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Abstract

The exact hardness of computing a Nash equilibrium is a fundamental open question in
algorithmic game theory. This problem is complete for the complexity class PPAD. It is well
known that problems in PPAD cannot be NP-complete unless NP = coNP. Therefore, a natural
direction is to reduce the hardness of PPAD to the hardness of problems used in cryptography.

Bitansky, Paneth, and Rosen [FOCS 2015] prove the hardness of PPAD assuming the ex-
istence of quasi-polynomially hard indistinguishability obfuscation and sub-exponentially hard
one-way functions. This leaves open the possibility of basing PPAD hardness on simpler, poly-
nomially hard, computational assumptions.

We make further progress in this direction and reduce PPAD hardness directly to polyno-
mially hard assumptions. Our first result proves hardness of PPAD assuming the existence of
polynomially hard indistinguishability obfuscation (iO) and one-way permutations. While this
improves upon Bitansky et al.’s work, it does not give us a reduction to simpler, polynomi-
ally hard computational assumption because constructions of iO inherently seems to require
assumptions with sub-exponential hardness. In contrast, public key functional encryption is a
much simpler primitive and does not suffer from this drawback. Our second result shows that
PPAD hardness can be based on polynomially hard compact public key functional encryption and
one-way permutations. Our results further demonstrate the power of polynomially hard com-
pact public key functional encryption which is believed to be weaker than indistinguishability
obfuscation. Our techniques are general and we expect them to have various applications.
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1 Introduction

The problem of computing a Nash equilibrium is fundamental to algorithmic game theory. The
hardness of this problem has attracted significant attention. Since a mixed Nash equilibrium is
guaranteed to exist for every game [Nas51], the problem belongs to the complexity class TFNP
[MP91]. In a series of works, originating from Papadimitriou [Pap94], the problem was established
to be complete for the complexity class PPAD [DGP09, CDT09]. PPAD is a subclass of TFNP
containing problems that reduce (in polynomial time) to a special problem called as end-of-line
(or EOL in short). Informally, EOL instance includes a “succinct” description of an exponential
sized directed graph where each node has in-degree and out-degree at most 1 and a source node
having in-degree 0 and out-degree 1. The goal is to find another source or a sink (having in-degree
1 and out-degree 0). It is easy to observe that such a node is guaranteed to exist by a simple parity
argument.

The exact hardness of this problem, however, is still not fully understood. Since the class PPAD
is total, it is unlikely to contain NP-complete problems unless polynomial hierarchy collapses to
the first level [MP91, Pap94]. This is similar to the status of hardness assumptions in cryptog-
raphy which are not believed to be NP-complete, but nevertheless, hard. Due to this similarity,
cryptographic problems were suggested as natural candidates in [Pap94] for studying the hard-
ness of PPAD. Indeed, the hardness of some total super-classes of PPAD, such as PPA and PPP,
can already be reduced to “standard” cryptographic problems like factoring and collision-resistant
hashing [Jer12]. However, such a reduction is not known for PPAD.

A natural extension of this idea is to consider cryptographic problems with a richer and more
powerful structure. One of the richest cryptographic structure is program obfuscation as formulated
by Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang [BGI+12]. It is a compiler
to transform any computer program into an “unintelligible one” while preserving its functionality.
Ideally, the obfuscation of a program should be a “virtual black-box” (VBB), i.e., access to the
obfuscated program should be no better than access to a black-box implementing the program
[BGI+12]. Abbot, Kane and Valiant [AKV04] show that PPAD-hardness can be based on VBB
obfuscation of a natural pseudo random function. Unfortunately, VBB obfuscation is impossible in
general [BGI+12], and there are strong limitations to obfuscating pseudorandom functions [GK05,
BCC+14], including the one in [AKV04].

A natural relaxation of VBB obfuscation is indistinguishability obfuscation (iO) [BGI+12].
Informally, iO guarantees that the obfuscation of a circuit looks indistinguishable from the ob-
fuscation of any other, functionally equivalent, circuit of same size. Starting from the work
of Garg, Gentry, Halevi, Raykova, Sahai and Waters [GGH+13b], several candidate construc-
tions [BR14, BGK+14, PST14, GLSW15, Zim15, AB15, GMS16] for iO have been suggested
based on various assumptions on multilinear maps [GGH13a] and public key functional encryp-
tion [AJ15, BV15a, AJS15].

Motivated by the progress on obfuscation, Bitansky, Paneth and Rosen [BPR15] revisit the
hardness of PPAD and provide an elegant reduction to the hardness of iO. This is the first reduction
of its kind which reduces PPAD-hardness to the security of a concrete and plausible cryptographic
primitive. This, together with the progress on iO, gives hope to the possibility of basing PPAD-
hardness on simpler, more standard cryptographic primitives.
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1.1 Our contribution

In this work, we revisit the problem of reducing PPAD-hardness to rich and expressive cryptographic
systems. We build upon the work of [BPR15] with two specific goals:

• Rely on polynomial-hardness of iO: One drawback of the BPR reduction is that it
requires iO schemes with at least quasi-polynomial security. It is not clear if such a large
loss in the reduction is necessary. Our first goal is to obtain an improved, polynomial time
reduction.

• Rely on simpler, polynomially hard, assumptions: While tremendous progress has
been made on justifying the security of current iO schemes, ultimately the security of the
resulting constructions still either relies on an exponential number of assumptions (basically,
one per pair of circuits), or a polynomial set of assumptions with exponential loss in the
reduction. Our second goal is thus to completely get rid of iO or any other component
with non-polynomial time flavor, and reduce PPAD-hardness to simpler, polynomially hard,
assumptions.

With respect to our first goal, we prove the following theorem:

Theorem 1 Assuming the existence of polynomially hard one-way permutations and indistin-
guishability obfuscation for P/poly, the end-of-line problem is hard for polynomial-time algo-
rithms.

This polynomially reduces the hardness of PPAD to iO since PPAD is the class of problems that
are reducible to the end-of-line problem.

With respect to our second goal, we show that PPAD-hardness can be reduced to the security of
compact public-key functional encryption (FE) in polynomial time. We note that polynomially
hard public key functional encryption is a polynomially falsifiable assumption [Nao03].

A public key functional encryption (FE) scheme for general circuits [BSW11, O’N10] is similar
to an ordinary (public-key) encryption scheme with the crucial difference that there are many
decryption keys, each of which has an associated function f ; when an encryption of a message m is
decrypted with a key for function f , it decrypts to the value f(m). The intuitive security guarantee
is that given the secret key corresponding to f and a ciphertext encrypting m, an adversary would
not be able to get any information about m except f(m). Our second result proves the following
theorem:

Theorem 2 Assuming the existence of polynomially-hard one-way permutations and compact pub-
lic key functional encryption for general circuits, the end-of-line problem is hard for polynomial-
time algorithms.

Compact functional encryption, as demonstrated by the recent results of Bitansky and Vaikun-
tanathan [BV15b] and Ananth, Jain and Sahai [AJS15], can be generically constructed from the so
called “collusion-resistant function encryption with collusion-succinct ciphertexts,” which in turn
can be constructed from simpler polynomial hardness assumptions over multi-linear maps, as shown
by Garg, Gentry, Halevi, and Zhandry [GGHZ16]. This is in sharp contrast to iO where all con-
structions still inherently seem to require exponential loss in the security reduction.1 Combined

1An informal explanation of this observation appears in [GLSW15].
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with the results of [GGHZ16, BV15b, AJS15], theorem 2 bases PPAD-hardness on simpler polyno-
mial hardness assumptions. It is interesting to note that compact public key functional encryption
implies indistinguishability obfuscators [AJ15, BV15a] but with sub-exponential security loss.

1.2 Our Techniques

We now present a technical overview of our approach. Building upon the work of [BPR15], it
suffices to show a sampling procedure that samples hard instances of sink-of-verifiable-line
problem. We will first show how to generate such instances using polynomially-hard iO and then
discuss how to do the same using polynomially-hard FE .

1.2.1 PPAD Hardness from Indistinguishability Obfuscation

Let us start by recalling the definition of PPAD. The class PPAD is defined to be the set of all total
search problems that are polynomial time reducible to the end-of-line (EOL) problem. Intuitively,
an EOL instance includes a succinct description of an exponential sized directed graph with each
node having in-degree and out-degree at most 1. Given a source node (which has in-degree 0 and
out-degree 1), the goal is to find another source or a sink (which has in-degree 1 and out-degree 0).
By a simple parity argument one can observe that such a node is guaranteed to exist.

The hardness of PPAD was proven in [BPR15] by considering a different problem, proposed
in [AKV04], called sink-of-verifiable-line problem (SVL) in [BPR15]. It was shown that SVL
reduces to the EOL problem [AKV04, BPR15], and therefore hardness of SVL implies hardness of
EOL and PPAD.

An instance of the SVL problem is specified by a tuple (xs, Succ,Ver, T ) where xs is called the
source node, Succ and Ver are called successor and verification circuits respectively, and T is a
target index. Succ succinctly defines an (exponential sized) directed line graph starting from the
source node xs. That is, a node x is connected to a node y in the graph through an outgoing edge
if and only if y = Succ(x). Ver is used to verify whether a given node is the ith node (starting
from the source node xs) on the path defined by Succ. To be more precise, Ver(x, i) = 1 if and
only if x = Succi−1(xs). The goal, given the instance, is to find the T -th node (Target) on the
path. We want to construct an efficiently samplable distribution over instances of SVL for which
no polynomial time algorithm can find the T -th node with non-negligible probability.

BPR approach. Bitansky et al., building upon [AKV04], consider a line graph where the i-th
node is defined by the output of pseudorandom function (PRF) on i, i.e., the i-th node is (i, σ) such
that σ = PRFS(i) for a randomly chosen key S. Intuitively, σ is a signature on i. The successor
circuit of the hard SVL instance, Succ, is then defined by obfuscating a “verify and sign” circuit,
VSS , using general purpose iO; VSS simply outputs the next point (i+ 1,PRFS(i+ 1)) if the input
is a valid point (i, σ) and rejects otherwise. The verification circuit Ver simply tests that a given
input will not be rejected by the successor circuit. The source node is given by (1,PRFS(1)) and
the target index T is set to a super-polynomial value in the security parameter.

