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ABSTRACT
Anonymous credential systems have to provide strong privacy pro-
tection: a user may prove his (chosen) attributes without leaking
neither his identity nor other attributes. In this paper we consider
U-Prove – one of the major commercial anonymous credential sys-
tems.

We show that the revocation mechanism designed for U-Prove en-
ables a system provider to efficiently trace the users’ activities.
Namely, the Revocation Authority run the system provider may
execute the U-Prove protocol in a malicious way so that: (a) the
deviations from the protocol remain undetected, (b) the Revocation
Authority becomes aware of each single authentication of a user in
the whole system and can link them (regardless which attributes are
disclosed by the user against the verifiers), (c) it can link presenta-
tion tokens with the corresponding token issuing procedure (under
some conditions).

Thereby, the system described in the technical drafts of U-Prove
does not guarantee privacy protection unless the system provider
can be trusted unconditionally. In fact, a malicious provider may
convert the Revocation Authority into a “Big Brother” installation.
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1. INTRODUCTION
Emergence of a global information IT ecosystem creates today se-
vere privacy protection challenges. The ecosystem is composed of
a large number of systems run by different players that are inde-
pendent, have different goals, operate within different legal frame-
works and sometimes are even prohibited by law to orchestrate their
activities. Moreover, from the technical point of view, the scale and
limited control over the information flow make it almost infeasible
to protect a user against misuse of personal data.

∗This is a full version of the paper accepted for presentation at
ACM AsiaCCS’15.

It seems that the most effective approach to reduce the scale of pri-
vacy protection problems is to reduce the amount of personal data
that are revealed during interactions with IT systems. The basic
paradigm is that only the data necessary to perform a given ac-
tion are revealed during the interaction. The traditional approach
is completely different: at the very beginning we have to show de-
tails about our identity. Changing this situation is a challenge from
cryptographic point of view: we have to develop a simple and user
friendly scheme that guarantees reliable authentication of user’s ac-
cess rights without disclosing his identity. On the other hand, such
solution would fulfill the dream of privacy-by-design – which is
a political target of European Union in the area of personal data
protection.

Many cryptographic schemes have been developed for this pur-
pose, usually called the same name anonymous credentials despite
substantial functional differences. Most of them have not reached
practical maturity stage and have not been implemented. The re-
markable exceptions are Idemix of IBM Zürich [1], U-Prove of
Microsoft Research [4] and a simplified but efficient scheme im-
plemented on German personal identity cards under the name Re-
stricted Identification.

Anonymous credentials. Anonymous credential system is a
cryptographic framework in which a person receives an authentica-
tion token from a trust provider for the system. The token confirms
a set of attributes of the owner, e.g. legal status, age, the rights
to access a certain IT system, privileges, etc., but also the name,
personal identity number, and so on. A holder of such a token, say
Alice, can use it for authentication. If A is the set of attributes of
Alice confirmed by the token, A′ is an arbitrary subset of A, then
she can execute an authentication protocol with Bob so that:

• she proves Bob that she holds an authentication token with
all attributes from A′,

• however, Bob cannot conclude anything about the attributes
not contained in A′, in particular in A \A′.

Note that “the attributes not contained in A′” may include identity
data such as the first name, the family name, and the personal ID
number. The attributes revealed may include a pseudonym of the
prover.

Based on the result of authentication protocol (and the value of at-
tributes presented) the verifier Bob can make appropriate decisions.



A good example of an attribute is the legal age enabling to engage
into civil contracts.

Thereby, anonymous credentials can be used to reduce the informa-
tion flow during authentication to the necessary minimum. So, we
may hope that anonymous credentials may become a standard au-
thentication method in privacy aware systems fulfilling the “privacy-
by-design” requirement.

There are many models of anonymous credentials and subtle dif-
ferences between them. For instance, it is an open issue whether
the verifier should be able to check whether the same (anonymous)
person authenticates herself, when the set of attributes is exactly the
same. Both possibility of linking (weak privacy) and infeasibility
of linking (strong privacy) correspond to some concrete use cases.

U-Prove. The topic of this paper is an extension of U-Prove anony-
mous credentials system [4] developed by Microsoft. U-Prove is
based on the quite complex ideas of Stefan Brands [5, 6], which
evolved into the current anonymous credential system.

On the upside, U-Prove is very flexible and quite advanced regard-
ing privacy protection. On the downside, its design is fairly com-
plex. This is a major disadvantage not because of the implemen-
tation pains and hardness to explain the security mechanisms even
to specialists, but mainly due to hardware requirements far above
the possibilities of cryptographic smart cards. U-Prove is based
on hardness of Discrete Logarithm Problem and that by design, U-
Prove enables commitments which can be used to extend the spec-
ification. An interested reader may refer to the web page [7] for
details of the U-Prove scheme and implementation details.

In the meantime, U-Prove became declared as “fully compatible
with ABC4Trust engine” (ABC4TRUST [12] is a EU funded project
that aims to provide a unified framework for privacy protection).
A large number of system details has been published [7] enabling
external designers to integrate their products with U-Prove. There-
fore, U-Prove has to be regarded as a system that has a real chance
to play an important role in practice on a global scale, despite of
lack of thorough academic evaluation.

Revocation. It may happen that the attributes terminate to be
valid for a holder of an authentication token. For instance, the token
may be stolen. Then privacy protection offered by the system has
a negative side effect – it hides identity of a misbehaving person
very effectively. So the advanced technology starts to be dangerous
to honest users, as there are more incentives to steal the tokens.
These problems has been also recognized by the designers of U-
Prove – see a recent report [2]. The core U-Prove system is not
equipped with a revocation system – the necessary functionality
must be added to it as an extension.

During Financial Cryptography’2013 the first revocation system
for U-Prove has been presented [8]. It contained a security flaw
[11], but the error seems to be correctable. The major drawback
of the revocation system from [8] is heavy use of bilinear pairings.
According to [2], “Although pairings are popular in recent cryp-
tographic research, they are seldom used in practice due to their
maturity level and implementation complexity.” Definitely, cur-
rently the consumer’s hardware devices are not supporting pairings
(may be with some small scale exceptions).

Following [8], the Microsoft team proposed a modified revocation
system which is not based on pairings and can be implemented in
standard groups [9] (see [10] for a slightly updated version).

Our contribution. We investigate the U-Prove revocation ex-
tension [9, 10] from the point of view of user’s privacy. We show
that within the current framework it is impossible to hide the re-
vocation attributes of the users (which are effectively the user’s
pseudonyms) against the Revocation Authority. Namely, the Re-
vocation Authority may learn about each single authentication per-
formed with the user’s pseudonym. For this purpose the Revocation
Authority must deviate from the original protocol, but it cannot be
detected by the users and the verifiers.

Although each security flaw presented in the paper can be fixed
by re-designing the scheme and introducing new (computationally
heavy) protocol components, it is not clear whether the extensions
do not bring new threats and attack possibilities.

