of our query complexity. We provide
a comparison between all these algorithms in Seétlon 6 amplope practical parameters for a 80 bit
security level.

Notations and PreliminariesLet (-,-) denote the inner produc¥; = {0,1} and® denote the bitwise

XOR. For a domainD, we denote by & D the fact thatx is drawn uniformly at random fron®D.
We use small letters for vectors and capital letters for itedr We represent a vecterof sizek as
V= (v1,...,V%), wherey; is thei!" bit of v. We denote the Hamming weight of a vectdsy HW (V).

2 LPN

In this section we introduce tHePN problem and the algorithms that solve it. For ease of unaledstg,
we present th&PN solving algorithms in a unified framework.

2.1 TheLPN Problem

Intuitively, the LPN problem asks to recover a secret ve@@iven access to noisy inner products of
itself and random vectors. More formally, we present belogvdefinition of the.PN problem.

2



Definition 1 (LPN oracle). Let s& 75, letT €]0, 3] be a constant noise parameter and let Bee the
Bernoulli distribution with parametet. Denote by [3; the distribution defined as

{(v,0) [ve ZK,c= (v;s) @ d,d + Ber} € ZK'L.
AnLPN oracle O's;fN is an oracle which outputs independent random samples dtapto Ds;.

Definition 2 (SearchLPN problem). Given access to anPN oracle O's;f'\', find the vector s. We denote
by LPNk theLPN instance where the secret has size k and the noise paramsatdret K < k. We say
that an algorithm#/ (n,t,m,6,k’)-solvesthe search.PNy; problem if

PO (14) = (s1...5¢) | s ZK] > 6,
and M runs in time t, uses memory m and asks at most n queries frohPtii@racle.

Note that we consider here the problem of recovering theKisits of the secret. We will show in
Sectior[B that for all the algorithms we consider, the coseobvering the full secretis dominated by
the cost of recovering the first block kfbits of s.

An equivalent way to formulate the searcRNy problem is as follows: given access to a random
matrix A € ZQX" and a column vectar overZs,, such thalAs' @ d = ¢, find the vectos. Here the matrix
A corresponds to the matrix that has the vectwomn its rows,s is the secret vector of siZeandc
corresponds to the column vector that contains the noisgriproducts. The column vectdris of size
nand contains the corresponding noise bits.

One may observe that with= 0, the problem is solved in polynomial time through Gaussiami-
nation givemn = ©(k) queries. The problem becomes hard once noise is added taregroduct. The
value oft can be either independent or dependent of the Vallsually the value of is constant and
independent from the value &f A case where is taken as a function & occurs in the construction of
the encryption schemes|[3]16]. Intuitively, a larger vadfie means more noise and makes the problem
of searchLPN harder. The value of the noise parameter is a trade-off Betwree hardness of tHéPNy ;
and the practical impact on the applications that rely os phndoblem.

TheLPN problem has also a decisional form. TdecisionalLPNy ; asks to distinguish between the
uniform distribution oveZ&'* and the distributiorDs+. A similar definition for an algorithm that solves
decisionalLPN can be adopted as above. L%, ; denote an oracle that outputs random vectors of size
k+ 1. We say that an algorithi/ (n,t, m, 8)-solvesthe decisional PN ; problem if

| PO (1%) = 1) — P e (14 = 1] > ©

and runs in timet, uses memoryn and needs at mostqueries.
Search and decisionBPN are polynomially equivalent. The following lemma exprestds result.

Lemma 1 ([3018]).If there is an algorithm that (n,t,m, 6)-solves the decision&lPNy ¢, then one can
build an algorithma/” that (r,t’, ', &', k)-solves the searchPNy ; problem, where = O(n-6-2logk),
t' = O(t-k-8~2logk), m = O(m-6~2logk)) and &' = .

We do not go into details as this is outside the scope of thiepalVe only analyse the solving
algorithms for searchPN. From now on we will refer to it simply alsPN.

2.2 LPN Solving Algorithms

In the current literature there are several algorithms teestihe LPN problem. The first that appeared,
and the most well known, iBKW [9]. This algorithm recovers the secrebf an LPNy instance in
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sub-exponential %‘ﬁ) time complexity by requiring a sub-exponential numb@?@) of queries from
the OQTPN oracle. Levieil and Fouqué [35] propose two new improvemmentiich are called.F1 and
LF2. Fossorier et. al [21] also introduce a new algorithm, whigh denoteFMICM, that brings an
improvement oveBKW. The best algorithm to solMePN was recently presented at Asiacrypt 2014 [25].
It can be seen as a variantldf1 where covering codes are introduced as a hew method to imphev
overall algorithm. All these algorithms still require a setkponential number of queries and have a
sub-exponential time complexity.

Using BKW as a black-box, LyubashevsKy [36] introduces a "pre-prsiogs phase and solves an

LPN instance withk!*" queries and with a time complexity of gesios) The queries given t8KW

have a worse bias af = % — % (%) nlegk Thus, this variant requires a polynomial number of queries

but has a worse time complexity. Given omy= ©(k) queries, the best algorithms run in exponential
time 2K [38/41].

An easy to solve instance &PN was introduced by Arora and Ge [5]. They show that inkhweise
version where thé&-tuples of the noise bits can be expressed as the solutiopalyaomial (e.g. there
are no 5 consecutive errors in the sequence of queries) robem can be solved in polynomial time.
What makes the problem easy is the fact that an adversaryeisastructure the noise.

In this paper we are interested in tB&KW algorithm and its improvements presented by Leviell
and Fouque [35] and by Guo et al. [25]. The common structuial dhese algorithms is the following:
given n queries from theOsEf'\' oracle, the algorithm tries to reduce the problem of findingearet
s of k bits to one where the secrgthas onlyk’ bits, with k' < k. This is done by applying several
reductiontechniques. We call this phase tregluction phaseAfterwards, during theolving phaseave
can apply asolvingalgorithm that recovers the secgatWe then update the queries with the recovered
bits and restart to fully recovex For the ease of understanding, we describe all the afort@mned LPN
solving algorithms in this setting where we separate therélgns in two phases. We emphasize the
main differences between the algorithms and discuss whipihavements they bring.

First, we assume th&t= a-b. Thus, we can visualise thebit length vectory asa blocks ofb bits.
We defined = 1— 21.

BKW* Algorithm The BKW* algorithm as described i [35] works in two phases:

Reduction phaseGiven n queries from theLPN oracle, we group them in equivalence classes. Two
queries are in the same equivalence class if they have the galwe on a set; of b bit positions.
Theseb positions are chosen arbitrarily. There are at m8stith equivalence classes. Once this sepa-
ration is done, we perform the following steps for each egjaince class: pick one query at random, the
representative vector, and xor it to the rest of the queria® the same equivalence class. Discard the
representative vector. This will give vectors with all bétst to 0 on thosé positions. These steps are
also illustrated in Algorithni]1 (stefi$ $-110). We are leftiwétt leasin — 2° queries where the secret is
reduced tk — b effective bits (others being multiplied by 0 in all queries)

We can repeat the reduction technigue 1 times on other disjoint position seis,...,q,_1 and end
up with at leash — (a— 1)2° queries where the secret is reducedt to(a— 1)b = b bits. The bias of the
new queries i$2" ", as shown by the following Lemma with = 221,

Lemma 2 ([38.9]).If (vi,c1),...,(Vw,Cw) are the results of w queries fromgFN, then the probability
that:

(V1 BV®...0V,S) =C1D...DCy

is equal tolt%",

It is easy so see that the complexity of performing this rédacstep isO(kan).



Algorithm 1 BKW* Algorithm by [35]

Input: a setv of n queries(vi,c;) € {0,111 from theLPN oracle, values, b such thak = ab
Output: valuessy, ..., S

3: Partition the position$1,...,k} \ {1,...,b} into disjointg; U...Uqga_1 with g; of sizeb
4: fori=1toa—1do > Reduction phase
5 PartitionV =V U...UVy s.t. vectors irVj have the the same bit values gn
6:  foreachV;
7 Choose a randorfv*,c*) € Vj as a representative vector
8 Replace eactv,c) by (v,c) ® (v*,c*), (v,c) € V; for (v,c) # (v*,c*)
9 Discard(v*,c*) fromV;
100 V=ViU...UVp
11: Discard fronV all queries(v,c) such thaHW(v) # 1
12: PartitionV =V U... UV, s.t. vectors ifVj have a bit 1 on positiof
13: foreach positioni > Solving phase
14: 5 = majority(c), for all (v,c) € V,
15: return sg,...,S

After a— 1 iterations, we are left with at least- (a— 1)2° queries, and a secret of sizeléffective
bits at positions 1..,b. The goal is to keep only those queries that have Hamminghweige (step 11
of Algorithm ). Givenn — (a— 1)2° queries, onlyn’ = %;l)zb will have a single non-zero bit on a
given position and O for the rest bf- 1 positions. These queries represent the input to the gpphiase.
The bias does not change since we do not alter the originalegud he complexity for performing this
step forn— (a— 1)2° queries isO(b(n — (a— 1)2°)) as the algorithm just checks if the queries have
Hamming weight 1.

Remark 1.Given that we have performed the xor between pairs of quesiemote that the noise bits
are no longer independent. In the analysi8&iW", this was overlooked by Levieil and Fouq@[&].
The originalBKW [9] algorithm overcomes this problem in the following manreach query that has
Hamming weight 1 is obtained with a fresh set of queries. G&2° queries the algorithm runs the
xoring process and is left wittP&ectors. From these’2jueries, with a probability of & % there is one
with Hamming weight 1 on a given positianin order to obtain more such queries the algorithm repeats
this process with fresh queries. This means that for gugskinit of the secret, the original algorithm

requirem=a-2°- ﬁ -1’ queries, where' denotes the number of queries needed for the solving phase.

