
Delegating RAM Computations

with Adaptive Soundness and Privacy∗

Prabhanjan Ananth† Yu-Chi Chen‡ Kai-Min Chung§ Huijia Lin¶

Wei-Kai Lin‖

October 18, 2016

Abstract

We consider the problem of delegating RAM computations over persistent databases. A user
wishes to delegate a sequence of computations over a database to a server, where each compu-
tation may read and modify the database and the modifications persist between computations.
Delegating RAM computations is important as it has the distinct feature that the run-time of
computations maybe sub-linear in the size of the database.

We present the first RAM delegation scheme that provide both soundness and privacy guar-
antees in the adaptive setting, where the sequence of delegated RAM programs are chosen
adaptively, depending potentially on the encodings of the database and previously chosen pro-
grams. Prior works either achieved only adaptive soundness without privacy [Kalai and Paneth,
ePrint’15], or only security in the selective setting where all RAM programs are chosen statically
[Chen et al. ITCS’16, Canetti and Holmgren ITCS’16].

Our scheme assumes the existence of indistinguishability obfuscation (iO) for circuits and
the decisional Diffie-Hellman (DDH) assumption. However, our techniques are quite general
and in particular, might be applicable even in settings where iO is not used. We provide a
“security lifting technique” that “lifts” any proof of selective security satisfying certain special
properties into a proof of adaptive security, for arbitrary cryptographic schemes. We then apply
this technique to the delegation scheme of Chen et al. and its selective security proof, obtaining
that their scheme is essentially already adaptively secure. Because of the general approach, we
can also easily extend to delegating parallel RAM (PRAM) computations. We believe that the
security lifting technique can potentially find other applications and is of independent interest.

∗This is the full version of the extended abstract to appear at Theory of Cryptography Conference (TCC) 2016-B.
Information about the grants supporting the authors can be found in “Acknowledgements” section.
†University of California Los Angeles and Center for Encrypted Functionalities. Email: prabhanjan@cs.ucla.edu.
‡Academia Sinica, Taiwan. Email: wycchen@iis.sinica.edu.tw.
§Academia Sinica, Taiwan. Email: kmchung@iis.sinica.edu.tw.
¶University of California Santa Barbara. Email: rachel.lin@cs.ucsb.edu.
‖Cornell University. Email: wklin@cs.cornell.edu.

1

Contents

1 Introduction 3
1.1 Our Contributions in More Detail . 4
1.2 Applications . 5
1.3 On the Existence of IO . 6
1.4 Concurrent and Related Works . 6
1.5 Organization . 7

2 Overview 7
2.1 Classical Complexity Leveraging . 8
2.2 Generalized Security Games . 8
2.3 Small-loss Complexity Leveraging . 9
2.4 Local Application . 11
2.5 The CCC+ Scheme and Its Nice Proof . 12

3 Preliminaries 13
3.1 Indistinguishability Obfuscation . 13
3.2 Puncturable Pseudorandom Functions . 14
3.3 Tools of [KLW15] . 14

3.3.1 Iterators . 15
3.3.2 Splittable Signatures . 15

3.4 RAM Computation . 17

4 Abstract Proof 18
4.1 Cryptographic Experiments and Games . 18
4.2 Generalized Cryptographic Games . 18
4.3 Small-loss Complexity Leveraging . 19

4.3.1 Step 1: G-Selective Security . 20
4.3.2 Step 2: Fully Adaptive Security . 23

4.4 Nice Indistinguishability Proof . 24

5 Adaptive Delegation for RAM computation 26
5.1 Definition . 27

6 History-less Accumulators 29
6.1 Overview . 29
6.2 Definition . 30

6.2.1 Security . 32
6.3 Extended Two-to-One SPB Hash . 34
6.4 History-less Accumulators from Extended Two-to-One SPB Hash 36

7 Instantiation: Adaptive Delegation for RAM with Persistent Database 39
7.1 Roadmap . 39
7.2 Adaptive CiO for RAM with Persistent Database . 40

7.2.1 Definition of CiO . 40
7.2.2 Construction of CiO . 41
7.2.3 Checking Niceness for Security Proof of CiO 44

1

7.3 Adaptive GRAM with Persistent Database . 45
7.3.1 Definition of GRAM . 46
7.3.2 Construction of GRAM with Persistent Database 47
7.3.3 Checking Niceness for Security Proof of GRAM 48

7.4 Garbled RAM to Delegation: Adaptive Setting . 52

A Detailed Check for the Proof of Lemma 6 56

2

1 Introduction

In the era of cloud computing, it is of growing popularity for users to outsource both their databases
and computations to the cloud. When the databases are large, it is important that the delegated
computations are modeled as RAM programs for efficiency, as computations maybe sub-linear,
and that the state of a database is kept persistently across multiple (sequential) computations to
support continuous updates to the database. In such a paradigm, it is imperative to address two
security concerns: Soundness (a.k.a., integrity) – ensuring that the cloud performs the computations
correctly, and Privacy – information of users’ private databases and programs is hidden from the
cloud. In this work, we design RAM delegation schemes with both soundness and privacy.

Private RAM Delegation. Consider the following setting. Initially, to outsource her database
DB , a user encodes the database using a secret key sk, and sends the encoding D̂B to the cloud.
Later, whenever the user wishes to delegate a computation over the database, represented as a
RAM program M , it encodes M using sk, producing an encoded program M̂ . Given D̂B and
M̂ , the cloud runs an evaluation algorithm to obtain an encoded output ŷ, on the way updating
the encoded database; for the user to verify the correctness of the output, the server additionally
generates a proof π. Finally, upon receiving the tuple (ŷ, π), the user verifies the proof and recovers
the output y in the clear. The user can continue to delegate multiple computations.

In order to leverage the efficiency of RAM computations, it is important that RAM delegation
schemes are efficient: The user runs in time only proportional to the size of the database, or to
each program, while the cloud runs in time proportional to the run-time of each computation.

Adaptive v.s. Selective Security. Two “levels” of security exist for delegation schemes: The,
weaker, selective security provides guarantees only in the restricted setting where all delegated
RAM programs and database are chosen statically, whereas, the, stronger, adaptive security allows
these RAM programs to be chosen adaptively, each (potentially) depending on the encodings of the
database and previously chosen programs. Clearly, adaptive security is more natural and desirable
in the context of cloud computing, especially for these applications where a large database is
processed and outsourced once and many computations over the database are delegated over time.

We present an adaptively secure RAM delegation scheme.

Theorem 1 (Informal Main Theorem). Assuming DDH and iO for circuits, there is an efficient
RAM delegation scheme, with adaptive privacy and adaptive soundness.

Our result closes the gaps left open by previous two lines of research on RAM delegation.
In one line, Chen et al. [CCC+16] and Canetti and Holmgren [CH16] constructed the first RAM
delegation schemes that achieve selective privacy and selective soundness, assuming iO and one-way
functions; their works, however, left open security in the adaptive setting. In another line, Kalai
and Paneth [KP15], building upon the seminal result of [KRR14], constructed a RAM delegation
scheme with adaptive soundness, based on super-polynomial hardness of the LWE assumption,
which, however, does not provide privacy at all.1 Our RAM delegation scheme improves upon
previous works — it simultaneously achieves adaptive soundness and privacy. Concurrent to our
work, Canetti, Chen, Holmgren, and Raykova [CCHR16] also constructed such a RAM delegation
scheme. Our construction and theirs are the first to achieve these properties.

1Note that here, privacy cannot be achieved for free using Fully Homomorphic Encryption (FHE), as FHE does not
directly support computation with RAM programs, unless they are first transformed into oblivious Turing machines
or circuits.

3

1.1 Our Contributions in More Detail

Our RAM delegation scheme achieves the privacy guarantee that the encodings of a database and
many RAM programs, chosen adaptively by a malicious server (i.e., the cloud), reveals nothing
more than the outputs of the computations. This is captured via the simulation paradigm, where
the encodings can be simulated by a simulator that receives only the outputs. On the other
hand, soundness guarantees that no malicious server can convince an honest client (i.e., the user)
to accept a wrong output of any delegated computation, even if the database and programs are
chosen adaptively by the malicious server.

Efficiency. Our adaptively secure RAM delegation scheme achieves the same level of efficiency
as previous selectively secure schemes [CCC+16,CH16]. More specifically,

• Client delegation efficiency: To outsource a database DB of size n, the client encodes
the database in time linear in the database size, n poly(λ) (where λ is the security parameter),
and the server merely stores the encoded database. To delegate the computation of a RAM
program M , with l-bit outputs and time and space complexity T and S, the client encodes
the program in time linear in the output length and polynomial in the program description
size l × poly(|M |, λ), independent of the complexity of the RAM program.

• Server evaluation efficiency: The evaluation time and space complexity of the server,
scales linearly with the complexity of the RAM programs, that is, T poly(λ) and S poly(λ)
respectively.

• Client verification efficiency: Finally, the user verifies the proof from the server and
recovers the output in time l × poly(λ).

The above level of efficiency is comparable to that of an insecure scheme (where the user simply
sends the database and programs in the clear, and does not verify the correctness of the server
computation), up to a multiplicative poly(λ) overhead at the server, and a poly(|M |, λ) overhead
at the user.2 In particular, if the run-time of a delegated RAM program is sub-linear o(n), the
server evaluation time is also sub-linear o(n) poly(λ), which is crucial for server efficiency.

Technical contributions: Though our RAM delegation scheme relies on the existence of iO, the
techniques that we introduce in this work are quite general and in particular, might be applicable
in settings where iO is not used at all.

Our main theorem is established by showing that the selectively secure RAM delegation scheme
of [CCC+16] (CCC+ scheme henceforth) is, in fact, also adaptively secure (up to some modifi-
cations). However, proving its adaptive security is challenging, especially considering the heavy
machinery already in the selective security proof (inherited from the line of works on succinct ran-
domized encoding of Turing machines and RAMs [BGL+15, CHJV15]). Ideally, we would like to
have a proof of adaptive security that uses the selective security property in a black-box way. A
recent elegant example is the work of [ABSV15] that constructed an adaptively secure functional
encryption from any selectively secure functional encryption without any additional assumptions.3

However, such cases are rare: In most cases, adaptive security is treated independently, achieved
using completely new constructions and/or new proofs (see examples, the adaptively secure func-
tional encryption scheme by Waters [Wat15], the adaptively secure garbled circuits by [HJO+16],

2We believe that the polynomial dependency on the program description size can be further reduced to linear
dependency, using techniques in the recent work of [AJS15a].

3More generally, they use a 1-query adaptively secure functional encryption suffices which can be constructed from
one-way functions by [GVW12].

4

and many others). In the context of RAM delegation, coming up with a proof of adaptive security
from scratch requires at least repeating or rephrasing the proof of selective security and adding
more details (unless the techniques behind the entire line of research [KLW15,CH16,CCC+16] can
be significantly simplified).

Instead of taking this daunting path, we follow a more principled and general approach. We
provide an abstract proof that “lifts” any selective security proof satisfying certain properties
— called a “nice” proof — into an adaptive security proof, for arbitrary cryptographic schemes.
With the abstract proof, the task of showing adaptive security boils down to a mechanic (though
possibly tedious) check whether the original selective security proof is nice. We proceed to do
so for the CCC+ scheme, and show that when the CCC+ scheme is plugged in with a special
kind of positional accummulator [KLW15], called history-less accummulator, all niceness properties
are satisfied; then its adaptive security follows immediately. At a very high-level, history-less
accummulators can statistically bind the value at a particular position q irrespect of the history
of read/write accesses, whereas positional accumulators of [KLW15] binds the value at q after a
specific sequence of read/write accesses.

Highlights of techniques used in the abstract proof includes a stronger version of complexity
leveraging—called small-loss complexity leveraging—that have much smaller security loss than
classical complexity leveraging, when the security game and its selective security proof satisfy
certain “niceness” properties, as well as a way to apply small-loss complexity leveraging locally
inside an involved security proof. We provide an overview of our techniques in more detail in
Section 2.

Parallel RAM (PRAM) Delegation As a benefit of our general approach, we can easily handle
delegation of PRAM computations as well. Roughly speaking, PRAM programs are RAM programs
that additionally support parallel (random) accesses to the database. Chen et al. [CCC+16] pre-
sented a delegation scheme for PRAM computations, with selective soundness and privacy. By
applying our general technique, we can also lift the selective security of their PRAM delegation
scheme to adaptive security, obtaining an adaptively secure PRAM delegation scheme.

Theorem 2 (informal — PRAM Delegation Scheme). Assuming DDH and the existence of iO
for circuits, there exists an efficient PRAM delegation scheme, with adaptive privacy and adaptive
soundness.

1.2 Applications

In the context of cloud computing and big data, designing ways for delegating computation privately
and efficiently is important. Different cryptographic tools, such as Fully Homomorphic Encryption
(FHE) and Functional Encryption (FE), provide different solutions. However, so far, none supports
delegation of sub-linear computation (for example, binary search over a large ordered data set, and
testing combinatorial properties, like k-connectivity and bipartited-ness, of a large graph in sub-
linear time). It is known that FHE does not support RAM computation, for the evaluator cannot
decrypt the locations in the memory to be accessed. FE schemes for Turing machines constructed
in [AS16] cannot be extended to support RAM, as the evaluation complexity is at least linear in
the size of the encrypted database. This is due to a refreshing mechanism crucially employed in
their work that “refreshes” the entire encrypted database in each evaluation, in order to ensure
privacy. To the best of our knowledge, RAM delegation schemes are the only solution that supports
sub-linear computations.

5

Apart from the relevance of RAM delegation in practice, it has also been quite useful to obtain
theoretical applications. Recently, RAM delegation was also used in the context of patchable obfus-
cation by [AJS15b]. In particular, they crucially required that the RAM delegation satisfies adaptive
privacy and only our work (and concurrently [CCHR16]) achieves this property. Our techniques
have also found interesting applications. In particular, history-less accumulators, that we introduce,
was crucially used in the construction of constrained PRFs for Turing machines [DKW16].

1.3 On the Existence of IO

Our RAM delegation scheme assumes the existence of IO for circuits. So far, in the literature,
many candidate IO schemes have been proposed (e.g., [GGH+13b,BR14,BGK+14]) building upon
the so called graded encoding schemes [GGH13a, CLT13, CLT15, GGH15]. While the security of
these candidates have come under scrutiny in light of two recent attacks [CGH+15, MSZ16] on
specific candidates, there are still several IO candidates on which the current cryptanalytic attacks
don’t apply. Moreover, current multilinear map attacks do not apply to IO schemes obtained
after applying bootstrapping techniques to candidate IO schemes for NC1 [GIS+10, GGH+13b,
App14,CLTV15,BGL+15] or special subclass of constant degree comptuations [Lin16], or functional
encryption schemes for NC1 [AJ15,BV15,AJS15a] or NC0 [LV16]. We refer the reader to [AJN+16]
for an extensive discussion of the state-of-affairs of attacks.

1.4 Concurrent and Related Works

Concurrent and independent work: A concurrent and independent work achieving the same
result of obtaining adaptively secure RAM delegation scheme is by Canetti et. al. [CCHR16]. Their
scheme extends the selectively secure RAM delegation scheme of [CH16], and uses a new primitive
called adaptive accumulators, which is interesting and potentially useful for other applications.
They give a proof of adaptive security from scratch, extending the selective security proof of [CH16]
in a non-black-box way. In contrast, our approach is semi-generic. We isolate our key ideas in an
abstract proof framework, and then instantiate the existing selective security proof of [CCC+16]
in this framework. The main difference from [CCC+16] is that we use historyless accumulators
(instead of using positional accumulators). Our notion of historyless accumulators is seemingly
different from adaptive accumulators; its not immediately clear how to get one from the other. One
concrete benefit our approach has is that the usage of iO is falsifiable, whereas in their construction
of adaptive accumulators, iO is used in a non-falsifiable way. More specifically, they rely on the iO-
to-differing-input obfuscation transformation of [BCP14], which makes use of iO in a non-falsifiable
way.

Previous works on non-succinct garbled RAM: The notion of (one-time, non-succinct)
garbled RAM was introduced by the work of Lu and Ostrovsky [LO13], and since then, a sequence
of works [GHL+14, GLOS15] have led to a black-box construction based on one-way functions,
due to Garg, Lu, and Ostrovsky [GLO15]. A black-box construction for parallel garbled RAM
was later proposed by Lu and Ostrovsky [LO15] following the works of [BCP,CLT]. However, the
garbled program size here is proportional to the worst-case time complexity of the RAM program,
so this notion does not imply a RAM delegation scheme. The work of Gentry, Halevi, Raykova,
and Wichs [GHRW14] showed how to make such garbled RAMs reusable based on various notions
of obfuscations (with efficiency trade-offs), and constructed the first RAM delegation schemes in a
(weaker) offline/online setting, where in the offline phase, the delegator still needs to run in time
proportional to the worst case time complexity of the RAM program.

6

Previous works on succinct garbled RAM: Succinct garbled RAM was first studied by [BGL+15,
CHJV15], where in their solutions, the garbled program size depends on the space complexity
of the RAM program, but does not depend on its time complexity. This implies delegation for
space-bounded RAM computations. Finally, as mentioned, the works of [CH16, CCC+16] (follow-
ing [KLW15], which gives a Turing machine delegation scheme) constructed fully succinct garbled
RAM, and [CCC+16] additionally gives the first fully succinct garbled PRAM. However, their
schemes only achieve selective security. Lifting to adaptive security while keeping succinctness is
the contribution of this work.

1.5 Organization

We first give an overview of our approach in Section 2. Preliminaries are shown in Section 3. In
Section 4, we present our abstract proof framework. The formal definition of adaptive delegation
for RAMs is then presented in Section 5. The new primitive, history-less accumulator, is introduced
in Section 6. Instantiation of RAM delegation using our abstract proof framework is presented in
Section 7.

2 Overview

We now provide an overview of our abstract proof for lifting “nice” selective security proofs into
adaptive security proofs. To the best of our knowledge, so far, the only general method going
from selective to adaptive security is complexity leveraging, which however has (1) exponential
security loss and (2) cannot be applied in RAM delegation setting for two reasons: (i) this will
restrict the number of programs an adversary can choose and, (ii) the security parameter has to be
scaled proportional to the number of program queries. This means that all the parameters grow
proportional to the number of program queries.

Small-loss complexity leveraging: Nevertheless, we overcome the first limitation by showing a
stronger version of complexity leveraging that has much smaller security loss, when the original
selectively secure scheme (including its security game and security reduction) satisfy certain
properties—we refer to the properties as niceness properties and the technique as small-loss
complexity leveraging.

Local application: Still, many selectively secure schemes may not be nice, in particular, the
CCC+ scheme. We broaden the scope of application of small-loss complexity leveraging using
another idea: Instead of applying small-loss complexity leveraging to the scheme directly,
we dissect its proof of selective security, and apply it to “smaller units” in the proof. Most
commonly, proofs involve hybrid arguments; now, if every pair of neighboring hybrids with
indistinguishability is nice, small-loss complexity leveraging can be applied locally to lift the
indistinguishability to be resilient to adaptive adversaries, which then “sum up” to the global
adaptive security of the scheme.

We capture the niceness properties abstractly and prove the above two steps abstractly. Interest-
ingly, a challenging point is finding the right “language” (i.e. formalization) for describing selective
and adaptive security games in a general way; we solve this by introducing generalized security
games. With this language, the abstract proof follows with simplicity (completely disentangled
from the complexity of specific schemes and their proofs, such as, the CCC+ scheme).

7

2.1 Classical Complexity Leveraging

Complexity leveraging says if a selective security game is negl(λ)2−L-secure, where λ is the security
parameter and L = L(λ) is the length of the information that selective adversaries choose statically
(mostly at the beginning of the game), then the corresponding adaptive security game is negl(λ)-
secure. For example, the selective security of a public key encryption (PKE) scheme considers
adversaries that choose two challenge messages v0, v1 of length n statically, whereas adaptive ad-
versaries may choose v0, v1 adaptively depending on the public key. (See Figure 1.) By complexity
leveraging, any PKE that is negl(λ)2−2n-selectively secure is also adaptively secure.

ACH s
v0, v1

pk,Enc(vb)
ACH a

pk

v0, v1

Enc(vb)

Figure 1 Left: Selective security of PKE. Right: Adaptive security of PKE.

The idea of complexity leveraging is extremely simple. However, to extend it, we need a general
way to formalize it. This turns out to be non-trivial, as the selective and adaptive security games are
defined separately (e.g., the selective and adaptive security games of PKE have different challengers
CH s and CH a), and vary case by case for different primitives (e.g., in the security games of RAM
delegation, the adversaries choose multiple programs over time, as opposed to in one shot). To
overcome this, we introduce generalize security games.

2.2 Generalized Security Games

Generalized security games, like classical games, are between a challenger CH and an adversary A,
but are meant to separate the information A chooses statically from its interaction with CH . More
specifically, we model A as a non-uniform Turing machine with an additional write-only special
output tape, which can be written to only at the beginning of the execution (See Figure 1). The
special output tape allows us to capture (fully) selective and (fully) adaptive adversaries naturally:
The former write all messages to be sent in the interaction with CH on the tape (at the beginning of
the execution), whereas the latter write arbitrary information. Now, selective and adaptive security
are captured by running the same (generalized) security game, with different types of adversaries
(e.g., see Figure 2 for the generalized security games of PKE).

Now, complexity leveraging can be proven abstractly: If there is an adaptive adversary A that
wins against CH with advantage negl(λ), there is a selective adversary A′ that wins with advantage
negl(λ)/2L, as A′ simply writes on its tape a random guess ρ of A’s messages, which is correct with
probability 1/2L.

With this formalization, we can further generalize the security games in two aspects. First,
we consider the natural class of semi-selective adversaries that choose only partial information
statically, as opposed to its entire transcript of messages (e.g., in the selective security game of
functional encryption in [GGH+13b] only the challenge messages are chosen selectively, whereas
all functions are chosen adaptively). More precisely, an adversary is F -semi-selective if the initial
choice ρ it writes to the special output tape is always consistent with its messages m1, · · · ,mk w.r.t.
the output of F , F (ρ) = F (m1, · · · ,mk). Clearly, complexity leveraging w.r.t. F -semi-selective
adversaries incurs a 2LF -security loss, where LF = |F (ρ)|.

8

CH A

q1
m1

qk
mk

·· ·

ρ = m1 · ·mkG

CH A

q1
m1

qk
mk

·· ·

ρ = m′0 · ·m′kG

CH A

q1
m1

qk
mk

·· ·

ρ = ∗ · ·∗G

(i) Full Selective (ii) G-Selective (iii) Fully Adaptive

Figure 3 Three levels of adaptivity. In (ii) G-selective means G(m1 · ·mk) = G(m′1 · ·m′k).

CH A

q1
m1

qk
mk

·· ·

ρ

ACH a

pk

v0, v1

Enc(vb)

ρ = v0, v1

ACH a

pk

v0, v1

Enc(vb)

ρ = ∗, ∗

Figure 2 Left: A generalized game. Middle and Right: Selective and adaptive security of PKE described
using generalized games.