2. U-PROVE REVOCATION SYSTEM
In this section we describe shortly the construction from [10]. We
do not present the construction idea – in fact, it has not been ex-
plained by the authors of [9, 10] and we could only make some
guesses. Also, given the page limit and complexity of the design
it is impossible to give a reasonable overview of the background
U-Prove system. However, this is not really necessary for describ-
ing the attacks against user’s privacy. Let us note that the same
problems occur for the first draft version [9].

2.1 Parameters
The extension from [10] uses the same Issuer parameters as in the
standard U-Prove specification. However, the scheme employs the
Revocation Authority (RA) initialized in the following way:

Input:
group: a group Gq of a prime order q
generators ofGq from U-Prove [7]: g, g1, gt
Computation:
choose at random δ ∈ Zq
compute K := gδ

Output:
private key: δ
public key: K

Table 1: Setup procedure RSSetup() for the Revocation Au-
thority

A user gets a token just as in case of the original U-Prove. Addi-
tionally, it contains a revocation attribute xid for the user. Its usage
will be explained below.

2.2 Revocation List Management
In order to keep record about the revoked users, [10] applies crypto-
graphic accumulators storing identifiers of the revoked users (simi-
larly to a blacklist). The idea is borrowed in a substantial part from
[8]. The accumulator values are computed as follows:



Input:
RA private key: δ ∈ Zq
revocation parameter: gt
List of revoked
attribute values: R = {x1, . . . , xm} ∈ Zq\{−δ}
Computation:
Accumulator value: V := g

∏m
i=1(δ+xi)

t

Table 2: Procedure ComputeAccumulator() for creating
accumulator V for the list R of revocation attributes

2.3 Computing a Witness
Apart from the accumulator, there are parameters specific to each
user. These parameters must be updated every time when some user
gets revoked or admitted again to the system. There are two meth-
ods described in [10]: ComputeWitness and UpdateWitness.
The major drawback of the second solution is low efficiency and
necessity to disclose all revocation attributes of the revoked users.
According to [10], “If the revocation list is secret, or for better ef-
ficiency, the witnesses are computed by the Revocation Authority”
– with ComputeWitness.

The Revocation Authority runs ComputeWitness as follows:

Input:
RA private key: δ ∈ Zq
Revocation parameter: gt
List of revoked attribute
values:

R = {x1, . . . , xm} ∈ Zq \ {−δ}

Target user’s revocation at-
tribute:

xid 6∈ R

Current accumulator: V ∈ Gq
Computation:
d :=

∏
x∈R(x− xid) mod q

W := g
(
∏
x∈R(δ+x)−d)/(δ+xid)

t

Q := VW−xidg−dt
Output:
Revocation witness for
xid:

(d,W,Q)

Table 3: Procedure ComputeWitness()

The following property can be easily checked:

W δ = Q . (1)

UpdateWitness procedure can be executed by the users given
all revocation identities that have been included in the accumulator
since the last update:

Input:
Revocation parameter: gt ∈ Gq
The revocation attribute of the user: xid
Revocation attribute to be added
or removed from the blacklist R: x′

Boolean value indicating whether
x′ has to be added to R:

add

Old accumulator: V ∈ Gq
Old witness of the user holding xid: (d,W,Q)
Updated accumulator: V ′ ∈ Gq
Computation:
if add = true (x′ added to R)

d′ := d(x′ − xid) mod q

W ′ := VWx′−xid

Q′ := V ′W ′−xidg−d
′

t
else (x′ removed from R)

d′ := d(x′ − xid)−1 mod q

W ′ := ((V ′)−1W )(x′−xid)−1

Q′ := V ′W ′−xidg−d
′

t
Output:
Updated witness for xid: (d′,W ′, Q′)

Table 4: Procedure UpdateWitness( )

2.4 Non-Revocation Proof
A user holding a U-Prove token authenticates himself by executing
the regular U-Prove protocol. During this protocol he commits to
the attribute xid (the public output of the commitment is c̃id =

gxidg
õid
1 and the private opening information of this commitment

is (xid, õid)). Additionally, he creates a non-revocation proof using
the function GenerateNonRevocationProof:

Input:
Revocation parameters: Gq , hash functionH, g, g1, gt
Commitment to xid: c̃id, where c̃id = gxidg

õid
1

Opening information: xid , õid
RA public key: K
Revocation witness: (d,W,Q)
Computation:
generate t1, t2, k1, . . . , k6 at random from Zq
X := Wgt1

Y := QKt1

Cd := gdt g
t2
1

w := d−1 mod q
z := t1õid − t2 mod q
z′ := −t2w mod q

T1 := Xk1 (c̃idK)−k2gk31

T2 := gk1gk41

T3 := Ck5d gk61
c′ := H(g, g1, gt,K, c̃id, X, Y, Cd, T1, T2, T3)
s1 := −c′xid + k1 mod q
s2 := −c′t1 + k2 mod q
s3 := −c′z + k3 mod q
s4 := −c′õid + k4 mod q
s5 := −c′w + k5 mod q
s6 := −c′z′ + k6 mod q
delete t1, t2, k1, ..., k6, w, z, z′, T1, T2, T3

Output:
non-revocation proof for xid: c′, s1, . . . , s6, X, Y, Cd

Table 5: Procedure GenerateNonRevocationProof()

The non-revocation proof is given to the Verifier. [9] states that
“The Verifier sends the non-revocation proof to the Revocation Au-
thority”, and that “The Revocation Authority is a new party that
manages the revocation list and validates the users’ non-revocation
proofs”. In particular the test Y ?

= Xδ is delegated to the Revoca-
tion Authority. In fact, this is one of the main differences between
the design from [8] and [9]. According to [8] the equality Y = Xδ

can be checked locally as pairing-friendly groups are used. Sim-
ilarly, [10] states that The Verifier sends the non-revocation proof
to the Revocation Authority that verifies that the undisclosed UID
does not appear on the current revocation list.



Input:
Revocation parameters: Gq ,H, g, g1, gt
Commitment to xid: c̃id
Non-revocation proof: c′, s1, . . . , s6, X, Y, Cd
Revocation Authority public key: K
Revocation Authority private key: δ
Revocation accumulator: V
Computation:
T1 := (V Y −1(Cd)−1)c

′
Xs1 (c̃idK)−s2gs31

T2 := c̃c
′
id g

s1gs41

T3 := gc
′
t (Cd)s5gs61

verify that c′ = H(g, g1, gt,K, c̃id, X, Y, Cd, T1, T2, T3)
verify that Y = Xδ

Table 6: Procedure VerifyNonRevocationProof()

3. BREAKING SECRECY OF REVOCATION
LIST

According to Sect. 2.3 of [9, 10], the revocation attributes of the
revoked users can be kept secret, if the revocation witnesses are
computed and delivered to the users by the Revocation Authority.
For some reason the authors of the extension believe that this might
be a useful functionality. One of them could be that disclosing the
number of revoked users might be a valuable business information.
Nevertheless, in this section we show the following result which
shows that the attempts to hide the revocation list r are futile:

THEOREM 1. Assume that the protocol from [9, 10] is imple-
mented as it is stated in the specification. Then even if the Re-
vocation Authority delivers the revocation witnesses to the users,
an adversary can retrieve all revocation attributes of the revoked
users.