This is larger tham = 2°n’ + (a— 1)2° which is the number of queries given by Levieil and Foudug.[35
We implemented and ruBKW* as described in Algorithral 1 and we discovered that this degecy
does not affect the performance of the algorithm. I.e., tivalver of queries computed by the theory that
ignores the dependency of the error bits matches the pahctisults. We need = n' + (a— 1)2° (and
notn= 2°n’ 4 (a— 1)2°) queries in order to recover one block of the secret. Therétieal and practical
results are presented in Sectidn 5. Given our practicalrerpats, we keep the “heuristic” assumption
of independence and the algorithm as described in [35] wiiglcalledBKW*. Thus, we assume from
now on the independence of the noise bits and the indepeadsdmice queries.

Another discussion on the independence of the noise bitegepted in[20]. There we can see what
is the probability to have a collision, i.e. two queries thlare an error bit, among the queries formed
during the xoring steps.

We can repeat the algorithentimes, with the same queries, to recover all kiats. The total time
complexity for the reduction phase @ ka’n) as we perform the steps described abatienes (instead
of O(kan) as given in[[35]). However, by making the selectionacdindb adaptive withab near to the

1 Definition 2 of [35] assumes independence of samples but Latwof [35] shows the reduction without proving indepen-
dence.



remaining number of bits to recover, we can show that the eataplexity is dominated by the one of
recovering the first block. So, we can typically concent@iethe algorithm to recover a single block.
We provide a more complete analysis in Secfibn 3.

Solving phase.The BKW solving method recovers the 1-bit secret by applying theonitgjrule. The
queries from the reduction phase are of the fatre s © dj, dj < Ber(l_azafl)/2 ands being the" bit

of the secres. Given that the probability for the noise bit to be set to 1nmber than%, in more than
half of the cases, these queries will §eThus, we decide that the value gfis given by the majority
rule (step$_112-14 of Algorithil 1). By applying the Chernafiuinds [14], we find how many queries are
needed such that the probability of guessing incorrecttylwnof the secret is bounded by some constant
6, with0< 6 < 1.

The time complexity of performing the majority rule is liméa the number of queries.

Complexity analysisWith their analysis, Levieil and Fougue [35] obtain the daling result:

Theorem 1 (Th. 1 from [38]). For k = a- b, the BKW* algorithm heuristically (n= 20-In(4k) - 2°-
52+ (a—1)2°t = O(kan),m = kn,6 = 1 b)-solves tha PN problent]

In Section[B we will see that our theoretical analysis, whigh believe to be more intuitive and
simpler, gives tighter bounds for the number of queries.

LF1 Algorithm During the solving phase, tHeKW algorithm recovers the value of the secret bit by
bit. Given that we are interested only in queries with Hamgnireight 1, many queries are discarded at
the end of the reduction phase. As first noted_ id [35], thislmaimproved by using a Walsh-Hadamard
transform instead of the majority rule. This improvemenB&W is denoted in[[35] by F1. Again, we
present the algorithm in pseudo-code in Algorifiim 2. ABKW*, we can concentrate on the complexity
to recover the first block.

Reduction phaseThe reduction phase fdrF1 follows the same steps as BKW* in obtaining new
queries as® ! xors of initial queries in order to reduce the secret to bizt this step, the algorithm does
not discard queries anymore but proceeds directly withdhergy phase (see step 3110 of Algorithin 2).
We now haveY = n— (a— 1)2° queries after this phase.

Solving phase.The solving phase consists in applying a Walsh-Hadamangftvem in order to recover

b bits of the secret at once (stdps[11-13 in Algorifim 2). Weregover theb-bit secret by computing

the Walsh-Hadamard transform of the functibfx) = ¥; 1\,izx(—l)di . The Walsh-Hadamard transform

is f(v) = S (—1)V X f(x) = T (-1)VX 5, Ly x(—1)% = 3 (-DMV+G = ' — 2HW(AVT +¢). For

v =s, we havef(s) =’ — 2-HW(d'), whered’ represents the noise vector after the reduction phase. We
know that most of the noise bits are set to 0. é(cs) is large and we suppose it is the largest value in the
table of f. Thus, we have to look at the maximum value of the Walsh-Haddrtransform in order to
recover the value . A naive implementation of a Walsh-Hadamard transform wa@iNe a complexity

of 22 since we apply it on a space of siZ& Since we apply a fast Walsh-Hadamard transform, we get
a time complexity ob2° [15].

2 The term(a— 1)2b is not included in Theorem 1 from_[35]. This factor represethie number of queries lost during the
reduction phase and it is the dominant one for all the allgorit excepBKW*.



Algorithm 2 LF1 Algorithm

1: Input: a setV of nqueries(vi, ) € {0,1}¥t1 from theLPN oracle, values, b such thak = ab
2: Output: valuessy, ..., s

3: Partition the position$1,...,k}\ {1,...,b} into disjointg; U...Ugs_1 with g; of sizeb
4: fori=1toa—1do > Reduction phase
5: PartitionV =V, U...UVy s.t. vectors iV have the the same bit values qn
6: foreachV;
7 Choose a randorfv*,c*) € Vj as a representative vector
8 Replace eaclv,c) by (v,c) @ (v*,c*), (v,c) € V;j for (v,c) # (v*,c¥)
9: Discard(v*,c*) fromV;
10 V=ViU...UVqp

11: 1(X) = Y veyev Iy p=x(—1)° > Solving phase
12: f(v) = T (-1 VX f(x) > Walsh transform of (x)
13: (sy,...,5) = arg max(f(v))

14: return sq,...,S

Complexity analysisThe following theorem states the complexityldf1:

Theorem 2 (Th. 2 from [35]). For k =a-b and a> 1, the LF1 algorithm heuristically (n= (8b+
20052 + (a— 1)2°,t = O(kan+b2?),m = kn+b2° 6 = 1 b)-solves thé PN problent]

The analysis is similar to the one done BKW*, except that we now work with blocks of the secret
sand not bits. Thus, we bound b the probability thatf(s) > f(s), wheres is any of the 2 -1
values different frons. As for BKW™, we will provide a more intuitive and tighter analysis 1df1 in
Sectior 3.P.

BKW* vs.LF1. We can see that comparedB&W*, LF1 brings a significant improvement in the number
of queries needed. As expected, the factbdi®appeared as we did not discard any query at the end of
the reduction phase. There is an increase in the time and rgeromplexity because of the fast Walsh-
Hadamard transform, but these terms are not the dominast one

LF2 Algorithm LF2 is a heuristic algorithm, also introduced in [35], that agplthe same Walsh-
Hadamard transform dsF1, but has a different reduction phase. We provide the pseuatgotor LF2
below.

3 The termb2 in the time complexity is missing in_[35]. While in genetgn is the dominant term, in the special case
wherea = 1 (thus we apply no reduction step) a complexity@kan) would be wrong since, in this case, we apply the
Walsh-Hadamard transform on the whole secret and thekfrdominates the final complexity.



Algorithm 3 LF2 Algorithm

1: Input: a setV of nqueries(vi, ) € {0,1}¥t1 from theLPN oracle, values, b such thak = ab
: Output: valuessy, ..., s

N

. Partition the position$1,...,k}\ {1,...,b} into disjointgy U...Uq,—1 With g; of sizeb
: fori=1toa—1do > Reduction phase
PartitionV =V, U...UVy s.t. vectors iV have the the same bit values qn
foreachV;

Vi/ =0

foreach pair (v,c), (V,c) €Vj, (v,c) # (V,C)

Vi =V/U(veVv,.cad)

100 V=V{U...UV},

11 £(X) = Fvejev Ivy p=x(—1)° > Solving phase
12: f(v) = $u(-D)MX (%) > compute the Walsh transform 6fx)
13: (s1,...,S) = arg max(f(v))

14: return sq,...,%

©ONoOOAW®

Reduction phaseSimilarly to BKW* andLF1, then queries are grouped into equivalence classes. Two
queries are in the same equivalence class if they have the galme on a window ob bits. In each
equivalence class we perform the xor of all the pairs fronh ¢kess. Thus, we do not choose any repre-
sentative vector that is discarded afterwards. Given thaniequivalence class there an® queries,

we expect to haveb:(”/zzb) queries at the end of the xor-ing. One interesting case iswlwgof the form

n= 3-2° as with this reduction phase we expect to preserve the nuoflmpreries since@) = 3. For
anyn > 3-2° the number of queries will grow exponentially and will alsifect the time and memory
complexity.

Solving phaseThis works like inLF1.

In a scenario where the attacker has access to a restriateolenwf queries, this heuristic algorithm
helps in increasing the number of queries. Witf2, the attacker might produce enough queries to
recover the secret valige

FMICM Algorithm Another algorithm by Fossorier et dl. [21] uses ideas frost ¢arrelation attacks
to solve theLPN problem. While there is an improvement compared with B&N* algorithm, this
algorithm does not perform better thiR1 andLF2. Given that it does not bring better results, we just
present the main steps of the algorithm.

As the previous algorithms, it can be split into two phaseduction and solving phase. The reduction
phase first decimates the number of queries and keeps osly theries that have 0 bits on a window of
a given size. Then, it performs xors of several queries iemotm further reduce the size of the secret. The
algorithm that is used for this step is similar to the one tmastructs parity checks of a given weight in
correlation attacks. The solving phase makes use of thé\falsth-Hadamard transform to recover part
of the secret. By iteration the whole secret is recovered.

Covering Codes Algorithm The new algorithm[[25] that was presented at Asiacrypt 20itdduces

a new type of reduction. There is a difference betwéen [28]what was presented at the Asiacrypt
conference (mostly due to our results). We concentrate dref€5] and in the next section we present
the suggestions we provided to the authors.

Reduction phaseThe first step of this algorithm is to transform thEN instance where the secret
is randomly chosen to an instance where the secret has nownawledistribution. This method was
described in [[38)4]6].



Given n queries from theLPN oracle: (v1,¢1), (V2,C2),...,(Vn,Cn), Selectk linearly independent
vectorsvi,, ..., Vi . Construct thé x k target matriXM that has on its columns the aforementioned vectors,
i.e.M = [V .. V] Compute(M")"* the inverse oMT, whereMT is the transpose dfl. We can
rewrite thek queries corresponding to the selected vectors1as’ + d’, whered’ is thek-bit column
vectord = (di,,di,,...,di)". We denoteg’ = MTs" +d'. For anyvj that is not used in matri¥ do the
following computation:

Vi(MT) e ¢ = (vi(MT) L d') +d.