Intuitively, the hardness of the above instance relies on the fact that it is impossible to obtain
a signature on a node before obtaining the signature on the previous node in the path. Since T is
super-polynomial in the security parameter, it follows that no polynomial time algorithm can obtain
a signature on T . While the underlying idea of this reduction is intuitive, reducing its hardness to
iO is more involved. This is shown by first changing the obfuscated circuit Succ so that it does not
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behave correctly on a randomly chosen point u, and simply outputs ⊥. One can think of the Succ
circuit being “punctured” at point u. This would also imply that the “punctured” circuit does not
output a signature on u+ 1 unlike the original circuit. The next step uses this fact to “puncture”
the circuit at the point u+1. This step is realized through the “punctured” programming approach
of Sahai and Waters [SW14]. At a high level, this process is then repeated for the next point u+ 2,
and then for u + 3, and so on, until the circuit does not have the ability to sign on any point in
the interval [u, T ]. Once the circuit is “punctured” at T , it can be observed that no algorithm
can find the T th node with non-zero probability. Performing these changes however, requires more
care since the number of points in [u, T ] is not polynomial. In hindsight, the primary reason for
sub-exponential loss in this approach is because it is not possible to “puncture” a larger interval in
a “single shot.” In particular, to be able to use the security of iO, this approach must increase the
“punctured” interval by one point at a time.

Our approach: many chains of varying length. Our main idea is to introduce a richer
structure to the nodes in the graph, that avoids the need to increase the “punctured” interval by
one point at a time. Instead, we want to make longer “jumps,” sometimes of exponential length,
in the proof strategy. Specifically, we aim to make only polynomially many jumps in total to travel
from u to T .

In particular, instead of considering one signature per node, we consider κ signatures for every
node where 2κ is the total number of nodes on the line. That is, a node in our graph is of the
form (i, σ1, . . . σκ) where σj is a signature on the first j bits of i computed using a key Sj (different
for each index) for every j ∈ [κ]. The successor circuit is obfuscation of a program which simply
checks each signature on appropriate prefixes of i, and if so, it signs all κ prefixes of i + 1 using
appropriate keys. The verification circuit is as before, the source node is simply the signatures on
the first node, i.e, (0κ,PRFS1(0), . . . ,PRFSκ(0κ)), and T = 2κ−1. Observe that the BPR reduction
is equivalent to having only σκ.

We now explain how this structure on the nodes helps us in achieving a polynomial loss in the
reduction. As before, we start by “puncturing” the successor circuit on a random point u. To
illustrate the main idea, let us assume that the binary representation of u has k trailing 1s, i.e., u
is of the form: u1 · · ·uκ−k−1‖01k where 1 ≤ k ≤ κ. Then, u + 1 = u1 · · ·uκ−k−1‖10k, i.e., it has k
trailing 0s. Observe that:

1. The first κ − k prefix bits of u + 1 are identical to the first κ − k prefix bits of all points in
the interval [u+ 1, u+ 2k].

2. Signature σκ−k (corresponding to the prefix of length κ− k) for the node u+ 1 is not needed
(for checking and signing) anywhere else on the line graph except for nodes in the interval
[u+ 1, u+ 2k].

As before, suppose that we have punctured the successor circuit at a random node u. Then, the
fact that the punctured circuit does not output any signature on u + 1 means that it does not
output the signature σκ−k on the first κ− k bits of u+ 1; consequently, and most importantly, this
means that it does not output this signature on the first κ − k bits of any point in the interval
[u + 1, u + 2k]. This allows us to increase the interval from [u + 1, u + 2k] by considering only a
constant number of hybrids. We then repeat this process by considering u + 2k as our next point
and iterate until we reach T .
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Metaphorically, the signatures can be thought of as “virtual chains” emanating from each node
and connecting to other nodes. The first chain coming out of a node i is connected to i’s immediate
neighbor which is i + 1. The second chain is connected to a node two hops away from i and the
j-th chain is connected to a node 2j hops away from i and so on. The number of chains coming
out from a node i is one more than the number of trailing ones in the binary representation of i.
Equivalently, the number of chains coming out of i is the number of bits that change from i to i+1.
Puncturing the circuit is viewed as cutting chains of appropriate lengths between points. While
BPR strategy always cuts a chain of length 1, our proof strategy cuts the longest possible chain it
can and then iterates the process again until it reaches the target T . See Figure 1 for an illustration.

0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111

u

Q

Figure 1: Illustration of cutting a chain for u = 0111

While implementing the above idea we face the difficulty that for a random u the number of
chains coming out of u could be very small (as small as 1). We get over this difficulty by initially
cutting “smaller” length chains until we have the ability to cut “larger” length chains. Intuitively,
this is made possible since the number of trailing 1s in u+ 2k is strictly larger than the number of
trailing 1s (given by k) in u. We show that we need to cut no more than a linear (in the security
parameter κ) number of chains to reach T and hence our reduction suffers only a polynomial (in
fact linear) loss in the security parameter.

1.2.2 PPAD Hardness from Functional Encryption

We now give a technical overview of our hardness result for PPAD from compact functional en-
cryption with polynomial loss. As noted earlier, although iO can be reduced to compact FE
[AJ15, BV15a], we cannot directly rely on this reduction since it suffers sub-exponential security
loss. Instead, we try to directly reduce PPAD-hardness to compact FE .

To directly reduce PPAD-hardness to FE , we follow the same approach as before, and gener-
ate hard on average instances of SVL using functional encryption. To demonstrate the technical
challenges while proving the result from FE we will be considering a single PRF key, as in BPR
[BPR15], instead of our idea of using κ keys to implement “multiple chains of varying length.” The
scenario with a single PRF key already captures the main technical challenges while keeping the
exposition simple. Later, we will explain how to combine the two ideas together to obtain a direct
polynomial reduction to FE .

The line graph implicitly defined by this successor circuit will be similar to the BPR reduction
as before. The successor circuit encodes a pseudo random function PRFS : {0, 1}κ → {0, 1}κ in its
description. The source node is given by (0κ,PRFS(0κ)). A node (x, σ) is present on the line graph
if and only if σ = PRFS(x). The successor circuit takes as input (x, σ), checks the validity of the
node and if the node is valid outputs (x+ 1,PRFS(x+ 1)). The target index is given by 2κ − 1.
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Our goal is to produce an “obfuscated” (or encrypted) version of this successor circuit using FE .
To do this, we will rely on the “binary tree construction” idea of [AJ15, BV15a] for constructing
iO from FE . Note that though this reduction suffers from sub-exponential loss and we tailor the
construction of our successor circuit so that it suffers only from a polynomial loss.

Binary tree based evaluation [AJ15, BV15a]. Let us first recall the main ideas of [AJ15,
BV15a] for constructing iO from FE . We present an “over-simplified” version of their construction
which is actually sufficient for our purposes but is not sufficient for achieving iO security.

An “obfuscation” for a circuit C : {0, 1}κ → {0, 1}∗ is a sequence of κ + 1 functional keys
FSK1, · · · ,FSKκ+1 generated using independently sampled master secret keys MSK1, · · · ,MSKκ+1

along with a ciphertext cφ encrypting the empty string under public-key PK1 (corresponding to
MSK1). The first κ function keys implement the “bit-extension” functionality. That is, the ith

function key corresponds to a function that takes in an (i− 1)-bit string y ∈ {0, 1}i−1 and outputs
functional encryptions of y‖0 and y‖1 under PKi+1.2 The function key FSKκ+1 corresponds to the
circuit C.

To evaluate the obfuscated circuit on an input x ∈ {0, 1}κ, one does the following: decrypt
cφ under FSK1 to obtain encryptions of 0 and 1. Depending on the bit x1, choose either the left
or right encryption and decrypt it using FSK2 and so on. Thus, in κ steps one can obtain an
encryption of x under PKκ+1 which can be used to compute C(x) using FSKκ+1. One can think
of the construction as having a binary tree structure where evaluating the circuit on an input x
corresponds to traversing along the path labeled x.

Sub-exponential loss. An intuitive reason for why this construction requires sub-exponential
loss to achieve iO is that the behavior of the obfuscated circuit should be changed on all κ-bit
inputs which are 2κ in number. The key insight in our reduction is that we can achieve our goals by
changing the behavior of the obfuscated circuit at only polynomial many inputs and thus incurring
only a polynomial security loss.

Our Construction. We will motivate our construction through a series of attempts and fixes.

First attempt. Our first attempt was to mimic the construction of [AJ15, BV15a]. We generate
2κ+1 functional keys FSK1, · · · ,FSK2κ+1 where the first 2κ of them correspond to the bit-extension
function used for encrypting (x, σ) under PK2κ+1 and FSK2κ+1 corresponds to the circuit Next that
checks the validity of the node (x, σ) and outputs the next node in the graph if (x, σ) is valid. The
main question with this approach is: How does the circuit Next check the validity of the input node
and output the next node in the path? The circuit Next must somehow have access to the PRF key
S but this access should not be “visible” to the outside world.

We definitely cannot hardwire the PRF key S in the circuit as the current constructions of public
key functional encryption schemes do not provide any meaningful notions of “function-privacy.” One
possible approach is to “propagate” the key S along the entire tree. That is, encrypt the key S in
the ciphertext cφ and the bit extension functions output encryptions that also includes S. Though
this approach sounds promising, we are unable to use the “punctured” programming techniques
of Sahai and Waters that were crucial in the reduction of PPAD hardness to iO. In particular, to

2The randomness needed for generating the encryptions is obtained using a PRF.

7



puncture the key S at a point x we need to puncture the key along every path thus incurring a sub-
exponential loss that we wanted to avoid. To fix this issue, we develop “fine-grained” puncturing
techniques.

Second attempt: “prefix puncturing.” To solve the problem explained earlier, we develop
techniques to “surgically” puncture the PRF key S along a path x without affecting the distribution
on rest of the paths. We now explain the details.

Every string y ∈ {0, 1}≤κ has a natural association with a node in the binary tree where the
root is associated with the empty string φ. At a high level, we want the set of keys Ky appearing
in node y to have the following properties:

• The keys derived from Ky can be used for checking the validity of every node in the subtree
rooted at y. This translates to be able to compute the PRF value at x for every (x, σ) that
appears in the subtree rooted at y. We denote this property as prefix puncturability.

• The keys derived from Ky can be used for computing the next node for every node in the
subtree rooted at y. This would translate to the ability to compute the PRF value at x + 1
for every (x, σ) appearing at the subtree rooted at y.