The point is that the documents [9, 10] do not provide any mecha-
nism designed for preserving secrecy of the revocation list R. We
show that the revocation attributes belonging to R cannot be kept
secret in a straightforward manner (i.e., by not publishing them),
and some additional mechanism is necessary if their secrecy is an
objective. Let us note that this section as a warm-up before the main
results of Sect. 4, where fundamental privacy threats are shown.
However, as it will become clear at the end of Sect. 4, hiding the
revocation list is somehow related to hiding malicious setup of the
Revocation Authority.

3.1 Reconstruction of the Revocation List
We concern a late launch attack, where the adversary decides to
recover the identities of all users revoked so far, but has no data
concerning all previous updates performed by the Revocation Au-
thority. (This situation occurs when the adversary joins the system
relatively late.) We show that nevertheless an adversary can recover
identities of all users revoked assuming that sufficiently many of the
users collaborate with the adversary.

Let us assume that at the moment considered the total number of re-
voked users is k and the set U of users colluding with the adversary
has cardinality at least k + 1. Let x1, . . . , xk+1 be the revocation
attributes of these users. Then we claim that the adversary can re-
construct the following polynomial:

f(X) = (X + xi1) · (X + xi2) · · · · · (X + xik ), (2)

where xi1 , ..., xik are the revocation attributes of all revoked users.
Since factorization in Zq[X] is easy, once f is found, then the val-
ues of xij can be easily reconstructed.

First observe that according to ComputeWitness procedure, the
user holding xi obtains a revocation witness that contains di =
f(−xi). Hence, in order to reconstruct the polynomial f it suf-
fices to run the Lagrangian interpolation algorithm on the pairs
(−x1, d1), . . . , (−xk+1, dk+1). 1

3.2 Attacking update’s data
The Revocation Authority may defend itself against the above men-
tioned attack by keeping a large number of dummy users in the set
R of revoked users. In this case k = deg f becomes large and the
adversary is unable to find k+ 1 users to immediately gather k+ 1
pairs (xi, di) satisfying f(−xi) = di. In this case the adversary
may execute the following attack aiming to recover the revocation
attributes of the users that are either revoked or admitted again dur-
ing the current update.

Assume that a user holding xi and a witness (di,−,−) correspond-
ing to the set of revoked users R obtains a new witness d′i. Then:

d′i
di

= PA(xi)
QB(xi)

, where

PA(X) =
∏
x′∈A(x′ −X), QB(X) =

∏
x′∈B(x′ −X)

and A denotes the set of revocation attributes that have been added
to R since the last update of users’ witnesses, whereas B denotes
the set of revocation attributes that have been removed fromR since
this moment. SinceA andB are disjoint, gcd(PA(X), QB(X)) =
1. That is, the user gets a value fi = d′i/di of some rational func-
tion at point xi:

PA(xi)
QB(xi)

= fi, (3)

where degPA(X) = |A| ≥ 0, degQB(X) = |B| ≥ 0.

Let U be the set of users controlled by the adversary aiming to get
the revocation attributes of the revoked users. When the update is
done by the Revocation Authority, each user gets a new revocation
witness. So the adversary can derive the pair (xi, fi) for each xi ∈
U . The adversary shall use these pairs to interpolate the rational
function

PA(X)
QB(X)

= p0+p1X+···+pmXm
q0+q1X+···+qnXn , (4)

where m = |A| and n = |B|. The adversary aims to calculate
both PA(X) and QB(X). Once it is done, it is easy to factorize
PA(X) andQB(X) in the polynomial ring and learn the revocation
attributes of the users revoked and admitted back to the system.

Let k = |U|. Assume thatm and n have been guessed correctly. By
(3) and (4), we can build the following system of linear equations

p0+p1x1+...+pmxm1 −f1q0−f1q1x1−...−f1qnxn1 =0
p0+p1x2+...+pmxm2 −f2q0−f2q1x2−...−f2qnxn2 =0

. . .
p0+p1xk+...+pmxmk −fkq0−fkq1xk−...−fkqnx

n
k =0

(5)
with unknowns p0, p1, . . . , pm, q0, q1, . . . , qn. The system (5) can
be rewritten as

Mk,m+n+2 · Um+n+2 = θk,

where θk is the vector of k zeroes,

Um+n+2 = [p0, p1, p2, . . . , pm, q0, q1, q2, . . . , qn]T

1The same method works for the scheme from [9], as the values of
the components di are exactly the same despite different descrip-
tions of ComputeWitness.



is the vector ofm+n+2 unknowns, andMk,m+n+2 is a k×(m+
n+ 2) matrix of known coefficients from Zq:

1 x1 x2
1 . . . xm1 −f1 −f1x1 −f1x

2
1 . . . −f1x

n
1

1 x2 x2
2 . . . xm2 −f2 −f2x2 −f2x

2
2 . . . −f2x

n
2

...
...

...
...

...
...

...
...

1 xk x2
k . . . xmk −fk −fkxk −fkx2

k . . . −fkxnk


Since the system (5) is homogeneous we treat the set of solutions
of the form α · Um+n+2, where α ∈ Zq \ {0}, as a single solution
Um+n+2.

Note that Mk,m+n+2 = [Vk,m+1 Fk,k · Vk,n+1],where Fk,k =
diag(−f1,−f2, ...,−fk) is the diagonal matrix of size k × k, and

Vk,`+1 =


1 x1 x2

1 . . . x`1
1 x2 x2

2 . . . x`2
...

...
...

...
1 xk x2

k . . . x`k


is the Vandermonde matrix of size k × (`+ 1).

Obviously, rank(Mk,m+n+2) ≤ m + n + 2. Hence, even if k >
m + n + 2, it is sufficient to use the first m + n + 2 rows of the
matrix because the next ones give no additional information. If
after reducing the matrix to the row echelon form it happens that
rank(Mm+n+2,m+n+2) = m + n + 2, then the only solution for
Um+n+2 is the all zero vector θm+n+2, which means that our guess
for m and n was incorrect. If after reducing the matrix to the row
echelon form it turns out that rank(Mm+n+2,m+n+2) < m+n+2,
then we may neglect a row which turns out to be linearly dependent
from the other rows and we use the following theorem:

THEOREM 2 (THM 4.3.4 FROM [13]).
Let Mm+n+1,m+n+2 =[Vm+n+1,m+1 Fm+n+1,m+n+1 ·Vm+n+1,n+1] be
a real- or a complex-valued matrix of rank m + n + 1 − t. Then
there exists a unique non-zero solution Um+n+2 corresponding to
polynomials P ∗A(X),Q∗B(X) with degrees at mostm−t and n−t.
Moreover, all solutions have the form

r(X) =
S(X)P∗A(X)

S(X)Q∗
B

(X)
, (6)

where S(X) is a polynomial of degree at most t.

Although Theorem 2 considers matrices with coefficients from fields
of characteristic 0 (which means that by adding 1 we shall never
obtain 0), in large prime fields Fq the event that some matrix co-
efficient will “accidentally” vanish during calculation of the rank
seems to be highly improbable. On the other hand, if q is relatively
small, then to minimize the risk of an “accidental underestimation”
of the rank one could use matrices with the number of rows greater
than m + n + 2. Consequently, we have the following procedure
for finding the polynomials PA(X), QB(X):

1. We make a guess for m′, n′ being the realistic upper bounds
for the polynomials degrees m and n, respectively.

2. We generate the matrix Mm′+n′+2,m′+n′+2 and reduce it to
the row echelon form to calculate its rank (if the rank will
be appropriate the row echelon form will facilitate the final
computations).