Second, we allow the challenger to depend on some partial information G(ρ) of the adversary’s
initial choice ρ, by sending G(ρ) to CH , after A writes to its special output tape (See Figure 3)—we
say such a game is G-dependent. At a first glance, this extension seems strange; few primitives
have security games of this form, and it is unnatural to think of running such a game with a fully
adaptive adversary (who does not commit to G(ρ) at all). However, such games are prevalent inside
selective security proofs, which leverage the fact that adversaries are selective (e.g., the selective
security proof of the functional encryption of [GGH+13b] considers an intermediate hybrid where
the challenger uses the challenge messages v0, v1 from the adversary to program the public key).
Hence, this extension is essential to our eventual goal of applying small-loss complexity leveraging
to neighboring hybrids, inside selective security proofs.

2.3 Small-loss Complexity Leveraging

In a G-dependent generalized game CH , ideally, we want a statement that negl(λ)2−LG-selective
security (i.e., against (fully) selective adversaries) implies negl(λ)-adaptively security (i.e., against
(fully) adaptive adversaries). We stress that the security loss we aim for is 2LG , related to the
length of the information LG = G(ρ) that the challenger depends on,4 as opposed to 2L as in
classical complexity leveraging (where L is the total length of messages selective adversaries choose
statically). When L� LG, the saving in security loss is significant. However, this ideal statement
is clearly false in general.

1. For one, consider the special case where G always outputs the empty string, the statement
means negl(λ)-selective security implies negl(λ)-adaptive security. We cannot hope to improve
complexity leveraging unconditionally.

2. For two, even if the game is 2−L-selectively secure, complexity leveraging does not apply to
generalized security games. To see this, recall that complexity leveraging turns an adaptive
adversary A with advantage δ, into a selective one B with advantage δ/2L, who guesses A’s

4 Because the challenger CH depends on LG-bit of partial information G(ρ) of the adversary’s initial choice ρ, we
do not expect to go below 2−LG -security loss unless requiring very strong properties to start with.

9

messages at the beginning. It relies on the fact that the challenger is oblivious of B’s guess ρ to
argue that messages to and from A are information theoretically independent of ρ, and hence
ρ matches A’s messages with probability 1/2L (see Figure 3 again). However, in generalized
games, the challenger does depend on some partial information G(ρ) of B’s guess ρ, breaking
this argument.

To circumvent the above issues, we strengthen the premise with two niceness properties (in-
troduced shortly). Importantly, both niceness properties still only provide negl(λ)2−LG-security
guarantees, and hence the security loss remains 2LG .

Lemma 1 (Informal, Small Loss Complexity Leveraging). Any G-dependent generalized security
games with the following two properties for δ = negl(λ)2−LG are adaptively secure.

• The game is δ-G-hiding.

• The game has a security reduction with δ-statistical emulation property to a δ-secure crypto-
graphic assumption.

We define δ-G-hiding and δ-statistical emulation properties shortly. We prove the above lemma in
a modular way, by first showing the following semi-selective security property, and then adaptive
security. In each step, we use one niceness property.

δ-semi-selective security: We say that a G-dependent generalized security game CH is
δ-semi-selective secure, if the winning advantage of any G-semi-selective adversary is bounded
by δ = negl(λ)2−LG . Recall that such an adversary writes ρ to the special output tape at the
beginning, and later choose adaptively any messages m1, · · · ,mk consistent with G(ρ), that
is, G(m1, · · · ,mk) = G(ρ) or ⊥ (i.e., the output of G is undefined for m1, · · · ,mk).

Step 1 – From selective to G-semi-selective security This step encounters the same problem
as in the first issue above: We cannot expect to go from negl(λ)2−LG-selective to negl(λ)2−LG-semi-
selective security unconditionally, since the latter is dealing with much more adaptive adversaries.
Rather, we consider only cases where the selective security of the game with CH is proven using
a black-box straight-line security reduction R to a game-based intractability assumption with chal-
lenger CH ′ (c.f. falsifiable assumption [Nao03]). We identify the following sufficient conditions on
R and CH ′ under which semi-selective security follows.

Recall that a reduction R simultaneously interacts with an adversary A (on the right), and
leverages A’s winning advantage to win against the challenger CH ′ (on the left). It is convenient
to think of R and CH ′ as a compound machine CH ′↔R that interacts with A, and outputs what
CH ′ outputs. Our condition requires that CH ′↔R emulates statistically every next message and
output of CH . More precisely,

δ-statistical emulation property: For every possible G(ρ) and partial transcript τ =
(q1,m1, · · · , qk,mk) consistent with G(ρ) (i.e., G(m1, · · · ,mk) = G(ρ) or ⊥), condition on
them (G(ρ), τ) appearing in interactions with CH or CH ′↔R, the distributions of the next
message or output from CH or CH ′↔R are δ-statistically close.

We show that this condition implies that for any G-semi-selective adversary, its interactions with
CH and CH ′↔R are poly(λ)δ-statistically close (as the total number of messages is poly(λ)), as
well as the output of CH and CH ′. Hence, if the assumption CH ′ is negl(λ)2−LG-secure against
arbitrary adversaries, so is CH against G-semi-selective adversaries.5

5Technically, we also require that CH and CH ′ have the same winning threshold, like both 1/2 or 0.

10

Further discussion: We remark that the statistical emulation property is a strong condition
that is sufficient but not necessary. A weaker requirement would be requiring the game to be G-
semi-selective secure directly. However, we choose to formulate the statistical emulation property
because it is a typical way how reductions are built, by emulating perfectly the messages and output
of the challenger in the honest games. Furthermore, given R and CH ′, the statistical emulation
property is easy to check, as from the description of R and CH ′, it is usually clear whether they
emulate CH statistically close or not.

Step 2 – From G-semi-selective to adaptive security we would like to apply complexity
leveraging to go from negl(λ)2−LG-semi-selective security to adaptive security. However, we en-
counter the same problem as in the second issue above. To overcome it, we require the security
game to be G-hiding, that is, the challenger’s messages computationally hides G(ρ).

δ-G-hiding: For any ρ and ρ′, interactions with CH after receiving G(ρ) or G(ρ′) are indis-
tinguishable to any polynomial-time adversaries, except from a δ distinguishing gap.

Let’s see how complexity leveraging can be applied now. Consider again using an adaptive
adversary A with advantage 1/poly(λ) to build a semi-selective adversary B with advantage
1/ poly(λ)2LG , who guesses A’s choice of G(m1, · · · ,mk) later. As mentioned before, since the
challenger in the generalized game depends on B’s guess τ , classical complexity leveraging argu-
ment does not apply. However, by the δ-G-hiding property, B’s advantage differ by at most δ, when
moving to a hybrid game where the challenger generates its messages using G(ρ), where ρ is what
A writes to its special output tape at the beginning, instead of τ . In this hybrid, the challenger
is oblivious of B’s guess τ , and hence the classical complexity leveraging argument applies, giving
that B’s advantage is at least 1/ poly(λ)2LG . Thus by G-hiding, B’s advantage in the original
generalized game is at least 1/ poly(λ)2LG − δ = 1/poly(λ)2LG . This gives a contradiction, and
concludes the adaptive security of the game.

Summarizing the above two steps, we obtain our informal lemma on small-loss complexity
leveraging.

2.4 Local Application

In many cases, small-loss complexity leveraging may not directly apply, since either the security
game is not G-hiding, or the selective security proof does not admit a reduction with the statistical
emulation property. We can broaden the application of small-loss complexity leveraging by looking
into the selective security proofs and apply small loss complexity leveraging on smaller “steps”
inside the proof. For our purpose of getting adaptively secure RAM delegation, we focus on the
following common proof paradigm for showing indistinguishability based security. But the same
principle of local application could be applied to other types of proofs.

A common proof paradigm for showing the indistinguishability of two games Real0 and Real1

against selective adversaries is the following:

• First, construct a sequence of hybrid experiments H0, · · · , H`, that starts from one real ex-
periment (i.e., H0 = Real0), and gradually morphs through intermediate hybrids Hi’s into the
other (i.e., H` = Real1).

• Second, show that every pair of neighboring hybrids Hi, Hi+1 is indistinguishable to selective
adversaries.

11

Then, by standard hybrid arguments, the real games are selectively indistinguishable.
To lift such a selective security proof into an adaptive security proof, we first cast all real and

hybrids games into our framework of generalized games, which can be run with both selective and
adaptive adversaries. If we can obtain that neighboring hybrids games are also indistinguishable
to adaptive adversaries, then the adaptive indistinguishability of the two real games follow simply
from hybrid arguments. Towards this, we apply small-loss complexity leveraging on neighboring
hybrids. More specifically, Hi and Hi+1 are adaptively indistinguishable, if they satisfy the following
properties:

• Hi and Hi+1 are respectively Gi and Gi+1-dependent, as well as δ-(Gi||Gi+1)-hiding, where
Gi||Gi+1 outputs the concatenation of the outputs of Gi and Gi+1 and δ = negl(λ)2−LGi−LGi+1 .

• The selective indistinguishability of Hi and Hi+1 is shown via a reduction R to a δ-secure
game-based assumption and the reduction has δ-statistical emulation property.

Thus, applying small-loss complexity leveraging on every neighboring hybrids, the maximum se-
curity loss is 22Lmax , where Lmax = max(LGi). Crucially, if every hybrid Hi have small LGi , the
maximum security loss is small. In particular, we say that a selective security proof is “nice” if
it falls into the above framework and all Gi’s have only logarithmic length outputs — such “nice”
proofs can be lifted to proofs of adaptive indistinguishability with only polynomial security loss.
This is exactly the case for the CCC+ scheme, which we explain next.

2.5 The CCC+ Scheme and Its Nice Proof

CCC+ proposed a selectively secure RAM delegation scheme in the persistent database setting. We
now show how CCC+ scheme can be used to instantiate the abstract framework discussed earlier
in this Section. We only provide with relevant details of CCC+ and refer the reader to Section 7
for a thorough discussion.

There are two main components in CCC+. The first component is storage that maintains
information about the database and the second component is the machine component that involves
executing instructions of the delegated RAM. For every RAM delegated, there will be a separate
machine component. Both the storage and the machine components are built on heavy machinery.
We highlight below two important building blocks relevant to our discussion. Additional tools such
as iterators and splittable signatures are also employed in their construction.

• Positional Accumulators: This primitive offers a mechanism of producing a short value, called
accumulator, that commits to a large storage. Further, accumulators should also be updatable
- if a small portion of storage changes then only a correspondingly small change is required to
update the accumulator value. In the security proof, accumulators allow for programming the
parameters with respect to a particular location in such a way that the accumulator uniquely
determines the value at that location. However, such programming requires to know ahead of
time all the changes the storage undergoes since its initialization. Henceforth, we refer to the
hybrids to be in Enforce-mode when the accumulator parameters are programmed and the
setting when it is not programmed to be Real-mode.

• “Puncturable” Oblivious RAM: Oblivious RAM (ORAM) is a randomized compiler that com-
piles any RAM program into one with a fixed distribution of random access pattern to hide
its actual (logic) access pattern. CCC+ relies on stronger “puncturable” property of specific
ORAM construction of [CP13], which roughly says the compiled access pattern of a particu-
lar logic memory access can be simulated if certain local ORAM randomness is information
theoretically “punctured out,” and this local randomness is determined at the time the logic

12

memory location is last accessed. Henceforth, we refer to the hybrids to be in Puncturing-
mode when the ORAM randomness is punctured out.

We show that the security proof of CCC+ has a nice proof. We denote the set of hybrids in CCC+
to be H1, . . . ,H`. Correspondingly, we denote the reductions that argue indistinguishability of Hi

and Hi+1 to be Ri. We consider the following three cases depending on the type of neighboring
hybrids Hi and Hi+1:

1. ORAM is in Puncturing-mode in one or both of the neighboring hybrids: In this
case, the hybrid challenger needs to know which ORAM local randomness to puncture out to
hide the logic memory access to location q at a particular time point t. As mentioned, this
local randomness appears for the first time at the last time point t′ that location q is accessed,
possibly by a previous machine. As a result, in the proof, some machine components need to
be programmed depending on the memory access of later machines. In this case, Gi or Gi+1

need to contain information about q, t and t′, which can be described in poly(λ) bits.

2. Positional Accumulator is in Enforce-mode in one or both of the neighboring
hybrids: Here, the adversary is supposed to declare all its inputs in the beginning of ex-
periment. The reason being that in the enforce-mode, the accumulator parameters need to
be programmed. As remarked earlier, programming the parameters is possible only with the
knowledge of the entire computation.

3. Remaining cases: In remaining cases, the indistinguishability of neighboring hybrids reduces
to the security of other cryptographic primitives, such as, iterators, splittable signatures,
indistinguishability obfuscation and others. We note that in these cases, we simply have
Gi = Gi+1 = null, which outputs an empty string.

As seen from the above description, only the second case is problematic for us since the information
to be declared by the adversary in the beginning of the experiment is too long. Hence, we need to
think of alternate variants to positional accumulators where the enforce-mode can be implemented
without the knowledge of the computation history.

History-less Accumulators. To this end, we introduce a primitive called history-less accumu-
lators. As the name is suggestive, in this primitive, programming the parameters requires only
the location being information-theoretically bound to be known ahead of time. And note that the
location can be represented using only logarithmic bits and satisfies the size requirements. That is,
the output length of Gi is now short. By plugging this into the CCC+ scheme, we obtain a “nice”
security proof.

All that remains is to construct history-less accumulators. The construction of this primitive
can be found in Section 6.

3 Preliminaries

We denote the security parameter by λ. We assume familiarity of the reader with standard cryp-
tographic assumptions.

3.1 Indistinguishability Obfuscation

The notion of indistinguishability obfuscation (iO), first conceived by Barak et al. [BGI+01], guar-
antees that the obfuscation of two circuits are computationally indistinguishable as long as they

13

both are equivalent circuits, i.e., the output of both the circuits are the same on every input.
Formally,

Definition 1 (Indistinguishability Obfuscator (iO) for Circuits). A uniform PPT algorithm iO is
called an indistinguishability obfuscator for a circuit family {Cλ}λ∈N, where Cλ consists of circuits
C of the form C : {0, 1}in → {0, 1} with in = in(λ), if the following holds:

• Completeness: For every λ ∈ N, every C ∈ Cλ, every input x ∈ {0, 1}in, we have that

Pr
[
C ′(x) = C(x) : C ′ ← iO(λ,C)

]
= 1

• Indistinguishability: For any PPT distinguisher D, there exists a negligible function negl(·)
such that the following holds: for all sufficiently large λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ
such that C0(x) = C1(x) for all inputs x ∈ {0, 1}in, we have:∣∣∣Pr [D(λ, iO(λ,C0)) = 1]− Pr[D(λ, iO(λ,C1)) = 1]

∣∣∣ ≤ negl(λ)

3.2 Puncturable Pseudorandom Functions

A pseudorandom function family F consisting of functions of the form PRFK(·), that is defined
over input space {0, 1}η(λ), output space {0, 1}χ(λ) and key K in the key space K, is said to be a
secure puncturable PRF family if there exists a PPT algorithm Puncture that satisfies the following
properties:

• Functionality preserved under puncturing. Puncture takes as input a PRF key K,
sampled from K, and an input x ∈ {0, 1}η(λ) and outputs Kx such that for all x′ 6= x,
PRFKx(x′) = PRFK(x′).

• Pseudorandom at punctured points. For every PPT adversary (A1,A2) such that

A1(1λ) outputs an input x ∈ {0, 1}η(λ), consider an experiment where K
$←− K and Kx ←

Puncture(K,x). Then for all sufficiently large λ ∈ N, for a negligible function µ,∣∣Pr[A2(Kx, x,PRFK(x)) = 1]− Pr[A2(Kx, x, Uχ(λ)) = 1]
∣∣ ≤ µ(λ)

where Uχ(λ) is a string drawn uniformly at random from {0, 1}χ(λ).

As observed by [BW13,BGI14,KPTZ13], the GGM construction [GGM86] of PRFs from one-way
functions yields puncturable PRFs.

Theorem 3 ([GGM86, BW13, BGI14, KPTZ13]). If µ-secure one-way functions6 exist, then for
all polynomials η(λ) and χ(λ), there exists a µ-secure puncturable PRF family that maps η(λ) bits
to χ(λ) bits.

3.3 Tools of [KLW15]

We recall the tools used in the work of Chen et. al. [CCC+16], inherited from Koppula et
al. [KLW15]. We start with the definition of the iterators and splittable signature schemes in
Section 3.3.1 and 3.3.2. Then, we propose a variant of positional accumulators, termed as history-
less accumulators in Section 6.

6We say that a one-way function family is µ-secure if the probability of inverting a one-way function, that is
sampled from the family, is at most µ(λ).

14

3.3.1 Iterators

In this subsection, we now describe the notion of cryptographic iterators. As remarked earlier,
iterators essentially consist of states that are updated on the basis of the messages received. We
describe its syntax below.

Syntax Let ` be any polynomial. An iterator PPItr with message space Msgλ = {0, 1}`(λ) and
state space Stλ consists of three algorithms - SetupItr, ItrEnforce and Iterate defined below.

SetupItr(1λ, T) The setup algorithm takes as input the security parameter λ (in unary), and an
integer bound T (in binary) on the number of iterations. It outputs public parameters PPItr

and an initial state v0 ∈ Stλ.

ItrEnforce(1λ, T, ~m = (m1, . . . ,mk)) The enforced setup algorithm takes as input the security pa-
rameter λ (in unary), an integer bound T (in binary) and k messages (m1, . . . ,mk), where
each mi ∈ {0, 1}`(λ) and k is some polynomial in λ. It outputs public parameters PPItr and a
state v0 ∈ St.

Iterate(PPItr, vin,m) The iterate algorithm takes as input the public parameters PPItr, a state vin,
and a message m ∈ {0, 1}`(λ). It outputs a state vout ∈ Stλ.

For simplicity of notation, the dependence of ` on λ will not be explicitly mentioned. Also, for
any integer k ≤ T , we will use the notation Iteratek(PPItr, v0, (m1, . . . ,mk)) to denote Iterate(PPItr, vk−1,mk),
where vj = Iterate(PPItr, vj−1,mj) for all 1 ≤ j ≤ k − 1.

Security. Let Itr = {SetupItr, ItrEnforce, Iterate}, be an iterator scheme with message space Msgλ
and state space Stλ. We require the following notions of security.

Definition 2 (Indistinguishability of Setup). An iterator Itr = {SetupItr, ItrEnforce, Iterate} is said
to satisfy indistinguishability of Setup phase if any PPT adversary A’s advantage in the security
game Exp-Setup-Itr(1λ, Itr,A) is at most negligible in λ, where Exp-Setup-Itr is defined as
follows.

Exp-Setup-Itr(1λ, Itr,A)

The adversary A chooses a bound N ∈ Θ(2λ) and sends it to the challenger.

A sends ~m to the challenger, where ~m = (m1, . . . ,mk) ∈ (Msgλ)k.

The challenger chooses a bit b. If b = 0, the challenger outputs (PPItr, v0) ← SetupItr(1λ, T).
Else, it outputs (PPItr, v0)← ItrEnforce(1λ, T, ~m).

A sends a bit b′.

A wins the security game if b = b′.

Definition 3 (Enforcing). Consider any λ ∈ N, T ∈ Θ(2λ), ~m = (m1, . . . ,mk) ∈ (Msgλ)k. Let
(PPItr, v0) ← ItrEnforce(1λ, T, ~m) and vj = Iterate(PPItr, vj−1,mj) for all j ∈ [k]. Then, Itr =
{SetupItr, ItrEnforce, Iterate} is said to be enforcing if

vk = Iterate(PPItr, v
′,m′)⇒ (v′,m′) = (vk−1,mk).

Note that this is an information-theoretic property.

3.3.2 Splittable Signatures

We describe the syntax of the splittable signatures scheme below.

15

Syntax A splittable signature scheme SplScheme for message space Msg consists of the following
algorithms:

SetupSpl(1λ) The setup algorithm is a randomized algorithm that takes as input the security pa-
rameter λ and outputs a signing key SK, a verification key VK and reject-verification key
VKrej.

SignSpl(SK,m) The signing algorithm is a deterministic algorithm that takes as input a signing
key SK and a message m ∈ Msg. It outputs a signature σ.

VerSpl(VK,m, σ) The verification algorithm is a deterministic algorithm that takes as input a ver-
ification key VK, signature σ and a message m. It outputs either 0 or 1.

SplitSpl(SK,m∗) The splitting algorithm is randomized. It takes as input a secret key SK and a
message m∗ ∈ Msg. It outputs a signature σone = SignSpl(SK,m∗), a one-message verification
key VKone, an all-but-one signing key SKabo and an all-but-one verification key VKabo.

SignSplAbo(SKabo,m) The all-but-one signing algorithm is deterministic. It takes as input an all-
but-one signing key SKabo and a message m, and outputs a signature σ.

Correctness Let m∗ ∈ Msg be any message. Let (SK,VK,VKrej) ← SetupSpl(1λ) and (σone,
VKone, SKabo,VKabo)← SplitSpl(SK,m∗). Then, we require the following correctness properties:

1. For all m ∈ Msg, VerSpl(VK,m,SignSpl(SK,m)) = 1.

2. For all m ∈ Msg,m 6= m∗, SignSpl(SK,m) = SignSplAbo(SKabo,m).

3. For all σ, VerSpl(VKone,m
∗, σ) = VerSpl(VK,m∗, σ).

4. For all m 6= m∗ and σ, VerSpl(VK,m, σ) = VerSpl(VKabo,m, σ).

5. For all m 6= m∗ and σ, VerSpl(VKone,m, σ) = 0.

6. For all σ, VerSpl(VKabo,m
∗, σ) = 0.

7. For all σ and all m ∈ Msg, VerSpl(VKrej,m, σ) = 0.

Security. We will now define the security notions for splittable signature schemes. Each security
notion is defined in terms of a security game between a challenger and an adversary A.

Definition 4 (VKrej indistinguishability). A splittable signature scheme Spl is said to be VKrej

indistinguishable if any PPT adversary A has negligible advantage in the following security game:

Exp-VKrej(1
λ,Spl,A)

The challenger computes (SK,VK,VKrej) ← SetupSpl. It chooses a bit b ∈ {0, 1}. If b = 0, the
challenger sends VK to A. Else, it sends VKrej to A.

A sends a bit b′.

A wins if b = b′.

Definition 5 (VKone indistinguishability). A splittable signature scheme Spl is said to be VKone

indistinguishable if any PPT adversary A has negligible advantage in the following security game:

Exp-VKone(1
λ, Spl,A)

A sends a message m∗Mλ.

The challenger computes (SK,VK,VKrej)← SetupSpl, and computes (σone,VKone,
SKabo,VKabo) ← SignSpl(SK,m∗). It chooses a bit b ∈ {0, 1}. If b = 0, the challenger sends
(σone,VKone) to A. Else, it sends (σone,VK) to A.

16

A sends a bit b′.

A wins if b = b′.

Definition 6 (VKabo indistinguishability). A splittable signature scheme Spl is said to be VKabo

indistinguishable if any PPT adversary A has negligible advantage in the following security game:

Exp-VKabo(1λ,Spl,A)

A sends a message m∗ ∈Mλ.

The challenger computes (SK,VK,VKrej)← SetupSpl, and computes (σone,VKone,
SKabo,VKabo) ← SignSpl(SK,m∗). It chooses a bit b ∈ {0, 1}. If b = 0, the challenger sends
(SKabo,VKabo) to A. Else, it sends (SKabo,VK) to A.

A sends a bit b′.

A wins if b = b′.

Definition 7 (Splitting indistinguishability). A splittable signature scheme Spl is said to be splitting
indistinguishable if any PPT adversary A has negligible advantage in the following security game:

Exp-VKabo(1λ,Spl,A)

A sends a message m∗ ∈Mλ.