We discard the matriM. From the initial set of queries, we have obtained a new sefrevthe
secret value isl’. This can be seen as a reduction to a sparse secret. The gdynpfethis transform
is O(k® 4+ nk?) by the schoolbook matrix inversion algorithm. This can b@riaved as follows: for a

M1

M>

fixed X, one can split the matrigM™) 1 in @ = (%} parts of x rows. By pre-computingM; for

My
all ve {0,1}X, the operation of performing;(MT)~! takesO(k&). The pre-computation take3(2X)
and is negligible if the memory required by tB&W reduction is bigger. With this pre-computation the
complexity isO(nkd).

Afterwards the algorithm follows the usuBKW reduction steps where the size of the secret is
reduced td’ by the xoring operation. Again the vectorlobits is seen as being split into blocks of size
b. TheBKW reduction is applie@ times. Thus, we havi€ = k— ah.

The secres of K bits is split into 2 parts: one part denotgdof k” bits and the other part, denoted
s, of K — k” bits. The next step in the reduction is to guess valus, dfy making an assumption on
its Hamming weightHW(s;) < wp. The remaining queries are of the fofm, ¢ = (vi,s) ©d;), where
vi,s € {0,1}¥ andd; € Ber,_g= . Thus, the problem is reduced to a secrelt/obits.

2

At this moment, the algorithm approximates theectors to the nearest codewaydn a [K”, ¢] linear
code wher&” is the size and is the dimension. By observing thgtcan be written ag; = g/G, where
G is the generating matrix of the code, we can write the egnatio the form

¢ =(Vi,%)®d = (gG,%)® (Vi —7,%) &d = (d,%) & d

with s, = G' andd’ = (v — gi,S) @ di, whered, s, have lengti¥. If the code has optimal covering
radiusp, v; — g; is a random vector of weight bounded pywhile s, is a vector of some small weight
bounded byw;, with some probability. Sov; — gi, ) is biased and we can tregdjtin place ofd;.

In [25], the authors approximate the bias(af— g, s,) to &' = (1— 2%)‘”1, as if all bits were inde-
pendent. As discussed in the next section, this approxamasdifar from good.

No queries are lost during this covering code operation awd the secret is reduced taoits. We
now haven’ = n—k— a2° queries after this phase.

Solving phase.The solving phase of this algorithm follows the same stefdsFasi.e. it employs a fast
Walsh-Hadamard transform. One should notice that the raplphase recoversrelations between the
bits of the secret and not actuabits of the secret.

Complexity analysis.Recall that in the algorithm two assumptions are made réyguttie Hamming
weight of the secret: tha has a Hamming weight smaller than and thats; has a Hamming weight
smaller tharwp. This holds with probability R, k' —K”) - Pr(wy,k”) where

Pr(w,m) — ﬁo(l— Tmig (T) .

The total complexity is given by the complexity of one itématto which we add the number of times
we have to repeat the iteration. We state below the resurt J&%):
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Theorem 3 (Th 1. from [25]).

Let n be the number of samples required ana &, wo, w1, £, k', K" be the algorithm parameters. For
the LPNy ; instance, the number of bit operations required for a susitesun of the new attack is equal
to

tsparse reduction 1 tbkw reduction 1 1:guess + tcovering code T tWalsh transform

= Pr(wo, K — k") Priwy, k") ’

where

— tsparse reduction = NKd is the cost of reducing thePN instance to a sparse secret

— tokw reduction = (K= 1)an is the cost of th8KW reduction steps

— tguess = N 31 (7¥)iis the cost of guessing k k” bits and A= n— k — a2° represents the number
of queries at the end of the reduction phase

— teovering code = (K —£)(2n +-2") is the cost of the covering code reduction andsragain the number
of queries

— twaish ransform = £2° 31 (“‘i"") is the cost of applying the fast Walsh-Hadamard transformef@ry
guess of k— k” bits

under the condition that f a2° > Wllaﬂ whered =1—2tandd = (1— 2%)‘”l andp is the smallest
integer, s.t3? o (<) > 2"~

The conditionn — a2° > ﬁ proposed in[[25] imposes a lower bound on the number of gaierie
needed in the solving phase for the fast Walsh-Hadamardftnan. In our analysis, we will see that this
is underestimated: the Chernoff bounds dictate a largebeuiwf queries.

3 Tighter Theoretical Analysis

In this section we present a different theoretical analfreim the one of Levieil and Fouque [35] for
the solving phases of thHePN solving algorithms. A complete comparison is given in Setid. Our
analysis gives tighter bounds and aims at closing the gapeeet theory and practice. For the new
algorithm from [25], we present the main points that we fotmbte incomplete.

We first show how the cost of solving one block of the secretidates the total cost of recovering
s. The main intuition is that after recovering a first blockkbfsecret bits, we can apply a simple back
substitution mechanism and consider solving&l,_  problem. The same strategy is applied(by[1,18]
when solving WE. Note that this is simply a generalisation of the classicgs&un elimination procedure
for solving linear systems, where we work over blocks of.bits

Specifically, letk; = kandk; = ki_1 — ki, fori > 1 andk/ ; < ki_1. Now, suppose we were able to
(ni,ti,m;, 6;, ki)-solve anLPNy ; instance (meaning we recover a block of diz&om the secret of sizlk
with probability 6;, in timet; and with memorym;). One can see that fér, 1 < ki we need less queries to
solve the new instance (the number of queries is dependeheaizek;, 1 and on the noise level). With
a smaller secret, the time complexity will decrease. Hagiisorter secret and less queries, the memory
needed is also smaller. Then, we dat,m,8,k)-solve the problem.PNy; (i.e recovers completely),
with n=maxni,ny,...), 0 =01 +62+..., t =t + kim +t2 + K>n,... (the termskn; are due to query
updates by back substitution) amd= max(my,my, ....). Finally, by taking; = 3~', we obtainé <  and
thus recover the full secrstwith probability over 50%.

Itis easily verified that for all the algorithms we considee haven = n;, m=, andt is dominated
by t;. We provide an example on a concréfeN instance in AppendixB.

For all the solving algorithms presented in this section ssume that' queries remain after the

reduction phase and that the bia®/isFor the solving techniques that recover the secret blgekkbck,
we assume the block size to kie

10



3.1 BKW™ Algorithm

Given anLPN instance, th8KW* solving method recovers the 1 bit secret by applying the rigjaile.
Recall that the queries are of the fodh= s ©dj, dj - Ber;_g),2. The majority of these queries will
most likely bec’j =g§. Itis intuitive to see that the majority rule fails when mdnean half of the noise bits
are 1 for a given bit. Any wrong guess of a bit gives a wrong ealfithek-bit secrets. In order to bound
the probability of such a scenario, we use the Hoeffding deU@7] with X; = d; (See AppendiX’A).
We have Pix; = 1] = 158, ForX = 57, X;, we haveE(X) = -2 and we apply Theorefi 112 with
A= a; =0andB; = 1 and we obtain

n 52
Pr{incorrect guess on 5] = Pr {X > E] <e 7.

As discussed in Remalk 1, the assumption of independeneiisstic.
Using the above results for every bit. 1., b, we can bound by a consta@itthe probability that we
guess incorrectly a block af with 0 < 8 < 1. Using the union bound, we get thiat= 26"2In(g). Given

thatn/ = %}Mj and thaty = &', we obtain the following result.

Theorem 4. Fork < a-b, theBKW* algorithm heuristically (n= 2152 In(§) + (a—1)2°,t = O(kan),
m= kn, 8, b)-solves thé.PN problem.

We note that we obtained the above result using the uniondddne could make use of the inde-
pendence of the noise bits and obtaia 201152 In (ﬁ) + (a—1)2°, but this would bring a very
small improvement.

In terms of query complexity, we compare our theoreticaliltesvith the ones froni[35] in Tablg 1
and Tablé R. We provide the lg@) values fork varying from 32 to 100 and we take different Bernoulli
noise parameters that vary from0Q to Q4. Overall, our theoretical results bring an improvemena of
factor 10 over the results df [35].

Table 1.BKW™* query complexity - our theory Table 2:BKW* query complexity - theory [35]
. k . k
32 48 64 80 100 32 48 64 80 100
0.01 1097 1282 1593 1866 2174 0.01 1456 1660 1968 2259 2564
0.10 1584 2001 2412 2820 3328 0.10 1975 2387 2795 3200 3706
0.20 1971 2485 3097 3483 3990 0.20 2350 2861 3469 3864 4370
0.25 2181 2695 3307 3814 4411 0.25 2560 3072 3679 4185 4790
0.40 2824 3638 4364 4871 5578 0.40 3189 4000 4737 5243 5948

In Section[5.]l we show that Theorémh 4 gives results that anealese to the ones we measure
experimentally.

We note that ouBKW* algorithm, for which we have stated the above theorem, iallthe steps
from Algorithm[d fork = a-b. Fork < a- b the algorithm is a bit different. In this case we have 1
blocks of sizeb and an incomplete block of size smaller tHanDuring the reduction phase, we first
partition the incomplete block and then appéy— 2) reduction steps for the complete blocks. We finally
haveb bits to recover. Other than this small change, the algoritamains the same.

11



If the term 2+15~ 2aIn( ) dominatesn, the next iteration can use decreased by 1 leading to a

newn ~ 2°+15-2 lIn(e ) WhICh is roughly the square root of the previausSo, the complexity of
recovering this block is clearly dominated by the cost ofokering the previous block. If the term
(a—1)2° is dominating, we can decrealséy one in the next block and reach the same conclusion.

3.2 LF1 Algorithm

For the LF1 algorithm, the secret is recovered by choosing the highastevof a Walsh-Hadamard
transform. Recall that the Walsh transformfis) = ' — 2HW(A'VT 4-¢'). Forv = s, we obtain that the
Walsh transform has the valfés) = n’ — 2HW(d'). We haveE (f(s)) = n'd.