3. If rank(Mm′+n′+2,m′+n′+2) = m′ + n′ + 2, then we in-
crease both values m′, n′ and go to the point 2 (alternatively,
if for the current values m′, n′ we have m′ + n′ + 2 = |U|,
we may increase one of the values m′, n′ at the cost of the
other one).

4. If rank(Mm′+n′+2,m′+n′+2) = m′ + n′ + 1 − t and t >
0, then we assign m′ := m′ − t, n′ := n′ − t and go to
the point 2. Since gcd(PA(X), QB(X)) = 1 we have in
equation (6) that S(X) ≡ 1.

5. At this point we have rank(Mm′+n′+2,m′+n′+2) = m′ +
n′+1. We start to determine the vectorUm′+n′+2 by assign-
ing 1 to the coordinate which corresponds to the first column
of the matrix (counting from the left) that contains a zero on
the main diagonal. In this way value one is assigned to the
only independent coordinate of vector Um′+n′+2. Then on
the basis of the row echelon form we determine the remain-
ing m′ + n′ + 1 coordinates. From the form of the matrix
and from the fact that the system (5) is homogeneous it fol-
lows that the only independent coordinate of Um′+n′+2 cor-
responds to the leading coefficient of the polynomialQB(X)
(recall that n ≤ n′). In this way we obtain the monic poly-
nomials PA(X), QB(X).

Note that the attack described above may sometimes help to re-
construct the polynomial f even if initially its degree is too large.
Recall that the revoked users could be admitted back to the system.
So it may happen that at some moment the set of users that were
revoked at the initial stage of the attack and are still in the revoked
set is reduced below the number of users cooperating with the ad-
versary. So, if this happens and if the adversary keeps track on the
changes in the set of revoked users, then he can reconstruct the set
of the revoked users at each moment.

Experimental results. In order to check relevance of our method
(recall that Theorem 2 concerns the fields of characteristic 0), we
have implemented the procedure described above using the NTL
library [14]. 1000 experiments has been performed for a 256-bit
prime q. We have not encountered a matrix Mm′+n′+2,m′+n′+2

with rank(Mm′+n′+2,m′+n′+2) ≤ m′ + n′ + 1, when m′ < m
or n′ < n (note that this would lead to false results concerning the
polynomials PA(X), QB(X)). Moreover, for any given experi-
ment the point 4 of the procedure has always been executed at most
once with t > 0. That is, when t > 0 had been encountered, then
after the assignment m′ := m′ − t, n′ := n′ − t at least one of the
equalities m′ = m, n′ = n was satisfied.

4. TRACING USERS’ ACTIVITIES
In this section we show that after some manipulations on the side
of the Revocation Authority the U-Prove system with revocations
becomes a perfect “Big Brother” tool for spying the users via non-
revocation proofs. This is the main result of this paper.

The schemes proposed in [9, 10] are aimed to be suitable for a
group Gq being a “standard construction”, which means that the
group Gq (see Table 1) need not to be pairing-friendly. Conse-
quently, to verify the equality Y = Xδ in the procedure from Ta-
ble 6 the private key δ is needed.

Our attacks exploit the coincidence of the following facts:



1. “The Revocation Authority is a [. . . ] party that manages
the revocation list and validates the users’ non-revocation
proofs”.

2. Within GenerateNonRevocationProof( ) the elements
W and Q appear in X and Y respectively in powers known
to the Revocation Authority (simply in powers equal to one).

The initial attacks are less demanding computationally. However,
the latter attacks seem to be more general: they remain undetectable
even if witnesses are updated by the users from the very beginning
of the revocation system work, that is, even if the complete list
of the revoked revocation attributes is public. The attacks are de-
scribed below for [10], however they work for [9] after only minor
changes.

4.1 Updates Done by Revocation Authority
In this section we assume that the Revocation Authority periodi-
cally provides updated revocation witnesses to the users computed
with ComputeWitness. According to Sect. 2.3 of [10], “If the
revocation list is secret, or for better efficiency, the witnesses are
computed by the Revocation Authority . . . ”. Hence, the situation
described is one of the scenarios proposed.

The idea is to provide corrupted revocation witnesses. They lead to
failure of the equalityXδ = Y , but at the same time the Revocation
Authority will be able to verify that X and Y has been created ac-
cording to the GenerateaNonRevocationProof procedure.
Moreover, the Revocation Authority will be able to identify the re-
vocation attribute of the user that has created X and Y . Therefore,
the Revocation Authority will be able to create the correct answer
to for the VerifyNonRevocationProof() procedure despite
the manipulations.

The user is given a witness (d,W,Q) that deviates from the proto-
col. Namely:

correct execution corrupted execution
1. W W (according to the specification)
2. d d := d + ∆ where ∆ chosen at

random and d is computed accord-
ing to the specification

3. Q Q := V ·W−xid · g−dt
4. output (d,W,Q) output witness (d,W,Q)

Potentially, manipulation of d might lead to a situation that the ver-
ification of the non-revocation proof would fail already in the part
that can be executed by the user or by a verifier different from the
Revocation Authority. Note that VerifyNonRevocationProof()
can be executed by anybody except for the test Y ?

= Xδ . The first
test yields the positive result if the arguments for the hash function
H are the same as when c′ has been computed. So we require that
computing T1, T2 and T3 during GenerateNonRevocationProof()
and VerifyNonRevocationProof() yield the same results.
It may be checked that this is the case even if the value d is manip-
ulated as described above (for details see the Appendix, Sect. A).

Note that

Q

Q
=

V ·W−xid · g−dt
V ·W−xid · g−d−∆

t

= g∆
t .

Now consider verification of the values X,Y given for inspection
to the Revocation Authority and created from a corrupted witness

(d,W,Q) given to a user. The Revocation Authority gets the values
X = W · gt1 and Y = Q ·Kt1 . Observe that

Xδ = W δ · gt1·δ = W δ ·Kt1 = Q ·Kt1 = Y

where the value Y corresponds to the honest protocol execution.
On the other hand, the Revocation Authority gets Y = Q ·Kt1 . So

Xδ

Y
=
Q ·Kt1

Q ·Kt1
=

Q

Q
= g∆

t .

So a malicious Revocation Authority acts, for instance, as follows:

• for a user holding xid create a corrupted witness and store
the pair (g∆

t , xid) in the local database T ,

• during verification of the condition Xδ = Y for X and Y
submitted by a verifier check the value Z := Xδ/Y against
the entries in the database. If there is a pair (Z, xid), then
the Revocation Authority responds correct, otherwise the
Revocation Authority answers false.
In the first case the Revocation Authority learns that the user
with xid authenticates himself against the verifier that has
submitted the query.