The challenger computes (SK,VK,VKrej) ← SetupSpl(1λ), (SK′,VK′,VK′rej) ← SetupSpl(1λ),
and computes (σone,VKone, SKabo,VKabo) ← SignSpl(SK,m∗), (σ′one,VK

′
one, SK

′
abo,VK

′
abo) ←

SignSpl(SK′,m∗). It chooses a bit b ∈ {0, 1}. If b = 0, the challenger sends (σone,VKone,SKabo,VKabo)
to A. Else, it sends (σ′one,VK

′
one, SKabo,VKabo) to A.

A sends a bit b′.

A wins if b = b′.

3.4 RAM Computation

A single-program RAM computation Π is specified by a program P and an initial memory mem0.
The evaluator prepares the initial state st0 and mem0, and converts P to a stateful algorithm F . At
each time t, F is executed with the state stin provided by the previous time step and a read ainA←M

from the memory as input, and outputs a new state stout for the next step and a memory access
command aoutM←A. Formally, it is written as (stout, aoutM←A)← F (stin, ainA←M) where an access denoted by
a = (I, b) includes a location and a value. In the following context, we sometimes interchangeably
use program P or stateful algorithm F to denote the same program, and use memory or database
to denote storage outside the program.

Let us consider the persistent database setting. A multiple-program RAM computation, Π =
(mem0,0, {Fsid}lsid=1), is specified by a sequence of programs {Fi}li=1 and an initial memory mem0,0,
where the session identity and total number of programs are denoted by sid and l. As above, the
evaluator prepares initial state and memory, and then runs these algorithms with intended order.
In particular, each Fi at the beginning will use the current memory left by the termination of Fi−1.
For simplicity, we adopt conventions w.r.t the construction and timestamp as follows.

1. Denote by (sid, 0) the beginning of session sid.

2. Denote by (sid, i) the time step i of session sid for i 6= 0.

3. Each stateful function Fsid hardwires the program and its short input xsid.

4. At t = t∗sid as termination, Fsid does not produce any memory access command.

5. Denote by (memsid+1,0, stsid+1,0)← F ∗sid(memsid,0, stsid,0) the iterative evaluation of Fsid on mem-
ory database memsid,0 and CPU state stsid,0 until termination with leftover database memsid+1,0

and output state stsid+1,0.

17

Computation Trace. For a multiple-program RAM computation Π, computation trace is a tuple

of configurations defined as conf〈Π〉 = (mem0,0, {{sttsid}
t∗sid
t=0, {atsid}

t∗sid−1
t=1 }lsid=1) for all session identities

sid and time steps t.

4 Abstract Proof

In this section, we present our abstract proof that turns “nice” selective security proofs, to adap-
tive security proofs. As discussed in the introduction, we use generalized security experiments and
games to describe our transformation. We present small-loss complexity leveraging in Section 4.3
and how to locally apply it in Section 4.4. In the latter, we focus our attention on proofs of indis-
tinguishability against selective adversaries, as opposed to proofs of arbitrary security properties.

4.1 Cryptographic Experiments and Games

We recall standard cryptographic experiments and games between two parties, a challenger CH
and an adversary A. The challenger defines the procedure and output of the experiment (or game),
whereas the adversary can be any probabilistic interactive machine.

Definition 8 (Canonical Experiments). A canonical experiment between two probabilistic interac-
tive machines, the challenger CH and the adversary A, with security parameter λ ∈ N, denoted as
Exp(λ,CH , A), has the following form:

• CH and A receive common input 1λ, and interact with each other.

• After the interaction, A writes an output γ on its output tape. In case A aborts before writing
to its output tape, its output is set to ⊥.

• CH additionally receives the output of A (receiving ⊥ if A aborts), and outputs a bit b indicating
accept or reject. (CH never aborts.)

We say A wins whenever CH outputs 1 in the above experiment.
A canonical game (CH , τ) has additionally a threshold τ ∈ [0, 1). We say A has advantage γ if

A wins with probability τ + γ in Exp(λ,CH , A).

For machine ? ∈ {CH , A}, we denote by Out?(λ,CH , A) and View?(λ,CH , A) the random
variables describing the output and view of machine ? in Exp(λ,CH , A).

Definition 9 (Cryptographic Experiments and Games). A cryptographic experiment is defined by
an ensemble of PPT challengers CH = {CH λ}. And a cryptographic game (CH, τ) has additionally
a threshold τ ∈ [0, 1). We say that a non-uniform adversary A = {Aλ} wins the cryptographic game
with advantage Advt(?), if for every λ ∈ N, its advantage in Exp(λ,CH λ, Aλ) is τ + Advt(λ).

Definition 10 (Intractability Assumptions). An intractability assumption (CH, τ) is the same as
a cryptographic game, but with potentially unbounded challengers. It states that the advantage of
every non-uniform PPT adversary A is negligible.

4.2 Generalized Cryptographic Games

In the literature, experiments (or games) for selective security and adaptive security are often de-
fined separately: In the former, the challenger requires the adversary to choose certain information
at the beginning of the interaction, whereas in the latter, the challenger does not require such
information.

18

We generalize standard cryptographic experiments so that the same experiment can work with
both selective and adaptive adversaries. This is achieved by separating information necessary for
the execution of the challenger and information an adversary chooses statically, which can be viewed
as a property of the adversary. More specifically, we consider adversaries that have a special output
tape, and write information α it chooses statically at the beginning of the execution on it; and only
the necessary information specified by a function, G(α), is sent to the challenger. (See Figure 3.)

Definition 11 (Generalized Experiments). A generalized experiment between a challenger CH
and an adversary A with respect to a function G, with security parameter λ ∈ N, denoted as
Exp(λ,CH , G,A), has the following form:

1. The adversary A on input 1λ writes on its special output tape string α at the beginning of its
execution, called the initial choice of A, and then proceeds as a normal probabilistic interactive
machine. (α is set to the empty string ε if A does not write on the special output tape at the
beginning.)

2. Let A[G] denote the adversary that on input 1λ runs A with the same security parameter
internally; upon A writing α on its special output tape, it sends out message m1 = G(α), and
later forwards messages A sends, m2,m3, · · ·

3. The generalized experiment proceeds as a standard experiment between CH and A[G], Exp(λ,CH , A[G]).

We say that A wins whenever CH outputs 1.
Furthermore, for any function F : {0, 1}∗ → {0, 1}∗, we say that A is F -selective in Exp(λ,CH , G,A),

if it holds with probability 1 that either A aborts or its initial choice α and messages it sends satisfy
that F (α) = F (m2,m3, · · ·). We say that A is adaptive, in the case that F is a constant function.

Similar to before, we denote by Out?(λ,CH , G,A) and View?(λ,CH , G,A) the random variables
describing the output and view of machine ? ∈ {CH , A} in Exp(λ,CH , G,A). In this work, we
restrict our attention to all the functions G that are efficiently computable, as well as, reversely
computable, meaning that given a value y in the domain of G, there is an efficient procedure that
can output an input x such that G(x) = y.

Definition 12 (Generalized Cryptographic Experiments and F-Selective Adversaries). A gener-
alized cryptographic experiment is a tuple (CH,G), where CH is an ensemble of PPT challengers
{CH λ} and G is an ensemble of efficiently computable functions {Gλ}. Furthermore, for any en-
semble of functions F = {Fλ} mapping {0, 1}∗ to {0, 1}∗, we say that a non-uniform adversary
A is F-selective in cryptographic experiments (CH,G) if for every λ ∈ N, Aλ is Fλ-selective in
experiment Exp(λ,CH λ, Gλ, Aλ).

Similar to Definition 9, a generalized cryptographic experiment can be extended to a generalized
cryptographic game (CH,G, τ) by adding an additional threshold τ ∈ [0, 1), where the advantage of
any non-uniform probabilistic adversary A is defined identically as before.

We can now quantify the level of selective/adaptive security of a generalized cryptographic
game.

Definition 13 (F-Selective Security). A generalized cryptographic game (CH,G, τ) is F-selective
secure if the advantage of every non-uniform PPT F-selective adversary A is negligible.

4.3 Small-loss Complexity Leveraging

In this section, we present our small-loss complexity leveraging technique to lift fully selective
security to fully adaptive security for a generalized cryptographic game Π = (CH,G, τ), provided

19

that the game and its (selective) security proof satisfies certain niceness properties. We will focus
on the following class of guessing games, which captures indistinguishability security. We remark
that our technique also applies to generalized cryptographic games with arbitrary threshold (See
Remark 1).

Definition 14 (Guessing Games). A generalized game (CH , G, τ) (for a security parameter λ) is
a guessing game if it has the following structure.

• At beginning of the game, CH samples a uniform bit b← {0, 1}.
• At the end of the game, the adversary guesses a bit b′ ∈ {0, 1}, and he wins if b = b′.

• When the adversary aborts, his guess is a uniform bit b′ ← {0, 1}.
• The threshold τ = 1/2.

The definition extends naturally to a sequence of games Π = (CH,G, 1/2).
Our technique consists of two modular steps: First reach G-selective security, and then adaptive

security, where the first step applies to any generalized cryptographic game.

4.3.1 Step 1: G-Selective Security

In general, a fully selectively secure Π may not be F-selective secure for F 6= Fid, where Fid denotes
the identity function. We restrict our attention to the following case: The security is proved by a
straight-line black-box security reduction from Π to an intractability assumption (CH′, τ ′), where
the reduction is an ensemble of PPT machines R = {Rλ} that interacts simultaneously with an
adversary for Π and CH′, the reduction is syntactically well-defined with respect to any class of F-
selective adversary. This, however, does not imply that R is a correct reduction to prove F-selective
security of Π. Here, we identify a sufficient condition on the “niceness” of reduction that implies
G-selective security of Π. We start by defining the syntax of a straight-line black-box security
reduction.

Standard straight-line black-box security reduction from a cryptographic game to an intractabil-
ity assumption is a PPT machine R that interacts simultaneously with an adversary and the chal-
lenger of the assumption. Since our generalized cryptographic games can be viewed as standard
cryptographic games with adversaries of the form A[G] = {Aλ[Gλ]}, the standard notion of reduc-
tions extends naturally, by letting the reductions interact with adversaries of the form A[G].

Definition 15 (Reductions). A probabilistic interactive machine R is a (straight-line black-box)
reduction from a generalized game (CH , G, τ) to a (canonical) game (CH ′, τ ′) for security parameter
λ, if it has the following syntax:

• Syntax: On common input 1λ, R interacts with CH ′ and an adversary A[G] simultaneously
in a straight-line—referred to as “left” and “right” interactions respectively. The left interac-
tion proceeds identically to the experiment Exp(λ,CH ′, R↔A[G]), and the right to experiment
Exp(λ,CH ′↔R,A[G]).

A (straight-line black-box) reduction from an ensemble of generalized cryptographic game (CH,G, τ)
to an intractability assumption (CH′, τ ′) is an ensemble of PPT reductions R = {Rλ} from game
(CH λ, Gλ, τ) to (CH ′λ, τ

′) (for security parameter λ).

At a high-level, we say that a reduction is µ-nice, where µ is a function, if it satisfies the
following syntactical property: R (together with the challenger CH of the assumption) generates
messages and output that are statistically close to the messages and output of the challenger CH ′

of the game, at every step.

20

More precisely, let ρ = (m1, a1,m2, a2, · · · ,mt, at) denote a transcript of messages and outputs
in the interaction between CH and an adversary (or in the interaction between CH ′↔R and an
adversary) where ~m = m1,m2, · · · ,mt−1 and mt correspond to the messages and output of the
adversary (mt = ⊥ if the adversary aborts) and ~a = a1, a2, · · · , at−1 and at corresponds to the
messages and output of CH (or CH ′↔R). A transcript ρ possibly appears in an interaction with
CH (or CH ′↔R) if when receiving ~m, CH (or CH ′↔R) generates ~a with non-zero probability.
The syntactical property requires that for every prefix of a transcript that possibly appear in both
interaction with CH and interaction with CH ′↔R, the distributions of the next message or output
generated by CH and CH ′↔R are statistically close. In fact, for our purpose later, it suffices
to consider the prefixes of transcripts that are G-consistent: A transcript ρ is G-consistent if ~m
satisfies that either mt = ⊥ or m1 = G(m2,m3, · · · ,mt−1); in other words, ρ could be generated
by a G-selective adversary.

Definition 16 (Nice Reductions). We say that a reduction R from a generalized game (CH , G, τ)
to a (canonical) game (CH ′, τ) (with the same threshold) for security parameter λ is µ-nice, if it
satisfies the following property:

• µ(λ)-statistical emulation for G-consistent transcripts:
For every prefix ρ = (m1, a1,m2, a2, · · · ,m`−1, a`−1,m`) of a G-consistent transcript of mes-
sages that possibly appears in interaction with both CH and CH ′↔R, the following two dis-
tributions are µ(λ)-close:

∆(DCH ′↔R(λ, ρ), DCH (λ, ρ)) ≤ µ(λ)

where DM (λ, ρ) for M = CH ′↔R or CH is the distribution of the next message or output
a` generated by M(1λ) after receiving messages ~m in ρ, and conditioned on M(1λ) having
generated ~a in ρ.

Moreover, we say that a reduction R = {Rλ} from a generalized cryptographic game (CH,G, τ)
to a intractability assumption (CH′, τ) is nice if there is a negligible function µ, such that, Rλ is
µ(λ)-nice for every λ.

When a reduction is µ-nice with negligible µ, it is sufficient to imply G-selective security of the
corresponding generalized cryptographic game.

Lemma 2. Suppose R is a µ-nice reduction from (CH , G, τ) to (CH ′, τ) for security parameter
λ, and A is a deterministic G-semi-selective adversary that wins (CH , G, τ) with advantage γ(λ),
then R↔A[G] is an adversary for (CH ′, τ) with advantage γ(λ)− t(λ) ·µ(λ), where t(λ) is an upper
bound on the run-time of R.

Proof. Our goal is showing that R when interacting with A[G], breaks the assumption (CH ′, τ ′)
with advantage greater than or equal to γ − tµ. Suppose this is not true, that is, in experiment
Exp(λ,CH ′↔R,A[G]), CH ′↔R outputs 1 with probability less than τ + γ − tµ. We derive a
contradiction below.

Below, for simplicity of notation, we set M0 = CH and M1 = CH ′↔R. The two experiments
under consideration are E0 = Exp(λ∗,M0, A[G]) and E1 = Exp(λ∗,M1, A[G]). Consider the inter-
action between Mb and A[G] in experiment Eb. Let Transb,i denote the distribution of length-i
prefix ρ of the transcript of messages and outputs in Eb. If i is even, ρ = m1, a1, · · · ,mi/2, ai/2;
if i is odd, ρ = m1, a1, · · · , a(i−1)/2,m(i−1)/2+1. We assume that for a transcript of length smaller
than i, its length-i prefix is the transcript appended with > to length i. Since R runs at most t

21

steps, Transb,t is the distribution of the full transcript in Eb. Since A is G-selective, every ρ in the
support of Transb,t is G-consistent.

We denote by di the statistical distance between Trans0,i and Trans1,i.

di = ∆(Trans0,i, Trans1,i)

Clearly d0 = 0 and di ≤ di+1. Our premise and hypothesis state that the probabilities that M0

and M1 outputs 1 in E0 and E1 differ by more than tµ, and hence, dt > tµ. Then, there must be
an index i, such that, the gap between the statistical distances di and di+1 is more than µ, that is,
di+1 > di + µ

We first observe that if i is even and the i+1th message is from A[G], then di+1 = di. Since A[G]
is deterministic, the i+ 1th message is determined by the previous i messages, and thus di+1 ≤ di.
Combining with the fact that di ≤ di+1, we have di = di+1. If i is odd and the i + 1th message is
from Mb, we show that by the statistical emulation property of R, the gap between di and di+1 is
no larger than µ, which gives a contradiction. Below, we prove this fact.

Let Γb be the set of length-i prefix in the support of Transb,i+1 (i.e., the set of length-i prefix
that appear with non-zero probability in Eb), and let Γ be their intersection Γ0∩Γ1 (i.e., the set of
length-i prefix that appear with non-zero probability in both E0 and E1). The statistical distance
di can be divided into three parts,

2di+1 = p+ p0 + p1

p = Σρ∈Γ Σa

∣∣Trans0,i+1(ρ||a)− Trans1,i+1(ρ||a)
∣∣

pb = Σρ∈Γb−Γ Σa Transb,i+1(ρ||a)

where Transb,i+1(ρ||a) is the probability that prefix ρ||a (of length (i + 1)) appears according to
distribution Transb,i+1. The probability pb is exactly the probability that some prefix ρ ∈ Γb − Γ
appear in experiment Eb.

pb = Pr[Some ρ ∈ Γb − Γ appears in Eb]

We can further expand the first term p,

p = Σρ∈Γ Σa

∣∣∣DM0 [λ∗, ρ](a)× Pr[ρ ∈ Γ appears in E0]

− DM1 [λ∗, ρ](a)× Pr[ρ ∈ Γ appears in E1]
∣∣∣

Where DMb
[λ∗, ρ](a) is the probability that Mb generates a as the next message or output condi-

tioned on prefix ρ occurring in Eb. By the statistical emulation property of R, for every prefix
ρ of a G-consistent transcript that appears in both E0 and E1, the distance between these two
conditional distributions DM0 [λ∗, ρ] and DM1 [λ∗, ρ] is bounded by µ. Then,

p ≤ Σρ∈Γ Σa

(∣∣∣DM0 [λ∗, ρ](a)× Pr[ρ ∈ Γ appears in E0]

− DM1 [λ∗, ρ](a)× Pr[ρ ∈ Γ appears in E0]
∣∣∣

+
∣∣∣DM1 [λ∗, ρ](a)× Pr[ρ ∈ Γ appears in E0]

− DM1 [λ∗, ρ](a)× Pr[ρ ∈ Γ appears in E1]
∣∣∣)

22

We note that the first two lines above correspond to the following:

Σρ∈Γ Σa

∣∣∣DM0 [λ∗, ρ](a)× Pr[ρ ∈ Γ appears in E0]

− DM1 [λ∗, ρ](a)× Pr[ρ ∈ Γ appears in E0]
∣∣∣

= Σρ∈Γ Pr[ρ ∈ Γ appears in E0]×
(

Σa

∣∣∣DM0 [λ∗, ρ](a)− DM1 [λ∗, ρ](a)
∣∣∣)

≤ Σρ∈Γ Pr[ρ ∈ Γ appears in E0]× 2µ

≤ 2µ

The last two lines above correspond to the following:

q = Σρ∈Γ Σa

∣∣∣DM1 [λ∗, ρ](a)× Pr[ρ ∈ Γ appears in E0]

− DM1 [λ∗, ρ](a)× Pr[ρ ∈ Γ appears in E1]
∣∣∣

= Σρ∈Γ

∣∣∣Pr[ρ ∈ Γ appears in E0]− Pr[ρ ∈ Γ appears in E1]
∣∣∣

×
(

Σa DM1 [λ∗, ρ](a)
)

= Σρ∈Γ

∣∣∣Pr[ρ ∈ Γ appears in E0]− Pr[ρ ∈ Γ appears in E1]
∣∣∣

Therefore, p ≤ 2µ+ q and 2di+1 ≤ 2µ+ p0 + p1 + q. However, note that p0 + p1 + q is bounded by
twice the statistical distance 2di between the distributions of length-i prefixes. Thus, we get that
di+1 ≤ di + µ, which is a contradiction.

By a standard argument, Lemma 2 implies the following asymptotic version theorem.

Theorem 4. If there exists a nice reduction R from a generalized cryptographic game (CH,G, τ)
to an intractability assumption (CH′, τ), then (CH,G, τ) is G-selectively secure.

4.3.2 Step 2: Fully Adaptive Security

We now show how to move from G-selective security to fully adaptive security for the class of
guessing games with security loss 2LG(λ), where LG(λ) is the output length of G, provided that the
challenger’s messages hide the information of G(α) computationally. We start with formalizing this
hiding property.

Roughly speaking, the challenger CH of a generalized experiment (CH , G) is G-hiding, if for
any α and α′, interactions with CH receiving G(α) or G(α′) at the beginning are indistinguishable.
Denote by CH (x) the challenger with x hardcoded as the first message.

Definition 17 (G-hiding). We say that a generalized guessing game (CH , G, τ) is µ(λ)-G-hiding
for security parameter λ, if its challenger CH satisfies that for every α and α′, and every non-
uniform PPT adversary A,

|Pr[OutA(λ,CH (G(α)), A) = 1]− Pr[OutA(λ,CH (G(α′)), A) = 1]| ≤ µ(λ)

Moreover, we say that a generalized cryptographic guessing game (CH,G, τ) is G-hiding, if there is
a negligible function µ, such that, (CHλ, Gλ, τ(λ)) is µ(λ)-Gλ-hiding for every λ.

The following lemma says that if a generalized guessing game (CH , G, 1/2) is G-selectively
secure and G-hiding, then it is fully adaptively secure with 2LG security loss.

23

Lemma 3. Let (CH , G, 1/2) be a generalized cryptographic guessing game for security parameter λ.
If there exists a fully adaptive adversary A for (CH , G, 1/2) with advantage γ(λ) and (CH , G, 1/2) is
µ(λ)-G-hiding with µ(λ) ≤ γ/2LG(λ)+1, then there exists a G-selective adversary A′ for (CH , G, 1/2)
with advantage γ(λ)/2LG(λ)+1, where LG is the output length of G.

Proof. We construct a wrapper adversary A′ for (CH , G, 1/2) who runs A internally as follow:

• When A writes initial choice α on its special output tape, A′ ignores α. Instead, it samples
a random g ← {0, 1}LG , and finds an α′ such that G(α′) = g (recall that we assume G is
reversely computable), and writes α′ on its own special output tape.

• A′ forwards messages to and from A externally, and aborts whenever A aborts (recall that in
a guess game, when A or A′ aborts, it makes a uniform guess b′).

• If A does not abort and outputs bit b′, A′ checks whether its initial random guess g matches
the output of G applied to the transcript of messages ρ that A sends, i.e., g = G(ρ); we denote
this event match. If it is the case, then A′ outputs b′ as well. Otherwise, it aborts.

Since A′ aborts whenever its initial guess g does not match the messages A sends w.r.t. G, A′ is a
G-selective adversary.

We claim that A′ achieves at least γ/2LG+1 advantage in (CH , G, 1/2). To prove this, we
consider another hybrid experiment, which is identical to the experiment Exp(1λ,CH , G,A′), except
that CH instead of receiving G(α′) at the beginning, receives G(α). Observe that in this hybrid
experiment g is information theoretically hidden from both CH and A (emulated by A′), and the
views of CH and A are identical to their views in an honest execution between them directly
Exp(λ,CH , G,A) (without the wrapper A′ in between). Therefore, the guess g by A′ matches G(ρ)
with probability 1/2LG , and conditioned on guessing correctly, it’s advantage is γ. Overall, the
advantage of A′ is γ/2LG .

Next, by theG-hiding property of (CH , G, 1/2), the views ofA′ in experiment Exp(1λ,CH , G,A′)
and the hybrid experiment are µ-indistinguishable. By the construction of the guessing game, the
advantage of A′ in these two experiments differ by at most µ. Hence, the advantage of A′ in
Exp(1λ,CH , G,A′) is at least (γ/2LG)− µ ≥ (γ/2LG+1).