The failure probability fol.F1 is bounded by the probability that there is another veetgrs such
thatHW(A'VT +¢') < HW(A'ST + ). Recall that's™ + ¢’ = d’. We definex = s+Vv so thatA'vT +¢ =
A'XT 4+ d'. We obtain that the failure probability is bounded Bytimes the probability thatl W (A'X" +
d’) < HW(d'), for a fixedk'-bit non-zero vectox. As A’ is uniformly distributed, independent from
d’, andx is fixed and non-zero’x" + d’ is uniformly distributed, so we can rewrite the inequality a
HW(y) < HW(d"), for a randory.

To bound the failure probability, we again use the Hoeffdimeguality [27]. LetXy, Xp,..., Xy be
random independent variables with=y; — dj, Pr(X; € [-1,1]) = 1. We haveE(y; — dj) = %. We can

take = E[X] = & in TheoreniIR and obtaln

/

3

/ 5/2

1

Princorrect guess on one block] < 2¢ Pr[
J

(yj — d)<o] <2Xe

Again we can bound the probability of incorrectly guessing block ofsby 6. With n' = (In )6’ 2,
the probability of failure is smaller thah The total number of queries will be=n' + (a—1)2° and we
haved = & 1, k' = b. Similar toBKW, we obtain the following theorem:

Theorem 5. For k < a-b, theLF1 algorithm heuristically (n= 8In(%b)6*2a +(a—1)2°t = O(kan+
b2P), m = kn+ b2°, 8, b)-solves thé. PN problem.

By comparing the termgb-200)5 2" in Theoreni2 with our value of 8% )8 2", one might check
that our term is roughly a factor 2 smaller than that of [3%]dcactical values o& andb. For example,
for a LPN7gg0,01 instance (witha = 11, b = 70), our analysis require$2queries for the solving phase
while the Levieil and Fouque analysis requiré8 Gueries.

3.3 LF2 algorithm

Having the new bounds fdrF1, we can state a similar result foF2. Recall that whem = 3-2°, LF2
preserves the number of queries during the reduction pRas&. 2° > n’ we have that:

Theorem 6. For k< a-b and n=3-2° > 8In(% 1152, the LF2 algorithm heuristically (n=3-2°,t =
O(kan+ b2°), m= kn+ b2°, 8, b)-solves thekPN problem

One can observe that we may allovto be smaller than @°. Given that the solving phase may require

less than 32°, we could start with less queries, decrease the number ofeguguring the reduction and
end up with the exact number of queries needed for the sopliage.
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3.4 Covering Codes Algorithm

Recall that the algorithm first reduces the size of the saort bits by runningBKW reduction steps.
Then it approximates the vector to the nearest codewaydin a [k”, /] linear code withG as generator
matrix. The noisy inner products can be rewritten as

=062 V-0,2ad=(g,926")ad = (g, ad,

wheregi = g/G, s, = $G' andd/ = (g — Vi, ) & d.

Given that the code has a covering radiup @ind that the Hamming weight ef is smaller tharwy,
the bias of(g; — vi,s,) is computed a8 = (1— 2|2,)W1 in [25], wherek” is the size of,. We stress that
this approximation is far from good.

Indeed, with thg3, 1] repetition code given as an examplelinl[25], the xor of tworebits is unbi-
ased. Even worse: the xor of the three bits has a negative3masvhen using the code obtained by 25
concatenations of this repetition code amgd= 6, with some probability of 36% we have at least two
error bits falling in the same concatenation and the biasesétkis approach fail.

We can do the same computation with the concatenation ofZ8é2] Golay codes wittw; = 15,
as suggested in_[25]. With probability21%, the bias is zero or negative so the algorithm fails. With
some probability 8%, the bias is too low.

In any case, we cannot take the error bits as independentn YWaeode has optimal covering radius
p, we can actually find an explicit formula for the bias(gf— gi,s;) assuming thas, has weightw;:

Pr[<Vi_gi732>:1’HW(SQ):W1]:ﬁ 5 ( | )S(W’ wp i)

i<p,l odd

whereS(k”, p) is the number ok”-bit strings with weight at moga.
To solveLPNsj120 125, [25] proposes the following parameters

a=6 d=9 b=63 (=64 K' =124 wo=2 w;=16

and obtainn = 2663 and a complexity of 292, With these parameters, [25] approximated the bias to
(1-285)™ = 2759 (with p = 14). With our exact formula, the bias should rather be of%. So,n
should be multiplied by 82 (the square of the ratio).

Also, we stress that all this assumes the construction ofla wdth optimal radius coverage, such as
the Golay codes, or the repetition codes of odd length anémion 1. But these codes do not exist for
all [K”,¢]. If we use concatenations of repetition codes, given as ample in [25], the formula for the
bias changes. Giveficoncatenations of thi, 1] repetition code, withg + ...+ k, = K’, k ~ ‘% and
1<i </, we would have to split the secrgtin chunks ofky, ..., ky bits. We takeni + ... +wy = wy
wherew;; is the weight ofs, on theit" chunk. In this case the bias for each repetition code is

1 W1|>
0 =1-2x ( S(ki —wai, pi — ), (1)
I Ski,pi) jgpgodd J o
wherep; = [ K.
The final bias is
5 =55 2)
We emphasize that the valuerfs underestimated i [25]. Indeed, with= bias~2, the probability
that arg maXf =5, is too low i |n LF1. To have a constant probability of succ€s®ur analysis says

that we should multlply1 by 8In( 5 ). ForLPNs120.125 and@ = é this is 363.
When presenting their algorithm at Asiacrypt 2014, the austlof [25] updated their computation
by using our suggested formulas for the bias and the numbsuafes. In order to obtain a complexity
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smaller than &, they further improved their algorithm by the following @psation: instead of assuming
that the secres, has a Hamming weight smaller or equalvtg, the algorithm takes now into account
all the Hamming weights that would give a good bias for theeciogy code reduction. I.e., the algorithm
takes into account all the Hamming weightsfor which & > €., wherees; is a preset bias. The
probability of a good secret changes from(Wr, k") to PHW) that we define below. They further
adapted the algorithm by using the2 reduction steps. Recall that far= 3- 2°, the number of queries
are preserved during the reduction phase. With these chdhgg propose the following parameters for
LPNs120.125:
a=5 b=62 (=60 K'=180 wp=2 g, =2 1418

Using two[90,30] linear codes, they obtain that= 2836 = 3. 2" queries are needed, the memory used
is of m= 2725 bits and the time complexity is= 27%7. Thus, this algorithm gives better performance
thanLF2 and shows that thisPN instance does not offer a security of 80 Hits.

With all the above observations we update the Theddem 3.

Theorem 7. Let a a',b,wg, w1, 4, K K’ es: be the algorithm parameters. The covering code

(h= 8In(%)ﬁ +a2b t,m=kn+ 2~ 1 02! 8 ¢)-solves the.PN problemf, whered = 1 — 2t
andeg is a preséeft bias. The code chosen for the covering code riedustep can be expressed as the
concatenation of one or more linear codes. The time t contplean be expressed as

tsparse reduction 1 tbkw reduction 1 1:guess + tcovering code T tWalsh transform

= Pr(wo, K — k") Pr(HW) ’

where

— tsparse reduction = NK@& is the cost of reducing thePN instance to a sparse secret

— tokw reduction = (K+ 1)an is the cost of thBKW reduction steps

— tguess =N 31 ("/‘i"")i is the cost of guessing k k” bits and = n— k— a2° represents the number
of queries at the end of the reduction phase

— teovering code = (K" —¢) (2 +2%) is the cost of the covering code reduction anéragain the number
of queries

— twaish transform = £2° 31 (“‘i"") is the cost of applying the fast Walsh-Hadamard transformef@ry
guess of k— k" bits

— PI(HW) = 3, (1— DX W% (£) where w is chosen such that the bid (computed followingl1
and[2), which depends on and the covering radiup of the chosen code, is larger thag.

4 Other LPN Solving Algorithms

Most LPN-based encryption schemes usas a function ok, e.g.T = %( [BI1€]. The bigger the value
of k, the lower the level of noise. Fér= 768, we hava ~ 0.036. For such a value we say that the noise
is sparse. Given that thet®N instances are used in practice, we consider how we can oohsther
algorithms that take advantage of this extra information.

The first two algorithms presented in this section bring néegas for the solving phase. The third
one provides a method to recover the whole secret and doegedtany reduction phase.

We maintain the notations used in the previous sectibgueries remain after the reduction phase,
the bias i’ and the block size iK'

4 For the computation afi the authors of [25] use the term 4®1) instead of 8I|(1%). If we use our formula, we obtain that
we need more than-2° queries and obtain a complexity pf= 28008,

5 This n corresponds to covering code reduction usirfgl. For LF2 reduction steps we need to hawe= 3.2 k>
8In(%) ok

oat+l.p *
6 gSEt
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For these solving algorithms, we assume that the secreaisespEven if the secret is not sparse, we
can just assume that the noise is sparse. We can transfolcPNamstance to an instance bPN where
the secret is actually a vector of noise bits by the methoggmted in[[3B]. The details of this transform
were given in Sectiop 2.2 for the covering codes algorithm.

We denote byA the sparseness of the secret, i.ésPs 1] = % for any 1<i < k. We say that the
secret isA-sparse. We can tale= 0.

The assumption we make is that the Hamming weight okttt length secresis in a given range.
On average we have thBitW(s) = K'(152), so an appropriate range 6,k (:52) + S k’] , Whereg is
constant. We denoﬂé(%) by Enw and %\/W by dev. Thus, we are searching in the ran@eEnw +
dev]. We can bound the probability that the secret has a Hammiigjiveutside the range by using the
Hoeffding bound|[27].