A pseudorandom function that has a natural binary tree structure and has the prefix-puncturable
property is the construction due to Goldreich, Goldwasser and Micali [GGM86]. We exploit this
property in the GGM construction to propagate the “prefix-punctured” keys along the binary tree.

At every node y ∈ {0, 1}≤κ, we propagate two keys Sy, Sy+1 where Sy denotes the key S prefix-
punctured at string y. Intuitively, Sy is the key used for checking the input node is valid and Sy+1

is used for generating the next node on the path.3 The bit extension function generates Sy‖0, Sy‖0+1

and Sy‖1, Sy‖1+1 from Sy, Sy+1 and propagates these values along with y‖0 and y‖1 respectively.
The circuit Next receives Sx, Sx+1 where x ∈ {0, 1}κ and checks the validity of the input signature
using Sx and generates the next node in the path if the input is valid using Sx+1.

Note that the puncturing of the keys does not happen after the level κ as by this time we have
parsed the x which completely determines the the key Sx, Sx+1. Therefore, we need to propagate
Sx, Sx+1 along the entire subtree rooted at x where we parse σ. This creates the following problem:
consider a scenario where the successor circuit already outputs ⊥ on the point x and we are trying
to extend the interval to include x+1. Recall that the crucial idea behind the ability to increase the
interval is that Sx+1 does not occur anywhere else in the computation of the circuit. We observe
that Sx+1 gets propagated along the entire subtree (of exponential size) rooted at x where the input
σ is parsed. Hence, to “remove all traces” of Sx+1 along the subtree rooted at x, we need to incur
a sub-exponential loss.

Final construction: “encrypt the next signature.” We solve the above problem by “implic-
itly” checking whether the given node is valid. This implicit checking is facilitated by encrypting
the signature on the next node by using the signature on the current node. Intuitively, an evaluator
can obtain the signature on the next node if and only if he holds a valid signature on the current
node.

3Note that instead of Sy+1 it is enough to propagate Sy+1‖0κ−|y| . It is in fact crucial for our reduction that we
propagate Sy+1‖0κ−|y| instead of Sy+1. But we will use Sy+1 for ease of notation and exposition.

8



Instead of propagating the keys Sx, Sx+1 in clear in the subtree parsing σ, we “cut-short” the
tree at level where x is parsed. Once x is parsed (and hence we have the values Sx and Sx+1), we
apply a length doubling injective pseudo random generator PRG on the signature Sx to obtain two
halves PRG0(Sx) and PRG1(Sx). We encrypt Sx+1 under PRG1(Sx) and output the encryption along
with PRG0(Sx). The Next circuit takes σ,PRG0(Sx) and the encrypted version of Sx+1 and checks
whether PRG0(σ) = PRG0(Sx) 4 and if yes it decrypts using PRG1(σ) to obtain Sx+1. Notice that
now we don’t run into the same problem while trying to increase the interval to include Sx+1. This
is because we can first change Sx to a random string by relying on pseudo randomness at punctured
point property of GGM PRF and then relying on semantic security of secret key encryption we can
change the encryption under PRG1(Sx) to some junk value. Implementing these two steps is non-
trivial and we rely on “hidden trapdoor” technique of Ananth et al. [ABSV15] while generating
the function keys to achieve this.

Note that we still haven’t explained how the successor circuit is “punctured” at a random point
in the first place. To this end, we “artificially” change the honest execution of the circuit to have
a hardwired random value v and the circuit checks if PRG(x) = v and if so outputs ⊥. The honest
execution does not output ⊥ for any input x with overwhelming probability since PRG has sparse
images. We then change this random v to PRG(u) for a random u relying on the security of the
PRG. A consequence of this fix is that even our honest evaluation of the successor circuit looks
somewhat “artificial.” This seems necessary to circumvent the sub-exponential loss incurred while
constructing obfuscation from functional encryption.

Putting it all together. To show hardness of PPAD from FE by incurring polynomial loss in
the security reduction we need to combine the above ideas with that of “multiple-chains of varying
length”. As explained in the chain-cutting technique we generate κ GGM keys S1, · · · , Sκ. We
propagate the “prefix-punctured” keys corresponding to every index i ∈ [κ] along every node in the
binary tree. A careful reader might have noticed that though it is necessary to check the validity
of the input signatures for every prefix, it is actually sufficient to generate signatures on the next
node on the path only for those bit positions that change when incrementing by 1. This is because
for the rest of the bit positions that share the same prefix with the input node and we can just
output those input signatures along with those newly computed ones, provided the input is valid.
This observation is in fact crucial to prove the security of our construction. We need to ensure that
the Next circuit must have the ability to check the validity of every signature but it has access only
to those prefix punctured keys corresponding to the bit positions that change when incrementing
by 1.

We satisfy these two “conflicting” properties by decoupling the process of checking the input
signatures and the process of generating the next node on the path. In order to check the input
signatures we propagate PRG0(Si,x) for every i ∈ [κ] and to generate the signatures on the next
node on the path we propagate an encrypted version of Sj,x+1 under PRG1(Sj,x) only for those bits
j that change when incrementing x.

4We need this explicit check for the verification circuit to decide if a particular node is an ith node or not. Also,
we need a stronger property on pseudo random generator called as left half injectivity for this check to be correct
always.
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1.3 Subsequent Work

Garg, Pandey, Srinivasan and Zhandry in [GPSZ16] extended our techniques to base Trapdoor
Permutations on polynomial hardness of compact Functional Encryption. In the same work, they
also showed how to base Non-Interactive Key Exchange (NIKE) for unbounded parties from poly-
nomially hard compact Functional Encryption. Recently, Garg and Srinivasan [GS16] extended
our techniques to construct adaptively secure Functional Encryption against unbounded collusions
from single-key, selectively secure Functional encryption with weakly compact ciphertexts.

Rosen, Segev and Shahaf [RSS16] investigated the possibility of basing average-case PPAD
hardness on standard cryptographic assumptions. They showed that average-case PPAD hardness
does not imply one-way functions in a black-box manner and average-case SVL hardness cannot
be based on injective trapdoor functions in a black-box manner. An implication of this work is
that it might be possible to base PPAD hardness on one-way functions but such a result has to use
techniques that significantly deviate from Bitansky et al. [BPR15] and our work.

Hubác̆ek and Yogev [HY16] extended our result to base hardness of a complexity class CLS
on compact Functional Encryption. CLS is a sub-class of PPAD and captures Continuous Local
Search problems. They showed a reduction between the SVL problem and a problem called as
end-of-metered-line which is contained in CLS. This allowed them to base hardness of CLS on
polynomially hard compact Functional Encryption.

2 PPAD

A large part of this section is taken verbatim from [BPR15]. A search problem is given by a tuple
(I,R). I defines the set of instances and R is an NP relation. Given x ∈ I, the goal is to find a
witness w (if it exists) such that R(x,w) = 1. We say that a search problem (I1, R1) polynomial
time reduces to another search problem (I2, R2) if there exists polynomial time algorithms P,Q such
that for every x1 ∈ I1, P (x1) ∈ I2 and given w2 such that (P (x1), w2) ∈ R2, R1(x1, Q(w2)) = 1.

A search problem is said to be total if for any x ∈ {0, 1}∗, there exists a polynomial time
procedure to test whether x ∈ I and for all x ∈ I, the set of witnesses w such that R(x,w) = 1 is
non-empty. The class of total search problems is denoted by TFNP. PPAD [Pap94] is a subset of
TFNP and is defined by its complete problem called as end-of-line (abbreviated as EOL).

Definition 3 ([Pap94]) EOL = {IEOL, REOL} where IEOL = {(xs, Succ,
Pred) : Succ(xs) 6= xs = Pred(xs)} and REOL((xs,Succ,Pred), w) = 1 iff

(
Pred(Succ(w)) 6= w

)
∨(

Succ(Pred(w)) 6= w ∧ w 6= xs).

Definition 4 ([Pap94]) The complexity class PPAD is the set of all search problems (I,R) such
that (I,R) ∈ TFNP and (I,R) polynomial time reduces to EOL.

A related problem to EOL is the sink-of-verifiable-line (abbreviated as SVL) which is
defined as follows:

Definition 5 ([AKV04, BPR15]) SVL = {ISVL, RSVL} where ISVL = {(xs, Succ,Ver, T )} and
RSVL((xs, Succ,Ver, T ), w) = 1 iff

(
Ver(w, T ) = 1

)
.

SVL instance defines a single directed path with the source being xs. Succ is the successor circuit
and there is a directed edge between u and v if and only if Succ(u) = v. Ver is the verification
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circuit and is used to test whether a given node is the ith node from xs. That is, Ver(x, i) = 1
iff x = Succi−1(xs). The goal is to find the T th node in the path. It is easy to observe that for
every valid SVL instance the set of witness w is not empty. But SVL may not be total since there
is no known efficient procedure to test whether the instance is valid or not. But it was shown in
[AKV04, BPR15] that SVL polynomial time reduces to EOL.

Lemma 6 ([AKV04, BPR15]) SVL polynomial time reduces to EOL.

3 Preliminaries

κ denotes the security parameter. A function µ(·) : N → R+ is said to be negligible if for all
polynomials poly(·), µ(κ) < 1

poly(κ) for large enough κ. For a probabilistic algorithm A, we denote

by A(x; r) the output of A on input x with the content of the random tape being r. We will omit
r when it is implicit from the context. We denote y ← A(x) as the process of sampling y from the

output distribution of A(x) with a uniform random tape. For a finite set S, we denote x
$← S as the

process of sampling x uniformly from the set S. We model non-uniform adversaries A = {Aκ} as
circuits such that for all κ, Aκ is of size p(κ) where p(·) is a polynomial. We will drop the subscript
κ from the adversary’s description when it is clear from the context. We will also assume that
all algorithms are given the unary representation of security parameter 1κ as input and will not
mention this explicitly when it is clear from the context. We will use PPT to denote Probabilistic
Polynomial Time algorithm. We denote [κ] to be the set {1, · · · , k}. We will use negl(·) to denote
an unspecified negligible function and poly(·) to denote an unspecified polynomial.

A binary string x ∈ {0, 1}κ is represented as x1 · · ·xκ. x1 is the most significant (or the highest
order bit) and xκ is the least significant (or the lowest order bit). The i-bit prefix x1 · · ·xi of the
binary string x is denoted by x[i]. We use x‖y to denote concatenation of binary strings x and y.
We say that a binary string y is a prefix of x if and only if there exists a string z ∈ {0, 1}∗ such
that x = y‖z.