Therefore, for a generalized cryptographic guessing game (CH,G, τ), if G has logarithmic output
length LG(λ) = O(log λ) and the game is G-hiding, then its G-selective security implies fully
adaptive security.

Theorem 5. Let (CH,G, τ) be a G-selectively secure generalized cryptographic guessing game. If
(CH,G, τ) is G-hiding and LG(λ) = O(log λ), then (CH,G, τ) is fully adaptively secure.

Remark 1. The above proof of small-loss complexity leveraging can be extended to a more general
class of security games, beyond the guessing games. The challenger with an arbitrary threshold
τ has the form that if the adversary aborts, the challenger toss a biased coin and outputs 1 with
probability τ . The same argument above goes through for games with this class of challengers.

4.4 Nice Indistinguishability Proof

In this section, we characterize an abstract framework of proofs—called “nice” proofs—for showing
the indistinguishability of two ensembles of (standard) cryptographic experiments. We focus on a
common type of indistinguishability proof, which consists of a sequence of hybrid experiments and

24

shows that neighboring hybrids are indistinguishable via a reduction to a intractability assumption.
We formalize required nice properties of the hybrids and reductions such that a fully selective secu-
rity proof can be lifted to prove fully adaptive security by local application of small-loss complexity
leveraging technique to neighboring hybrids. We start by describing common indistinguishability
proofs using the language of generalized experiments and games.

Consider two ensembles of standard cryptographic experiments RL0 and RL1. They are special
cases of generalized cryptographic experiments with a function G = null : {0, 1}∗ → {ε} that
always outputs the empty string, that is, (RL0, null) and (RL1, null); we refer to them as the “real”
experiments.

Consider a proof of indistinguishability of (RL0, null) and (RL1, null) against fully selective
adversaries via a sequence of hybrid experiments. As discussed in the overview, the challenger
of the hybrids often depends non-trivially on partial information of the adversary’s initial choice.
Namely, the hybrids are generalized cryptographic experiments with non-trivial G function. Since
small-loss complexity leveraging has exponential security loss in the output length of G, we require
all hybrid experiments have logarithmic-length G function. Below, for convenience, we use the
notation Xi to denote an ensemble of the form {Xi,λ}, and the notation XI with a function I, as
the ensemble {XI(λ),λ}.

1. Security via hybrids with logarithmic-length G function: The proof involves a sequence
of polynomial number `(?) of hybrid experiments. More precisely, for every λ ∈ N, there is a
sequence of `(λ) + 1 hybrid (generalized) experiments (H0,λ, G0,λ), · · · (H`(λ),λ, G`(λ),λ), such
that, the “end” experiments matches the real experiments,

(H0,G0) = ({H0,λ}, {G0,λ}) = (RL0, null)

(H`,G`) = ({H`(λ),λ}, {G`(λ),λ}) = (RL1, null),

Furthermore, there exists a function LG(λ) = O(log λ) such that for every λ and i, the output
length of Gi,λ is at most LG(λ).

We next formalize required properties to lift security proof of neighboring hybrids. Towards
this, we formulate indistinguishability of two generalized cryptographic experiments as a generalized
cryptographic guessing game. The following is a known fact.

Fact. Let (CH0,G0) and (CH1,G1) be two ensembles of generalized cryptographic experiments, F
be an ensemble of efficiently computable functions, and CF denote the class of non-uniform PPT
adversaries A that are F-selective in (CHb,Gb) for both b = 0, 1. Indistinguishability of (CH0,G0)
and (CH1,G1) against (efficient) F-selective adversaries is equivalent to F-selective security of
a generalized cryptographic guessing game (D,G0||G1, 1/2), where G0||G1 = {G0,λ||G1,λ} are the
concatenations of functions G0,λ and G1,λ, and the challenger D = {Dλ[CH 0,λ,CH 1,λ]} proceeds
as follows: For every security parameter λ ∈ N, D = Dλ[CH 0,λ,CH 1,λ], Gb = Gb,λ, CH b = CH b,λ,
in experiment Exp(λ,D,G0||G1, ?),

• D tosses a random bit b
$← {0, 1}.

• Upon receiving g0||g1 (corresponding to gd = Gd(α) for d = 0, 1 where α is the initial choice
of the adversary), D internally runs challenger CH b by feeding it gb and forwarding messages
to and from CH b.

• If the adversary aborts, D output 0. Otherwise, upon receiving the adversary’s output bit b′,
it output 1 if and only if b = b′.

25

By the above fact, indistinguishability of neighboring hybrids (Hi,Gi) and (Hi+1,Gi+1) against
F-selective adversary is equivalent to F-selective security of the generalized cryptographic guessing
game (Di,Gi||Gi+1, 1/2), where Di = {Di,λ[Hi,λ,Hi+1,λ]}. We can now state the required properties
for every pair of neighboring hybrids:

2. Indistinguishability of neighboring hybrids via nice reduction For every neighboring hy-
brids (Hi,Gi) and (Hi+1,Gi+1), their indistinguishability proof against fully selective adversary
is established by a nice reduction Ri from the corresponding guessing game (Di,Gi||Gi+1, 1/2)
to some intractability assumption.

3. Gi||Gi+1-hiding For every neighboring hybrids (Hi,Gi) and (Hi+1,Gi+1), their corresponding
guessing game (Di,Gi||Gi+1, 1/2) is Gi||Gi+1-hiding.

In summary,

Definition 18 (Nice Indistinguishability Proof). A “nice” proof for the indistinguishability of
two real experiments (RL0, null) and (RL1, null) is one that satisfy properties 1, 2, and 3 described
above.

It is now straightforward to lift security of nice indistinguishability proof by local application
of small-loss complexity leveraging for neighboring hybrids.

Theorem 6. A “nice” proof for the indistinguishability of two real experiments (RL0, null) and
(RL1, null) implies that these experiments are indistinguishable against fully adaptive adversaries.

Proof. For every neighboring hybrids (Hi,Gi) and (Hi+1,Gi+1), the corresponding generalized cryp-
tographic guessing game (Di,Gi||Gi+1, 1/2) is fully selectively secure. By property 2 and Theorem 4,
(Di,Gi||Gi+1, 1/2) is Gi||Gi+1-selectively secure. By the fact that the output length of Gi||Gi+1 is
at most 2LG(λ) = O(log λ), the Gi||Gi+1-hiding property, and Theorem 5, (Di,Gi||Gi+1, 1/2) is
fully adaptively secure. This is equivalent to say that (Hi,Gi) and (Hi+1,Gi+1) are indistinguish-
able against fully adaptive adversaries. Finally, since all neighboring hybrids are indistinguish-
able against fully adaptive adversary, a standard hybrid argument implies that (RL0, null) and
(RL1, null) are indistinguishable against fully adaptive adversaries.

5 Adaptive Delegation for RAM computation

In this section, we introduce the notion of adaptive delegation for RAM computation (DEL) and
state our formal theorem. In a DEL scheme, a client outsources the database encoding and then
generates a sequence of program encodings. The server will evaluate those program encodings with
intended order on the database encoding left over by the previous one. For security, we focus on full
privacy where the server learns nothing about the database, delegated programs, and its outputs.
Simultaneously, DEL is required to provide soundness where the client has to receive the correct
output encoding from each program and current database.

We first give a brief overview of the structure of the delegation scheme. First, the setup
algorithm DBDel, which takes as input the database, is executed. The result is the database
encoding and the secret key. PDel is the program encoding procedure. It takes as input the secret
key, session ID and the program to be encoded. Eval takes as input the program encoding of
session ID sid along with a memory encoding associated with sid. The result is an encoding which
is output along with a proof. Along with this the updated memory state is also output. We employ

26

a verification algorithm Ver to verify the correctness of computation using the proof output by Eval.
Finally, Dec is used to decode the output encoding.

We present the formal definition below.

5.1 Definition

Definition 19 (DEL with Persistent Database). A DEL scheme with persistent database, consists
of PPT algorithms DEL = DEL.{DBDel,PDel,Eval,Ver,Dec}, is described below. Let sid be the
program session identity where 1 ≤ sid ≤ l. We associate DEL with a class of programs P.

DEL.DBDel(1λ,mem0, S) → (m̃em1, sk): The database delegation algorithm DBDel is a ran-
domized algorithm which takes as input the security parameter 1λ, database mem0, and a space
bound S. It outputs a garbled database m̃em1 and a secret key sk.

DEL.PDel(1λ, sk, sid, Psid) → P̃sid: The algorithm PDel is a randomized algorithm which takes
as input the security parameter 1λ, the secret key sk, the session ID sid and a description of a
RAM program Psid ∈ P. It outputs a program encoding P̃sid.

DEL.Eval
(

1λ, T, S, P̃sid, m̃emsid
)
→
(
csid, σsid, m̃emsid+1

)
: The evaluating algorithm Eval is a

deterministic algorithm which takes as input the security parameter 1λ, time bound T , space
bound S, a garbled program P̃sid, and the database m̃emsid. It outputs (csid, σsid, m̃emsid+1) or
⊥, where csid is the encoding of the output ysid, σsid is a proof of csid, and (ysid,memsid+1) =
Psid(memsid).

DEL.Ver(1λ, sk, csid, σsid)→ bsid ∈ {0, 1}: The verification algorithm takes as input the security
parameter 1λ, secret key sk, encoding csid, proof σsid and returns bsid = 1 if σsid is a valid proof
for csid, or returns bsid = 0 if not.

DEL.Dec(1λ, sk, csid) → ysid: The decoding algorithm Dec is a deterministic algorithm which
takes as input the security parameter 1λ, secret key sk, output encoding csid. It outputs ysid by
decoding csid with sk.

Associated to the above scheme are correctness, (adaptive) security, (adaptive) soundness and
efficiency properties.

Correctness. A delegation scheme DEL is said to be correct if both verification and decryption
are correct: for all mem0 ∈ {0, 1}poly(λ), 1 ≤ sid ≤ `, Psid ∈ P, consider the following process:

- (m̃em
1
, sk)← DEL.DBDel(1λ,mem0, S);

- P̃sid ← DEL.PDel(1λ, sk, sid, Psid);

- (csid, σsid, m̃em
sid+1

)← DEL.Eval(1λ, T, S, P̃sid, m̃em
sid

);

- bsid = DEL.Ver(1λ, sk, csid, σsid);

- ysid = DEL.Dec(1λ, sk, csid);

- (y′sid,memsid+1)← Psid(memsid);

The following holds:

Pr
[
(ysid = y′sid ∧ bsid = 1) ∀sid, 1 ≤ sid ≤ l

]
= 1.

27

Adaptive Security (full privacy). This property is designed to protect the privacy of the
database and the programs from the adversarial server. We formalize this using a simulation based
definition. In the real world, the adversary is supposed to declare the database at the beginning
of the game. The challenger computes the database encoding and sends it across to the adversary.
After this, the adversary can submit programs to the challenger and in return it receives the
corresponding program encodings. We emphasize the program queries can be made adaptively. On
the other hand, in the simulated world, the simulator does not get to see either the database or the
programs submitted by the adversary. But instead it receives as input the length of the database,
the lengths of the individual programs and runtimes of all the corresponding computations.7 It
then generates the simulated database and program encodings. The job of the adversary in the end
is to guess whether he is interacting with the challenger (real world) or whether he is interacting
with the simulator (ideal world).

Definition 20. A delegation scheme DEL = DEL.{DBDel, PDel,Eval, Ver,Dec} with persis-
tent database is said to be adaptively secure if for all sufficiently large λ ∈ N, for all total
round l ∈ poly(λ), time bound T , space bound S, for every interactive PPT adversary A, there
exists an interactive PPT simulator S such that A’s advantage in the following security game
Exp-Del-Privacy(1λ,DEL,A,S) is at most negligible in λ.

Exp-Del-Privacy(1λ,DEL,A,S)

1. The challenger C chooses a bit b ∈ {0, 1}.
2. A chooses and sends database mem0 to challenger C.

3. If b = 0, challenger C computes (m̃em1, sk) ← DEL.DBDel(1λ,mem0, S). Otherwise, C simu-
lates (m̃em1, sk)← S(1λ, |mem0|), where |mem0| is the length of mem0. C sends m̃em1 back to
A.

4. For each round sid from 1 to l,

(a) A chooses and sends program Psid to C.

(b) If b = 0, challenger C sends P̃sid ← DEL.PDel(1λ, sk, sid, Psid) to A. Otherwise, C simulates
and sends P̃sid ← S(1λ, sk, sid, 1|Psid|, 1|csid|, T, S) to A.

5. A outputs a bit b′. A wins the security game if b = b′.

We notice that an unrestricted adaptive adversary can adaptively choose RAM programs Pi
depending on the program encodings it receives, whereas a restricted selective adversary can only
make the choice of programs statically at the beginning of the execution.

Adaptive Soundness. This property is designed to protect the clients against adversarial servers
producing invalid output encodings. This is formalized in the form of a security experiment: the
adversary submits the database to the challenger. The challenger responds with the database en-
coding. The adversary then chooses programs to be encoded adaptively. In response, the challenger
sends the corresponding program encodings. In the end, the adversary is required to submit the
output encoding and the corresponding proof. The soundness property requires that the adversary
can only submit a convincing “false” proof only with negligible probability.

Definition 21. A delegation scheme DEL is said to be adaptively sound if for all sufficiently large
λ ∈ N, for all total round l ∈ poly(λ), time bound T , space bound S, there exists an interactive

7Note that unlike the standard simulation based setting, the simulator does not receive the output of the programs.
This is because the output of the computation is never revealed to the adversary.

28

PPT adversary A, such that the probability of A win in the following security game
Exp-Del-Soundness(1λ,DEL,A) is at most negligible in λ.

Exp-Del-Soundness(1λ,DEL,A)

1. A chooses and sends database mem0 to challenger C.

2. The challenger C computes (m̃em1, sk)← DEL.DBDel(1λ,mem0, S). C sends m̃em1 back to A.

3. For each round sid from 1 to l,

(a) A chooses and sends program Psid to C.

(b) C sends P̃sid ← DEL.PDel(1λ, sk, sid, Psid) to A.

4. A outputs a triplet (k, c∗k, σ
∗
k). A wins the security game if 1← DEL.Ver(1λ, sk, c∗k, σ∗k) and c∗k 6=

ck for the k-th round, where ck is generated as follows: for sid = 1, . . . , k, (csid, σsid, m̃emsid+1)←
DEL.Eval(1λ, T, S, P̃sid, m̃emsid).

Efficiency. For every session with session ID sid, we require that DBDel and PDel execute in
time poly(λ, |mem0|) and poly(λ, |Psid|) respectively. Furthermore we require that Eval run in time
poly(λ, t∗sid), where t∗sid denotes the running time of Psid on memsid. We require that both Ver and
Dec run in time poly(λ, |ysid|). Finally, the length of csid, σsid should depend only on |ysid|.

A construction of adaptive delegation is provided in Section 7 with its security proof.

Theorem 7. Assuming the existence of iO for circuits and DDH, there exists an efficient RAM
delegation scheme DEL with persistent database with adaptive security and soundness.

6 History-less Accumulators

6.1 Overview

We introduce the notion of history-less accumulators, which is a variant of positional accumulators
introduced by [KLW15]. History-less accumulator is a cryptographic data structure associated with
a large storage component and a “short” accumulator value. The storage component, computed
using public parameters, encapsulates a database. There are two functionality aspects associated to
this data structure: (a) updatability and (b) verifiability. Updatability ensures that the database,
that is part of the storage component, can be updated. Suppose we have s to be a storage component
of database M and let w be its associated accumulator value. Then the verifiability property ensures
that given w, symbol M∗i , location i and proof (whose size is independent of |M |), we can verify
whether M∗i = Mi where Mi is the ith symbol of M . Associated to the above data structure
is an information-theoretic property that is stated as follows: suppose we are given fake public
parameters “programmed w.r.t position i”. Consider the storage tree associated with accumulator
value w computed using these fake parameters such that the ith symbol is Mi. If it is possible to
produce a proof that correctly verifies a symbol M∗i at location i then it is the case that M∗i = Mi.
This is referred to as the Read-Enforcing property. There is another (computational) property,
termed as Indistinguishability of Read-Setup, that ensures that the programmed parameters in the
Read-Enforcing property and the (real) public parameters are computationally indistinguishable.
We additionally associate another information-theoretic property termed as Write-Enforcing that
is stated as follows: Let wk−1 be the accumulator value at the (k − 1)th step generated using
fake public parameters “programmed w.r.t position i” – this will be generated differently from the
parameters in the read-enforcing property. This property states that any two auxiliary informations

29

aux, aux′ used to update the value wk−1 should always result in the same value. Again, we have
Indistinguishability of Write-Setup that ensures that the programmed parameters in the Write-
Enforcing property and the (real) public parameters are computationally indistinguishable.
First, we formally define the notion of history-less accumulators in Section 6.2. We present a con-
struction of history-less accumulators based on decisional Diffie-Hellman (DDH) assumption. This
construction follows along the footsteps, and at the same time making some crucial modifications,
of the DDH-based construction of positional accumulators of Okamoto et al. [OPWW15]. It is
divided into two main steps:

1. OPWW introduced the notion of two-to-one somewhere statistically binding hash. We consider
a variant of this notion called extended two-to-one SPB hash, where SPB stands for somewhere
perfectly binding hash. This notion is defined in Section 6.3. A two-to-one hash of OPWW is a
hash function that takes two blocks of equal length as input and outputs a value whose length
is slightly larger than that of a single block. The somewhere statistical binding property states
that the hash function can be programmed in such a way that the hash output statistically
determines one of the input blocks. In the extended version, we need a stronger property
that the hash output uniquely determines one of the input blocks. More importantly, we need
this additional property, termed as uniqueness of root: suppose a hash output, h, uniquely
determines the first block, say xA. Let the second block be xB. If there exists x′B such that
the hash output of xA and x′B is also h then for every x′A, we have that the hash output of
(x′A,xB) to be the same as the hash output of (x′A,x

′
B). This will come in handy in proving

the write-enforcing property of the final accumulators scheme. We then present a DDH-based
construction of extended two-to-one SPB hashin the same section Sec. 6.3.

2. In the next step, we show how to go from extended two-to-one SPB hash to history-less accu-
mulators. This is presented in Section 6.4. While the construction is identical to the OPWW
transformation from two-to-one hash to positional accumulators (of KLW), we need to do
more work in the analysis since we achieve the stronger primitive of history-less accumulators
(as against positional accumulators). At the heart of our analysis is showing that the unique-
ness of root property of extended two-to-one SPB hash implies the write-enforcing property
of history-less accumulators.

Remark 2. The read-enforcing property and the indistinguishability of read-setup imply that a
history-less accumulator is also a family of collision-resistant hash function (CRH). Assuming for
contradiction that there exist an algorithm finds the collision of two databases (M,M ′) yielding the
same accumulator value w in polynomial time. Then, we can break the indistinguishability of read-
setup: If the public parameters of history-less accumulator was programmed (enforced) at the given
location i, then Mi = M ′i is guaranteed by the read-enforcing property. Thus, the programmed
public parameters and the real public parameters are distinguishable. Similarly, a two-to-one SPB
hash is also a CRH. In contrast, the (weaker) read-enforcing of positional accumulator does not
imply CRH as it requires not only location i but also all the history of database M , including
locations and values. Given the negative result on constructing CRH from indistinguishability
obfuscation [AS15], we cannot hope for constructing history-less accumulator or two-to-one SPB
hash from iO and one-way function.

6.2 Definition

We now formally define the notion of history-less accumulators. The main difference between
the positional accumulators of KLW and history-less accumulators is the following: in KLW, the
“enforcing” parameters take as input the special index which is information-theoretically bound

30

and also the history of computation till that point. In our case, the enforcing parameters only take
as input the special index. We first informally describe the algorithms used in the scheme and later
we provide the formal definitions.

A history-less accumulator is described by the PPT algorithms hAcc = hAcc.{Setup,EnforceRead,
EnforceWrite,PrepRead,PrepWrite, VerifyRead,WriteStore,Update} be an accumulator with message
spaceMλ. The algorithm Setup generates the accumulator public parameters along with the initial
storage value and the initial root value. It helps to think of the storage as being a hash tree and
its associated accumulator value being the root and they both are initialized to ⊥. There are two
algorithms that generate “fake” public parameters, namely, EnforceRead and EnforceWrite. The
algorithm EnforceRead takes as input a special index INDEX∗ and produces fake public parame-
ters along with initialized storage and root values. Later, we will put forth a requirement that any
PPT adversary cannot distinguish “real” public parameters (generated by Setup) and “fake” public
parameters (generated by EnforceRead). Also we put forth an information theoretic requirement
that any storage generated by the “fake” public parameters is such that the accumulator value
associated with the storage determines a unique value at the location INDEX∗.

Once the setup algorithm is executed, there are two algorithms that deal with arguing about the
correctness of the storage. The first one, PrepRead takes as input a storage, an index and produces
the symbol at the location at that index and an accompanying proof – we later require this proof to
be “short” (in particular, independent of the size of storage). PrepWrite essentially does the same
task except that it does not output the symbol at that location – that it only produces the proof (in
the formal definition, we call this aux). Another procedure, VerifyRead then verifies whether the
proof produced by PrepRead is valid or not. The above algorithms help to verify the correctness of
storage. But how do we compute the storage? WriteStore takes as input an old storage along with
a new symbol and the location where the new symbol needs to be assigned. It updates the storage
appropriately and outputs the new storage. The algorithm Update describes how to “succinctly”
update the accumulator by just knowing the public parameters, accumulator value, message symbol,
index and auxiliary information aux (produced by WriteStore). Here, “succinctness” refers to the
fact that the update time of Update is independent of the size of the storage.
We now present the formal definition of history-less accumulators below.

Setup, SetupAcc(1λ, T)→ PPAcc, w0, store0: The setup algorithm takes as input a security param-
eter λ in unary and an integer T in binary representing the maximum number of values that can
stored. It outputs public parameters PPAcc, an initial accumulator value w0, and an initial storage
value store0.

Read-Enforcing Setup, EnforceRead(1λ, T, INDEX∗)→ PPAcc, w0, store0: The setup enforce read
algorithm takes as input a security parameter λ in unary, an integer T in binary representing the
maximum number of values that can be stored, and an additional INDEX∗ between 0 and T − 1.
It outputs public parameters PPAcc, an initial accumulator value w0, and an initial storage value
store0.

Write-Enforcing Setup, EnforceWrite(1λ, T, INDEX∗)→ PPAcc, w0, store0: The setup enforce write
algorithm takes as input a security parameter λ in unary, an integer T in binary representing the
maximum number of values that can be stored, and an INDEX∗ between 0 and T − 1. It outputs
public parameters PPAcc, an initial accumulator value w0, and an initial storage value store0.

Read-and-Prove, PrepRead(PPAcc, storein, INDEX)→ m,π: The prep-read algorithm takes as

31

input the public parameters PPAcc, a storage value storein, and an index between 0 and T − 1. It
outputs a symbol m (that can be ε) and a value π.

Proof Generation, PrepWrite(PPAcc, storein, INDEX)→ aux: The prep-write algorithm takes as
input the public parameters PPAcc, a storage value storein, and an index between 0 and T − 1. It
outputs an auxiliary value aux.

Verify Proof, VerifyRead(PPAcc, win,mread, INDEX, π)→ {True, False}: The verify-read algo-
rithm takes as input the public parameters PPAcc, an accumulator value win, a symbol, mread,
an index between 0 and T − 1, and a value π. It outputs True or False.