Let X3, X2,...,X¢ be independent random variables that correspond to thetdeits, i.e. PiX; =
1] = L2 and P(X; € [0,1]) = 1. We haveE (X) = 152K Using Theorerfi 12, we get that

_ / &2
Pr{HW(s) not in range] = Pr [HW(S) _a ZA) K>o kZ] <e z.

If we want to bound byd/2 the probability thaHW(s) is not in the correct range for one block, we
obtain thato = ,/2In(3).

4.1 Exhaustive search on sparse secret

We haveS = yErwt9e (K vectorsv with Hamming weight in our range. One first idea would be to
perform an exhaustive search on the sparse secret. We dbisosdgorithm bySearch;. For every such
valuev, we computeHW(AvT +c). In order to compute the Hamming weight we have to compute the
multiplication betweer\ and allv which have the Hamming weight in the correct range. This ajan
would takeO(Srk’) time but we can saveld factor by the following observation done [r [7]: computing
AvT, with HW(v) = i means xoring columns ofA. If we have the values ofv™ for all v where
HW(v) =i then we can computav’™ for HW(V') =i + 1 by adding one extra column to the previous
results.

We use here a similar reasoning done for the Walsh-Hadamedform. Wherv = s, the value of
HW(AS" +c) is equal toHW(d) and we assume that this is the smallest value as we have mises no
bits set on 0 than 1. Thus, going through all possible val@iesamd keeping the minimum will give us
the value of the secret. The time complexitySshrch; is the complexity of computing the Hamming
weight, i.e.O(Sr).

BesidesSearchy, which requires a matrix multiplication for each trial, wis@ discovered that a
Walsh transform can be used for a sparse secret. We calllgjoistam Search,. The advantage is that a
Walsh transform is faster than a naive exhaustive searcthaisdmproves the time complexity. We thus
compute the fast Walsh-Hadamard transform and search tkienua of f only for thoseSvalues with
Hamming weight in the correct range. Given that we apply astWaknsform we get that the complexity
of this solving algorithm isD(k'2). So, it is more interesting thefearch; whenSr > k'2€.

For both algorithms the failure probability is given by tliesario where there exists another sparse
valuev # s such thatHW(AvT +c) < HW(AS' +c). As we search througB possible values for the

secret we obtain that ,
'y

Prfincorrect guess on one block] < Se & .
The above probability accounts for only one block of the secfhus we can say that with =
\/2In(3) andn = 8(In £)5%' + (a— 1)2°, the probability of failure is smaller theh
Another failure scenario, that we take into account into anelysis, occurs when the secret has a
Hamming weight outside our range.
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Complexity analysisTakingn=n'+ (a—1)2°, K = b, & = 5" andA = 3, we obtain the following
theorems foearch; andSearchs:

Theorem 8. Let S= 37/ (°) where Byw = b(352) anddev = $v/b and let 1= 8In(%)5%'. For
k < a-b and a secret s that iA-sparse, théearch; algorithm heuristically (n= 8In(%5)63*2a +(a—
1)2°,t = O(kan+n'S),m=kn+b(z, " ),0,b)-solves the PN problem.

Enw-+dev/ ™

Theorem 9. Let S= 39 (*) where B = b(332) anddev = 9v/b. For k< a-b and a secret s
that isA-sparse, thé&earch, algorithm heuristically (n: 8In(¥)572 + (a—1)2°,t = O(kan+b2°),m=
kn, 0, b)-solves thé.PN problem.

Here, we take the probability, that any of the two failurerso@s to happen, to be eaéfi2. A
search for the optimal values such that their surfi,ibrings a very little improvement to our results.
Takingk' = b, we stress thaBis much smaller than the‘2= 2° term that is used fotF1. For example,
for k=768,a= 11, b = 70 andt = 0.05, we have thaS~ 232 which is smaller than' 2= 27° and we
getn’ = 25733 andn = 27334 (compared tav = 26832 andn = 27337 for LF1). We thus expect to require
less queries for exhaustive search compardd-io As the asymptotic time complexity 8karch, is the
same ad F1 and the number of queries is smaller, we expect to see tlsaaltpprithm runs faster than
LF1.

4.2 Meet in the middle on sparse secret (MITM)

Given thatAs" +d = ¢, we splitsinto s; ands, and rewrite the equation a!asI +d= Azsz 4 c¢. With
this split, we try to construct a meet-in-the-middle attégklooking for As) + ¢ close toA;s]. The
secrets has sizek’ and we split it intos; of sizek; ands, of sizek, such thak; +k, = k'. We consider

that boths; ands, are sparse. Thus the Hamming weighgdfes in the range{o, ki (%) + %'\/E] . We
denotek; (1:52) + %/\/E by maxuw (ki). In order to bound the probability that both estimates aresco
we use the same bound shown in Sedfibn 4 and obtairothat,/2In(3).

For our MITM attack we have a pre-computation phase. We coenand store?;s] for all S; =
el (k) possible values fas. We do the same fap, i.e computedos) +cfor all S, = s (@) (k)
vectorss,. The pre-computation phase tak€&+ S )n’ steps in total. Afterwards we pickbit positions
and hope that the noiskhas only values of 0 on these positions. If this is true, therauld build a mask
pthat has Hamming weiglgtsuch thatd A= 0. The probability for this to happendég—g)‘E —e iy,

We build our meet-in-the-middle attack by constructing shti@able where we store, for all values,
Azsg +cat positionh((Azsg +c¢) AW). We haveS, vectorssy, so we expect to havg,2 ¢ vectors on
each position of the hash table. For &l values ofs;, we check for collisions, i.eh((A;S]) A L) =
h((Azs} +c) A L. If this happens, we check #;s] xored withA;s) + ¢ gives a vectod with a small
Hamming weight. Remember that with the pre-computed valegan computel with only one xor
operation. If the resulting vector has a Hamming weight inrange, then we believe we have found the
corrects; ands, values and we can recover the valuesaBiven thatAss] + As) +d = ¢, we expect to
have(Azs) +c) A= Ass] Aponly whend A p= 0. The conditiord A = 0 holds with a probability of
(”75’)E so we have to repeat our algoritr(rﬂ%)E times in order to be sure that our condition is fulfilled.

As for exhaustive search, we have two scenarios that cosldtri@ a failure. One scenario is when
s1 or s, have a Hamming weight outside the range. The second onel@ppen there is another vector
v # s such thatHW(A;v] + Av] +¢) < HW(AS] + Ags] +c¢) and (Aqv] +Apv) +¢) Ap= 0. This
occurs with probability smaller tha&&e*%
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Complexity analysisThe time complexity of constructing the MITM attack(8 +S)n' + ((S1+ )& +

SS2°¢n)- (H&)‘E We include here the cost of the pre-computation phase anddtual MITM cost.
We obtain that the time complexity 8((S; + S)N + (S + $)&(15 ) + SN (115)%). Taking again
n=n-—(a— 1)2b k=b, & = 62371,A:6, we obtain the following result for MITM.

Theorem 10. Letrf = 8In(% Sl&)é 2" Take k and k values such that b k; + ko. Let§ = 3 "o (ki) (kll)
where maxpw (k) = kj(52) + \/_ for j € {1,2}. For k< a-b and a secret s that iA-sparse,
the MITM algorithm heurlstlcally (= 8In(§8152)6‘2a + (a—1)2°t = O(kan+ (S + )’ + (S +

&)E(Ha261 —2_ 4SS0 (1 = %), m=kn+S+ (S, + S)n', 8, b)-solves thé PN problem.

4.3 Gaussian Elimination

In the case of a sparse noise, one may try to recover the sdgretsing Gaussian elimination. It is well
known thatL PN with noise 0, i.er = 0, is an easy problem. This idea was used_in [12] in order tonnou
a passive attack on HB and HBprotocols. If we are give®(k) queries for which the noise is 0, one
can just run Gaussian elimination andagk®) recover the secret For aLPN instance, the event of
having no noise fok queries happens with a probabilipyenoise = (1 —T)K.

We design the following algorithm for solvingPN: first, we have no reduction phase. For e&ch
new queries, we assume that the noise is 0. We recovettaough Gaussian elimination. We must test
if this value is the correct secret by computing the Hammieigiwt of AvT + ', whereA' is the matrix
that contains’ fresh queries and’ is the vector containing the corresponding noisy inner pctsl
We expect to have a Hamming weight in the rar[@él;zé)n’ + 0@], whereo is a constant. From the
previous results we know that for a correct secret we have

NI%

PIHW(A'ST 4 ¢/) not in range] <

If we want to bound byd/2 the probability that the Hamming weight of the noise is mdhie correct
range, for the correct secret, we obtain that , /2In(%).

For av # s, we use the Hoeffding inequality to bound th&tV(A'vT 4+ ¢') is in the correct range. Let
X1, ..., Xy be the random variables that correspondte- (v;,v) @ ¢;. Let X = X3 + ...+ Xy. We have

E(X)= ”7' Using the Hoeffding inequality, we take= 57”' — 0@ and obtain

Prifailure] = 2PHHW(A'VT 4 ¢')] in correct range]

= 2XPiX —E(X) < —A]
2B VI 2
< kg = ke

8V —0)?
2
If we bound this probability of failure b¥/2 we obtain that we need at least= (y/2In %5~ 2t

0)25-2 queries besides thethat are used for the Gaussian elimination.
As aforementioned, with a probability @cneise = (1—1)¥, the Gaussian elimination will give the
correct secret. Thus, we have to repeat our algor'rgﬁzﬁg; times.

Complexity analysisThe computation of the Hamming weight has a cosp@f'k?). Given that we run
the Gaussian elimination and the verification sﬁe\é— times, we obtain the following theorem for this
algorithm:
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2
Theorem 11. Letrl = <\/2In 2+ \/2In(%)> & 2. The Gaussian elimination algorithm ;% 2; +

n,t=0 (?’fﬁ;f) ,m= k?+ 'k, 0, k)-solves thé.PN probleﬁﬁ

Remark 2.Notice that this algorithm recovers the whole secret at @amckthe only assumption we make
is that the noise is sparse. We don’t need to run the trans$aoh that we have a sparse secret and there
are no queries lost during the reduction phase.