Injective Pseudo Random Generator. We give the definition of an injective Pseudo Random
Generator PRG.

Definition 7 An injective pseudo random generator PRG is a deterministic polynomial time algo-
rithm with the following properties:

• Expansion: There exists a polynomial `(·) (called as the expansion factor) such that for all
κ and x ∈ {0, 1}κ, |PRG(x)| = `(κ).

• Pseudo randomness: For all κ and for all poly sized adversaries A,

|Pr[A(PRG(Uκ)) = 1]− Pr[A(U`(κ)) = 1]| ≤ negl(κ)

where Ui denotes the uniform distribution on {0, 1}i.

• Injectivity: For every κ and for all x, x′ ∈ {0, 1}κ such that x 6= x′, PRG(x) 6= PRG(x′).

We in fact need an additional property from an injective PRG. Let us consider PRG where the
expansion factor (or the output length) is given by 2 · `(·). Let us denote the first `(·) bits of the
output of the PRG by the function PRG0 and the next `(·) bits of the output of the PRG by PRG1.
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Definition 8 A pseudo random generator PRG is said to be left half injective if for every κ and
for all x, x′ ∈ {0, 1}κ such that x 6= x′. PRG0(x) 6= PRG0(x′).

Note that left half injective PRG is also an injective PRG. We note that the standard construction
of pseudo random generator for arbitrary polynomial stretch from one-way permutations is left half
injective. For completeness, we state the construction:

Lemma 9 Assuming the existence of one-way permutations, there exists a pseudo random gener-
ator that is left half injective.

Proof Let f : {0, 1}κ → {0, 1}κ be a one-way permutation with hardcore predicate B : {0, 1}κ →
{0, 1} [GL89]. Let G be an algorithm defined as follows: On input x ∈ {0, 1}κ, G(x) = fn(x)‖B(x)‖
B(f(x)) · · ·B(fn−1(x)) where n = 2`(κ) − κ. Clearly, |G(x)| = 2`(κ). The pseudo randomness
property of G(·) follows from the security of hardcore bit. The left half injectivity property follows
from the observation that fn is a permutation.

Puncturable Pseudo Random Function. We recall the notion of puncturable pseudo random
function from [SW14]. The construction of pseudo random function given in [GGM86] satisfies the
following definition [BW13], [KPTZ13],[BGI14].

Definition 10 A puncturable pseudo random function PRF is a tuple of PPT algorithms
(KeyGenPRF ,PRF,Punc) with the following properties:

• Efficiently Computable: For all κ and for all S ← KeyGenPRF (1κ), PRFS : {0, 1}poly(κ) →
{0, 1}κ is polynomial time computable.

• Functionality is preserved under puncturing: For all κ, for all y ∈ {0, 1}κ and ∀x 6= y,

Pr[PRFS{y}(x) = PRFS(x)] = 1

where S ← KeyGenPRF (1κ) and S{y} ← Punc(S, y).

• Pseudo randomness at punctured points: For all κ, for all y ∈ {0, 1}κ, and for all poly
sized adversaries A

|Pr[A(PRFS(y), S{y}) = 1]− Pr[A(Uκ, S{y}) = 1]| ≤ negl(κ)

where S ← KeyGenPRF (1κ), S{y} ← Punc(S, y) and Uκ denotes the uniform distribution over
{0, 1}κ.

Indistinguishability Obfuscator. We now define Indistinguishability obfuscator from [BGI+12,
GGH+13b].

Definition 11 A PPT algorithm iO is an indistinguishability obfuscator for a family of circuits
{Cκ}κ that satisfies the following properties:

• Correctness: For all κ and for all C ∈ Cκ and for all x,

Pr[iO(C)(x) = C(x)] = 1

where the probability is over the random choices of iO.
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• Security: For all C0, C1 ∈ Cκ such that for all x, C0(x) = C1(x) and for all poly sized
adversaries A,

|Pr[A(iO(C0)) = 1]− Pr[A(iO(C1)) = 1]| ≤ negl(κ)

Functional Encryption. We recall the notion of functional encryption with selective indistin-
guishability based security [BSW11, O’N10].

A functional encryption FE is a tuple of PPT algorithms (FE.Setup,
FE.Enc,FE.KeyGen,FE.Dec) with the message space {0, 1}∗ having the following syntax:

• FE.Setup(1κ) : Takes as input the unary encoding of the security parameter κ and outputs a
public key PK and a master secret key MSK.

• FE.EncPK(m): Takes as input a message m ∈ {0, 1}∗ and outputs an encryption C of m
under the public key PK.

• FE.KeyGen(MSK, f) : Takes as input the master secret key MSK and a function f (given as
a circuit) as input and outputs the function key FSKf .

• FE.Dec(FSKf , C): Takes as input the function key FSKf and the ciphertext C and outputs a
string y.

Definition 12 (Correctness) The functional encryption scheme FE is correct if for all κ and
for all messages m ∈ {0, 1}∗,

Pr

y = f(m)

∣∣∣∣∣∣∣∣
(PK,MSK)← FE.Setup(1κ)
C ← FE.EncPK(m)
FSKf ← FE.KeyGen(MSK, f)
y ← FE.Dec(FSKf , C)

 = 1

Definition 13 (Selective Security) For all κ and for all poly sized adversaries A,∣∣Pr[Expt1κ,0,A = 1]− Pr[Expt1κ,1,A = 1]
∣∣ ≤ negl(κ)

where Expt1κ,b,A is defined below:

• Challenge Message Queries: The adversary A outputs two messages m0, m1 such that
|m0| = |m1| to the challenger.

• The challenger samples (PK,MSK) ← FE.Setup(1κ) and generates the challenge ciphertext
C ← FE.EncPK(mb). It then sends (PK,C) to A.

• Function Queries: A submits function queries f to the challenger. The challenger responds
with FSKf ← FE.KeyGen(MSK, f).

• If A makes a query f to functional key generation oracle such that f(m0) 6= f(m1), output
of the experiment is ⊥. Otherwise, the output is b′ which is the output of A.

Remark 14 We say that the functional encryption scheme FE is single-key, selectively se-
cure if the adversary A in Expt1κ,b,A is allowed to query the functional key generation oracle
FE.KeyGen(MSK, ·) on a single function f .
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Definition 15 (Compactness, [AJS15, BV15a, AJ15]) The functional encryption scheme FE
is said to be compact if for all κ ∈ N and for all m ∈ {0, 1}∗ the running time of the encryption
algorithm FE.Enc is poly(κ, |m|).

Bitansky et al. in [BV15b] and Ananth et al. in [AJS15] show a generic transformation from any
collusion-resistant FE for general circuits where the ciphertext size is independent of the number
of collusions (but may depend arbitrarily on the circuit parameters) to a compact FE for general
circuits. The property that the ciphertext size does not depend on the number of collusion is
referred as collusion-succinctness.

Lemma 16 ([BV15b, AJS15]) Assuming the existence of selectively secure collusion-resistant
functional encryption with collusion-succinct ciphertexts, there exists a selectively secure compact
functional encryption scheme.

Symmetric Key Encryption. A Symmetric-Key Encryption scheme SKE is a tuple of algo-
rithms (SK.KeyGen,SK.Enc,SK.Dec) with the following syntax:

• SK.KeyGen(1κ) : Takes as input an unary encoding of the security parameter κ and outputs
a symmetric key SK.

• SK.EncSK(m) : Takes as input a message m ∈ {0, 1}∗ and outputs an encryption C of the
message m under the symmetric key SK.

• SK.DecSK(C): Takes as input a ciphertext C and outputs a message m′.

We say that SKE is correct if for all κ and for all messages m ∈ {0, 1}∗, Pr[SK.DecSK(C) =
m] = 1 where SK ← SK.KeyGen(1κ) and C ← SK.EncSK(m).

Definition 17 For all κ and for all polysized adversaries A,∣∣Pr[Expt1κ,0,A = 1]− Pr[Expt1κ,1,A = 1]
∣∣ ≤ negl(κ)

where Expt1κ,b,A is defined below:

• Challenge Message Queries: The adversary A outputs two messages m0 and m1 such
that |m0| = |m1| for all i ∈ [n].

• The challenger samples SK ← SK.KeyGen(1κ) and generates the challenge ciphertext C where
C ← SK.EncSK(mb). It then sends C to A.

• Output is b′ which is the output of A.

Prefix Puncturable Pseudo Random Functions. We now define the notion of prefix punc-
turable pseudo random function PPRF which is satisfied by the construction of the pseudo random
function in [GGM86].

Definition 18 A prefix puncturable pseudo random function PPRF is a tuple of PPT algorithms
(KeyGenPPRF ,PrefixPunc) satisfying the following properties:
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• Functionality is preserved under repeated puncturing: For all κ, for all y ∈ ∪poly(κ)
k=0 {0, 1}k

and for all x ∈ {0, 1}poly(κ) such that there exists a z ∈ {0, 1}∗ s.t. x = y‖z,

Pr[PrefixPunc(PrefixPunc(S, y), z) = PrefixPunc(S, x)] = 1

where S ← KeyGenPPRF (1κ).

• Pseudorandomness at punctured prefix: For all κ, for all x ∈ {0, 1}poly(κ), and for all
poly sized adversaries A

|Pr[A(PrefixPunc(S, x),Keys) = 1]− Pr[A(Uκ,Keys) = 1]| ≤ negl(κ)

where S ← KeyGenPRF (1κ) and Keys = {PrefixPunc(S, x[i−1]‖(1− xi))}i∈[poly(κ)].

4 Hardness from Indistinguishability Obfuscation

In this section, we prove that SVL is hard on average assuming polynomial hardness of indistin-
guishability obfuscation, injective PRGs and puncturable pseudo random functions. Coupled with
the fact that SVL reduces to EOL (Lemma 6) we have the following theorem.

Theorem 19 Assume the existence of one-way permutations and indistinguishability obfuscation
against polynomial time adversaries then we have that EOL problem is hard for polynomial time
algorithms.

4.1 Hard on Average SVL Instances

In this section, we describe an efficient sampler that provides hard on average instances (xs, Succ,Ver, 1κ)
of SVL. Here xs is the source node and Succ is the successor circuit. We define a directed edge
between u and v if and only if Succ(u) = v. Ver is the verification circuit and is used to test whether
a given node is the kth node from xs. That is, Ver(x, k) = 1 iff x = Succk−1(xs). For the generated
instances, we argue that it is hard to find the 1κ node in the path.