Write to Storage, WriteStore(PPAcc, storein, INDEX,m)→ storeout: The write-store algorithm
takes in the public parameters, a storage value storein, an index between 0 and T −1, and a symbol
m. It outputs a storage value storeout.

Update Acc., Update(PPAcc, win,mwrite, INDEX, aux)→ wout or Reject: The update algorithm
takes in the public parameters PPAcc, an accumulator value win, a symbol mwrite, and index be-
tween 0 and T − 1, and an auxiliary value aux. It outputs an accumulator value wout or Reject.

Remark 3. A reader familiar with the work of Koppula et al. [KLW15] will notice that there is a
crucial difference between the above notion and the notion of positional accumulators introduced by
KLW: in KLW, EnforceRead takes as input the entire history of computation m1,m2, . . . and the
information-theoretic security guarantee is that if the “fake” public parameters is executed on this
particular history m1,m2, . . . then the resulting root uniquely determines the value at a particular
special index. But in our setting, EnforceRead only takes as input the special index and nothing
more. The same difference between the two notions is also present for the case of EnforceWrite.

Correctness. Consider the following process: Let (m1, INDEX1), . . . , (mk, INDEXk) be a se-
quence of symbols m1, . . . ,mk and indices INDEX1, . . . , INDEXk each between 0 and T − 1.

- Execute PPAcc, w0, store0 ← SetupAcc(1λ, T).

- For j from 1 to k, define storej iteratively as storej := WriteStore(PPAcc, storej−1, INDEXj ,
mj).

- Define auxj and wj iteratively as auxj := PrepWrite(PPAcc, storej−1, INDEXj) and wj :=
Update(PPAcc, wj−1,mj , INDEXj , auxj).

We require that the following correctness property holds:

1. For every INDEX between 0 and T − 1, PrepRead(PPAcc, storek, INDEX) returns mi, π, where
i is the largest value in [k] such that INDEXi = INDEX. If no such value exists, then mi = ε.

2. For any INDEX, let (m,π) ← PrepRead(PPAcc, storek, INDEX). Then VerifyRead(PPAcc, wk,
m, INDEX, π) = True.

6.2.1 Security

Let hAcc = hAcc.{Setup,EnforceRead,EnforceWrite,PrepRead,PrepWrite,VerifyRead,WriteStore,Update}
be an accumulator with message space Mλ.

We define the following security notions, which are a natural adaptation of the security prop-
erties of the positional accumulators scheme to the history-less setting.

32

Indistinguishability of Read-Setup. The following security property ensures that the public
parameters produced by SetupAcc is computationally indistinguishable from the public parameters
produced by EnforceRead.

Definition 22 (Indistinguishability of Read-Setup). A history-less accumulator hAcc is said to
satisfy indistinguishability of Read-Setup phase if any PPT adversary A’s advantage in the security
game
Exp-Setup-Read(1λ, hAcc,A) at most is negligible in λ, where Exp-Setup-Read is defined as
follows.

Exp-Setup-Read(1λ, hAcc,A)

The adversary A chooses a bound S ∈ Θ(2λ) and sends it to challenger.

A sends an index INDEX∗ ∈ {0, . . . , S − 1}.
The challenger chooses a bit b. If b = 0, the challenger outputs (PPhAcc, w0, store0)← hAcc.Setup(1λ, S).
Else, it outputs (PPhAcc, w0, store0)← hAcc.EnforceRead(1λ, S, INDEX∗).

A sends a bit b′.

A wins the security game if b = b′.

Indistinguishability of Write-Setup. On the same lines as the above definition, we present the
following security notion which ensures that any PPT adversary cannot distinguish the parameters
output by SetupAcc and the parameters output by EnforceWrite.

Definition 23 (Indistinguishability of Write-Setup). A history-less accumulator hAcc is said to
satisfy indistinguishability of Write-Setup phase if any PPT adversary A’s advantage in the security
game Exp-Setup-Write(1λ, hAcc,A) at most is negligible in λ, where
Exp-Setup-Write is defined as follows.

Exp-Setup-Write(1λ, hAcc,A)

The adversary A chooses a bound S ∈ Θ(2λ) and sends it to challenger.

A sends an index INDEX∗ ∈ {0, . . . , S − 1}.
The challenger chooses a bit b. If b = 0, the challenger outputs (PPhAcc, w0, store0)← hAcc.Setup(1λ, S).
Else, it outputs (PPhAcc, w0, store0)← hAcc.EnforceWrite(1λ, S, INDEX∗).

A sends a bit b′.

A wins the security game if b = b′.

Read-Enforcing. Suppose the public parameters PPhAcc is produced by EnforceRead(1λ, S, INDEX∗).
Compute a storage tree w.r.t PPhAcc on a sequence of symbol-location pairs (m1, INDEX1), (m2, INDEX2),
In the end, let wk be the root. Suppose (mi, INDEXi) be the last pair in the sequence such that
INDEXi = INDEX∗. Then, any “valid” proof authenticating that a symbol m residing at INDEX
in the storage tree with root wk implies that m = mi. If no such last pair exists then the symbol
m should be ∅.

Definition 24 (Read-Enforcing). Consider any λ ∈ N, S ∈ Θ(2λ), m1, . . . ,mk ∈ Mλ, any
INDEX1, . . . , INDEXk ∈ {0, . . . , S − 1}, and any INDEX∗ ∈ {0, . . . , S − 1}.

Let (PPhAcc, w0, store0)← hAcc.EnforceRead(1λ, S, INDEX∗).
For all j ∈ [k], we define storej iteratively as storej := WriteStore(PPhAcc, storej−1, INDEXj ,mj).
We similarly define aux j and wj iteratively as aux j := PrepWrite(PPhAcc, storej−1, INDEXj)

and wj := Update(PPhAcc, wj−1,mj , INDEXj , aux j).

33

Then, hAcc is said to be read-enforcing if VerifyRead(PPhAcc, wk,m, INDEX∗, π) = 1, then either
INDEX∗ 6∈ {INDEX1, . . . , INDEXk} and m = ∅, or m = mi for the largest i ∈ [k] such that
INDEXi = INDEX∗.

Note that this is an information-theoretic property. We are requiring that for all other symbols
m, values of π that would cause VerifyRead to output 1 at INDEX∗ do not exist.

Write Enforcing. Suppose the public parameters PPhAcc is produced by EnforceWrite(1λ, S,
INDEX∗). Compute a storage tree w.r.t PPhAcc on a sequence of symbol-location pairs (m1, INDEX1),
. . . , (mk, INDEXk). In the end, let wk be the root of the final storage tree. Then the output of
Update(PPhAcc, wk−1,mk, INDEXk, aux), for any auxiliary information “aux”, is either wk or ⊥,
where (mk, INDEXk) is the final pair in the sequence.

Definition 25 (Write-Enforcing). Consider any λ ∈ N, S ∈ Θ(2λ), m1, . . . ,mk ∈Mλ, INDEX1, . . . , INDEXk ∈
{0, . . . , S − 1}.

Let (PPhAcc, w0, store0)← hAcc.EnforceWrite(1λ, S, INDEXk).
For all j ∈ [k], we define storej iteratively as storej := WriteStore(PPhAcc, storej−1, INDEXj ,mj).
We similarly define aux j and wj iteratively as aux j := PrepWrite(PPhAcc, storej−1, INDEXj)

and wj := Update(PPhAcc, wj−1,mj , INDEXj , aux j).
Then, hAcc is said to be write-enforcing if Update(PPhAcc, wk−1,mk, INDEXk, aux) = wout 6=

reject for any aux , then wout = wk.
Note that this is an information-theoretic property: we are requiring that an aux value producing

an accumulated value other than wk or reject does not exist.

6.3 Extended Two-to-One SPB Hash

We define the notion of extended two-to-one SPB hash below. The hash function takes as input
two blocks and outputs a value whose length is only slightly larger than the length of one block.
We associate this hash function with some properties as explained later.

Definition 26 (Extended Two-to-One SPB Hash). A extended two-to-one SPB hash is a hash
function with input-length = 2, block length s and output-length is `(λ, s) = s·(1+1/Ω(λ))+poly(λ)
with the associated algorithms described below.

• Hash key generation, hk ← Gen(1λ, 1s, i): It takes as input a security parameter λ, block
length s, an index i ∈ {0, 1} and outputs the hash key hk. We let Σ = {0, 1}s denote the block
alphabet.

• Hashing algorithm,
(
Hhk : Σ2 → {0, 1}`

)
: A deterministic poly-time algorithm that takes

as input x = (x0, x1) ∈ Σ2 and outputs the hash value Hhk(x).

We require that the extended two-to-one SPB hash satisfies the following properties.

I. Index Hiding: This says that a PPT adversary should not be able to determine which index
was used in the generation of the hash key. Formally,

Definition 27 (Index Hiding). We consider the following game between an attacker A and a
challenger:

• The attacker A(1λ) sends two indices i0, i1 ∈ {0, 1}.
• The challenger chooses a bit b← {0, 1} and sets hk← Gen(1λ, 1s, ib).

34

• The attacker A gets hk and outputs a bit b′

We require that for any PPT attacker A we have
∣∣Pr[b′ = b]− 1

2

∣∣ ≤ negl(λ) in the above game.

II. Somewhere Perfectly Binding: This property states that the output of Hhk(x0,x1) uniquely
determines the ith block xi, where hk← Gen(1λ, 1s, i).

Definition 28 (Somewhere Perfectly Binding). We say that the hash key hk is somewhere perfectly
binding (SPB) for an index i if there does not exist any values y, u, u′, π, π′ such that u 6= u′ and
Verify(hk, y, i, u, π) = Verify(hk, y, i, u′, π′) = 1. We require that for any parameter s and any index
i ∈ {0, 1}:

Pr[hk is SPB for index i : hk← Gen(1λ, 1s, i)] = 1

III. Uniqueness of root: This property states that if Hhk(x0, x1) = Hhk(x0, x
′
1) then for every x′0,

we have that Hhk(x
′
0, x1) = Hhk(x

′
0, x
′
1), where hk ← Gen(1λ, 1s, 0). The case when the first index

is information-theoretically bound, that is hk← Gen(1λ, 1s, 1), can similarly be defined.

Definition 29. Suppose hk ← Gen(1λ, 1s, i ∈ {0, 1}). We say that the extended two-to-one SPB
hash satisfies uniqueness of root property if for all x0, x

′
0, x1, x

′
1 ∈ Σ, we have the following:

• Case b = 0: Let Hhk(x0, x1) = Hhk(x0, x
′
1). Then for all x∗ ∈ Σ, we have Hhk(x

∗, x1) =
Hhk(x

∗, x′1).

• Case b = 1: Let Hhk(x0, x1) = Hhk(x
′
0, x1). Then for all x∗ ∈ Σ, we have Hhk(x0, x

∗) =
Hhk(x

′
0, x
∗)

w01

x0 x1 →

w∗01

x∗ x1

w01

x0

hk12

x′1 →

w∗01

x∗ x′1

Figure 4 Let hk← Gen(1λ, 1s, i = 0). Let Hhk(x0, x1) = Hhkey(x0, x
′
1) = w01. Then the uniqueness of root property

states that Hhk(x
∗, x1) = Hhk(x

∗, x′1) = w∗01.

Construction of Extended Two-to-One SPB Hash. We adapt the decisional Diffie-Hellman
(DDH)-based construction of Okamoto et al. [OPWW15] to achieve a construction of Extended
Two-to-One SPB Hash. In order to do that, we first present their construction verbatim below and
then we show that it satisfies uniqueness of root property. The properties of index hiding and SPB
will be imported from their result.

We consider a PPT group generator G, that takes as input 1λ, parameter 1t with t = poly(λ)
and outputs a description of group G and the order of the group p ∈ θ(2t+1). We assume that the
decisional Diffie-Hellman assumption holds on G.

35

Gen(1λ, 1s, b ∈ {0, 1}): Let t = max(λ, |
√
s · c|). Generate (G, p) ← G(1λ, 1t). Choose a random

generator g ∈ G.
Set d = d st e. Choose at random vectors w = (w1, . . . , wd) ∈ Zp, a = (a1, . . . , ad) ∈ Zdp and

b = (b1, . . . , bd) ∈ Zdp. We let Ã ∈ Zd×dp = a⊗w be the tensor product of vectors a and w, where

(a ⊗w)ij = ai · wj . Similarly, let B̃ = b ⊗w. Finally, let A = Ã + (1 − b) · I and B = B̃ + b · I,
where I ∈ Zd×dp is an identity matrix.

The hash key hk = (ga, gb, gA, gB).

Hhk(xA, xB): We view xA ∈ Σ = {0, 1}s and xB ∈ Σ = {0, 1}s each consisting of d blocks each
of t bits (if this is not the case then we will suitably pad with 0s). That is, xA = (xA,1, . . . , xA,d)
and xB = (xB,1, . . . , xB,d), where xA,j (or xB,j) are represented as integers and by our setting of
parameters these values are upper bounded by p. It then outputs the value,(

V = gxAa+xBb, Y = gxAA+xBB
)
,

where xAa (resp., xBb) is an inner product of xA and a (resp., xB and b). Similarly, xAA (resp.,
xBB) is a row vector obtained as a result of matrix multiplication of row vector xA (resp., xB) and
matrix A (resp., B).

The analysis of size overhead (output length), index hiding and the binding properties of the above
scheme can be found in Okamoto et al. [OPWW15]. We prove the uniqueness of root property
below.

Theorem 8. The above scheme satisfies uniqueness of root property.

Proof. Suppose hk← Gen(1λ, 1s, b ∈ {0, 1}). We consider the case when b = 0. The same argument
symmetrically holds when b = 1. Let xA, xB, x

′
B ∈ {0, 1}s be such that Hhk(xA, xB) = Hhk(xA, x

′
B).

We denote Hhk(xA, xB) = (gxAa+xBb, gxAA+xBB) and Hhk(xA, x
′
B) = (gxAa+xBb, gxAA+x′BB),

where xA,xB,x
′
B are generated as in the description of the scheme.

The fact that Hhk(xA, xB) = Hhk(xA, x
′
B) implies gxAa+xBb = gxAa+x′Bb and also, gxAA+xBB =

gxAA+x′BB. From these two equalities, we have xBb = x′Bb and xBB = x′BB.
Now, let x∗ ∈ {0, 1}s. We have,

Hhk(x
∗, xB) = (gx

∗a+xBb, gx
∗A+xBB)

= (gx
∗a+x′Bb, gx

∗A+x′BB)

= Hhk(x
∗, x′B), as desired.

6.4 History-less Accumulators from Extended Two-to-One SPB Hash

We show how to achieve history-less accumulators from extended two-to-one SPB hash. Our con-
struction will be identical to Okamoto et al. [OPWW15] transformation of positional accumulators
from two-to-one hash. We sketch the construction at a high level and a formal description of the
construction can be found in their paper.8

We adopt a Merkle-tree based approach of constructing a history-less accumulator. Suppose
we want to initialize the accumulator storage tree with the initial memory x ∈ {0, 1}poly(λ). This

8Refer Appendix B.1, dated September 7, 2015 of the ePrint version of [OPWW15].

36

tree is defined as follows. We divide x into equal halves, namely, xA and xB. We recursively, build
an accumulator storage tree on xA and xB. We denote by w0 and w1 to be the corresponding root
nodes. We now pick a fresh instantiation of the extended two-to-one SPB hash scheme. Denote
the hash key generated from this instantiation to be hk. We define the hash of (w0, w1), computed
using the key hk, to be the root w. Our initial accumulator value will now be w. Lets say we
update a memory element at the location index. Once this is updated, we re-compute the root of
the storage tree. This is done by recursively updating the root of the left sub-tree (or the right
sub-tree) depending on where index lies. Note that the sub-tree that does not contain memory
location at index will not be touched.

In more detail, the update algorithm (Update) takes as input (PPAcc, win,mwrite, index, aux)

and does the following: It parses aux as
(
m,π = (ηL0 , η

L
1 , . . . , η

1
0, η

1
1, win = η0

0)
)

. It then checks

whether (i) For i ∈ {0, . . . , L− 1}, ηi0 is the root of (ηi+1
0 , ηi+1

1) in the storage tree, (ii) ηL0 = m at
the location INDEX. If either one of the checks do not pass then output ⊥, else continue. In the
next step, update the leaf node ηL0 to be η̃0

L. Then, recursively compute η̃0
i = Hhk(η̃0

i+1, ηi+1
1),

for i ∈ {0, . . . , L− 1}. Finally assign wout = η̃0
0. See Figure 5 for an illustration.

w18

w14

w12

x1

hk12

x2

w34

x3

hk34

x4

w58

x5 x6 x7 x8

w∗18

w∗14

w∗12

x1 x∗2

w34

x3 x4

w58

x5 x6 x7 x8

Figure 5 Consider the accumulator tree (top) initialized with x1, . . . , x8. To generate this tree, a hash key hk12
is generated and then hk12(x1, x2) is computed. This is denoted by w12. Similarly, a fresh instantiation of hk34 is
sampled and then we compute hk34(x3, x4) and so on. Lets say we want to change x2 to x∗2. We update as shown
in the bottom tree. We update the root w∗12 and then we update the root w∗14 and so on. Note that the updating
process takes time only logarithmic in the size of the tree (or proportional to the depth of the tree).

We argue that the above construction satisfies the definition of history-less accumulators. The
only property we need to argue is write-enforcing property. The rest of the properties, namely,
indistinguishability of read and write setup, (history-less) read-enforcing have proofs identical to

37

their counterparts in the proof of security of Okamoto et al. [OPWW15].

Theorem 9. The above construction satisfies history-less write-enforcing property.

Proof. We first describe the proof idea and then we provide the formal details.

Proof Idea. Consider a sequence of symbol-index pairs (m1, INDEX1), . . . , (mk, INDEXk). Let
PPhAcc be an enforcing public parameter that is “programmed with respect to INDEXk”. Initialize
the storage tree on the above sequence of symbol-index pairs. Let wk−1 be the accumulator value
resulting by initializing the storage tree on the sequence (m1, INDEX1), . . . , (mk−1, INDEXk−1). Let
aux be the “valid” auxiliary information such that Update(PPhAcc, wk−1,mk, INDEXk, aux) = wk.
Suppose let aux′ be such that Update(PPhAcc, wk−1,mk, INDEXk, aux ′) = w′. If w′ 6= ⊥ then it has
to be the case that w = w′.

We first observe that the root value in both aux and aux′ should be wk−1. From here, on we
argue that all the nodes along the path (top-down) from wk−1 to the leaf corresponding to INDEXk

should be the same in both aux and aux′. Here, we crucially use the somewhere perfect binding
property of the SPB hash. The second observation is that once we update mk at INDEXk then we
argue that every node along with path (bottom-up) from INDEXk to the root has to be same in
both aux and aux′. Here, we crucially use the uniqueness of root property of the SPB hash. Once
we show this, we have shown that the root of aux and aux′ is the same which in turn means that
w = w′.

Formal Details. Consider any λ ∈ N, S ∈ Θ(2λ), m1, . . . ,mk ∈ Mλ, INDEX1, . . . , INDEXk ∈
{0, . . . , S − 1}. Let (PPhAcc, w0, store0)←
hAcc.EnforceWrite(1λ, S, INDEXk). For all j ∈ [k], we define storej iteratively as storej := WriteStore(PPhAcc,
storej−1, INDEXj ,mj). We similarly define aux j and wj iteratively as aux j := PrepWrite(PPhAcc, storej−1,
INDEXj) and wj := Update(PPhAcc, wj−1,mj , INDEXj , aux j). Denote the value wout = wk. De-
note auxk by aux . And let aux′ be such that Update(PPhAcc, wk−1,mk, INDEXk, aux ′) = w′. We
claim that if w′ 6= ⊥ then w′ = wout.

Before we prove this claim, we introduce some notation. We denote aux and aux ′ as follows:

aux =
(
ηL0 , η

L
1 , . . . , η

1
0, η

1
1, wk−1 = η0

0

)
,

aux ′ =
(
µL0 , µ

L
1 , . . . , µ

1
0, µ

1
1, wk−1 = µ0

0

)
Since Update does not output ⊥ when both aux and aux ′ are input into it, we can argue the
following: (i) wk−1 = η0

0 = µ0
0, (ii) For i ∈ {0, . . . , L − 1}, ηi0 (resp., µi0) is the root of (ηi+1

0 , ηi+1
1)

(resp., (µi+1
0 , µi+1

1)) in the storage tree, (iii) ηL0 = µL0 = m.
Consider the following lemma. The lemma states that every node along the path of aux ,

corresponding to a prefix of INDEXk, has the same value as its corresponding node in aux ′. We
now state the following lemma.

Lemma 4. Assuming somewhere perfectly binding property of the underlying extended two-to-one
SPB hash scheme, we have ηi0 = µi0 for all i ∈ {1, . . . , L}.

Proof. We prove this recursively, top-down, starting from the root of the storage tree. Recall that
the root of the tree is η0

0 = µ0
0 = wk−1. From the perfect binding property of the underlying

extended two-to-one SPB hash scheme, we have that wk−1 uniquely determines η1
0 and similarly

38

wk−1 uniquely determines µ1
0. This is only possible if η1

0 = µ1
0. Similarly, we can show that η1

0

uniquely determines η2
0 and µ2

0, which implies that η2
0 = µ2

0. Proceeding this way, we get ηi0 = µi0,
for all i ∈ {1, . . . , L}.

Now, we recursively define η̃0
i to be root of children η̃0

i+1 and ηi+1
1 , for all i ∈ {0, . . . , L − 1},

where (i) η̃0
L = mk, (ii) η̃0

0 = wout. Similarly, we can define µ̃0
i to be root of children µ̃0

i+1 and
µi+1

1 , for all i ∈ {0, . . . , L− 1}, where (i) µ̃0
L = mk, (ii) µ̃0

0 = w′.

Lemma 5. Assuming uniqueness of root property of the underlying extended two-to-one SPB hash

scheme, we have η̃i0 = µ̃i0.

Proof. From Lemma 4, we have that ηL−1
0 = µL−1

0 and also, ηL0 = µL0 . This means thatHhk(η
L
0 , η

L
1) =

Hhk(µ
L
0 , µ

L
1), where hk is the hash key used for that particular node. Now, we have η̃0

L = µ̃0
L = mk,

which is the value being updated at location INDEXk. From the uniqueness of root property, we
have that Hhk(η̃0

L, ηL1) = Hhk(µ̃0
L, µL1). From our previous notation, this means that η̃0

L−1 =
µ̃0

L−1. Proceeding this way up the tree, we get η̃i
0 = µ̃i

0, for all i ∈ {0, . . . , L}.

A consequence of the above lemma is that the root nodes η̃0
0 and µ̃0

0 are the same. In our
terminology, this means that wout = w′. This completes the proof of the theorem.

7 Instantiation: Adaptive Delegation for RAM with Persistent
Database

Given the adaptive RAM delegation scheme defined in Section 5, we then present a construction
of an adaptive RAM delegation scheme. Formally, we show:

Theorem 10. Assuming the existence of iO for circuits and the existence of historyless accumu-
lators, we show that there exists adaptive delegation scheme for RAMs with persistent database.

If we instantiate history-less accumulators using the DDH-based construction in Section 6, we get
the following corollary.

Corollary 1. Assuming the existence of iO for circuits and DDH, we show that there exists an
adaptive delegation scheme for RAMs with persistent database.

We begin by presenting the roadmap of the construction used to prove Theorem 10.