Remark 3.In the extreme case whef&— 1)k > 8, the Gaussian elimination algorithm can just assume
thatk queries have noise 0 and retrieve the seswithout verifying that this is the correct secret.

5 Tightness of Our Query Complexity

In this section we compare the theoretical analysis withiémgntation results of all thePN solving
algorithms described in Sections & 4.

We implemented thé&8KW, LF1 and LF2 algorithms as they are presented [inl[35] and in pseu-
docode in Algorithm§&]{i3. The implementation was done in Gidntel Xeon 3.33Ghz CPU. We used
a custom bit library to store and handle bit vectors. Usirey@penMP Iibrav@, we have also paral-
lelized certain crucial parts of the algorithms. The xag-in the reduction phases as well as the ma-
jority phases for instance, are easily distributed ontotiplel threads to speed up the computation.
Furthermore, we implemented the exhaustive search and Mdilgdrithms described in Sectidd 4.
The various matrix operations performed for the spdrB&l solving algorithms are done with the
MA4RI library . Regarding the memory model used, we implemented the onmiled in [35] in
order to accommodate theF2 algorithm. The source code of our implementation can be doain
http://1asec.epfl.ch/Tpn/lpn source code. zip.

We ran all the algorithms for differetPN instances where the size of the secret varies from 32 to
100 bits and the Bernoulli parametetakes different values from.Q1 to Q4. A value oft = 0.1 for a
smallk as the one we are able to test means that very few, if noneeafubries have the noise bits set
on 1. For this sparse case, an exhaustive search is the bptiaizgy. Also,t = 0.4 might seem also
as an extreme case. Still, we provide the query complexityhfese extreme cases to fully observe the
behaviour of the.PN solving algorithms.

For eachLPN instance, we try to find the theoretical number of oracle iggeequired to get a 50%
probability of recovering the full secret while optimizirtge time complexity. This means that in half
of our instances we recover the secret correctly. In therdiad of the cases it may happen that one
or more bits are guessed wrong. We thus téke % as the probability of failure for the first block.
We choosea andb that would minimize the time complexity and we apply thisitsipl our theoretical
bounds in order to compute the theoretical number of inffisries. We apply the same split in practice
and try to minimize the number of initial queries such thatmaintain a 50% probability of success.
We thus experimented with different values for the origimainber of oracle samples, and ran multiple
instances of the algorithms to approximate the successpilil. One can observe that in our practical
and theoretical results tleeb parameters are the same and the comparison is consistemeM/émited
by the power of our experimental environment and thus we wet@ble to provide results for instances
that require more thar?2 queries.

6 Given that we receive uniformly distributed vectors frora tPN oracle, fromn+ 2 vectorsv we expect to hava linearly
independent ones.

7Rt t p: /1 opennp. or g/ Wp

8Ihttp: /I miri. sagemat h. or g/
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5.1 BKW*

The implementation results f@8KW* are presented in Tab[é 3. Each entry in the table is of the form
log,(n)(a), wheren is the number of oracle queries that were required to obt&i@%a success rate for
the full recovery of the secret. Paramedigs the algorithm parameter denoting the number of blocls int
which the vectors were split. We take= (Lﬂ. By maintaining the value dd, we can easily compute the
number of queries and the time & memory complexity. In Tébleedpresent the theoretical results for
BKW* obtained by using Theorehi 4. We can see that our theoretichpaactical results are within a
factor of at most 2.

Table 3:BKW™* query complexity - practice Table 4:BKW* query complexity - theory
T K T K

32 48 64 80 100 32 48 64 80 100
0.01 1040(5) 1185(6) 15.01(6) 17.68(7) 20.78(7) 0.01 1097(5) 12.82(6) 15.93(6) 1866(7) 21L74(7)
0.10 1432(4) 19.99(4) 23.13(4) 27.30(4) 0.10 1584(4) 20.01(4) 24.12(4) 2820(4) 33.28(4)
0.20 1864(3) 23.84(3) 0.20 1971(3) 24.85(3) 30.97(3) 34.83(4) 39.90(4)
0.25 2193(2) 25.95(3) 0.25 2181(2) 26.95(3) 33.07(3) 3814(3) 44.11(4)
0.40 2725(2) 0.40 2824(2) 36.38(2) 43.64(3) 48.71(3) 55.78(3)

If we take the example dfPN1o00.01, We need 278 queries and our theoretical analysis gives a
value of 2147, These two values are very close compared with the valuegbeeby [35], 2564, which
is a factor 10 larger. We emphasize again that for both theryhend the practice we use the split that
optimizes the time complexity and from this optimal split dexive the number of queries.

Remark 4.For theBKW* algorithm we tried to optimize the average final bias of therigs, i.e. obtain-
ing a better value thad®" . Recall that at the beginning of the reduction phase, werdh#gequeries in
equivalence classes and then choose a representative thattis xored with the rest of queries from the
same class. One variation of this reduction operation wbaltb change several times the representative
vector. The incentive for doing so is the following: one eg@ntative vector that has error vector set on
1 affects the bia® of all queries, while by choosing several representativeors this situation may be
improved; more than half of them will have error bit on 0. Weplemented this new approach but we
found that it does not bring any significant improvement. #ieo change that was tested was about the
majority rule applied during the solving phase. Querieshaworst case bias [ (See Lemmal2),
but some have a larger bias. So, we could apply a weightedrityajale. This would decrease the num-
ber of queries needed for the solving phase. Unfortunatelymplemented the idea and discovered that
the complexity advantage is very small.

5.2 LF1

Below we present the experimental and theoretical resoittthe LF1 algorithm. As a first observation
we can see that, for all instances, this algorithm is a clptimization over the originaBKW* algorithm.

As before, each entry is of the form Ig@)(a), wheren anda are selected to obtain a 50% success rate
for the full recovery of the secret art= ['gﬂ.

Tablel6 shows our theoretical results fdl using Theorerhl5. When we compare the experimental
and the practical results fauF1 (See Tablél5 and Takllé 6) we can see that the gap between tlo¢im is
factor up to 3.
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Table 5:LF1 query complexity - practice Table 6:LF1 query complexity - theory

k k
' 32 48 64 80 100 ' 32 48 64 80 100
001 7326) 1012(6) 1158(7) 1332(8) 14.99(8) 001 889(6) 1053(6) 1277(7) 14.17(8) 16.13(8)
0.10 1020(4) 1320(4) 1552(5) 17.98(5) 21.38(5) 0.10 1138(4) 1387(4) 17.04(5) 1856(5) 2205(5)
0.20 1153(3) 1557(3) 1803(4) 2104(4) 25.18(4) 0.20 1301(3) 17.06(3) 19.05(4) 2177(4) 26.59(4)
0.25 1269(3) 16.20(3) 20.70(4) 2224(4) 2593(4) 0.25 1442(3) 17.25(3) 2265(4) 23394) 26.72(4)
0.40 1561(2) 19.74(2) 2397(3) 040 1695(2) 24.01(2) 2583(3) 2830(3) 35.00(3)

Remark 5.0ne may observe a larger difference for ti&N,g0 4 instancen = 21974 (practice) vsn =
22401 (theory). For this case, the implementation requites 21°74 initial queries compared with the
theory that requires = 22491 queries. Here we haw@= 2 andb = 24 and the ternfa— 1)2° dominates
the query complexity. The discrepancy comes from the waase analysis of the reduction phase where
we say that at each reduction step we discatdjZeries. With this reasoning, we predict to logé 2
queries. If we analyse more closely, we discover that dgtiralthe average-case we discard onfy- 2

[1— (1— 2—%)”] queries (this is the number of expected non-empty equigaletasses). Thus, with only

21974 initial queries, we run the reduction phase and discafd2queries, instead of?2. We are left
with 21445 queries which are sufficient for the solving phase. We nlo& for largeLPN instances,
this difference between worst-case and average-casesanfdy the number of deleted queries during
reduction rounds becomes negligible.

Remark 6.Recall that inLF1, like in all LPN solving algorithms, we perform the reduction phase by
splitting the queries inta blocks of sizéb. When this split is not possible, we consider that we laavel
blocks of sizeb and a last block shorter of sibéwith b’ < b. By LF1* we denote the samePN solving
algorithm that makes use of the Walsh transform but wheresplieof the blocks is done different. We
allow now to have a last block larger than the rest. The gaithis strategy may be the following: given
that we recover a larger block of the key, we run our solvinggehfewer times. Although the complexity
of the transform is bigger as we work with a bigger block, théuction phase has to be applied fewer
times. From our experiments we discover there seems to béfacedce between the performance of
the two algorithms.

5.3 LF2

We tested thé F2 heuristic on the same instances asB&tW* andLF1. The results are summarized in
Table[T. To illustrate the performance of the heuristic, weoentrate on a particular instant®N1000.1
with a=5,b = 20. As derived in[[35], thé&F1 algorithm for this parameter set should require less than
(8-b+200)-5 % ~ 21877 queries for a solving phase af@l— 1) -2° + (8-b+200) -5 2" ~ 22213 queries
overall to achieve a success probability of 50%. Using oeotétical analysis, thieF1 algorithm for this
parameter set requires to have @n2°)5 2 + (a— 1)2° ~ 22205 queries overall and'22° queries for
the solving phase. Our experimental resultsf6i were a bit lower than our theoretical one$%¥
oracle samples were sufficient. If we use the heuristic starting with 3220 ~ 22158 samples, we get
about the same amount of vectors for the solving phase. #nctiée there are no queries lost during
reduction. We thus have much more queries than should gctualrequired for a successful solving
phase and correctly solve the problem with success pratyatiibse to 100%. So we can try to start with
less. By starting off with 225 queries and thus loosing some queries in each reductior youmalso
solved theLPN problem in slightly over 50% of the cases. The gain in totargwcomplexity forLF2 is
thus noticeable but not extremely important.
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As another example, consider the parameteksef768 1 = 0.05 proposed at the end 6f [35]. The
values fora,b which minimize the query complexity a@e= 9,b =86 (@-b = 774> k). Solving the
problem withLF1 should thus require abouf?2vectors for the solving phase an&82racle samples
overall. UsingLF2, as 3 2P ~ 287 oracle samples would be sufficient, we obtain a reduction fag@r
~ 4.