The formal description of hard on average SVL instance sampler is provided in Figure 3. In-
ternally this sampler generates an obfuscation of the Next circuit provided in Figure 2. Next we
describe the SVL instances which we consider informally.

The instance we generate defines a line graph. The nodes in the graph are of the form:
(x, σ1, · · · , σκ) where x ∈ {0, 1}κ. The nodes satisfy the following relation: for all i ∈ [κ],
PRFSi(x[i]) = σi and in that case we say that (x, σ1, · · · , σκ) is valid. The node (x, σ1, · · · , σκ)
is connected to (x+ 1, σ′1, · · · , σ′κ) through an outgoing edge and is connected to (x−1, σ′′1 , · · · , σ′′κ)
through an incoming edge where σ′1, · · · , σ′κ and σ′′1 , · · · , σ′′κ satisfy the above described PRF rela-
tionship. The source node is given by (0κ,PRFS1(0), · · · ,PRFSκ(0κ)).

At a very high level successor circuit of our SVL instances provides a method for moving forward
from one node to the next. The successor circuit in our instances corresponds to an obfuscation of
the Next circuit. This circuit on input a node of the form (x, σ1, · · · , σκ) checks for the validity of
the input. If it is valid, it outputs the next node (x + 1, σ′1 · · ·σ′κ) where σ′i = PRFSi((x+ 1)[i]) in
the path. On an invalid input, it outputs ⊥.

For the hard SVL instances we additionally need to provide a verification circuit. The verification
circuit just uses the successor circuit in a very natural manner. The verification circuit on input
(x, σ1, · · · , σκ, j) outputs 1 if and only if x = j − 1 and NextS1,··· ,Sκ(x, σ1, · · · , σκ) 6= ⊥.
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Input: (x, σ1, · · · , σκ)
Hardcoded Parameters: S1, · · · , Sκ

1. For any i ∈ [κ], if σi 6= PRFSi(x[i]) then output ⊥.

2. If x = 1κ, then output SOLVED.

3. Else output (x+ 1, σ′1, · · · , σ′κ), where for all i ∈ [κ] compute σ′i = PRFSj ((x+ 1)[i]).

Padding: This circuit is padded so that total size of the circuit is p(κ), for some polynomial
p(·) specified later.

Figure 2: NextS1,··· ,Sκ

• Sampled Ingredients: Sample {Si}i∈[κ] ← KeyGenPRF (1κ). For all i ∈ [κ], Si is a seed
for a PRF mapping i bits to κ bits. That is, PRFSi : {0, 1}i → {0, 1}κ.

• Source Node: The source node xs = (0κ,PRFS1(0), · · · ,PRFSκ(0κ)).

• Successor Circuit: The successor circuit is given by iO(NextS1,··· ,Sκ) where the circuit
NextS1,··· ,Sκ is described in Figure 2.

• Verification Circuit: The verification circuit, given by Ver, on input ((x, σ1 · · ·σκ), j)
checks if x = j − 1 and iO(NextS1,··· ,Sκ)((x, σ1 · · ·σκ)) 6= ⊥.

Figure 3: Sampler for hard on average instances of SVL based on hardness of iO

4.2 Proof of Hardness

We start by showing that our sampler generates SVL instances, satisfying constraints in Definition 5.
It suffices to show that the verification circuit Ver on input ((x, σ1, · · · , σκ), j) outputs 1 if and only
if (x, σ1, · · · , σκ) = Succj−1(xs). This follows immediately from our construction. Our verification
circuit Ver outputs 1 if and only if x = j − 1 and NextS1,··· ,Sκ(x, σ1, · · · , σκ) 6= ⊥. The later
requirement means implies that (x, σ1, · · · , σκ) must be valid. Therefore, by design, we have that
(x, σ1, · · · , σκ) = Succj−1(xs).

Next we show that no polynomial time adversary can output a valid value (1κ, σ1, · · · , σκ). We
will show this via a hybrid argument. Starting with providing SVL instance as in distribution from
Figure 3, namely hybrid Hyb0, we move to a hybrid Hyb4,δ(u0) where δ(u0) ≤ κ is a number specified
later. In the final hybrid, the successor circuit returns ⊥ on all inputs of the form (1κ, ·, · · · , ·).
Observe that the advantage of any adversary in solving the SVL instance in this final hybrid is 0.
This proves our claim. We make this change by going through a polynomial (in fact linear) in the
security parameter number of intermediate hybrids.
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Circuit Next∗. In our proof we will extensively use the circuit Next∗S1,··· ,Sκ,u,u′ which is a modifica-
tion of NextS1,··· ,Sκ again padded to size p(κ). The circuit Next∗S1,··· ,Sκ,u,u′ is identical to NextS1,··· ,Sκ
except that on inputs (x, ·, · · · , ·) such that u ≤ x ≤ u′ it outputs ⊥.

Our hybrids. Next we describe our hybrids.

• Hyb0: This hybrid corresponds to SVL instance generation as given in Figure 3.

• Hyb1: In the hybrid we change how the successor circuit is generated. In particular, the
successor circuit is generated as iO(Next1

S1,··· ,Sκ,v) instead of iO(NextS1,··· ,Sκ). The circuit

Next1
S1,··· ,Sκ,v is identical to NextS1,··· ,Sκ except that on input (x, ·, · · · , ·) such that PRG(x) =

v, it outputs ⊥. (Again this circuit is padded to size p(κ).) The value v itself is chosen
uniformly from {0, 1}2κ.

Since v is chosen uniformly at random and PRG is length doubling, with overwhelming prob-
ability we have that for all x ∈ {0, 1}κ PRG(x) 6= v. Hence the circuits NextS1,··· ,Sκ and
Next1

S1,··· ,Sκ,v are functionally equivalent with overwhelming probability. Therefore, indistin-
guishability obfuscation implies computational indistinguishability between Hyb0 and Hyb1.

• Hyb2: In this hybrid we change how the value v, hard-coded in Next1
S1,··· ,Sκ,v is generated.

In particular, instead of sampling v uniformly at random from {0, 1}2κ, we generate v as
PRG(u0) where u0 is sampled uniformly from {0, 1}κ. Here PRG is a length doubling injective
pseudorandom generator.

The indistinguishability between Hyb1 and Hyb2 follows from the pseudorandomness property
of the PRG.

• Hyb3: In this hybrid we change how the successor circuit is generated. Recall that in hybrid
Hyb2, the successor circuit was the obfuscated circuit iO(Next1

S1,··· ,Sκ,PRG(u0)). In Hyb3 we
change it to the obfuscated circuit iO(Next∗S1,··· ,Sκ,u0,u0).

Note that the circuits Next1
S1,··· ,Sκ,PRG(u0) and Next∗S1,··· ,Sκ,u0,u0 are functionally equivalent

because of the injectivity of the PRG. Hence, indistinguishability obfuscation implies compu-
tational indistinguishability between Hyb2 and Hyb3.

• Hyb4,j : In hybrid Hyb4,j for j ∈ {0, . . . , δ(u0)}, the successor circuit is generated as an
obfuscation of the circuit Next∗S1,··· ,Sκ,u0,uj where uj values are described below. Here δ(u0)
is the number of 0 bits in the binary representation of u0.

Defining uj values. For any string u ∈ {0, 1}κ, let f(u) denote the index of the lowest
order bit of u that is 0 (with the index of the highest order bit being 1). More formally, f(u)

is the smallest j such that u = u[j]||1κ−j . For example, if u =

3︷︸︸︷
100 11 then f(u) = 3. Also let

δ(u) be the number of 0 bits in the binary representation of u.

Starting with a value u0 ∈ {0, 1}κ we define a sequence of values such that uj+1 is the value
uj with the f(uj)

th bit set to 1. More formally, uj+1 = uj + 2κ−f(uj). It is easy to see that
for all j ∈ {0, . . . , δ(u0)} we have that δ(uj+1) < δ(uj) and uδ(u0) = 1κ. Moreover, δ(u0) ≤ κ.
The sequence of ui values starting with u0 = 0010 are illustrated in Figure 4.
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0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111

u0 u1 u2 u3

Figure 4: Illustration of the steps starting with u0 = 0010.

Indistinguishability Argument. Observe that the hybrid Hyb4,0 is identical to hybrid
Hyb3 and Hyb4,δ(u0) is such that the successor outputs ⊥ on all inputs of the form (1κ, ·, . . . , ·).
Consequently, no adversary can solve the SVL instance in this final hybrid with probability
better than 0. Hence, in order to complete the proof, it suffices to argue that the hybrids
Hyb4,j and Hyb4,j+1 are computationally indistinguishable for each j ∈ {0, . . . δ(u0)− 1}. We
argue this next.

Indistinguishability between Hyb4,j and Hyb4,j+1. We prove indistinguishability via sequence
of sub-hybrids, where in each successive hybrid we make a small change to the successor circuit.
We let fj as the shorthand for f(uj) and tj = uj [fj ]

+ 1.

• Hyb4,j,1: Let S′fj = Punc(Sfj , tj) and let σ? = PRFSfj (tj). Replace the successor circuit from

an obfuscation of Next∗S1,··· ,Sκ,u0,uj to an obfuscation of Next2
S1,··· ,S′fj ,··· ,Sκ,u0,uj ,σ

? .

Next2
S1,··· ,S′fj ,··· ,Sκ,u0,uj ,σ

? is identical to Next∗S1,··· ,Sκ,u0,uj except that it cannot compute PRFSfj (tj)

because it is provided with a punctured key S′fj . However, the exact same value σ? is hard-

wired in it which it uses whenever needed instead of computing PRFSfj (tj). (The circuit is

appropriately padded to size p(κ).)

Computational indistinguishability between hybrids Hyb4,j and Hyb4,j,1 follows from the se-
curity of the indistinguishability obfuscation scheme.

• Hyb4,j,2: The successor circuit is still an obfuscation of Next2
S1,··· ,S′fj ,··· ,Sκ,u0,uj ,σ

? with S′fj =

Punc(Sfj , tj) just as in hybrid Hyb4,j,1. However, instead of generating σ? = PRFSfj (tj), we

sample σ? ← {0, 1}κ. (The circuit is appropriately padded to size p(κ).)