7.1 Roadmap

Building towards this construction, we first show a primitive, called computation-trace indistin-
guishability obfuscation (CiO) with persistent database [CCC+16]. Then we show, in Section 7.2,
how to adapt the construction of selective CiO of CCC+ to our setting. A crucial change we make to
the construction of selective CiO is that we replace the tool of positional accumulators with history-
less accumulators; a notion we introduced in Section 6. We then argue that the construction of
selective CiO has niceness property. To do this, we first dive into the details for the sequence of
reductions used by CCC+ in proving the security of selective CiO and then we cast these reductions
in the abstract framework introduced in Section 4. This helps us in boosting reductions defined

39

w.r.t semi-adaptive adversaries into reductions defined w.r.t adaptive adversaries. This would then
imply that the modified CCC+ construction is adaptively secure.

In the next step, we consider the concept of selective garbled RAM in the persistent database
setting. We then show, in Section 7.3.2, how to build selective garbled RAM from adaptive CiO,
and check that its security proof satisfies niceness property. In the final step, we use the known
generic transformations to obtain selective RAM delegation from adaptive garbled RAM in the
persistent setting, and then apply the same procedure to obtain adaptive RAM delegation. This is
demonstrated in Section 7.4.

Extension to adaptive PRAM delegation. With the strategy of CCC+ [CCC+16], we can
realize the adaptive PRAM delegation with persistent database. We provide a brief overview
below as to how to make this extension work. At first, we convert our selective CiO for RAM
and branch-and-combine technique of [CCC+16] into the selective CiO for PRAM with niceness
property. Then, we build the selective PRAM garbling from selective CiO for PRAM. Finally, the
selective PRAM delegation is achieved with full privacy and soundness by applying the generic
transformation, which also satisfies niceness property. Plugging the security-lifting, we obtain the
adaptive PRAM delegation, where the database delegation time (resp., program delegation time)
depends only on database size (resp., program description size). The server’s complexity matches
the PRAM complexity of the computation up to polynomial factor of program description size.

7.2 Adaptive CiO for RAM with Persistent Database

Computation-trace indistinguishable obfuscation CiO [CCC+16] is a weaker security notion of del-
egation without database and output privacy and soundness (see Section 7.2.1 for its formal def-
inition). Similar to delegation, we consider multiple-program RAM computation with an initial
database, where a sequence of programs work on the database content processed and left over by
the previous program. However, the security of CiO is to require indistinguishability between two
sequences of obfuscated programs with the same computation trace (which is defined in Section 3.4).
The intuition of using CiO is to force the evaluator to evaluate obfuscated programs as intended to
produce the intended computation trace. Also, the sequence of programs is required to be executed
in the intended order.

In this section, we present the construction of selective CiO [CCC+16] which is based on indistin-
guishable obfuscation scheme iO, puncturable pseudorandom function scheme PRF, iterator scheme
Itr, splittable signature scheme Spl, and stronger accumulator scheme hAcc. Then, we will show
that the selective proof of the constructed CiO satisfies the “niceness” property. With niceness,
we can apply the abstract framework to obtain adaptive security. Here we remark that positional
accumulator applied by [KLW15, CCC+16, CH16] cannot preserve niceness in the selective proof,
so we choose history-less accumulator instead.

7.2.1 Definition of CiO

Consider an initial memory, and then execute a sequence of programs which work on the memory
content processed and left over by the previous program. CiO [CCC+16] forces the evaluator to eval-
uate obfuscated programs as intended to produce the intended computation trace (see Section 3.4).
The sequence of programs is required to be executed in the intended order.

Definition 30 (CiO with Persistent Database). A computation-trace indistinguishability obfusca-
tion scheme with persistent database, denoted by CiO = CiO.{DBCompile, Obf,Eval}, is defined as

40

follows:

Database compilation algorithm (m̃em1,0, s̃t
1,0
, sk) := DBCompile(1λ,mem0,0; ρ): DBCompile()

is a probabilistic algorithm which takes as input the security parameter λ, the database mem0,0

and some randomness ρ, and returns the complied database, state, and secret key (m̃em1,0, s̃t
1,0
,

sk) as output.

Program compilation algorithm F̃sid := Obf(1λ, sk, sid, Fsid; ρ′): Obf() is a probabilistic algo-
rithm which takes as input the security parameter λ, the secret key sk, the session ID sid,
the stateful function Fsid and some randomness ρ′, and returns a complied function F̃sid as
output.

Evaluation algorithm conf := Eval(m̃emsid,0, s̃t
sid,0

, F̃sid): Eval() is a deterministic algorithm which

takes as input (m̃emsid,0, s̃t
sid,0

, F̃sid), and returns a configuration conf = (m̃emsid+1,0, s̃t
sid+1,0

)
as output.

Correctness. For all sid ∈ [l], database mem0,0, Fsid with termination time t∗sid and randomness

ρ′, let (m̃em1,0, s̃t
1,0
, sk) := DBCompile(1λ,mem0,0), F̃sid := Obf(1λ, sk, sid, Fsid; ρ′), and (m̃emsid+1,0, s̃t

sid+1,0
) :=

Eval(m̃emsid,0, s̃t
sid,0

, F̃sid), it holds that

Project(s̃t
sid+1,0

) = stsid+1,0,

where Project is a simple projection function.

Adaptive Security. A CiO construction is said to be adaptively computation-trace indistinguish-
able if for all PPT adversary A, we have |Pr[b = b′]− 1

2 | ≤ negl(λ) in the following game.

Exp-IND-CiO
C chooses a bit b ∈ {0, 1}.
A gives C an initial memory mem0,0. C computes (m̃em1,0, s̃t

1,0
, sk) := DBCompile(1λ,mem0,0)

and returns (m̃em1,0, s̃t
1,0

)to A.

At each round i, based on the initial m̃em1,0 and previous F̃1, ..., F̃i−1, A adaptively chooses a new
pair of (F 0

i , F
1
i) to C. If F 0

i , F
1
i are computation-trace identical, C returns F̃i = Obf(sk, i, F bi)

to A. If not, C aborts.

A outputs b′. A is said to win if b′ = b.

We remark that an unrestricted adaptive adversary can adaptively choose RAM programs P i

depending on the program compilations it receives in the above game, whereas a restricted selective
adversary can only make the choice of programs statically at the beginning of the execution.

Efficiency. DBCompile and Obf runs in time Õ(|mem0,0|) and Õ(poly(|Fsid|)), and efficient Eval
runs in time Õ(t∗sid).

7.2.2 Construction of CiO

At a very high level, CCC+ construction of CiO [CCC+16] transforms a RAM program into an
encapsulated next step function which authenticates the output of a time step and verifies the
integrity of the input in every time step. This encapsulated next step function is then obfuscated.
To successfully carry out the authentication phase, the output state (which is small in size) will
be signed by using a signature scheme. In order to control the size of the state, the construction

41

additionally relies on an accumulator scheme [KLW15]. Accumulator is a data structure that allows
for producing “short” state that binds a large memory.

Let a stateful algorithm Fsid denote a single program with session identity sid in a multiple-
program RAM computation, T be the time bound, and S be the space bound of all programs. The
construction of CiO consists of the following three algorithms.

Database Compilation Algorithm DBCompile(1λ,mem0,0) → (m̃em1,0, s̃t
1,0
, sk). It computes

the following parameters:

KT ← PPRF.Setup(1λ)

(PPhAcc, ŵ0, ˆstore0)← hAcc.Setup(S),

whereKT is the termination key. Based on mem0,0, this algorithm computes the initial configuration
for computation as follows.

(Compile storage.) For each j ∈ {1, . . . , |mem0,0|} and xj = mem0,0[j], it computes iteratively:

πj ← hAcc.PrepWrite(PPhAcc, ˆstorej−1, j)

ŵj ← hAcc.Update(PPhAcc, ŵj−1, j, xj , πj)

ˆstorej ← hAcc.WriteStore(PPhAcc, ˆstorej−1,, j, xj)

Set w0 := ŵ|mem0,0|, and store0 := ˆstore |mem0,0|.

(Sign initial state.) Set sid = 1, st0,0 = init, v0 = ⊥. Compute signature σ0 as follows:

rT ← PRF(KT , sid− 1)

(sk0, vk0, vk0
rej)← Spl.Setup(1λ; rT)

σ0 ← Spl.Sign(sk0, (sid, st0,0, v0, w0))

(Output) Now we can output the initial configuration as

m̃em
1,0

= store0

s̃t
1,0

= ((sid, 0), st0,0, v0, w0, σ0)

sk = (PPhAcc,KT)

Program Compilation Algorithm Obf(1λ, sk, sid, Fsid) → F̃sid. First, it generates following
session parameters for the given program Fsid:

KA ← PPRF.Setup(1λ)

(PPItr, v
0)← Itr.Setup(T)

Second, it parses sk = (PPhAcc,KT). With parameters T,PPhAcc,PPItr, v
0,KA and termination key

KT , as well as program Fsid, we define the program F̂sid (Algorithm 1) for given sid ∈ [l], 1 ≤ sid ≤ l.
This algorithm Obf then computes an obfuscation of the program F̂sid. That is, F̃sid ← iO.Gen(F̂sid),
and it outputs F̃sid.

42

Algorithm 1: F̂sid in CiO for RAM

Input : s̃t
in

= ((s, t), stin, vin, win, σin), ãinA←M = (ainA←M, π
in) where ainA←M = (I in, bin)

Data: T,PPhAcc,PPItr, v
0,KA,KT

1 if s = sid and t = 0 then
2 Compute rsid−1 = PRF(KT , sid− 1) and (sksid−1, vksid−1, vksid−1,rej) = Spl.Setup(1λ; rsid−1);
3 If Spl.Verify(vksid−1, (sid, st

in, vin, win), σin) = 0, output reject;
4 Initialize t = 1, stin = init, vin = v0, and ainA←M = (⊥,⊥);

5 else
6 If hAcc.VerifyRead(PPhAcc, w

in, I in, bin, πin) = 0 output reject;
7 Compute rA = PRF(KA, (sid, t− 1));

8 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA);
9 Set min = (vin, stin, win, I in);

10 If Spl.Verify(vkA,m
in, σin) = 0 output reject;

11 Compute (stout, aoutM←A)← F (stin, ainA←M) where aoutM←A = (Iout, bout);
12 If stout = reject, output reject;

13 Compute wout = hAcc.Update(PPhAcc, w
in, bout, πin), output reject if wout = reject;

14 Compute vout = Itr.Iterate(PPItr, v
in, (stin, win, I in)), output reject if vout = reject;

15 Compute r′A = PRF(KA, (sid, t));

16 Compute (sk′A, vk
′
A, vk

′
A,rej) = Spl.Setup(1λ; r′A);

17 Set mout = (vout, stout, wout, Iout);
18 Compute σout = Spl.Sign(sk′A,m

out);

19 if stout returns halt for termination then
20 Compute rsid = PRF(KT , sid) and (sksid, vksid, vksid,rej) = Spl.Setup(1λ; rsid);
21 Compute σout = Spl.Sign(sksid, (sid, st

out, vout, wout));

22 Output s̃t
out

= ((sid + 1, 0), stout, vout, wout, σout) ;

23 else

24 Output s̃t
out

= ((sid, t+ 1), stout, vout, wout, σout), ãoutM←A = aoutM←A;

Evaluation algorithm Eval(m̃emsid,0, s̃t
sid,0

, F̃sid)→ (m̃emsid+1,0, s̃t
sid+1,0

). Upon receiving a com-

piled database (m̃em
sid,0

, s̃t
sid,0

) and a sequence of obfuscated programs (F̃1, . . . F̃l), the evaluation
algorithm carries out the following for each session sid:

1. Set ãsid,0A←M = ⊥. For t = 1 to T , perform following procedures until F̃sid outputs a halting state

s̃t
sid,t∗

at that halting time t∗:

Compute (s̃t
sid,t

, ãsid,tM←A)← F̃sid(s̃t
sid,t−1

, ãsid,t−1
A←M);

Run (m̃em
sid,t

, ãsid,tA←M)← ãccess(m̃em
sid,t−1

, ãsid,tM←A), where ãccess is the function for memory
access command.

2. At time t∗, output (m̃em
sid+1,0

, s̃t
sid+1,0

) = (m̃em
sid,t∗

, s̃t
sid,t∗

).

To fulfill correctness, we simply define the function Project(s̃t
sid+1,0

) as follows: first, parse

s̃t
sid+1,0

as ((sid + 1, 0), stout, vout, wout, σout); second, output stout only. With the same argument

43

from the selective CiO, it is straightforward to verify the correctness and efficiency of the above
construction. Next, we present a theorem for its security-lifting.

7.2.3 Checking Niceness for Security Proof of CiO

Lemma 6. The security proof of the above construction of selective CiO satisfies the niceness
property.

Proof. We follow the abstract proof (see Section 4) and Theorem 6. Note that we already have a
selective proof to show our CiO construction is selectively secure since we can directly use that proof
in [CCC+16, KLW15] with the stronger history-less accumulator. To apply Theorem 6, we firstly
model the selective proof as generalized cryptographic games, reductions, and specific functions G.
Secondly, given the above, it suffices for checking the selective proof is a “nice” proof which satisfies
properties 1, 2 and 3 listed in Definition 18.

Even though there is a long sequence of hybrids, cryptographic games (to distinguish adjacent
hybrids), and reductions, we use a systematic way to checking that the selective proof indeed satisfies
niceness. In general, the ith hybrid can be modeled as an interactive compiler/obfuscator Hi that
receives Gi(α) as its global information. Let (CH i, Gi||Gi+1, 1/2) be the generalized cryptographic
game to challenge an adversary to distinguish between neighboring hybrids (Hi, Hi+1). Let the
interactive machine Ri be the reduction from a game (CH i, Gi||Gi+1, 1/2) to an intractability
assumption (CH ′i, τ

′
i).

To complete the above well-defined games and reductions with specific function Gi, we observe
that in general there are two cases of hybrid Hi in this selective proof.

• Case 1: Hi takes as input only the prefix message to compute its output for each step.

• Case 2: Hi enforces its accumulator PPhAcc which uses either EnforceRead or EnforceWrite. On
the one hand, PPhAcc is necessary while compiling database m̃em

0,0
. On the other hand, how-

ever, computing the enforced PPhAcc depends on global information. It is because EnforceRead
(or EnforceWrite) needs INDEX∗ which is specified by (F1, . . . Fsid) on mem at time t, where
sid and t are further specified by Hi. In other words, INDEX∗ is a global information that
depends on (mem, F1, . . . Fsid). Thus, we need a proper function Gi to provide INDEX∗.

Define function by Gi which outputs null in Case 1. However, in Case 2, define by Gi(α) :=
INDEX∗i (α) where α = (mem, F1, F2, . . . Fl). Note that INDEX∗i (α) is efficiently computable by its
definition. Also, it is reversely computable, since for any given INDEX∗i (α) in space bound S we
can simply set a program F at session sid and time t to access INDEX∗i (α).

Remark 4. Let one of neighboring hybrids (Hi, Hi+1) be in the enforcing mode (Case 2). Comparing
to game (Hi, Hi+1), reduction Ri, and assumption CH ′i in the security proof of the selective CiO
construction, we stress those are slightly modified in our proof. Specifically, in original selective
CiO, the enforcing accumulator can be either positional (that needs complete memory-accessing
history which may be long) or history-less (that needs only one index). To complete our proof, we
require only a short guess, so the history-less accumulator is necessary. We can further apply the
abstract framework to achieve adaptive security.

With well-defined generalized games (CH i, Gi||Gi+1, 1/2) and reductions Ri, we check that they
satisfy these properties in Definition 18 step by step, which then states they constitute a “nice”
proof. For simplicity, Gi||Gi+1 is denoted by Ḡi.

1. Security via hybrids with logarithmic-length G function. This property holds, since all
hybrids Hi have the same interface as the real experiments when interacting with the adver-
sary. Also note that function Gi has only two cases for all i, either null or INDEX∗i (α), with

44

logarithmic-length output. Specifically, the output length of Gi is exactly logS which is in
O(log λ) as long as the space bound S = O(poly λ).

2. Indistinguishability of neighboring hybrids via nice reduction. For every neighboring
hybrids (Hi, Gi) and (Hi+1, Gi+1), we consider each pair of CH i and CH ′i↔Ri that both
receive Ḡi(α). We need to check if their output distributions are µ-close for every prefix
ρ = (m1, a1,m2, a2, · · · ,m`−1, a`−1,m`) of a Ḡi-consistent transcript of messages. By looking
into CH i and CH ′i↔Ri and comparing their procedures syntactically, we observe those pro-
cedures are almost identical even though Ri passes its partial procedures to CH ′i. As a result,
∆(DCH i(λ, ρ),DCH ′i↔Ri(λ, ρ)) is 0, and Ri is 0-nice by Definition 16 from the corresponding
guessing game to some intractability assumptions, such as iO and puncturable PRF.

3. Gi||Gi+1-hiding. We claim the guessing game (CHi, Ḡi, 1/2) is Ḡi hiding by considering Hi and
Hi+1 separately. If Gi and Gi+1 are both hidden from hybrid experiments Hi and Hi+1 respec-
tively, then Ḡi is also hidden. Thus, this property requires that (Hi, Gi(α)) and (Hi, Gi(α

′))
are indistinguishable for every α and α′, for every adversary, where Gi(α) or Gi(α

′) is hard-
coded by the challenger (Definition 17). We claim (Hi, Gi) is Gi-hiding for all i.

Proof. For any Gi, there are two cases, either null or INDEX∗i (α). In Case 1, (Hi, Gi(α) = null)
and (Hi, Gi(α

′) = null) are identical for any adversary since Hi never uses null. In Case 2, the
output Gi(α) is always an index that passed as an input to either EnforceRead or EnforceWrite,
and then (Hi, Gi(α)) and (Hi, Gi(α

′)) are indistinguishable to any PPT Gi-selective adversary
by the read/write setup indistinguishability of history-less accumulator (Definitions 22 and
23) in which we first switch the enforce-mode (Hi, Gi(α)) to normal (Hi, null) and then do
again back to the enforce-mode (Hi, Gi(α

′)).

More detailed checks are described in Appendix A. In particular we will show that some exper-
iments have guessing (i.e., Hyb0,2,j,i,0, ...,Hyb0,2,j,i,13 in [CCC+16]).

Finally, it follows by Theorem 6 that real experiments Exp-IND-CiO{b = 0} and Exp-IND-CiO{b =
1} of the CiO construction are indistinguishable against adaptive adversaries. We state the following
corollary.

Corollary 2. Let iO be a secure indistinguishability obfuscator, PRF be a selectively secure punc-
turable PRF, Spl be a secure splittable signature scheme, Itr be a secure iterator scheme, and hAcc
be a secure history-less accumulator scheme. Then the construction of CiO is adaptively secure.

7.3 Adaptive GRAM with Persistent Database

A garbling scheme for RAM computation with persistent database (GRAM) is conceptually a
type of a delegation scheme (Definition 19) and is equipped with program encoding and a database
encoding algorithms. The security guarantee is however different from delegation – it has no
output privacy and no soundness. More specifically, the adversary learns the output in clear (see
Section 7.3.1 for its formal definition).

To obtain adaptive GRAM, we recall the selective construction of GRAM from [CCC+16], and
then we then verify whether the security proof fits with our abstraction framework proposed earlier
(Section 4). This selective GRAM is constructed with selective CiO. To adopt our framework
of generalizing cryptographic games, we substitute selective CiO with the stronger adaptive CiO

45

presented in the previous section. We then follow along the selective security proof of [CCC+16]
we syntactically check whether it satisfies “niceness” in our framework of generalized cryptographic
games. As the proof has “nice”, it follows by our abstraction that this construction of GRAM is
secure against adaptive adversary, and then this adaptive GRAM scheme can further be applied
to construct adaptive delegation.

The checking of niceness property is involved. Our adaptive construction is almost identical to
the selective construction in [CCC+16], where the only difference is that adaptive GRAM is built
on adaptive CiO. For simplicity, we usually omit adaptive when denoting GRAM or CiO in this
section.

7.3.1 Definition of GRAM

For any RAM program P that computes on database mem and outputs a bit b at halting time t∗,
we denote it by

(y = (t∗, b),mem′)← P (mem),

where mem′ is the updated database modified by the program P . We stress that database is
persistent if mem′ can be taken as input to the succeeding program P ′. For simplicity, we assume
that w.l.o.g. any short input to P can be hard-coded in P directly, and halting time t∗ is given in
output y.

In general, a garbling scheme to garble RAM programs and persistent database consists of four
algorithms: the first one is to generate a secret key and garble initial database, the second one is
to garble a RAM program that could read and write that database and then return an output, and
the last one is to evaluate those garbled database and programs.

Definition 31 (GRAM with Persistent Database). A GRAM scheme with persistent database
consists of algorithms GRAM = GRAM.{DBGarble,PGarble,Eval} described below.

GRAM.DBGarble(1λ,mem1, S) → (sk, m̃em1): The database garbling algorithm DBGarble is a
randomized algorithm which takes as input the security parameter 1λ, the secret key sk, database
mem1, and a space bound S. It outputs a secret key sk and a garbled database m̃em1.

GRAM.PGarble(1λ, sk, sid, P sid) → P̃ sid: The algorithm PGarble is a randomized algorithm
which takes as input the security parameter 1λ, the secret key sk, the session ID sid, the de-
scription of a RAM program P sid with time bound T and space bound S. It outputs a garbled
program P̃ sid.

GRAM.Eval(1λ, T, S, P̃ sid, m̃emsid) → (ysid, m̃emsid+1): The evaluating algorithm Eval is a de-
terministic algorithm which takes as input the security parameter 1λ, time bound T and space
bound S, a garbled program P̃ sid, and the current database m̃emsid. It outputs (ysid, m̃emsid+1)
or ⊥.

Correctness. A garbling scheme GRAM is said to be correct if

Pr[(m̃em1, sk)← GRAM.DBGarble(1λ,mem1, S); P̃ sid ← GRAM.PGarble(1λ,

sk, sid, P sid); (ysid, m̃emsid+1)← GRAM.Eval(1λ, T, S, P̃ sid, m̃emsid);

(zsid,memsid+1)← P sid(memsid) : ysid = zsid ∀sid, 1 ≤ sid ≤ l] = 1.

Adaptive Security. A garbling scheme GRAM = GRAM. {DBGarble, PGarble,Eval} with per-
sistent database is said to be adaptively secure if for all sufficiently large λ ∈ N, for all total

46

round l ∈ poly(λ), time bound T , space bound S, for every interactive PPT adversary A, there
exists an interactive PPT simulator S such that A’s advantage in the following security game
Exp-GRAM(1λ,GRAM,A,S) is at most negligible in λ.

Exp-GRAM(1λ,GRAM,A,S)

1. The challenger C chooses a bit b ∈ {0, 1}.
2. A chooses and sends database mem1 to challenger C.

3. If b = 0, challenger C computes (m̃em1, sk)← DBGarble(1λ,mem1, S). Otherwise, C simulates
(m̃em1, sk)← S(1λ, |mem1|), where |mem1| is the length of mem1. C sends m̃em1 back to A.

4. For each round sid from 1 to l,

(a) A chooses and sends program P sid to C.

(b) If b = 0, challenger C sends P̃ sid ← GRAM.PGarble(1λ, sk, sid, P sid) to A. Otherwise, C
simulates and sends P̃ sid ← S(1λ, sk, sid, 1|P

sid|, ysid, T, S) to A, where ysid is defined by the
honest computation of program P sid on database memsid: P sid(memsid)→ (memsid+1, ysid).