Even thoughLF2 introduces linear dependencies between queries, thimt@seem to have any
noticeable impact on the success probability in recovetiegecret value.

Table 7:LF2 query complexity - practice

001 685(6)
010 930(4)
0.20 1088(3) 1540
)
)

3
19.74(2

0.25 1234(3
0.40 1544(2

) (7)
) (5)
3) 16.94(4) 2047
) (4)
) (3)

Remark 7.A general observation for all these three algorithms, shalso by our results, is that the bias
has a big impact on the number of queries and the complexityalRthat the bias has valdé@ " at the
end of the reduction phase. We can see from our tables th&ivilee the value ofi, i.e. larger value of
0 = 1-— 21, the highera can be chosen to solve th®N instance. Also, for a constamt the higher the
size of the secret, the highaican be chosen.

Remark 8.TheLF2 algorithm is a variation oEF1 that offers a different heuristic technique to decrease
the number of initial queries. The same trick could be use®#\W*, exhaustive search and MITM.

While the same analysis can be applied for exhaustive seardfMITM as forLF2, BKW* is a
special case. We denote BKW? this variation ofBKW where we use the reduction phase frof®.
Recall that forBKW* we need to have = 2b+16*2aln(g) + (a—1)2° queries and here the dominant
term is 27152 In(8). Thus, we need to start with-2° + ¢, wheree > 0 and increase such that at the
end of the last iteration of the reduction we get the requinachber of queries. This improves the initial
number of queries and we have a gain of facdor the time complexity. For ahPNygg 1 instance,
our implementation oBKW? requiresn = 21382 — 3.54. 212 jnitial queries and increases it, during
the reduction phase, up td*?!, the amount of queries needed for the solving phase. Theg ik
an improvement from 2°° (See Tabl€13) to 82 and the time complexity is better. While this is an
improvement oveBKW*, it still performs worse thahF1 andLF2.

5.4 Exhaustive search

Recall that for exhaustive search we have two variants. &beltis forSearch; are displayed in Tablg 8
and TabléP. FoBearch; we observe that the gap between theory and practice is ofa femaller than
4. In terms of number of querieSearch; brings a small improvement comparedLiel. We will see in
the next section the complete comparison between all thienmgnted algorithms. The sart@— 1)2°
dominant term causes the bigger difference for the instalnle®4g0.4 andLPNeg4 0 25.

The results foSearch; are displayed in Table 10 and Tablg 11.
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Table 8:Search; query complexity - practice Table 9:Search; query complexity - theory

k k
' 32 48 64 80 100 ' 32 48 64 80 100
0.01 516(1) 570(1) 6.12(1) 13258) 14.93(8) 001 516(1) 570(1) 6.12(1) 14.058) 16.06(8)
0.10 1015(4) 13.15(4) 16.44(4) 17.93(5) 21.34(5) 0.10 1133(4) 13.84(4) 17.61(4) 1850(5) 22.04(5)
0.20 1151(3) 1554(3) 17.99(4) 2102(4) 25154) 0.20 1301(3) 17.06(3) 18.99(4) 21.76(4) 26.59(4)
0.25 1266(3) 16.18(3) 19.88(3) 0.25 1442(3) 17.25(3) 23.01(3) 28.00(3) 26.71(4)
0.40 1561(2) 19.74(2) 0.40 1698(2) 24.01(2) 2587(3) 28.31(3) 3500(3)
Table 10:Search, query complexity - practice Table 11:Search, query complexity - theory

. k . k
32 48 64 80 100 32 48 64 80 100
001 516(1) 570(1) 6.12(1) 13.258) 14.93(8) 001 516(1) 570(1) 6.12(1) 14.058) 16.06(8)
0.10 1015(4) 13.15(4) 15.36(5) 17.93(5) 21.34(5) 0.10 1133(4) 1384(4) 16.89(5) 1850(5) 22.04(5)
0.20 1151(3) 1554(3) 17.99(4) 2102(4) 25154) 0.20 1301(3) 17.06(3) 18.99(4) 21.76(4) 26.59(4)
0.25 1266(3) 16.18(3) 20.63(4) 0.25 1442(3) 17.25(3) 22.63(4) 23.38(4) 26.71(4)
0.40 1561(2) 19.74(2) 0.40 1698(2) 24.01(2) 2587(3) 28.31(3) 3500(3)

We notice that for botBearch; andSearch; the instance&PN320.01, LPN4go.01 andLPNggg 01 have
the number of queries very low. This is due to the following@ivation: fom < 68 linearly independent
queries and = 0.01 we have that the noise bits are all 0 with a probabilitydattpan 50%. Thus, for
k < 64 we hope that thke queries we receive from the oracle have all the noise set @fth k noiseless,
linearly independent queries we can just recaaith Gaussian elimination. This is an application of
Remarl{3.

5.5 MITM

In the case of MITM, the experimental and theoretical resate illustrated in Table-12 and Tablg 13.
There is a very small difference between MITM and exhausteéarch algorithms for a sparse secret: in
practice, MITM requires just couple of tens queries lesa §warch; andSearch, for the same andb
parameters.

5.6 Gaussian Elimination

As aforementioned, in the Gaussian elimination the onlymggion we need is to have a noise sparse.
We don't run any reduction technique and the noise is notedte As the algorithm depends on the
probability to have a 0 noise ok linearly independent vectors, the complexity decays verigkdy
once we are outside the sparse noise scenario. We presewtthel theoretical results obtained for this
algorithm.

In the next section we will show the effectiveness of thismaridea in the sparse case scenario and
compare it to the othdrPN solving algorithms.

Again for LPN320.01, LPN48’0.01 and LPN6470‘01 we apply Remarkl3.
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Table 12: MITM query complexity - practice Table 13: MITM query complexity - theory

k k
' 32 48 64 80 100 ' 32 48 64 80 100
001 516(1) 570(1) 6.12(1) 1325(8) 14.93(8) 001 516(1) 570(1) 6.12(1) 14.10(8) 16.10(8)
0.10 1013(4) 1315(4) 16.47(4) 0.10 1137(4) 1387(4) 17.61(4) 2159(4) 22.05(5)
0.20 1149(3) 1554(3) 0.20 1302(3) 17.06(3) 23.00(3) 28.00(3) 26.59(4)
0.25 1289(2) 0.25 1603(2) 17.26(3) 2301(3) 2800(3) 3500(3)
0.40 040 1698(2) 24.01(2) 2587(3) 2831(3) 35.00(3)

Table 14: Gaussian elimination query complexity - theory
k

32 48 64 80 100
0.01 516 570 612 843 889
0.10 1004 1291 1573 1848 2184
0.20 1531 2104 2660 3208 3884
0.25 1828 2551 3256 3952 4815
0.40 2858 4096 5317 6528 8034

T

5.7 Covering Codes

The covering code requires the existence of a code with thimapcoverage. For each instance one has
to find an optimal code that minimizes the query and time cemipl. Unlike the previous algorithms,
this algorithm cannot be truly automatized. In practice weld test only the cases that were suggested
in [25]. Thus, we are not able to compare the theoretical aactigal values. Nevertheless, we will give
theoretical values for different practical parameterdimriext section.

6 Complexity Analysis of theLPN Solving Algorithms

We have compared our theoretical bounds with our practesdlts and we saw that there is a small
difference between the two. Our theoretical analysis algesgighter bounds compared with the results
from [35]. We now extend our theoretical results and compheeasymptotic performance of all the

LPN algorithms for practical parameters used by ltR-based constructions. We consider the family
of LPNk,ik instances proposed inl[3)16]. Although the covering coamobbe automatized, as for each

instancefwe have to try different codes with different sized dimensions, we provide results also for
this algorithm. When dealing with the covering code redugctiwe always assume the existence of an
ideal code and compute the bias introduced by this step. Wwtoonsider here concatenation of ideal
codes and we will see that we obtain a worse result forlfPNs120 125 instance compared with the
result from [25], although the difference is small. We alSokswith the BKW reduction steps and don’t
use thelLF2 reduction. As aforementioned, th&2 reduction brings a small improvement to the final
complexity. This does not affect the comparison betweethalLPN solving algorithms.

We analyse the time complexity of each algorithm, by whichmean the number of bit operations
the algorithm performs while solving drPN problem. For each algorithm, we consider valueg far
which the parameter®, b) minimising the time complexity are such that a-b. For theLF2 algorithm,
we select the initial number of queries such that we are lgft &t least’ = 8In(3- 2b)63*2a queries after
the reduction phase. Recall that Byarch; we denote the standard exhaustive search algorithm and
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Search, is making use of a Walsh-Hadamard transform. The resultdlas&ated in Figuréil. We recall
the time complexity and the initial number of queries forteatgorithm in Tabl€ 15, wherSrepresents
the number of sparse secrets w8k 2°. For MITM, the valuesS; (resp.$,) represent the number of
possible values for the first (resp. second) half of the satre 8(In(6SlSZ))€'>‘2a represents the number
of queries left after the reduction phase &nekpresents the Hamming weight of the mask used. In the
case of the covering codes algorithm, @lb,a’, k', k", |, wo, €set are parameters of the algorithm an/d
represents the number of queries left after the reductias@hRecall thef is 2

We can bound the logarithmic complexity of all these aldpons bylog © +cl and logy(K) +vk+cp.
The lower bound is glven by the asymptotic complexity of treu€sian elimination that can be expressed
as log k+ vk whent = ﬂ

The complexity ofBKW can be written as mja.ap(poly - 2° - 6*261) and for the other algorithms

the formula is mip_ap(poly - (22 +82)), wherepoly denotes a polynomial factor. By searching for the

optimala, b values, fora> 1, we finda ~ Iogz( )2|n r andb= and obtain that2dominatess—2". For