Computational indistinguishability between hybrids Hyb4,j,1 and Hyb4,j,2 follows from the
pseudorandom at punctured point property of the puncturable PRF.

Important Observations. Let’s understand the role of σ? in the circuit obfuscated above.

Observe that the successor circuit on input (x, σ1, . . . , σfj , . . . , σκ) checks if σfj = σ? for
all x ∈ {uj + 1, . . . , uj+1}. Furthermore, if this check passes then σ? is output for all x ∈
{uj + 1, . . . , uj+1 − 1}.
Next note that σ? is not used for any other purpose. This relies on the fact that in this hybrid
the successor is set to output ⊥ when x = uj . At this point it is instructive to recall that
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x = uj is the only other input on which the successor circuit in Hyb4,j−1 was expected to
output this value without being providing the same value in the input.

• Hyb4,j,3: In this circuit instead of generating the successor circuit as an obfuscation of

Next2
S1,··· ,S′fj ,··· ,Sκ,u0,uj ,σ

? we generate it as an obfuscation of Next3
S1,··· ,S′fj ,··· ,Sκ,u0,uj ,τ

? where

τ∗ = PRG(σ?). Note that Next2 used σ? to only check if σfj = σ? for certain choices of inputs.

In these cases, Next3 is modified to check if PRG(σfj ) = τ? and outputs the provided input
value σfj if the check passes. (The circuit is appropriately padded to size p(κ).)

Note that by the injectivity property of the PRG we have that the circuits considered here are
functionally equivalent and hence computational indistinguishability between hybrids Hyb4,j,2

and Hyb4,j,3 follows from the security of indistinguishability obfuscation.

• Hyb4,j,4: In this hybrid we still obfuscate Next3
S1,··· ,S′fj ,··· ,Sκ,u0,uj ,τ

? but instead of generating

τ∗ = PRG(σ?), we generate τ? as a random string in {0, 1}2κ. (The circuit is appropriately
padded to size p(κ).)

Indistinguishability between Hyb4,j,3 and Hyb4,j,4 follows from the security of the PRG.

• Hyb4,j,5 : In this hybrid we change the successor circuit to now be an obfuscation of

Next3
S1,··· ,S′fj ,··· ,Sκ,u0,uj+1,τ?

.(The circuit is appropriately padded to size p(κ).)

Observe that with overwhelming probability the circuits obfuscated in hybrids Hyb4,j,4 and
Hyb4,j,5 are functionally equivalent and hence computational indistinguishability follows from
indistinguishability obfuscation.

• Hyb4,j,6: Instead of using the puncture key S′fj we use the unpunctured key Sfj . More

specifically, we generate the sampler as an obfuscation of Next∗S1,··· ,Sκ,u0,uj+1
.

Again computational indistinguishability follows by indistinguishability obfuscation.

We set p(·) to be the least polynomial such that all circuits considered in the construction and the
proof are of size at most p(κ). Note that hybrid Hyb4,j,6 is same as Hyb4,j+1. This concludes the
proof.

5 Hardness Result based on Functional Encryption

In this section we show that SVL is hard on average assuming polynomially hard functional en-
cryption and one-way permutations. Coupled with the fact that SVL reduces to EOL (Lemma 6)
we have the following theorem.

Theorem 20 Assume the existence of one-way permutations and functional encryption against
polynomial time adversaries then we have that EOL problem is hard for polynomial time algorithms.

Recall that hard SVL instance based on iO (Section 4), required κ puncturable PRF keys.
Basing hardness on polynomially hard functional encryption requires us to still maintain κ keys.
However, now we need to use prefix-puncturing (see Definition 18) which is more delicate and needs
to be handled carefully. Consequently the construction ends up being complicated. However, the
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special mechanism of prefix-puncturing that we use is crucial to understanding our construction.
So towards simplifying exposition, we start by abstracting out the details of this puncturing and
present a special tree structure and some properties about it next.

5.1 Special Tree Key Structure

Let x[i] denote the first i (higher order) bits of x i.e x1 · · ·xi. Now note that any y ∈ {0, 1}i can
be identified with a node in a binary tree for which nodes at depth i correspond to strings {0, 1}i.
Note that the root of the tree corresponds to the empty string φ. As previously mentioned our
construction needs κ PPRF keys, namely S1, . . . Sκ. The key Si works on inputs of length i. We
use Si,x to denote the key Si prefix punctured at a string x ∈ {0, 1}≤i.

Looking ahead, in our hard-on-average instances of SVL each x ∈ {0, 1}κ will be attached with
associated signature values σ1, . . . , σκ where for each i ∈ [κ] we have that σi = PrefixPunc(Si, x[i]).
Furthermore in our construction given x and the associated signature values, we will need to verify
these values and provide the associated signature values for x + 1, but this has to be done in a
circuitous manner because of several security reasons. We do not delve into the security arguments
right away, but focus on describing the prefix-puncturing that we need to perform.

We next describe the set Vix where x ∈ {0, 1}≤i, which contains suitable prefix-puncturings
of the key Si. Intuitively, we want this set to contain all keys that will allow us to perform the
task of checking the validity of the ith associated signature on any input of the form x‖y where
y ∈ {0, 1}κ−|x| as well as computing the ith associated signature for (x‖y) + 1. Furthermore, it
should suffice to generate Vix‖y for all y. For any node x ∈ {0, 1}≤i, this very naturally translates
to the keys Si,x and Si,x+1. A careful reader might have noticed that instead of Si,x+1, it in fact
suffices to just have Si,(x+1)‖0i−|x| . As it turns out we must only include Si,(x+1)‖0i−|x| . Including
Si,x+1 prevents the Derivability Lemma (Lemma 22) from going through.

Recall that the key Si corresponds to a PPRF key for inputs of length i. Therefore, for x‖y
such that |x| = i, the key Si can be prefix-punctured only for the prefix x = (x‖y)[i]. This raises

the following question. Should we include Si,x and Si,x+1 in all Vix‖y? As we will see later, in
our construction, we carefully decouple the checking of associated signatures from the generation
of new associated signatures. An important consequence, relevant here is that, even though the
checks need to be performed for all x‖y, a new ith associated signature needs to be generated for
only one choice of y, namely 1κ−|x| (the all 1 string of length κ − |x|). This design choice (which
is crucial for polynomial security loss) also allows us to set Vix‖y for all other choices of y to be

∅. In terms of the binary tree structure one can think of this as Vix getting passed only along the
rightmost path in the subtree rooted at x. At a very high level, this allows us to argue that the
key Si (proved formally in Lemma 22) can be punctured at a special point by removing keys fron
Vix for only a polynomial number of choices of x and i. This is crucial for ensuring that our proof
of security has only a polynomial number of hybrids.

Next note that dropping keys from V i
x‖y (such that |x| = i) hinders the checking of associated

signatures provided along with inputs x‖y where y 6= 1κ−i. We tackle this issue by introducing a
vestigial set Wi

x‖y corresponding to each Vix‖y. This vestigial set contains remnants of the keys that

were dropped from Vix. We craft these remnants to be such that they suffice for performing the
necessary checks. In particular, we set these remnants to be the left half of an left half injective
PRG evaluation on the dropped key. More formally, Vix and Vx are defined as follows. In the
following, for any i ∈ [κ] we treat 1i + 1 as 1i, and φ + 1 as φ. Here 1i is a string of i 1s and φ is
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φ

0

00

000 001

01

010 011

1

10

100 101

11

110 111

V2
0 = {S2,0, S2,10}

V2
01 = {S2,01, S2,10}

V2
010 = ∅

W2
0 = ∅

W2
01 = {PRG0(S2,01)}

W2
010 = {PRG0(S2,01)}

Figure 5: Example of values contained in V 2
x for x ∈ {0, 1}≤3.

the empty string.

Vx =
⋃
i∈[κ]

Vix Vix =


{Si,x[i] , Si,x[i]+1} if |x| > i and x = x[i]‖1|x|−i

{Si,x, Si,(x+1)‖0i−|x|} if |x| ≤ i
∅ otherwise

Wx =
⋃
i∈[κ]

Wi
x Wi

x =

{
{PRG0(Si,x[i])} if |x| ≥ i
∅ otherwise

For the empty string x = φ, these sets can be initialized as follows.

Vφ =
⋃
i∈[κ]

Viφ Viφ = {Si}

Wφ =
⋃
i∈[κ]

Wi
φ Wi

φ = ∅

Illustration with an example. Finally we explain what sets V2
x,W

2
x contain when x is a prefix

of 010 in Figure 5. At the root node we have V2
φ = {S2} and Wφ = ∅. The set V2

0 contains S2,0

and S2,10 and the set W2
0 is still empty. Next note that V2

01 contains S2,01, S2,10 and W2
01 contains

PRG0(S2,01). Finally set V2
010 = ∅ and W2

010 continues to contain PRG0(S2,01).

Properties of the special tree key structure. We now prove several properties about the
special tree key structure. Intuitively speaking the crux of the lemmas is the claim V-set for can a
node can be used to derive its children. Furthermore each element in V-set for any node can only
be derived from the V-set of nodes in exactly two different paths.

Lemma 21 (Computability Lemma) There exists an explicit efficient procedure that given Vx,Wx

computes Vx‖0,Wx‖0 and Vx‖1,Wx‖1.
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Proof We start by noting that it suffices to show that for each i, given Vix,W
i
x one can compute

Vix‖0,W
i
x‖0 and Vix‖1,W

i
x‖1. We argue this next. Observe that two cases arise either |x| < i or

|x| ≥ i. We deal with the two cases:

- |x| < i: In this case Vix is {Si,x, Si,(x+1)‖0i−|x|} and these values can be used to compute
Si,x‖0, Si,x‖1, Si,(x‖0)+1 = Si,x‖1 and Si,((x‖1)+1)‖0i−|x|−1 = Si,(x+1)‖0‖0i−|x|−1 = Si,(x+1)‖0i−|x| .

Observe by case by case inspection that these values are sufficient for computing Vix‖0,W
i
x‖0

and Vix‖1,W
i
x‖1 in all cases.

- |x| ≥ i: Note that according to the constraints placed on x by the definition, if Vix = ∅ then
both Vix‖0 and Vix‖1 must be ∅ as well. On the other hand if V i

x 6= ∅ then Vix‖0 is still ∅ while

Vix‖1 = Vix. Additionally, W i
x‖0 = W i

x‖1 = W i
x.