As we see, the malicious Revocation Authority can create the full
history of all activities of all users. Moreover, the verifier MUST
ask the Revocation Authority to verify the equation Xδ = Y . In-
deed, if the condition Xδ = Y would not be verified, then a re-
voked user could present a valid non-revocation proof. Namely, in-
stead of using the witness (d,W,Q) obtained from the Revocation
Authority, the user may create himself a fake witness (d,W,Q),
where d,W are chosen at random and Q = V ·W−xid · g−dt .

Note that secrecy of the revocation list R is essential for hiding the
attack. Otherwise on the basis of formula (2), a user holding xid
could reconstruct the polynomial f and check whether f(−xid) =
d. Accordingly, the Revocation Authority should insist that hiding
revocation attributes of the revoked users is necessary for privacy
protection and should deploy techniques such using large number
of dummy users to defer the attacks presented in Sect. 3.

4.2 Switching to the Public Mode
Now we investigate the scenario that at some moment the system is
switched from the mode “Update of Witnesses done by the Revoca-
tion Authority” to the mode where the witnesses are recomputed by
the users themselves according to the procedure UpdateWitness.
However, we still assume that the complete set R of revoked users
will not be published. We also assume that when a user joins the
system the first revocation witness (d,W,Q) is given to the user
by the Revocation Authority. This is a pragmatic assumption in-
creasing system’s usability and it results from the fact that without
knowing the whole setR the users cannot compute initial witnesses
by themselves.

The idea of the attack is to provide a corrupted revocation witness
when the user joins the system. Just like in Sect. 4.1, the Revoca-
tion Authority receives the pairs (X,Y ) whereXδ 6= Y . However,
the relation between X and Y enables the Revocation Authority to
check whether the non-revocation proof has been created correctly
and to learn the xid of the user that has created X and Y .



The initial revocation witness (d′,W ′, Q′) given to the user hold-
ing xid is created as follows:

Input:
RA private key: δ ∈ Zq
Revocation parameter: gt
List of revoked attribute values: R
New user’s revocation attribute: xid 6∈ R
Current accumulator: V
Auxiliary database: T

Computation:
1. compute d and W via ComputeWitness for R and xid
2. choose u at random
3. d := d+ u mod q

4. Q := VW−xidg
−d
t

Output:
insert (gut , xid) in the database T
give (d,W,Q) to the user holding xid

Table 7: Creating a corrupted initial witness

The database T stores information necessary to link the verification
requests with the users. Note that if Q is the non-corrupted value,
then Q = VW−xidg−dt . Hence Q · g−ut = Q.

For the corrupted witness (d,W,Q) note that:

• the verification test concerning c′ succeeds (note that this test
can be done by any verifier),

• the Revocation Authority gets the values X , Y for which the
regular verification by the Revocation Authority fails in the
following way:

Xδ = W δgt1δ = QKt1 = Qgut K
t1 = Y gut 6= Y

However, the Revocation Authority may search for an entry
(Z, xid) such that Xδ · Y −1 = Z. If there is such an entry,
then the answer to the verification query is correct and as
a side effect the Revocation Authority learns xid. Otherwise,
the answer is false.

Now let us consider the situation after the user holding xid updates
the revocation witness because of revocation of x′.

• According to UpdateWitness, the new value of the pa-
rameter d, called below d1, equals

d1 = d(x′−xid) = (d+u)(x′−xid) = d1 +u(x′−xid) ,

where d1 = d(x′ − xid) is the correct value that would be
obtained for the correct initial witness.

• The value of W will be updated to the correct value W1,
since no manipulated value is applied for the update.

• The new value of Q equals

Q1 = VW−xidg
−d1
t = VW−xidg

−d1−u(x′−xid)
t

= Q1g
−u(x′−xid)
t .

where Q1 is the value of Q computed for the correct d1.

Now, if the verifier presents a pair (X,Y ) created by the user hold-
ing xid, then

Xδ = W δ
1 g

t1δ = Q1K
t1 = Q1g

u(x′−xid)
t Kt1 = Y g

u(x′−xid)
t .

So we see that if each entry (Z, xid) of the database T is converted
by the assignment Z := Zx

′−xid , then the same procedure as be-
fore can be used to answer the queries to the revocation authorities
stated by the verifiers.

One can easily show that after revoking x′1, . . . , x
′
k and adding

x′′1 , . . . , x
′′
m the original entry (Z, xid) of database T becomes con-

verted to (Z′, xid), where

Z′ = Z(x′1−xid)·...·(x′k−xid)·(x′′1−xid)−1·...·(x′′m−xid)−1

and the same procedure as above for answering the queries to the
Revocation Authority can be applied.

4.3 Tracing Independent of Updating Entity
The attack below remains undetected even if the complete list R
of revoked revocation attributes is public. This is achieved by not
manipulating the parameters used for witnesses computations.

4.3.1 Preliminary Observations
Let us note that the output of the RASetup( ) procedure does
not include a proof of equality of the discrete logarithms within the
pairs: (gt, g

δ
t ), (g,K), where the 1st element in the pair denotes the

base element and the 2nd element denotes the exponentiation result.
Accordingly, the Revocation Authority may choose the values δ
and loggK to be different modulo q. Let K = gδ̃ . One can easily
see that VerifyNonRevocationProof( ) does not enforce
equality of discrete logarithms for (gt, g

δ
t ) and (g,K). This fact

will be exploited in our attack.

4.3.2 The Attack
We assume that the Revocation Authority knows all the values xid
(hence it is able to compute witnesses of all users). The RSSetup
procedure is executed in a slightly different way. Namely, the
Revocation Authority chooses δ̃ 6= δ mod q at random and sets
K := gδ̃ instead of K := gδ . Note that due to the hardness of
the Decisional Diffie-Hellman Problem it is infeasible to detect this
manipulation.

During VerifyNonRevocationProof( ) the Revocation Au-
thority, instead of checking equality Y = Xδ executes the follow-
ing steps:

1. W̃ := Y ·X−δ̃ .

Note that X and Y were calculated correctly by the prover,
then we get W̃ = Q ·W−δ̃ .

2. Ŵ := W̃ η , where η = (δ − δ̃)−1 mod q.

Note that both δ and δ̃ are known to the Revocation Authority. If
the witness was correctly computed by the user, then, by (1), the
Revocation Authority gets

Ŵ =
(
W δ−δ̃

)(δ−δ̃)−1 mod q

= W.

Note that W depends on xid and can be used to match the non-
revocation proof with xid. On the other hand,W changes each time



the listR of revoked users changes. The Revocation Authority may
create the database containing the current value of W for each xid.
The computation can be easily performed by a SIMD architecture
(e.g. a farm of GPU processors).

4.3.3 Removing Y from the Non-Revocation Proof
One could attempt to defend against the attack by removing Y from
the data passed to the Revocation Authority. Instead, the Authority
may calculate a candidate YW for Y used by the prover by setting
YW = Xδ and checking it against c′:

c′
?
= H(g, g1, gt,K, c̃id, X, Y, Cd, T1, T2, T3) (7)

However, for each W the Revocation Authority must compute the
candidate value

YW := W δ−δ̃X δ̃ .