0=1— f we obtain the complexitpoly - 2'092(k For the case wher@= 1, we have that the complexity

of BKW is poly - 2, while for LF1, LF2, Search, we havepoly +k2K. A more special analysis needs to be
done for theéSearch; andMIT M: here we have that the complexitygsly - S andpoly - Srz/ respectively,
where we defin& to be #{v €{0,1}% | HW(v) <r}. We need to bound the value &f By induction we
can show tha§ < - - & Fort~ \/R we have that ~ (1+ $)vkandr’ ~ (3 +2Lﬂ)\/R We obtain

that the complexity for both algorithms ely - 2/Vklog2k+0(VK) \wherey is a constant. This is not better
k
than 2ee2® for k < 200000, but asymptotically this gives a better complexity.
We see that in some cases increasing the valuk ofly result in a decrease in time complex-

ity. The reason for this is that we are considerio@N instances where the noise parameatdakes
value %( Thus, ask grows, the noise is reduced, which leads to an interestadgetoff between the

complexity of the solving phase and the complexity of theumtidn phase of the various algorithms.
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Table 15: Query & Time complexity fdrtPN solving algorithms for recovering the firstits

LPN algorithm Query complexity() Time complexityf)
BKW 2152 in8)+(a-1)2>  kan
LF1 8In(%)5 2 +(a—1)2b kan+ b2P
Searchy 8In(%)8 % + (a—1)2° kan+8In(%)82's
LF2 3.2°>8In(3)5 % kan+ b2°
Searchy 8In(%)5 % + (a—1)2° kan+- b2P

kan+ comp + compmitm
MITM 8In(25,S)5 % +(a-1)2°  wherecomp = (S, +S)n’ and

compitm = (St + )& (2e1)* + S9SN (7gr)®
Gaussian elimination (1-1F T (y/2In %5 25 +0)%5 2 (/2 E2 +0)%5 %o

whereg = /2 In(%) (-F
, nkd + comp + compsglying

Covering codes  8In() gt wherecomp = (k-+ 1)an+ f s (KK 4 (K — £y (2 4 2°)

COMPsolving = 02! ZI, ( kﬁ)

This behaviour does not seem to occur for Bi&W algorithm. In this case, the query complexity
n= 21— %()*Zaln(Zk) + (a—1)2" is largely dominated by the first term, which grows exponen-
tially not only in terms of the noise parameter, but also imtgof the block sizé.

Remark 9 (F1 vs. Search,). As shown in Figuré]l, the overall complexity of th&1 and Search,
algorithms is quasi identical. From Theorems 5[and 9, we clethat for the same parametéasb), the
Search, algorithm should perform better as long @s: 2°-1. This is indeed the case for the instances
we consider here, although the difference in complexityissenely small.

We can see clearly that for thé N, 3 family of instances, the Gaussian elimination outperfoaths
7 Vk
the other algorithms fdk > 500. For nd&k < 1000, theLPN, L offers an 80 bit security. This requirement
»Vk
is achieved fok = 1090.

Selecting secure parametersVe remind that for each algorithm we considered, our analyside use
of a heuristic assumption of query and noise independerieeraftiuction. In order to propose security
parameters, we simply consider the algorithm which perfobest under this assumption.

By taking all the eight algorithms described in this artidlable§18-213 display the logarithmic time
complexity for variousLPN parameters. For instance, thE2 algorithm requires % steps to solve a
LPN3340_25 instance.

We recall here the result frorh [25]: an instarldeNs120 125 offers a security of 79. We obtain a
value of 82. The difference comes mainly from the usé &2 reduction in[25] and from a search of
optimal concatenation of linear codes.

When comparing all the algorithms, we have to keep in mintttiteGaussian elimination recovers
the whole secret, while for the rest of the algorithms we dihve complexity to recover a block of the
secret. Still, this does not affect our comparison as we paveen in Sectiofi]3 that the complexity of
recovering the first block dominates the total complexity.

We highlight with red the best values obtained for differeRN instances. We observe the following
behaviour: for a sparse case scenariori.:e0.0S fork > 576 ort = %fk < 0.05, the Gaussian elimination

offers the best performance. Foe \/R no k from our tables offers a 80 bit security. Once we are outside
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the sparse case scenario, we have & and the covering code algorithms are the best ones. The
covering code proves to be better tHaf2 for a level of noise of A25. While the performance of the
covering code reduction highly depends on the sparsendise nbise] F2 has a more general reduction

phase and is more efficient for noise parameters2s @nd 04. Also for at > 0.5 the covering code is
better than the Gaussian elimination.

Thus, for different scenarios, there are different algonis that prove to be efficient. This comparison
clearly shows that for the family of instanceBN, s neither theBKW, nor its variants are the best ones.
7 Vk
One should use the Gaussian elimination algorithm.

Table 16: Security oE PN againsBKW Table 17: Security oE PN against_F1
k k
T T
256 384 448 512 576 640 768 1280 256 384 448 512 576 640 768 1280
1 1
J 69 8 97 106 114 123 140 198 J 50 63 71 79 85 88 102 145

0.05 67 88 98 109 118 127 145 216 0.05 50 62 71 79 87 95 102 159
0125 79 105 116 128 138 149 170 253 0125 56 73 78 88 98 107 125 176
0.25 93 123 137 150 163 175 201 295 0.25 64 84 89 100 110 121 142 199

04 115 147 163 180 196 212 244 347 04 76 94 103 116 129 142 168 229
Table 18: Security oE PN against_F2 Table 19: Security oE PN againstSearchy
. k . k
256 384 448 512 576 640 768 1280 256 384 448 512 576 640 768 1280
%( 49 61 69 78 85 8 100 143 ﬁ 56 69 77 80 87 95 108 154
005 49 61 69 78 8 94 100 158 005 51 69 78 84 89 95 111 162
0125 55 73 77 87 97 106 124 175 0125 64 82 91 100 110 121 140 199
025 64 84 8 99 109 121142 198 025 82 110 122 134 145 155 179 263
04 76 94 103 116 129 141 168 229 04 109 141 157 173 189 205 236 337
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Table 20: Security oEPN againstSearch, Table 21: Security oEPN againstMITM
. k . k

256 384 448 512 576 640 768 1280 256 384 448 512 576 640 768 1280
%( 50 63 71 79 84 8 102 145 ﬁ 56 70 78 8 91 96 111 159
005 50 62 71 79 87 95 102 159 005 55 70 78 88 98 104 114 176
0125 56 73 78 88 98 107 125 176 0125 65 88 96 104 112 122 142 203
025 64 84 89 100 110 121 142 199 025 85 113 125 137 148 159 184 270
04 76 94 103 116 129 142 168 229 04 109 141 158 174 190 206 237 339

Table 22: Security olLPN against Gaussian Table 23: Security olLPN against Covering

elimination codes
. k . k

256 384 448 512 576 640 768 1280 256 384 448 512 576 640 768 1280
% 49 56 59 62 64 67 70 85 ﬁ 44 55 59 64 70 73 85 123
005 44 56 61 66 71 77 87 127 005 42 54 59 65 72 78 88 132
0125 75 102 115 127 140 153 178 279 0125 52 67 74 82 89 96 109 161
025 133 188 215 242 269 296 350 565 025 70 87 96 106 115 125139 204
04 218 314 362 409 457 504 600 979 04 94 110 123 136 149 161 179 281

As we have shown, there still remains a small gap betweerhdwdtical and practical results for
the algorithms we analysed. It thus seems reasonable t@ts&fety margin when selecting parameters
to achieve a certain level of security.

Based on this analysis, we could recommend il instanced. PNs120 25, LPNg4qo.125 LPN128q0.05

or '—Plesqﬁ) to achieve 80 bit security for different noise levels. Weentbtat the valud.PN7eg0.05

that Levieil and Fouque suggest as a secure instance to usdlyaoffers only 66 bit security and thus
is not recommended.

7 Conclusion

In this article we have analysed and presented the exikfigalgorithms in a unified framework. We
introduced a new theoretical analysis and this has imprdvedounds of Levieil and Fouque [35]. In
order to give a complete analysis for thBN solving algorithms, we also presented three algorithms
that use the advantage that the secret is sparse. We analgseithe latest algorithm presented at Asi-
acrypt 2014. While the covering code and tl# algorithms perform best in the general case where the
Bernoulli noise parameter is constant, the Gaussian dditioim shows that for the sparse case scenario

the length of the secret should be bigger than 1100 bits., A¥®oshow that some values proposed by
Leviel and Fouque are insecure in the sparse case scenario.
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A Hoeffding’s Bounds

Theorem 12. [27] Let X1, Xy, ..., X, be n independent variables. We are given tRgX; € [a;,[3i]] =1
for 1 <i <n.We define %= X; + ...+ X, and EX] is the expected value of X. We have that

02

PIX —E[X] >\ <e =a6i-a?

and
2}\2

PIX —E[X] < —A] <e TLabia)

for anyA > 0.

B LF1 - full recovery of the secret

We provide here an example of thé1 algorithm, for theLPNs120 125 instance, where we recover the
full secret. We provide the values af b, n and time complexity to show that indeed the number of
queries for the first iteration, dominates the number of iggareeded later on. Also, this shows that the
time complexity of recovering the first block dominates tbtaktime complexity. Fot PNs120.125 we
obtain the following values:

The way one can interpret this table is the followindi1 recovers first 74 bits by taking = 7
and requiring 2°°° queries. The total complexity of this step, i.e. the redurtisolving and updating
operation, is of 343 bit operations. NextLF1 solvesLPN43g0.125 and continues this process until it
recovers the whole secret.

We can easily see that indeed the number of queries and tieectimplexity of the first block
dominate the other values.

30



Table 24: Full secret recovery for the instaid®Ns120.125

i a b logyn logyt
7 74 7659 8843
63 6568 7729
54 6152 7291
54 5632 6728
45 4732 5802
37 3937 4980
31 3498 4514
31 3300 4266
25 2702 3636
20 2256 3156
16 2101 2967
16 1772 2579
12 1489 2251
12 1330 2019
11 1138 1736
6 926 1410
5 830 1169
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