5. A outputs a bit b′. A wins the security game if b = b′.

We remark that an unrestricted adaptive adversary can adaptively choose RAM programs P i

depending on the garbled programs and garbled database it receives in the above game, whereas a
restricted selective adversary can only make the choice of programs statically at the beginning of the
execution.

Efficiency. For all session sid, we require DBGarble and PGarble runs in time Õ(|mem1|) and
Õ(poly(|P sid|)), and efficient Eval runs in time Õ(t∗).

7.3.2 Construction of GRAM with Persistent Database

The construction of GRAM with persistent database is based on puncturable PRF, PKE and CiO
with persistent database. To garble both database and programs, the idea of [CCC+16] is natural.

At a high level, the goal of the garbling procedure is to generate obfuscated program P̃ and
the encoded input x̃ such that the output of P (x) can be recovered from these encodings and at
the same time both P and x should be hidden. To protect the privacy of P , we must restrict P̃
to evaluate only on input x (whose encoding is provided), and not for instance, P (x′) where the
encoding of x′ is not provided. We need some authentication mechanism to authenticate the whole
evaluation of P on x so that the adversary follows along this path of computation. Moreover, the
evaluation of P on x produces a long computation trace in addition to y. We need some hiding
mechanism to hide the evaluation process.

To authenticate the whole evaluation, CiO will do. To hide information through the evaluation
process, a natural approach is to use encryption schemes to hide the CPU states and the memory
content. Namely, P̃ always outputs encrypted CPU states and memory, and on (authenticated)
input of ciphtertexts, performs decryption before the actual computation. Note, however, that the
memory access pattern cannot be encrypted (otherwise the server cannot evaluate), which may
also leak information. A natural approach is to use oblivious RAM (ORAM) to hide the access
pattern. Namely, we use ORAM compiler to compile the program (and add an “encryption layer”).
Thus, the garbling algorithm of GRAM is to compile programs and database with hiding and
authenticating property as follows.

47

1. (Hiding.) First, compile RAM programs and database with oblivious RAM (ORAM) to hide
the access pattern. Second, compile RAM programs and database with public-key encryption
(PKE) to hide its CPU states and memory contents. Note that both ORAM and PKE need
randomness, which is generated with puncturable PRF carefully.

2. (Authenticating.) Use CiO to obfuscate the compiled programs and database generated by
the hiding step.

To evaluate garbled programs, the evaluator performs CiO evaluation directly on encoded pro-
grams and database. The algorithms of database and program garbling (GRAM.DBGarble and
GRAM.PGarble) are designed as follows.

GRAM.DBGarble(1λ,mem1, S) → (sk, m̃em1): The database garbling algorithm DBGarble takes

following steps to generate the secret key sk and encoding m̃em
1
.

1. It randomly chooses puncturable PRF keys KE , KN and CiO key skCiO. It outputs secret key
sk = (KE ,KN , skCiO).

2. (ORAM) Compile database mem1 with ORAM algorithm into oblivious database mem1
o, where

the randomness used by ORAM is sampled uniformly.

3. (PKE) Encrypt oblivious database mem1
o into mem1

e using PKE scheme and pk created from
KE .

4. (CiO) Obfuscate mem1
e using CiO.DBCompile(1λ,mem1

e)→ (m̃em
1,0
, s̃t

1,0
, skCiO).

5. Output garbled database m̃em
1

= (m̃em
1,0
, s̃t

1,0
).

GRAM.PGarble(1λ, sk, sid, Psid)→ P̃sid: The program garbling algorithm PGarble takes following
steps to generate garbled program P̃sid.

1. Parse secret key sk = (KE ,KN , skCiO).

2. (ORAM) Compile program Psid with ORAM algorithm into oblivious program Psid,o[KN], which
computes pseudo-randomnesses from KN and then passes them to ORAM.

3. (PKE) Compile Psid,o[KN] into Psid,e[KN ,KE] that decrypts input and encrypts output at
each step with PKE and keys generated from KE (Algorithm 2), where the only exception is
not to encrypt the halting state which contains the output of Psid. Here the encrypted state
(resp., encrypted memory contain) is denoted by st (resp., b).

4. (CiO) Obfuscate Psid,e[KN ,KE] into P̃sid using CiO.Obf(1λ, skCiO, Psid,e[KN ,KE])→ P̃sid.

5. Output garbled program P̃sid.

7.3.3 Checking Niceness for Security Proof of GRAM

As the above construction is almost identical to [CCC+16] with stronger CiO substituted, its
correctness and efficiency is straightforward. Next, we recall its security proof at a high level, and
then argue this proof is nice and can be lifted by our framework.

48

Algorithm 2: Psid,e[KN ,KE], the program working with encrypted data (formalized as a step
circuit).

Input : s̃t
in

= (st
in
, t), ãin = (I in, (b

in
, lwin))

Data: T,KE ,KN , sid
1 if t = 0 then
2 Set stin = init, I in = ⊥, bin = ⊥;

3 else

4 // Decrypt input state st
in

and reading bit b
in

5 Compute (rlw1 , r
lw
2 , r

lw
3 , r

lw
4) = PRF(KE , lw

in), (pklw, sklw) = PKE .Gen(1λ; rlw1), and decrypt

bin = PKE .Decrypt(sklw, b in
);

6 Compute (rt−1
1 , rt−1

2 , rt−1
3 , rt−1

4) = PRF(KE , (sid, t− 1)),

(pkt−1, skt−1) = PKE .Gen(1λ; rt−1
3), and decrypt stin = PKE .Decrypt(skt−1, st

in
);

7 Run one step of the ORAM compiled program Psid,o[KN] with state stin, accessing index I in,
reading bit bin, and ORAM randomness ρ = PRF(KN , t). Let the output be (stout, Iout, bout);

8 if stout = (halt, ·) then

9 Output s̃t
out

= stout

10 else

11 // Encrypt output st
out

and writing bit b
out

12 Compute (rt1, r
t
2, r

t
3, r

t
4) = PRF(KE , (sid, t));

13 Compute (pklw, sklw) = PKE .Gen(1λ; rt1), and encrypt b
out

= PKE .Encrypt(pklw, bout; rt2);

14 Compute (pkt, skt) = PKE .Gen(1λ; rt3), and encrypt st
out

= PKE .Encrypt(pkt, stout; rt4);

15 Output s̃t
out

= (st
out
, t+ 1), ãout = (Iout, (b

out
, (sid, t))) ;

49

The Intuition of Selective Security Proof. In the security proof, the approach taken by
[CCC+16] is to establish indistinguishability of hybrids backwards in time. Namely, they consider
intermediate hybrids Hybi where the computations of the first i time steps are real, and those of
the remaining time steps are simulated (appropriately). A key idea here (following [KLW15]) is
to encrypt each message (a CPU state or a memory cell) using a different key, and generate these
keys (as well as encryption randomness) using puncturable PRF (PPRF), which allows us to use a
standard puncturing argument in the security proof (extended to work with CiO instead of iO) to
move to a hybrid where semantic security holds for a specific message so that we can “erase” it.

Yet, since the computation trace of the first (i − 1) time steps is real, it contains enough
information to carry out the rest of the (deterministic) computation. In particular, the access
pattern at time step i is determined by the first (i − 1) time steps, that means we cannot replace
it by a simulated access pattern. However, it is unlikely that we can use the security of ORAM in
a black-box way, since ORAM security only holds when the adversary does not learn any content
of the computation. Indeed, we can only use puncturing argument to argue that semantic security
holds locally for some encryption at a specific computation step of P .

To solve this problem, [CCC+16] developed a puncturing ORAM technique to reason about the
simulation specifically for CP-ORAM [CP13]. At a very high level, to move from Hybi to Hybi−1

(i.e., erase the computation at the i-th time step), we “puncture” ORAM at time step i (i.e., the
i-th memory access), which enables us to replace the access pattern by a simulated one at this time
step. We can then move (from Hybi) to Hybi−1 by erasing the memory content and computation,
and undoing the “puncturing.” Roughly speaking, puncturing CP-ORAM at i-th time step can
be viewed as injecting a piece of “puncturing code” in the ORAM access procedure to erase the
information randi about access pattern at time step i information-theoretically. For instance, randi
is generated at the latest time step t′ that accesses the same memory location as time step i. The
puncturing code simply removes the generation of randi at time step t′. However, the last access
time t′ can be much smaller than i, so the puncturing may cause global changes in the computation.
Thus, moving to the punctured mode requires carefully defining a sequence of hybrids that modifies
the computation step by step. They do so by further introducing an auxiliary “partially puncturing”
code that punctures randi from certain threshold time step j ≥ t′. The sequence of hybrids which
move to the punctured code corresponds to moving the threshold j ≤ i backwards from i to t′.

Specifically, the puncturing code is informally defined as follows. Let PHybi be the program
encoded in Hybi. Let ` be the memory block accessed at the i-th time step of P (x), p = pos[`] be
the position map value at time step i, and t′ be the last access time of block ` before time step i.
Note that p is exactly randi that is generated at time step t′. The goal is to information-theoretically
erase the value p from time t′. The punctured hybrid Hybpunct

i is defined with a hybrid encoding
CiO(PHybpunct

i
,memhide) where PHybpunct

i
is PHybi plus the following puncturing code:

Puncturing Code: At time step t = t′, do not generate the value p, and instead of
putting back the (encrypted) fetched block ` to the root of the ORAM tree, an encryption
of a dummy block is put back. Moreover, the position map value p is not updated.
Additionally, the value p is hardwired, and is used to emulate the memory access at the
i-th time step.

In other words, block ` is deleted at time step t′ and p remains to store the old value (used to fetch
the block at time step t′). So, in Hybpunct

i , the value p is information-theoretically hidden in the
computation trace of the first (i − 1) time steps and is only used to determine the access pattern
at time step i. We can then use puncturing arguments for PPRF to replace p by one generated by
the simulation (as opposed to real) PPRF key. Similarly, the partially puncturing code is defined

50

as follows to move from PHybi to PHybpunct
i

.

Partially Puncturing Code[j]: At any time step t > j, if the input CPU state or
memory contains the block `, then replace it by a dummy block before performing the
computation.

We observe that in both puncturing and partially puncturing code, only the index ` of the block
(to be accessed at time step i) is needed to perform such removal.

Checking Niceness of the Selective Proof We now show that the above proof of selective
security can be generalized by our framework of generalized cryptographic game, and consists of
“nice” neighboring hybrids with proper global function G.

In the proof, recall that intermediate hybrid Hybi has its computation which is real in the first
i time steps and simulated (appropriately) in the remaining time steps. To switch time step i from
real to simulated, there are two major steps: the first is to use puncturable PRF and encryption
scheme to simulate the ciphertexts of messages (including CPU state and a memory cell value); the
second is to use the puncturing ORAM technique to simulate its access pattern. In the first step,
all the ciphertexts of messages depend only on known input and programs in generalized hybrid
experiment. According to this step, no global information is needed, and thus arguing its niceness
is straightforward. In the second step, intermediate puncturing and partially puncturing hybrids
Hybi,j are needed, where j < i is the time step to insert (partially) puncturing code. However,
these hybrids do not directly work under generalized hybrid experiment. Let α be a sequence of
input database and program queries with persistent database, α = (mem, P1, . . . , Pl). Let time step
i be the u-th step in the r-th program Pr, and let time step j be the v-th step in the q-th program
Pq, where 1 ≤ q ≤ r ≤ l. The last access time t′ can be much smaller than i, and thus access time
t′ and i can be in different programs such that q < r. Therefore, garbled encoding of Pq depends
on the query of Pr which is not known while generating Pq in the hybrid experiment. As a result,
we need proper global information and function Gi to formulate our generalized cryptographic
experiments or games.

To tackle this, we observe that, for all hybrid experiments Hybi,j , the challenger needs only a
small amount of global information: in both puncturing and partially puncturing codes, the only
global information needed is the index ` of the block to be accessed in time step u of program Pr.
In other words, to add the (partially) puncturing code, it must know (a) the value of ` and (b) the
value of r. Thus, we can define

Gi,j(α) := (r, `),

where i = (r, u) is the u-th time step of the r-th program, j = (q, v) is the v-th time step of the q-th
program, and ` is the index of block to be accessed at time i. The output of Gi,j is logarithmic-
length, and Gi,j is hiding because Hybi,j is indistinguishable from Hybi, which has no puncturing
and no G.

Lemma 7. The security proof of the above construction of selective GRAM satisfies the niceness
property.

Proof. In this proof, we use a systematic way to check the selective proof which satisfies all niceness
properties even though there is a long sequence of hybrids and reductions. Let the sequence of
hybrids in the selective proof be Exp-Real = H0 ≈ H1 · · · ≈ H`(λ)+1 = Exp-Sim. We firstly model
the selective proof as generalized cryptographic games and reductions with specific functions G,
which are efficiently and reversely computable functions. Secondly, we check the selective proof is
a “nice” proof which satisfies all the properties listed in Definition 18.

51

To work with our framework of generalized cryptographic games, we need to define the function
G for each hybrid game corresponding to reduction. In general, we slightly abuse the notation i
as a global timestamp including session identity and program time step. The ith hybrid can be
modeled as an interactive garbler Hi that receives Gi(α) as its global information. Define gen-
eralized cryptographic game (CH i, Gi||Gi+1, 1/2) where an adversary tries to distinguish between
(Hi, Hi+1) with given Gi(α)||Gi+1(α). Let the interactive machine Ri be the reduction from a game
(CH i, Gi||Gi+1, 1/2) to a falsifiable assumption (CH ′i, τ

′
i) which is one of the assumptions stated in

the selective proof.
To complete the above well-defined games and reductions with specific functions Gi, we check

all hybrids Hi and observe that (a) non-puncturing Hi takes as input only the prefix message to
compute their every output, and (b) (partially) puncturing Hi takes additional values (r, `) as
input. Thus, we define the function Gi which outputs null or a pair of global program index r and
location ` for any input α = (mem, {Psid}lsid=1, . . .) for all hybrid experiments Hi.

Let us briefly discuss some steps of using puncturing ORAM in the proof (i.e., Hyb2,i,0,j ≈
Hyb2,i,0,j+1 in [CCC+16]). We have to carefully apply the abstraction. In the such case, with
well-defined generalized games (CH i, Gi||Gi+1, 1/2) and reductions Ri, we check that they satisfy
the properties in Definition 18, which then states they constitute a “nice” proof.

1. Security via hybrids with logarithmic-length G function. This holds as all hybrids Hi

have the same interface as the real experiments when interacting with the adversary. Addi-
tionally, Gi,j (for any (partially) puncturing hybrid Hi,j) outputs a program index r and a
location ` with logarithmic-length.

2. Indistinguishability of neighboring hybrids via nice reduction. To meet the definition
of the nice reduction (see Definition 16), we need to syntactically check the whole procedures
in M1 = CH i,j and M2 = (CH ′i,j↔Ri,j). M1 and M2 perform almost the same procedures
(except a few interactions between CH ′i,j↔Ri,j), so Ri,j is a nice reduction.

3. Gi||Gi+1-hiding. This property requires (HI ,GI) and (HI ,0) are indistinguishable to GI -selective
adversaries for any function I(λ), where 0 is the constant zero function. Let Hi = {Hi,λ},
Gi = {Gi,λ} for large enough λ. By the assumption applied in Property 1, any (partially)
puncturing hybrid experiment Hi,j using global information from Gi,j is indistinguishable
from its non-puncturing precedent hybrid Hi (through a sequence of hybrids) where no G is
used. Thus, Gi,j is hiding with any large enough λ.

Finally, we conclude that the selective proof is a nice proof that satisfies the three properties.

It follows by Theorem 6 and Lemma 7 that experiments Exp-Real and Exp-Sim of our GRAM
construction are indistinguishable against adaptive adversaries.

Corollary 3. Let PKE be an IND-CPA secure public key encryption scheme, CiO be an adaptive
computation-trace indistinguishability obfuscation scheme in RAM model, PRF be a secure punc-
turable PRF scheme. Then GRAM is an adaptive secure garbled RAM scheme with persistent
database.

7.4 Garbled RAM to Delegation: Adaptive Setting

To construct the adaptive RAM delegation, we have to consider full privacy and soundness (Defini-
tion 19). There are known generic transformations [AIK10,GHRW14] from GRAM to delegation
(GRAM with full privacy and soundness). We follow that transformation with slight modifications
to build the RAM delegation.

52

Firstly, output privacy is achieved by compiling P into Pop which hardwires one-time key key,
takes memory and state as input, and finally computes y as output and returns c = Enckey(y).
The client can recover y by decrypting c with key. The entire view of the evaluator can be
simulated given the values c (or the length of c by some security of encryption scheme Enc),
and thus the evaluator learns nothing about the outputs y.

Secondly, we can also add soundness by using verifiable computation in which the received
output c is indeed the correct output encoding of the computation. To do this, we compile
Pop into Pop,ver which additionally hardwires a one-time MAC key sk, returns c as above, and
moreover generates a one-time MAC σ of c. The client can use the MAC key sk and encryption
c to verify whether σ is valid. The entire view can be simulated given the values (c, σ), and
thus the evaluator cannot come up with a valid MAC σ′ for any y′ 6= y.

Finally, use our construction of GRAM to compile Pop,ver to the program encoding P̃ .

Our underlying GRAM is adaptively secure, and then, this RAM delegation achieves adaptively
full privacy and soundness.

Acknowledgements

We thank Yael Kalai for insightful discussions in the early stages of this project.
This work was done in part while the authors were visiting the Simons Institute for the Theory

of Computing, supported by the Simons Foundation and by the DIMACS/Simons Collaboration in
Cryptography through NSF grant CNS-1523467.

Prabhanjan Ananth is supported in part by grant #360584 from the Simons Foundation and
supported in part from a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, NSF
grants 1228984, 1136174, 1118096, and 1065276. This material is based upon work supported by
the Defense Advanced Research Projects Agency through the ARL under Contract W911NF-15-C-
0205. The views expressed are those of the author and do not reflect the official policy or position
of the Department of Defense, the National Science Foundation, or the U.S. Government.

Kai-Min Chung was partially supported by Ministry of Science and Technology, Taiwan, under
Grant no. MOST 103-2221-E-001-022-MY3.

Huijia Lin was partially supported by NSF grants CNS-1528178 and CNS-1514526.

References

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From
selective to adaptive security in functional encryption. In CRYPTO, 2015.

[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness: Ef-
ficient verification via secure computation. In Automata, languages and Programming,
pages 152–163. Springer, 2010.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact
functional encryption. pages 308–326, 2015.

[AJN+16] Prabhanjan Ananth, Aayush Jain, Moni Naor, Amit Sahai, and Eylon Yogev. Univer-
sal obfuscation and witness encryption: Boosting correctness and combining security.
In CRYPTO, 2016.

[AJS15a] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Achieving compactness generi-
cally: Indistinguishability obfuscation from non-compact functional encryption. IACR
Cryptology ePrint Archive, 2015:730, 2015.

53

[AJS15b] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Patchable obfuscation. IACR
Cryptology ePrint Archive, 2015:1084, 2015.

[App14] Applebaum, Benny. Bootstrapping obfuscators via fast pseudorandom functions. In
ASIACRYPT, 2014.

[AS15] G. Asharov and G. Segev. Limits on the power of indistinguishability obfuscation and
functional encryption. In Foundations of Computer Science (FOCS), 2015 IEEE 56th
Annual Symposium on, pages 191–209, Oct 2015.

[AS16] Prabhanjan Ananth and Amit Sahai. Functional encryption for turing machines. In
TCC 2016-A, 2016.

[BCP] Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivious parallel RAM and applica-
tions. In TCC 2016-A.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In
TCC, 2014.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology
Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings, volume
2139 of Lecture Notes in Computer Science, pages 1–18. Springer, 2001.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudo-
random functions. In Public-Key Cryptography–PKC 2014, pages 501–519. Springer,
2014.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Pro-
tecting obfuscation against algebraic attacks. In EUROCRYPT, 2014.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Siddartha Telang. Succinct
randomized encodings and their applications. In STOC, 2015.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In TCC, 2014.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from func-
tional encryption. In IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 171–190, 2015.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their ap-
plications. In Advances in Cryptology-ASIACRYPT 2013, pages 280–300. Springer,
2013.

[CCC+16] Yu-Chi Chen, Sherman S. M. Chow, Kai-Min Chung, Russell W. F. Lai, Wei-Kai
Lin, and Hong-Sheng Zhou. Cryptography for parallel RAM from indistinguishability
obfuscation. ITCS, 2016.

[CCHR16] Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova. Succinct adaptive
garbled RAM. In TCC 2016-B, 2016.

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrede Lepoint, Hemanta K Maji,
Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without
low-level zeroes: New MMAP attacks and their limitations. In CRYPTO. 2015.

[CH16] Ran Canetti and Justin Holmgren. Fully succinct garbled RAM. ITCS, 2016.

54

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Indistin-
guishability obfuscation of iterated circuits and RAM programs. In STOC, 2015.

[CLT] Binyi Chen, Huijia Lin, and Stefano Tessaro. Oblivious parallel ram: Improved effi-
ciency and generic constructions. In TCC 2016-A.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In CRYPTO, 2013.

[CLT15] Jean-Sébastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. New multilinear maps
over the integers. In CRYPTO. 2015.

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation
of probabilistic circuits and applications. In Theory of Cryptography - 12th Theory of
Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceed-
ings, Part II, pages 468–497, 2015.

[CP13] Kai-Min Chung and Rafael Pass. A simple ORAM. IACR Cryptology ePrint Archive,
2013:243, 2013.

[DKW16] Apoorvaa Deshpande, Venkata Koppula, and Brent Waters. Constrained pseudoran-
dom functions for unconstrained inputs. Cryptology ePrint Archive, Report 2016/301,
2016. http://eprint.iacr.org/2016/301.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In EUROCRYPT, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, 2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In TCC. 2015.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. Journal of the ACM (JACM), 33(4):792–807, 1986.

[GHL+14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel
Wichs. Garbled RAM revisited. In EUROCRYPT, 2014.

[GHRW14] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourcing private
RAM computation. In FOCS, 2014.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia.
Founding cryptography on tamper-proof hardware tokens. In TCC. 2010.

[GLO15] Sanjam Garg, Steve Lu, and Rafail Ostrovsky. Black-box garbled RAM. In FOCS,
2015.

[GLOS15] Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled RAM
from one-way functions. In STOC, 2015.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In CRYPTO, 2012.

[HJO+16] Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro, and Daniel
Wichs. Adaptively secure garbled circuits from one-way functions. In CRYPTO, 2016.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability ob-
fuscation for turing machines with unbounded memory. In STOC, 2015.

55

http://eprint.iacr.org/2016/301

[KP15] Yael Tauman Kalai and Omer Paneth. Delegating RAM computations. IACR Cryp-
tology ePrint Archive, 2015:957, 2015.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security, pages 669–684.
ACM, 2013.

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations:
The power of no-signaling proofs. In STOC, 2014.

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding
schemes. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptol-
ogy - EUROCRYPT 2016 - 35th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceed-
ings, Part I, volume 9665 of Lecture Notes in Computer Science, pages 28–57. Springer,
2016.

[LO13] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In EUROCRYPT,
2013.