Note that for the correct W

YW = W δ−δ̃ ·
(
Wgt1

)δ̃
= W δ ·

(
gδ̃
)t1

= QKt1 = Y

and for such YW equality (7) holds. Otherwise, it may hold only
via a collision of the hash functionH.

4.4 Tracing when gδ=K
To prevent the attack from Subsect. 4.3 one could propose a patch
for the system by demanding a proof of equality of discrete log-
arithms when publishing the public parameters of the Revocation
Authority. Below we show that it is not enough, however the attack
gets more involved.

During the corrupted RSSetup procedure α1, α2 are chosen at
random so that α2 6= α1 mod q. Then

δ := (α1 + α2) · 2−1 mod q . (8)

If the order q of g is a large prime number, then 2−1 mod q exists.
On the other hand, if gcd(2, q) > 1, then it is easy to generalize
the reasoning below to the representation δ = (α1 + · · · + α`) ·
`−1 mod q for some ` coprime to q (in this case the definition of

Λi given below would change to Λi := g
(αi1+···+αi`)·`

−1 mod q
t ).

We shall use the following notation:

Λi := g
(αi1+αi2)·2−1 mod q
t and ∆i := gδ

i

t (9)

for i = 0, 1, 2, . . . . Note that Λ0 = ∆0 = gt and Λ1 = ∆1.

Note that in order to get the accumulator V one can first compute
the exponent

∏m
i=1(δ + xi) and then raise gt to the computed

power. An alternative when is to get first the numbers ∆i, then
compute

∏m
i=1(δ+ xi) as a polynomial of δ, i.e.

∏m
i=1(δ+ xi) =∑m

i=0 ai ·δ
i, and finally put V :=

∏m
i=0(∆i)

ai . Below we assume
that instead of using the vector

t = (∆0,∆1,∆2, . . . ,∆m) (10)

the Revocation Authority will use the vector

t′ = (Λ0,Λ1,Λ2, . . . ,Λm) (11)

to calculate the value of the accumulator V . Hence the attack
below exploits the fact that the protocol from [10] does not in-
clude any proof of equality of discrete logarithms between the pairs
(∆0,∆1), (∆i,∆i+1) for i = 1, 2, . . . , where the first element in
the pair denotes the base of the logarithm, and the second element
denotes the exponentiation result.

4.4.1 Preliminary Observations.
Recall that according to [10] users’ witnesses are computed by
ComputeWitness( ) or UpdateWitness( ). As we shall
see, the first method may be extended to a more direct method
of computing W and Q, a method that may be run by (a set of)
users. Hence if the second method is available to the users, then
both methods should be coherent, i.e. the results obtained by the
direct method and by UpdateWitness( ) should be the same.

Updating Witnesses by the Revocation Authority. Sup-
pose that a group of users has reconstructed the polynomial f from
(2) as described in Sect.3.1. Then k − 1 users will be able to find
the powers gYk−1

t , g
Yk−2
t , . . . , gY1

t that are used by the Authority
to generate the values of the witnesses. Namely, consider the fol-
lowing procedure:

1. A colluding user holding own parameters xid, did and the
global parameter f(X) finds the polynomial

gid(X) = (f(X)−did)/(X+xid) =

0∑
j=k−1

µid,jX
j (12)

So the user learns all the coefficients µid,j in the equation

g
∑0
j=k−1 µid,jYj

t = Wid, (13)

where for each j = k− 1, k− 2, . . . , 1 the unknown Yj pre-
sumably satisfies the condition Yj = δj . We must emphasize
that the colluding users assume that in (13) the values Wid

are indeed calculated according to the protocol. However,
g
Yj
t will successfully be determined even if Yj 6= δj for at

least some of the j = 0, 1, . . . .

2. The colluding users gather all k − 1 equations together and
for the system of equations

g
∑k−1
j=1 µid1,jYj

t = Wid1 · g
−µid1,0
t

g
∑k−1
j=1 µid2,jYj

t = Wid2 · g
−µid2,0
t

. . .

g

∑k−1
j=1 µidk−1,j

Yj

t = Widk−1 · g
−µidk−1,0

t

(14)

perform Gaussian elimination in the exponents. That is, in-
stead of scalar multiplications they have exponentiations, in-
stead of subtractions they have divisions in the group gener-
ated by gt. Since xid are assumed to be random and indepen-
dent, they count for the corresponding matrix (i.e., the matrix
[µidi,j ], for i, j ∈ {1, . . . , k−1}) to be invertible. 2 Thereby
the colluding users should obtain the set of solutions gYjt , for
j = k − 1, . . . , 1.

Of course, if the set of revoked users increases over time to some
value k′ (k′ > k), then to find the newly used g

Yk′−1
t , g

Yk′−2
t , . . . ,

g
Yk
t only k′ − k colluding users are needed. The same follows for

the accumulator V : if gYk−1
t , gYk−2

t , . . . , gY1
t are found and V =

Qid ·W xid
id ·g

did
t is calculated by each user with the corresponding

xid and corresponding witness (did,Wid, Qid), then gYkt is easily
calculated by any colluding user from V , gYk−1

t , gYk−2
t , . . . , gY1

t .
2It may happen that the matrix in not invertible, but via a number
of experiments we never encountered such a case.



Assume that f is the polynomial (2) from a revocation round, and
deg f ≤ k. Then knowing f and the powers gYjt , for j = k, . . . , 1,
each colluding user can calculate the accumulator value and the
witness corresponding to that f and xid. Indeed, the user computes

did := f(−xid) (15)

and the quotient polynomial (12). Finally, he directly computes:

Wid :=
∏0
j=k−1

(
g
Yj
t

)µid,j
,

Qid :=
∏0
j=k−1

(
g
Yj+1
t

)µid,j (16)

for µid,j such that gid(X) =
∑0
j=k−1 µid,jX

j . Note that in these
computations Qid corresponds to Wid shifted by one step to the
“higher” powers gYj+1

t reflecting the (presumed, but in case of the
attack not satisfied) relation Qid = W δ

id.

Witnesses Updated by the Users. A similar method can be
applied in this case. Moreover, if the initial set of revoked users is
empty, then all the necessary data for building the direct method are
available to each single user (the user may create virtual identities
xid to compute their witnesses and thus to gather the data for the
system (14)). Once the direct method of computingWid andQid is
obtained, it can be used interchangeably with UpdateWitness( ).

4.4.2 Coherence of Witness Computation Methods
Some users may sometimes prefer to use the direct method of com-
puting Wid, Qid over the UpdateWitness( ) procedure. Con-
sider the exemplary scenarios:

• the degree of polynomial f(X) does not change much but
there are many fluctuations onR (some users are revoked but
some are admitted back to the system), and a user updating
the witness makes the update only occasionally (i.e., only
when needed),

• a new client application that include the UpdateWitness( )
procedure undergoes tests and some independent method for
computing the witnesses is needed.

Let us take a closer look at the UpdateWitness( ) procedure:
The list of the arguments of UpdateWitness( ) contains the
value V of the old accumulator and the value V ′ of the new ac-
cumulator. By f̃(X) let us define the new polynomial being the
product of all the binomials (X + x̃) such that x̃ ∈ R. That is,
f̃(X) = f(X) · (X + x′), if x′ has been added to the set R of
revoked values, and f̃(X) = f(X)/(X + x′), if x′ has been re-
moved fromR. Note that in the latter case (X+x′) divides the old
polynomial f(X).