This concludes the proof.

Lemma 22 (Derivability Lemma) For every i ∈ [κ], x ∈ {0, 1}i and x 6= 1i we have that, Si,x+1

can be derived from keys in Viy if and only if y is a prefix of x‖1κ−i or (x+ 1)‖1κ−i. Additionally,
Si,0i can be derived from keys in Vy if and only if y is a prefix of 0i‖1κ−i.

φ

0

00

000 001

01

010 011

1

10

100 101

11

110 111

Figure 6: Black nodes represent the choices of x ∈ {0, 1}≤3 such that V 2
x can be used to derive S2,10.

Proof We start by noting that for any y ∈ {0, 1}>i ∩ {0, 1}≤κ, by definition of V-sets we have
that Viy = Viy[i] or Viy = ∅. Hence it suffices to prove the above lemma for y ∈ {0, 1}≤i.

We first prove that if y is a prefix of x or (x+ 1) then we can derive Si,x+1 from V i
y . Two cases

arise:

- Observe that if y is a prefix of x then we must have that either y is a prefix of x+1 or x+1 =
(y + 1)‖0i−|y|. Next note that by definition of V-sets we have that Viy = {Si,y, Si,(y+1)‖0i−|y|},
and one of these values can be used to compute Si,x+1.

- On the other hand if y is a prefix of x + 1 then again by definition of V-sets we have that
Viy = {Si,y, Si,(y+1)‖0i−|y|}, and Si,y can be used to compute Si,x+1.

Next we show that no other y ∈ {0, 1}≤i allows for such a derivation. Note that by definition
of V-sets we have that V i

y = {Si,y, Si,(y+1)‖0i−|y|}. We will argue that neither Si,y nor Si,(y+1)‖0i−|y|
can be used to derive Si,x+1.
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- We are given that y is not a prefix of x+ 1. This implies that Si,y cannot be used to derive
Si,x+1.

- Now we need to argue that Si,(y+1)‖0i−|y| cannot be used to compute Si,x+1. For this, it suffices

to argue that x + 1 6= (y + 1)‖0i−|y|. If x + 1 = (y + 1)‖0i−|y| then y must be prefix of x.
However, we are given that this is not the case. This proves our claim.

The argument for the value Si,0i follows analogously. This concludes the proof.

5.2 Hard on Average SVL Instances

In this section, we describe our construction for hard on average instance of SVL. In particular,
we describe our sampler that samples hard on average instances (xs,Succ,Ver, 1κ). Here xs is the
source node and Succ is the successor circuit. We define a directed edge between u and v if and
only if Succ(u) = v. Ver is the verification circuit and is used to test whether a given node is the
kth node from xs. That is, Ver(x, k) = 1 iff x = Succk−1(xs). For the generated instances, we argue
that it is hard to find the 1κ node in the path.

In our construction we use a selectively secure functional encryption scheme (FE.Setup,FE.KeyGen,
FE.Enc,FE.Dec), a prefix-puncturable PRF (Definition 18), a semantically secure symmetric key
encryption (SK.KeyGen,SK.Enc, SK.Dec) and injective PRGs having the left half injectivity property
Definition 8. PRG0 and PRG1 denote the left and the right part of the output of this PRG.

The formal description of hard on average SVL instance sampler is provided in Figure 7. Inter-
nally this sampler generates the successor circuit to include functional encryption secret keys for
circuits provided in Figure 8. Next we informally describe the SVL instances considered.

A sampled instance implicitly defines a line graph where each node in the graph is of the form
(x, σ1, · · · , σκ) where σi = PrefixPunc(Si, x[i]) for all i ∈ [κ]. We say a node is valid if the above
condition holds. The node (x, σ1, · · · , σκ) is connected to (x + 1, σ′1, · · · , σ′κ) by an outgoing edge
and to (x−1, σ′′1 , · · · , σ′′κ) by an incoming edge. The successor circuit on input (x, σ1, · · · , σκ) checks
for the validity of the node and if the node is valid it outputs (x+ 1, σ′1, · · · , σ′κ). The verification
circuit on input (x, σ1, · · · , σκ, j) outputs if and only if x = j − 1 and (x, σ1, · · · , σκ) is valid.

We now explain how the successor circuit works. The successor circuit is described by a se-
quence of κ+ 1 secret keys FSK1, · · · ,FSKκ+1 for appropriate functions. There keys are generated
corresponding to independent instances of functional encryption. Along with the keys the successor
circuit also contains a ciphertext cφ that encrypts the empty string, φ, under PK1 alsong with the
key values Vφ and Wφ. Intuitively, the function key FSKi corresponds to a function Fi that takes
as input a binary string x of length i and outputs an encryption of x‖0 and x‖1 under PKi+1.
Additionally these ciphertexts, in addition to x‖0 and x‖1, also contain key values Vx‖0,Wx‖0 and
Vx‖1,Wx‖1 respectively. Recall from Section 5.1 that the keys in these sets are used to test validity
of signatures provides as input and to generate the new ones.

The successor circuit on an input of the form (x, σ1, · · · , σκ) does the following. It first obtains
an encryption of x along with key values Vx and Wx under the public key PKκ+1. This is done
as follows. Start with cφ and decrypt it using key FSK1 to obtain encryptions of 0 and 1. Choose
one of them based on which one is a prefix of x and continue the process. Repeating this process κ
times results in the desired ciphertext. Next decrypt the obtained ciphertext using FSKκ+1 and it
provides some information essential for checking validity of provided input signatures and additional
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- Sampled Ingredients:

1. Sample {Si}i∈[κ] and Kφ from KeyGenPPRF (1κ). Here Si’s is a key that works for i
bit inputs, namely PPRFSi : {0, 1}i → {0, 1}κ for all i ∈ [κ]. Similarly, Kφ works on
inputs of length rand(κ) where rand(·) would be specified later. Initialize Viφ = Si,

Vφ =
⋃
i∈[κ] Viφ and Wφ = ∅.

2. Sample (PKi,MSKi)← FE.Setup(1κ) for all 1 ≤ i ≤ κ+ 1.

3. Sample sk ← SK.KeyGen(1κ) and let Π← SK.Encsk(π) and Λ← SK.Encsk(λ) where
π = 0`(κ) and λ = 0`

′(κ). Here `(·) and `′(·) are appropriate length functions specified
later.

4. Sample v ← {0, 1}2κ.

- Functional encryption ciphertext and keys to simulate obfuscation:

1. For each i ∈ [κ] generate FSKi ← FE.KeyGen(MSKi, Fi,PKi+1,Π) and FSKκ+1 ←
FE.KeyGen(MSKκ+1, Gv,Λ), where Fi,PKi+1,Π and Gv,Λ are circuits described in Fig-
ure 8.

2. Let cφ = FE.EncPK1(φ,Vφ,Wφ, 0
κ, 0)

- Source node: The source node xs is given by (0κ, σ1, · · · , σκ) where σi = PPRFSi(0
i)

for all i ∈ [κ].

- Successor Circuit: The successor circuit Succ in our setting takes as input x, σ1, . . . , σκ
and outputs x+ 1, σ′1, . . . , σ

′
κ if the associated signatures σ1, · · · , σκ are valid. It proceeds

as follows:

1. For i ∈ [κ] compute cx[i−1]‖0, cx[i−1]‖1 := FE.Dec(FSKi, cx[i−1]
).

2. Obtain dx = ((α1, . . . , ακ), (βj , . . . , βκ)) as output of FE.Dec(FSKκ+1, cx). Here j =
f(x) where f(x) is the smallest j such that x = x[j]‖1κ−j .

3. Output ⊥ if PRG0(σi) 6= αi for any i ∈ [κ] or if dx = ⊥.

4. If x = 1κ, output SOLVED.

5. For each i ∈ [j − 1] set σ′i = σi.

6. For each i ∈ {j, . . . , κ} set γi = PRG1(σi) and σ′i as SK.Decγj ,··· ,γκ(βi), decrypting βi
encrypted under γj , . . . γκ.

7. Output (x+ 1, σ′1, · · · , σ′κ).

- Verification Circuit: The verification circuit Ver on input x, σ1, . . . , σκ, j outputs 1 if
Succ on input x, σ1, . . . , σκ doesn’t output ⊥ and x = j − 1 and 0 otherwise.

Figure 7: Hard on average instance for SVL based on hardness of FE.
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Fi,PKi+1,Π

Hardcoded Values: i, PKi+1,Π.
Input: (x ∈ {0, 1}i−1, Vx,Wx, Kx, sk, mode)

1. If (mode = 0) then output FE.EncPKi+1(x‖0,Vx‖0,Wx‖0,Kx‖0, sk,mode;K ′x‖0) and

FE.EncPKi+1(x‖1,Vx‖1,Wx‖1,Kx‖1, sk,mode;K ′x‖1), where for b ∈ {0, 1}, Kx‖b =

PrefixPunc(Kx, b‖0) and K ′x‖b = PrefixPunc(Kx, b‖1) and (Vx‖0,Wx‖0), (Vx‖1,Wx‖1) are

computed using the efficient procedure from the Computability Lemma (Lemma 21).

2. Else recover (x||0, cx‖0) and (x‖1, cx‖1) from SK.Decsk(Π) and output cx‖0 and cx‖1.

Gv,Λ

Hardcoded Values: v, Λ
Input: x ∈ {0, 1}κ,Vx,Wx,Kx, sk,mode

1. If (PRG(x) = v) then output ⊥.

2. If mode = 0, (Below j = f(x) where f(x) is the largest j such that x = x[j]‖1κ−j .)

(a) For each i ∈ [κ], set αi = PRG0(σi) (obtained from Wi
x for i ≤ j and from Vix for

i > j).

(b) For each i ∈ {j, . . . , κ} set γi = PRG1(σi) and βi = SK.Encγj ,··· ,γκ(Si,x[i]+1), en-
crypting Si,x[i]+1 under γj , . . . γκ. (Using randomness obtained by expanding Kx

sufficiently.)

(c) Output ((α1, . . . , ακ), (βj , . . . , βκ))

3. Else recover (x, dx) from SK.Decsk(Λ) and output dx.

Figure 8: Circuits for which functional encryption secret keys are given out.

information to generate the signatures for the next node. More details are provided in Figures 7
and 8.

Setting rand(·) We set rand(κ) = 2κ+ r(κ) where r(κ) is the maximum number of random bits
used for generating encryptions of Si,x[i]+1 under γj , · · · , γκ for every i ∈ [j, κ].

Correctness. The correctness of our construction follows for the correctness of the underlying

primitives. Here we note that since v
$← {0, 1}2κ, therefore the probability that v is in the image

of the PRG is negligible and hence this step of Gv,Λ is not triggered. Similarly since the provided
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ciphertext cφ is set to be in mode 0 the other mode is never triggered.
Given that the above case do not arise we have that αi = PRG0(Si,x[i]). Recall that the

successor check if PRG0(σi) = αi. Now from the left half injectivity property of the PRG we have
that these checks pass if and only if σi = Si,x[i] . Hence, if successor does not output ⊥ then the
input x, σ1, · · · , σκ must be valid. Additionally from the correctness of SK.Dec we have that the
successor recovers the correct values σ′i = Si,x+1[i] corresponding to prefixes of x + 1 which are
different from the prefixes of x. This provides the full set of associated signatures on x+ 1.

The correctness of the verification circuit Ver directly follows from the correctness of the suc-
cessor circuit.

5.3 Proof of Hardness

In this section, we will prove that the SVL instances generated in our construction are hard to
solve. The proof of security mimics the proof for the setting of iO with two crucial differences.
Specifically:

1. In our setting the honest distribution has the PRG check in-built and so we do not need to
introduce it as was done in going from Hyb0 to Hyb1 as done in Appendix 4.2. In particular,
this check is built into the circuit Gv,Λ.

2. Since we are using functional encryption, the puncturing, checking of input signatures and
generating on new ones has to be done differently and a bit more carefully. We highlight
these differences as we go along the proof.

Hybrid Structure. We describe our proof in a way analogous to the proof from Appendix 4.2.
In particular, we show that no polynomial time adversary can output a valid value (1κ, σ1, · · · , σκ).
We will show this via a hybrid argument. Starting with providing SVL instance as in distribution
from Figure 7, namely hybrid Hyb0, we move to a hybrid Hyb4,δ, where δ is defined below. In the
final hybrid, the successor circuit returns ⊥ on all inputs of the form (1κ, ·, · · · , ·). Observe that
the advantage of any adversary in solving the SVL instance in this final hybrid is 0. This proves
our claim. We make this change by going through a polynomial in the security parameter number
of intermediate hybrids. Next we describe our hybrids.

• Hyb0 : This hybrid corresponds to SVL instance generation as given in Figure 7.

• Hyb1 : In this hybrid we change how the value v, hard-coded in Gv,Λ is generated. In particu-
lar, instead of sampling v uniformly at random from {0, 1}2κ, we generate v as PRG(u0) where
u0 is sampled uniformly from {0, 1}κ. Here PRG is a length doubling injective pseudorandom
generator.

Computational indistinguishability between Hyb0 and Hyb1 follows from the pseudorandom-
ness property of the PRG.

Recalling notation for uj. Recall from Appendix 4.2, for any string u ∈ {0, 1}κ, let f(u)
denote the index of the lowest order bit of u that is 0 (with the index of the highest order
bit being 1). More formally, f(u) is the smallest j such that u = u[j]||1κ−j . For example, if
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u0 u1 . . . uδ

Figure 9: Starting with u0, uj+1 is obtained by setting the lowest order 0-bit in uj to 1.

u =

3︷︸︸︷
100 11 then f(u) = 3. Also let δ(u) be the number of 0 bits in the binary representation

of u.

Starting with a value u0 ∈ {0, 1}κ we define a sequence of values such that uj+1 is the value uj
with the f(uj)

th bit set to 1. More formally, uj+1 = uj + 2κ−f(uj). We will use the shorthand
δ to denote δ(u0).

New π, λ values. As in Appendix 4.2 we process the hybrids according to Uj values. How-
ever, here we need to set the stage before these can be done. For this we define some additional
notation. For any x ∈ {0, 1}≤κ, let c?x denote the ciphertext and d?x the clear output in exe-
cution of the successor in the Hyb1 when Steps 1 and 2 of the successor circuit are executed
on input x. We let P be the set of all prefixes of u0, u1, . . . uδ including the empty string φ.
Note that |P | ≤ (κ+ 1)2. Additionally we define Q as follows. For every x ∈ P , let y be the
value with the last bit of x flipped. We add y to Q if y 6∈ P . We set:

π? = ||x∈P∪Q (x, c?x)

λ? = ||x∈P∩{0,1}κ (x, d?x)

We set `(κ) and `′(κ) to be the polynomials that describe an upper bound on the lengths of
π? and λ? over all choices of u0 ∈ {0, 1}κ.

• Hyb2: In this hybrid we change how the hardcoded values Π and Λ are generated. Unlike
hybrids Hyb1 and Hyb2 where these values were generated as encryptions of 0`(κ) and 0`

′(κ),
in this hybrid we generate them as encryptions π? and λ? describe above, respectively.

Computational indistinguishability between Hyb1 and Hyb2 follows from the semantic security
of the encryption scheme.

• Hyb3: In this hybrid, for x ∈ P we change the the c?x values embedded in π?. Recall that in
hybrid Hyb2 for each x, c?x is generated as FE.EncPK|x|+1

(x,Vx,Wx,Kx, 0
κ, 0;K ′x). We change

the c?x to be now generated as FE.EncPK|x|+1
(x, 02κ, 02κ, 0κ, sk, 1;ωx) using fresh randomness

ωx.5

5Note that we do not change ciphertexts corresponding to x ∈ Q.
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Computational indistinguishability between Hyb2 and Hyb3 follows by a sequence of sub-
hybrids. We define an ordering on elements of P as follows. For x, y ∈ P we say that x < y
if either |x| < |y|, or |x| = |y| and x < y 6. Next we define the hybrid Hyb2,y to be a
modification of Hyb2 where for all x ∈ P such that x ≤ y we have that c?x is generated as
FE.EncPK|x|+1

(x, 02κ, 02κ, 0κ, sk, 1;ωx) using fresh randomness ωx.

Note that it suffices to argue that Hyb2,x′ and Hyb2,x are indistinguishable for any two adjacent
values x′ and x in P such that x′ < x. We argue this via a two step hybrid argument.

1. Hyb2,x,1: In this hybrid we change c?x to FE.EncPK|x|+1
(x,Vx,Wx,Kx, 0

κ, 0;ωx) using
fresh randomness ωx.

Note that for all prefixes x′′ of x we have that x′′ < x. Therefore for all such x′′

we have that cx′′ = FE.EncPK|x′′|+1
(x′′, 02κ, 02κ, 0κ, sk, 1;ωx′′). This fact along with the

pseudorandom at punctured point property implies computational indistinguishability
from the previous hybrid, namely Hyb2,x.

2. Hyb2,x,2: In this hybrid we change c?x to FE.EncPK|x|+1
(x, 02κ, 02κ, 0κ, sk, 1;ωx) using

fresh randomness ωx.

The computational indistinguishability of this hybrid from Hyb2,x,2 relies on the selective
security of the functional encryption scheme with public-key PK|x|+1. Note that we can
invoke security of functional encryption as the change in the messages being encrypted
does not change the output of the decryption using key FSK|x|+1.

• Hyb4,j+1: In hybrid Hyb4,j+1 for j ∈ {0, . . . , δ − 1}, we make two changes with respect to
Hyb4,j . Just like in Appendix 4.2 we let fj as the shorthand for f(uj) and tj = uj [fj ]

+ 1.

– We change the set W
νj
tj

to be a uniformly random string z ← {0, 1}κ rather than con-
taining the value PRG0(Sνj ,tj ). Note that this change needs to be made at two places.

Namely we set W
νj
tj

= {z} in c?p where p is a sibling path of uj+1 and from there on this
value will be percolated to all its descendents as well. Additionally we set αfj included
in d?uj+1

to be z.

– We now generate encryptions βfj , . . . , βκ included in d?uj+1
with encryption of 0κ.

Note that as a consequence of this change the successor circuit now starts to output ⊥
additionally on all inputs in {uj + 1, . . . , uj+1}. This is because for every input σfj we have
that z 6= PRG0(σfj ) with overwhelming probability. Since in hybrid Hyb4,j the successor was
already outputting ⊥ on inputs {u0, . . . , uj} we have that the successor outputs ⊥ on all
inputs in {u0, . . . , uj+1}.
Now we argue computational indistinguishability between Hyb4,j and Hyb4,j+1.

– Hyb4,j,1: In this hybrid instead we replace the key Sfj ,tj with a random string S′ ←
{0, 1}κ.

Computational indistinguishability follows from the pseudorandom at punctured point
property. This argument relies on that fact that no V set that hasn’t been removed can
be used to obtain Sfj ,tj . This follows from the following two facts.

6Note that φ is the smallest value in P by this ordering.
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- V
fj
y values have been removed whenever y is a prefix of uj or uj+1. Note that it

follows from the Derivability Lemma (Lemma 22) that these were the only V-sets
that could be used to derive Sfj ,tj .

- Additionally σfj is encrypted in βfj and this value is included in d?uj . But this has
already been replaced with an encryption of 0κ except d?u0 which is set to ⊥.

– Hyb4,j,2: In this hybrid instead we replace the βfj , . . . , βκ in d?uj+1
to be generated using

fresh randomness.

Computational indistinguishability follows from the pseudorandom at punctured point
property.

– Hyb4,j,3: In this hybrid, we change PRG0(S′) and PRG1(S′) to be random strings z, z′.

Change of PRG0(S′) to z implies that the set W
fj
tj

is {z}. Similarly γfj will be z′.

Indistinguishability between Hyb4,j and Hyb4,j,1 follows from the pseudorandomness
property of the PRG.

– Hyb4,j,4: In this hybrid we set encryption of all βfj , . . . , βκ in d?uj+1
with encryption of

0κ.

Next by semantic security we have this hybrid is computationally indistinguishable from
the previous. Here we rely on the fact that one of the keys γfj has been replaced with
random.

Note that hybrid Hyb4,j,4 is same as hybrid Hyb4,j+1.

Concluding the proof. Observe that the hybrid Hyb4,0 is identical to hybrid Hyb3 and Hyb4,δ is
such that the successor outputs ⊥ on all inputs of the form (1κ, ·, . . . , ·). Consequently, no adversary
can solve the SVL instance in this final hybrid with probability better than 0. We summarize our
hybrids in Table 1.
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