If deg f̃ is greater than the degree of any polynomial f resulting
from the set R published so far, then the Revocation Authority is
the only party capable to calculate V ′. In this way, for consecutive
i = 1, 2, . . . , the next value Λi from vector (11) is implicitly intro-
duced to the system by the Revocation Authority. (Note that Λ0 is
already a part of the public key of the Revocation Authority). Let

f̃(X) =
∑0
i=k′ ãiX

i, f(X) =
∑0
i=k aiX

i,

where k′ = deg f̃ , k = deg f , ãi ∈ Zq are coefficients of the
polynomial f̃ , and ai ∈ Zq are coefficients of the polynomial f .

We have ãk′ = 1 and ak = 1, and k′ = k + 1 if x′ is added to R
and k′ = k − 1 if x′ is removed from R. So the users see:

V ′ =
∏k′

i=0 Λãii , V =
∏k
i=0 Λaii ,

and the new Λk+1 always appears in power one. This yields an
alternative method to learn gYjt , j = 1, 2, . . . , by the users. By (9),

V ′ =
∏0
i=k′ g

ãi·
αi1+αi2

2
t = g

1
2

∑0
i=k′ ãi(α

i
1+αi2)

t

=
(
g
f̃(α1)+f̃(α2)
t

) 1
2

=
(
g
f̃(α1)
t · gf̃(α2)

t

) 1
2
,

V =
(
g
f(α1)
t · gf(α2)

t

) 1
2
.

Similarly, for

Yj = (αj1 + αj2) · 2−1 mod q, (17)

where j = 0, 1, . . . , we have from (16), (15) and (12) that the direct
computation of Wid and Qid satisfies the following equations

Wid =
∏0
j=k−1 Λ

µid,j
j = g

1
2

∑0
j=k−1 µid,j(α

j
1+α

j
2)

t

=
(
g
gid(α1)
t · ggid(α2)

t

) 1
2
, (18)

Qid =
∏0
j=k−1 Λ

µid,j
j+1 = g

1
2

∑0
j=k−1 µid,j(α

j+1
1 +α

j+1
2 )

t

=
(
g
gid(α1)·α1
t · ggid(α2)·α2

t

) 1
2
. (19)

Note that the formulas (18) and (19) are also satisfied for the initial
cases: for k = 0, i.e. for R = ∅ (then gid(X) ≡ 0), and for k = 1,
when the first revoked value appears in R (then gid(X) ≡ 1).

We shall check that (18) and (19) are invariants of the procedure
UpdateWitness( ), that is, it yields the same results as the di-
rect computations. This means that replacing the vector (10) with
the vector (11) cannot be detected by the users. This issue is also
crucial for robustness of the VerifyNonRevocationProof( ):
if (in case of the attack) the two methods that could be used by a
user would yield different results, then the update made on the side
of the Revocation Authority could disagree with the update made
by the user, yielding a false verification result.

The case add=true.

d′id := did · (x′ − xid) = f(−xid) · (−xid + x′) = f̃(−xid) .

W ′id := V ·W (x′−xid)
id

=
(
g
f(α1)
t · gf(α2)

t

) 1
2 ·
(
g
gid(α1)
t · ggid(α2)

t

) 1
2
·(x′−xid)

=
(
g
f(α1)+gid(α1)·(x′−xid)
t · gf(α2)+gid(α2)·(x′−xid)

t

) 1
2
.

Since for “add=true” we have:

f(X) + gid(X) · (x′ − xid) = f(X) +
f(X)− did
X + xid

· (x′ − xid)

=
f(X) · (X + xid) + (f(X)− did) · (x′ − xid)

(X + xid)

=
f(X) · (X + xid) + f(X) · (x′ − xid)− did · (x′ − xid)

(X + xid)

=
f(X) · (X + x′)− d′id

(X + xid)
=
f̃(X)− d′id
(X + xid)

= g̃id(X),



where the polynomial

g̃id(X) := (f̃(X)− d′id)/(X + xid) =
∑0
j=k′−1 µ̃id,jX

j

is the quotient polynomial corresponding to f̃(X), we have that

W ′id =
(
g
g̃id(α1)
t · gg̃id(α2)

t

) 1
2

=
∏0
j=k′−1 Λ

µ̃id,j
j . (20)

(the latter equality follows from the equalities (18)). Similarly:

Q′id := V ′ · (W ′id)
−xid · g−d

′
id

t =
(
g
f̃(α1)
t · gf̃(α2)

t

) 1
2 ·((

g
g̃id(α1)
t · gg̃id(α2)

t

) 1
2

)−xid
·
(
g
−d′id
t · g−d

′
id

t

) 1
2

=
(
g
f̃(α1)−xid·g̃id(α1)−d′id
t · gf̃(α2)−xid·g̃id(α2)−d′id

t

) 1
2
.

Observe that f̃(X)− xid · g̃id(X)− d′id can be computed as(
g̃id(X) · (X + xid) + d′id

)
− xid · g̃id(X)− d′id = g̃id(X) ·X.

Hence

Q′id =
(
g
g̃id(α1)·α1
t · gg̃id(α2)·α2

t

) 1
2
=
∏0
j=k′−1 Λ

µ̃id,j
j+1 . (21)

The latter equality follows from the equalities (19). From (20) and
(21) it follows that in the case “add=true” the UpdateWitness( )
procedure and the direct method yield the same results.

The case add=false. Similarly as before we compute

d′id:=did · (x
′ − xid)−1 = f(−xid) · (−xid + x′)−1 = f̃(−xid).

W ′id:=
(
V ′−1 ·Wid

)(x′−xid)−1

=

((
g
f̃(α1)
t · gf̃(α2)

t

)− 1
2 ·
(
g
gid(α1)
t · ggid(α2)

t

) 1
2

)(x′−xid)−1

=

(
g
(gid(α1)−f̃(α1))·(x′−xid)−1

t · g(gid(α2)−f̃(α2))·(x′−xid)−1

t

) 1
2

.

In the case “add=false”, x′ is removed from R, so(
gid(X)− f̃(X)

)
· (x′ − xid)−1

= (x′ − xid)−1 ·
(
gid(X)−

f(X)

(X + x′)

)
= (x′ − xid)−1 ·

gid(X) · (X + x′)− f(X)

(X + x′)

= (x′ − xid)−1 ·
gid(X) · (X + x′)− (gid(X) · (X + xid) + did)

(X + x′)

= (x′ − xid)−1 ·
gid(X) · (x′ − xid)− did

(X + x′)

=
gid(X)− did · (x′ − xid)−1

(X + x′)
=
gid(X)− d′id

(X + x′)
. (22)

On the other hand, from the equality

f(X) = gid(X) · (X + xid) + did

= gid(X) · (X + xid) + d′id · (x′ − xid)

and the equality

f(X) = f̃(X) · (X + x′)

=
(
g̃id(X) · (X + xid) + d′id

)
· (X + x′)

= g̃id(X) · (X + x′) · (X + xid) + d′id · (X + x′)

it follows that

gid(X) · (X + xid) + d′id · (x′ − xid)
= g̃id(X) · (X + x′) · (X + xid) + d′id · (X + x′) .

The latter equality is equivalent to

gid(X) · (X + xid) + d′id · (x′ − xid)− d′id · (X + x′)

= g̃id(X) · (X + x′) · (X + xid) ,

which in turn is equivalent to the equality

gid(X)·(X+xid)−d′id·(X+xid) = g̃id(X)·(X+x′)·(X+xid) .

Consequently,

gid(X)− d′id = g̃id(X) · (X + x′) .

Hence in (22)
(
gid(X)−f̃(X)

)
·(x′−xid)−1 = g̃id(X).Therefore

by (18) we get:

W ′id =
(
g
g̃id(α1)
t · gg̃id(α2)

t

) 1
2

=
∏0
j=k′−1 Λ

µ̃id,j
j .

The reasoning forQ′id is exactly the same as in the case “add=true”.
Accordingly, the UpdateWitness( ) procedure and the direct
method again yield the same results.

4.4.3 Tracing the users
We assume that the Revocation Authority knows all the values xid.

Since gδ = K we have Xδ/Y = W δ
id/Qid. From (8), (12) and

(13) for Yj defined in (17) we have:

W δ
id

Qid
=

W
α1+α2

2
id

Qid
=

((
g
gid(α1)+gid(α2)
t

) 1
2
)α1+α2

2(
g
gid(α1)·α1+gid(α2)·α2
t

) 1
2

=
(
g
gid(α1)·

(
α1+α2

2
−α1

)
+gid(α2)·

(
α1+α2

2
−α2

)
t

) 1
2

=
(
g
gid(α1)·(α2−α1)+gid(α2)·(α1−α2)
t

) 1
4

=
(
g
gid(α1)−gid(α2)
t

)α2−α1
4

That is (
Xδ

Y

)4·(α2−α1)−1 mod q

= g
gid(α1)−gid(α2)
t . (23)

The exponent in the right hand side should depend on xid for poly-
nomial f such that deg f ≥ 3 (note that the free coefficient of the
polynomial gid(X) disappears in the difference gid(α1)−gid(α2),
and that gid(X) is monic, so the leading coefficient of gid(X)
carries no information about xid). Hence in the worst case the
Revocation Authority may collude with three users to ensure that
deg f ≥ 3.

Similarly like in Subsect.4.3 tracing is possible even if Y is not
contained in the output of the non-revocation proof. We may use
formula (23) to design an alternative version of the attack.

5. FINAL REMARKS
The list of problems presented in this paper is not complete as we
are aware of more threats. In each case, one can extend the scheme
so that a particular attack does not work. However, addtitional pro-
cedures make the system even more “heavy” and can make room



for new trapdoors. Definitely, since U-Prove is a proprietary sys-
tem, this is the role of its designers decide how to patch the system.

In our attacks the Revocation Authority learns the revocation at-
tribute when asked for checking X and Y . Interestingly, for [8]
the non-revocation proof is checked by the verifier himself and all
attack scenarios from this paper do not apply.

A general suggestion is to separate strictly the verifier and the Re-
vocation Authority and blind the parameters X,Y before passing
them to the Revocation Authority. That is, instead of X,Y the Re-
vocation Authority should get X ′ = Xt, Y ′ = Y t for a random t.
Of course, this does not secure the user against collusion between
the verifier and the Revocation Authority, as the verifier must use
the original X,Y as arguments for the hash function H. So again,
the user has to trust blindly the verifier.
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APPENDIX
A. EQUIVALENCE OF THE WAYS OF COM-

PUTING T1, T2, T3

In this section we show that the ways of computing T1, T2 and T3

by the procedures GenerateNonRevocationProof() and
VerifyNonRevocationProof() are equivalent. The main
point is that this holds even if the parameter d is manipulated and
not computed according to ComputeWitness(). Otherwise, we
assume that the remaining parameters are computed as described in
Sect. 2.

First we check two ways of computing T1. According to
GenerateNonRevocationProof()

T1 = Xk1(c̃idK)−k2gk31

while VerifyNonRevocationProof() states that

T1 = (V Y −1(Cd)
−1)c

′
Xs1(c̃idK)−s2gs31

Hence we have to prove that

(V Y −1(Cd)
−1)c

′
Xs1(c̃idK)−s2gs31

?
= Xk1(c̃idK)−k2gk31

Below we get a sequence of equations equivalent to the inspected
one:

(V Y −1(Cd)
−1)c

′
Xs1−k1(c̃idK)−s2+k2gs3−k31

?
= 1

(V Y −1(Cd)
−1)c

′
X−c

′xid(c̃idK)c
′t1g−c

′z
1

?
= 1

V Y −1(Cd)
−1X−xid(c̃idK)t1g−z1

?
= 1

V (QKt1)−1(Cd)
−1X−xid(c̃idK)t1g−z1

?
= 1

V Q−1(Cd)
−1X−xid(c̃id)

t1g−z1
?
= 1

V (VW−xidg−dt )−1(Cd)
−1X−xid(c̃id)

t1g−z1
?
= 1

W xidgdt (Cd)
−1X−xid(c̃id)

t1g−z1
?
= 1

W xidgdt (Cd)
−1(Wgt1)−xid(c̃id)

t1g−z1
?
= 1

gdt (Cd)
−1(gt1)−xid(c̃id)

t1g−z1
?
= 1

gdt (gdt g
t2
1 )−1(gt1)−xid(c̃id)

t1g−z1
?
= 1

g−t21 (gt1)−xid(c̃id)
t1g−z1

?
= 1

g−t21 (gt1)−xid(c̃id)
t1g
−(t1õid−t2)
1

?
= 1

(gt1)−xid(c̃id)
t1g
−t1õid
1

?
= 1

(gt1)−xid(gxidg
õid
1 )t1g

−t1õid
1

?
= 1

The last equation is obviously true.

Similarly, we have to check equivalence of two ways of computing
T2, which is once computed as c̃c

′
id g

s1gs41 and once as gk1gk41 . The
following equations are equivalent:

gk1gk41
?
= c̃c

′
id g

s1gs41

1
?
= c̃c

′
id g

s1−k1gs4−k41

1
?
= c̃c

′
id g
−c′xidg

−c′õid
1

1
?
= (gxidg

õid
1 )c

′
g−c

′xidg
−c′õid
1

The last equation is obviously true.

Finally, we check equivalence of two ways of computing T3:

Ck5d gk61
?
= gc

′
t (Cd)

s5gs61

1
?
= gc

′
t (Cd)

s5−k5gs6−k61

1
?
= gc

′
t (Cd)

−c′wg−c
′z′

1

1
?
= gtC

−w
d g−z

′

1

1
?
= gt(g

d
t g
t2
1 )−wg−z

′

1

1
?
= g1−dw

t (gt21 )−wg−z
′

1

1
?
= (gt21 )−wg−z

′

1

1
?
= (g−t2w−z

′

1 )

1
?
= g0

1
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