[LO15] Steve Lu and Rafail Ostrovsky. Black-box parallel garbled RAM. Cryptology ePrint
Archive, Report 2015/1068, 2015. http://eprint.iacr.org/2015/1068.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from ddh-like
assumptions on constant-degree graded encodings. Cryptology ePrint Archive, Report
2016/795, 2016. http://eprint.iacr.org/2016/795.

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps:
Cryptanalysis of indistinguishability obfuscation over GGH13. In CRYPTO, 2016.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In CRYPTO, 2003.

[OPWW15] Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs. New real-
izations of somewhere statistically binding hashing and positional accumulators. ASI-
ACRYPT, 2015.

[Wat15] Brent Waters. A punctured programming approach to adaptively secure functional
encryption. In CRYPTO, 2015.

A Detailed Check for the Proof of Lemma 6

We define the first layer hybrids Hybi for i ∈ {0, 1}, which are exactly two experiments Exp-IND-CiO{b =
0} and Exp-IND-CiO{b = 1} defined in the selective security of CiO.

Hybi for i ∈ {0, 1}. In this hybrid, the challenger defined by the generalized game outputs

obfuscated computation m̃em
1,0
, {F̃ isid}lsid=1 as Algorithm 3.

Let AdvkA be the advantage of Hybk against an adversary A. We argue that |Adv0
A − Adv1

A| ≤
negl(λ). To show this, we define the second-layer hybrids Hyb0,0,Hyb0,1,

{Hyb0,2,j ,Hyb0,3,j ,Hyb0,4,j}lj=1. The order from j to j + 1 is Hyb0,2,j ,Hyb0,3,j ,Hyb0,4,j ,

Hyb0,2,j+1,Hyb0,3,j+1,Hyb0,4,j+1. Let t∗sid be the terminating time of both programs F 0
sid and F 1

sid

where t∗sid < T . For the j-th session, we also define third-layer hybrids Hyb0,2,j,i and Hyb0,2′,j,i

for time i, 0 ≤ i < t∗j .

56

http://eprint.iacr.org/2015/1068
http://eprint.iacr.org/2016/795

Algorithm 3: F̂ isid for i ∈ {0, 1}

Input : s̃t
in

= ((sid, t), stin, vin, win, σin), ãinA←M = (ainA←M, π
in) where ainA←M = (I in, bin)

Data: T,PPhAcc,PPItr, v
0,KA,KT

1 if s = sid and t = 0 then
2 Compute rsid−1 = PRF(KT , sid− 1) and (sksid−1, vksid−1, vksid−1,rej) = Spl.Setup(1λ; rsid−1);
3 If Spl.Verify(vksid−1, (sid, st

in, vin, win), σin) = 0, output reject;
4 Initialize t = 1, stin = init, vin = v0, and ainA←M = (⊥,⊥);

5 else
6 If hAcc.VerifyRead(PPhAcc, w

in, I in, bin, πin) = 0 output reject;
7 Compute rA = PRF(KA, (sid, t− 1));

8 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA);
9 Set min = (vin, stin, win, I in);

10 If Spl.Verify(vkA,m
in, σin) = 0 output reject;

11 Compute (stout, aoutM←A)← F isid(stin, ainA←M);
12 If stout = reject, output reject;

13 Compute wout = hAcc.Update(PPhAcc, w
in, bout, πin), output reject if wout = reject;

14 Compute vout = Itr.Iterate(PPItr, v
in, (stin, win, I in)), output reject if vout = reject;

15 Compute r′A = PRF(KA, (sid, t));

16 Compute (sk′A, vk
′
A, vk

′
A,rej) = Spl.Setup(1λ; r′A);

17 Set mout = (vout, stout, wout, Iout);
18 Compute σout = Spl.Sign(sk′A,m

out);

19 if stout returns halt for termination then
20 Compute rsid = PRF(KT , sid) and (sksid, vksid, vksid,rej) = Spl.Setup(1λ; rsid);
21 Compute σout = Spl.Sign(sksid, (sid, st

out, vout, wout));

22 Output s̃t
out

= ((sid + 1, 0), stout, vout, wout, σout) ;

23 else

24 Output s̃t
out

= ((sid, t+ 1), stout, vout, wout, σout), ãoutM←A = aoutM←A;

57

Hyb0,0. This hybrid is identical to Hyb0 in the first layer.

Hyb0,1. In this hybrid, the challenger outputs obfuscations of {F̂ 0,1
sid }

l
sid=1 which are similar to

{F̂ 0
sid}lsid=1 except that they have PRF key KB hardwired and accept both ‘A’ and ‘B’ type signa-

tures for t < t∗sid for all sid ∈ [l]. The type of the outgoing signature follows the type of the incoming
signature. Also, if the incoming signature is ‘B’ type and t < t∗sid, then the program uses F 1

sid to
compute the output.

Hyb0,2,j. In this hybrid, the challenger sets F̂sid = F̂ 0,4,j−1
sid if sid < j; otherwise, it sets F̂sid = F̂ 0,1

sid
if sid ≥ j. This hybrid is identical to Hyb0,2,j,0 defined below.

Hyb0,2,j,i. In this hybrid, the challenger sets F̂sid = F̂ 0,4,j−1
sid if sid < j; otherwise, it sets F̂sid = F̂ 0,1

sid

if sid > j. If sid = j, the challenger outputs an obfuscation of F̂ 0,2,j,i
sid defined in Algorithm 4. This

program is similar to F̂ 0,1
sid except that it accepts ‘B’ type signatures only for inputs corresponding

to i + 1 ≤ t ≤ t∗sid − 1. It also has the correct output message mi for step i hardwired. For
i+ 1 ≤ t ≤ t∗sid − 1, the type of the outgoing signature follows the type of the incoming signature.
At t = i, it outputs an ‘A’ type signature if mout = mi, and outputs ‘B’ type signature otherwise.

Hyb0,2′,j,i. In this hybrid, the challenger sets F̂sid = F̂ 0,4,j−1
sid if sid < j; otherwise, it sets

F̂sid = F̂ 0,1
sid if sid > j. If sid = j, the challenger outputs an obfuscation of F̂ 0,2′,j,i

sid defined in

Algorithm 5. This program is similar to F̂ 0,2,j,i except that it accepts ‘B’ type signatures only for
inputs corresponding to i+ 2 ≤ t ≤ t∗sid − 1. It also has the correct input message mi for step i+ 1
hardwired. For all t, i + 2 ≤ t ≤ t∗sid − 1, the type of the outgoing signature follows the type of
the incoming signature. At t = i + 1, it outputs an ‘A’ type signature if min = mi, and outputs
‘B’ type signature otherwise.

Hyb0,3,j. In this hybrid, the challenger sets F̂sid = F̂ 0,4,j−1
sid if sid < j; otherwise, it sets F̂sid = F̂ 0,1

sid

if sid > j. If sid = j, the challenger outputs an obfuscation of F̂ 0,3,j
sid . This program is similar to

F̂ 0,2′,j,t∗j−1, except that it does not output ‘B’ type signatures.

Hyb0,4,j. In this hybrid, the challenger sets F̂sid = F̂ 0,4,j−1
sid if sid < j; otherwise, it sets F̂sid = F̂ 0,1

sid

if sid > j. If sid = j, the challenger outputs an obfuscation of F̂ 0,4,j
sid . This program is similar to

F̂ 0,3,j , except that it outputs reject for all t > t∗j including the case when the signature is a valid
‘A’ type signature.

In the remaining of this subsection, we only formally show Lemma 8 (from Hyb0,2,j,i to
Hyb0,2′,j,i) where the proof presented by [CCC+16] is a nice proof.

Summarizing the above result, all hybrids from Hyb0 to Hyb0,4,l, which gradually substitute
F 0s with F 1s, satisfy the three properties in Definition 18. Symmetrically, all hybrids from Hyb1

to Hyb1,4,l, which gradually substitute F 1 with F 0, also satisfy these properties in Definition 18.
Finally, we conclude that the proof is a nice proof from Hyb0 to Hyb0,4,l = Hyb1,4,l and to Hyb1,
which completes this proof.

Lemma 8. Let 1 ≤ j ≤ l, 1 ≤ i < t∗j , and Hyb0,2,j,i,k for k ∈ [0, 13] defined as follows. We claim
the proof from Hyb0,2,j,i to Hyb0,2′,j,i,k is a nice proof.

58

Algorithm 4: F̂ 0,2,j,i
sid=j

Input : s̃t
in

= ((sid, t), stin, vin, win, σin), ãinA←M = (ainA←M, π
in) where ainA←M = (I in, bin)

Data: T,PPhAcc,PPItr, v
0,KA,KT , KB , mi

1 if s = sid and t = 0 then
2 Compute rsid−1 = PRF(KT , sid− 1) and (sksid−1, vksid−1, vksid−1,rej) = Spl.Setup(1λ; rsid−1);

3 If Spl.Verify(vksid−1, (sid, st
in, vin, win), σin) = 0, output reject;

4 Initialize t = 1, stin = init, vin = v0, and ainA←M = (⊥,⊥);

5 else
6 If hAcc.VerifyRead(PPhAcc, w

in, I in, bin, πin) = 0 output reject;
7 Compute rA = PRF(KA, (sid, t− 1)), rB = PRF(KB , (sid, t− 1));

8 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA), (skB , vkB , vkB,rej) = Spl.Setup(1λ; rB);

9 Set min = (vin, stin, win, I in) and α = ‘-’ ;

10 If Spl.Verify(vkA,m
in, σin) = 1 set α = ‘A’ ;

11 If α = ‘-’ and (t > t∗ or t ≤ i) output reject;

12 If α 6= ‘A’ and Spl.Verify(vkB ,m
in, σin) = 1 set α = ‘B’ ;

13 If α = ‘-’ output reject;

14 if α = ‘B’ or t ≤ i then
15 Compute (stout, aoutM←A)← F 1(stin, ainA←M)

16 else
17 Compute (stout, aoutM←A)← F 0(stin, ainA←M)

18 If stout = reject, output reject;

19 Compute wout = hAcc.Update(PPhAcc, w
in, bout, πin), output reject if wout = reject;

20 Compute vout = Itr.Iterate(PPItr, v
in, (stin, win, I in)), output reject if vout = reject;

21 Compute r′A = PRF(KA, (sid, t)), r
′
B = PRF(KB , (sid, t));

22 Compute (sk′A, vk
′
A, vk

′
A,rej) = Spl.Setup(1λ; r′A), (sk′B , vk

′
B , vk

′
B,rej) = Spl.Setup(1λ; r′B);

23 Set mout = (vout, stout, wout, Iout);
24 if t = i and mout = mi then
25 Compute σout = Spl.Sign(sk′A,m

out);

26 else if t = i and mout 6= mi then
27 Compute σout = Spl.Sign(sk′B ,m

out);

28 else
29 Compute σout = Spl.Sign(sk′α,m

out);

30 if stout returns halt for termination then
31 Compute rsid = PRF(KT , sid) and (sksid, vksid, vksid,rej) = Spl.Setup(1λ; rsid);
32 Compute σout = Spl.Sign(sksid, (sid, st

out, vout, wout));

33 Output s̃t
out

= ((sid + 1, 0), stout, vout, wout, σout) ;

34 else

35 Output s̃t
out

= ((sid, t+ 1), stout, vout, wout, σout), ãoutM←A = aoutM←A;

59

Algorithm 5: F̂ 0,2′,j,i
sid=j

Input : s̃t
in

= ((sid, t), stin, vin, win, σin), ãinA←M = (ainA←M, π
in) where ainA←M = (I in, bin)

Data: T,PPhAcc,PPItr, v
0,KA,KT , KB , mi

1 if s = sid and t = 0 then
2 Compute rsid−1 = PRF(KT , sid− 1) and (sksid−1, vksid−1, vksid−1,rej) = Spl.Setup(1λ; rsid−1);

3 If Spl.Verify(vksid−1, (sid, st
in, vin, win), σin) = 0, output reject;

4 Initialize t = 1, stin = init, vin = v0, and ainA←M = (⊥,⊥);

5 else
6 If hAcc.VerifyRead(PPhAcc, w

in, I in, bin, πin) = 0 output reject;
7 Compute rA = PRF(KA, (sid, t− 1)), rB = PRF(KB , (sid, t− 1));

8 Compute (skA, vkA, vkA,rej) = Spl.Setup(1λ; rA), (skB , vkB , vkB,rej) = Spl.Setup(1λ; rB);

9 Set min = (vin, stin, win, I in) and α = ‘-’ ;

10 If Spl.Verify(vkA,m
in, σin) = 1 set α = ‘A’ ;

11 If α = ‘-’ and (t > t∗ or t ≤ i+ 1) output reject;

12 If α 6= ‘A’ and Spl.Verify(vkB ,m
in, σin) = 1 set α = ‘B’ ;

13 If α = ‘-’ output reject;

14 if α = ‘B’ or t ≤ i+ 1 then
15 Compute (stout, aoutM←A)← F 1(stin, ainA←M)

16 else
17 Compute (stout, aoutM←A)← F 0(stin, ainA←M)

18 If stout = reject, output reject;

19 Compute wout = hAcc.Update(PPhAcc, w
in, bout, πin), output reject if wout = reject;

20 Compute vout = Itr.Iterate(PPItr, v
in, (stin, win, I in)), output reject if vout = reject;

21 Compute r′A = PRF(KA, (sid, t)), r
′
B = PRF(KB , (sid, t));

22 Compute (sk′A, vk
′
A, vk

′
A,rej) = Spl.Setup(1λ; r′A), (sk′B , vk

′
B , vk

′
B,rej) = Spl.Setup(1λ; r′B);

23 Set mout = (vout, stout, wout, Iout);

24 if t = i+ 1 and min = mi then
25 Compute σout = Spl.Sign(sk′A,m

out);

26 else if t = i+ 1 and min 6= mi then
27 Compute σout = Spl.Sign(sk′B ,m

out);

28 else
29 Compute σout = Spl.Sign(sk′α,m

out);

30 if stout returns halt for termination then
31 Compute rsid = PRF(KT , sid) and (sksid, vksid, vksid,rej) = Spl.Setup(1λ; rsid);
32 Compute σout = Spl.Sign(sksid, (sid, st

out, vout, wout));

33 Output s̃t
out

= ((sid + 1, 0), stout, vout, wout, σout) ;

34 else

35 Output s̃t
out

= ((sid, t+ 1), stout, vout, wout, σout), ãoutM←A = aoutM←A;

60

Proof. Here we only focus on the program sid = j for simplicity. Define next (deepest) layer
hybrids Hyb0,2,j,i,0, Hyb0,2,j,i,1, . . . , Hyb0,2,j,i,13. The first hybrid corresponds to Hyb0,2,j,i,
and the last one corresponds to Hyb0,2′,j,i. For all 0 ≤ k < 13, the generalized cryptographic
game (CH 0,2,j,i,k, Ḡ0,2,j,i,k, 1/2) is to distinguish between Hyb0,2,j,i,k and Hyb0,2,j,i,k+1, and reduc-
tion R0,2,j,i,k is the straight-line black-box reduction from (CH 0,2,j,i,k, Ḡ0,2,j,i,k, 1/2) to assumption
(CH ′0,2,j,i,k, 1/2). In addition, we specify G0,2,j,i,k for each Hyb0,2,j,i,k, 0 ≤ k ≤ 13. To see how to
verify the niceness (i.e., G is not null), go to Hyb0,2,j,i,7 directly.

Hyb0,2,j,i,0. This hybrid corresponds to Hyb0,2,j,i. To generalize it, simply let G0,2,j,i,0 = null.

Hyb0,2,j,i,1. In this hybrid, the challenger punctures key KA, KB at input (j, i), and then uses
PRF(KA, (j, i)) and PRF(KB, (j, i)) to compute (skC , vkC) and (skD, vkD) respectively. More for-
mally, it computesKA{(j, i)} ← PRF.Puncture(KA, (j, i)), rC = PRF(KA, (j, i)), (skC , vkC , vkC,rej) =
Spl.Setup(1λ; rC) andKB{(j, i)} ← PRF.Puncture(KB, (j, i)), rD = PRF(KB, (j, i)), (skD, vkD, vkD,rej) =

Spl.Setup(1λ; rD). The challenger finally outputs an obfuscation of F̂ 0,2,j,i,1 which is identical to
F̂ 0,2,j,i,0 except that it uses punctured PRF keys KA{(j, i)},KB{(j, i)} and ’C’ and ’D’ type keys,
and modifies the following codes.

Lines 6 and 7: If t 6= i+1, compute rtype = PRF(Ktype{(j, i)}, (sid, t−1)), and (sktype, vktype, vktype,rej) =
Spl.Setup(λ; rtype) for all type ∈ {A,B}. Else, set vkA = vkC and vkB = vkD.

Lines 22 and 23: If t 6= i, compute r′type = PRF(Ktype{(j, i)}, (sid, t)), and (sk′type, vk
′
type,

vk′type,rej) = Spl.Setup(λ; r′type) for all type ∈ {A,B}. Else, set sk′A = skC and sk′B = skD.

To generalize it, simply let G0,2,j,i,1 = null. The indistinguishability between this and the previous
one is based on iO security, (CH ′0,2,j,i,0, 1/2) = (CH iO, 1/2).

Hyb0,2,j,i,2. In this hybrid, in F̂ 0,2,j,i,2 the challenger chooses rC , rD uniformly at random in-
stead of computing them using PRF(KA, (j, i)) and PRF(KB, (j, i)). In other words, the secret
key/verification key pairs are sampled as (skC , vkC)← Spl.Setup(1λ) and (skD, vkD)← Spl.Setup(1λ).
To generalize it, simply let G0,2,j,i,2 = null. The indistinguishability between this and the previous
one is based on selectively secure puncturable PRF, (CH ′0,2,j,i,1, 1/2) = (CH PRF, 1/2).

Hyb0,2,j,i,3. In this hybrid, the challenger computes constrained signing keys using the Spl.Split
algorithm. As in the previous hybrids, the challenger first computes the i-th message mi. Then, it
computes the following:
(σC,one, vkC,one, skC,abo, vkC,abo) = Spl.Split(skC ,m

i) and (σD,one, vkD,one, skD,abo, vkD,abo) = Spl.Split(skD,m
i).

The challenger finally outputs an obfuscation of F̂ 0,2,j,i,3 which is similar to F̂ 0,2,j,i,1 except that
the following codes.

Data: Hardwire σC,one, skD,abo instead of skC , skD.

Line 26: Compute σout = σC,one.

Line 28: Compute σout = Spl.AboSign(sk′D,abo,m
out).

To generalize it, simply let G0,2,j,i,3 = null. The indistinguishability between this and the previous
one is based on iO security, (CH ′0,2,j,i,2, 1/2) = (CH iO, 1/2).

Hyb0,2,j,i,4. This hybrid is similar to the previous one, except that in F̂ 0,2,j,i,4 the challenger
hardwires vkC,one instead of vkC . To generalize it, simply let G0,2,j,i,4 = null. The indistinguisha-
bility between this and the previous one is based on vkone indistinguishability, (CH ′0,2,j,i,3, 1/2) =
(CH vkone , 1/2).

61

Hyb0,2,j,i,5. This hybrid is similar to the previous one, except that in F̂ 0,2,j,i,5 the challenger
hardwires vkD,abo instead of vkD. As in the previous hybrid, the challenger uses Spl.Split to compute
(σC,one, vkC,one, skC,abo, vkC,abo) and (σD,one, vkD,one, skD,abo, vkD,abo) from skC and skD respectively.
To generalize it, simply let G0,2,j,i,5 = null. The indistinguishability between this and the previous
one is based on vkabo indistinguishability, (CH ′0,2,j,i,4, 1/2) = (CH vkabo , 1/2).

Hyb0,2,j,i,6. In this hybrid, the challenger outputs an obfuscation of F̂ 0,2,j,i,6 which performs extra
checks before computing the signature. In particular, the program additionally checks if the input
corresponds to step i+ 1. If so, it checks whether min = mi or not, and accordingly outputs either
‘A’ or ‘B’ type signature. Formally, F̂ 0,2,j,i,6 is similar to F̂ 0,2,j,i,5 except adding the code.

Between Lines 28 and 29: Else if t = i + 1 and min = mi, compute σout = Spl.Sign(sk′A,m
out).

Else if t = i+ 1 and min 6= mi, compute σout = Spl.Sign(sk′B,m
out).

To generalize it, simply let G0,2,j,i,6 = null. The indistinguishability between this and the previous
one is based on iO security, (CH ′0,2,j,i,5, 1/2) = (CH iO, 1/2).

Hyb0,2,j,i,7. In this hybrid, the challenger makes the accumulator read enforcing to prepare the

initial configuration from (PPhAcc, ŵ0, ˆstore0) ← hAcc.SetupEnforceRead(1λ;T, Ii). Then, the chal-
lenger outputs an obfuscation of F̂ 0,2,j,i,7 which is similar to F̂ 0,2,j,i,6 but uses PPhAcc of the enforcing
mode instead.

To generalize it, let G0,2,j,i,7 = INDEX∗0,2,j,i,7(·), which outputs reading location Ii at ses-
sion program Fj and time i for any input α = (mem, F1, F2, . . .). The indistinguishability be-
tween this and the previous hybrid is based on indistinguishability of read-setup hAcc, assumption
(CH ′0,2,j,i,6, 1/2) = (CH hAcc,r, 1/2).

Claim 1. With the generalized game (CH 0,2,j,i,6, Ḡ0,2,j,i,6, 1/2) and reduction R0,2,j,i,6, we claim
that all of the three properties of the nice proof hold.

Proof. We check each property as follows.

• Property 1: It holds, since function G0,2,j,i,7 outputs INDEX∗0,2,j,i,7(α) with logarithmic-length.

• Property 2: To meet the definition of the nice reduction (See Definition 16), we need to syn-
tactically check the whole procedures in M1 = CH 0,2,j,i,6 and M2 = (CH hAcc,r↔R0,2,j,i,6).
M1 and M2 perform almost the same procedures (except there are interactions between
CH hAcc,r↔R0,2,j,i,6), so R0,2,j,i,6 is a nice reduction.

• Property 3: It suffices for showing that (Hyb0,2,j,i,7, G0,2,j,i,7) and (Hyb0,2,j,i,7,0) indistin-
guishable to G0,2,j,i,7-selective adversaries. That is, G(α) is either Ii or 0, and then Hyb0,2,j,i,7

passes Ii or 0 to hAcc.SetupEnforceRead to prepare its initial configuration. By indistinguisha-
bility of read-setup hAcc, hAcc.SetupEnforceRead(·, Ii) and hAcc.Setup(·) are indistinguishable,
and hAcc.Setup(·) and hAcc.SetupEnforceRead(·, 0) are indistinguishable. Those imply the first
and the third are indistinguishable, and thus this property holds.

Hyb0,2,j,i,8. In this hybrid, the challenger outputs an obfuscation of F̂ 0,2,j,i,8 which runs F 1 instead
of F 0 , if on (i + 1)-st step, the input signature ‘A’ verifies. Note that the accumulator is ‘read
enforced’ in this hybrid. The modification is shown below.

Line 13: If α = ‘B’ or t ≤ i+ 1 then

62

To generalize it, letG0,2,j,i,8 = INDEX∗0,2,j,i,7(·) (because this hybrid still perfroms SetupEnforceRead).
The indistinguishability between this and the previous one is based on iO security, (CH ′0,2,j,i,7, 1/2) =
(CH iO, 1/2). With SetupEnforceRead, we claim this is a nice proof similar to Claim 1.

Hyb0,2,j,i,9. In this hybrid, the challenger uses setup of the normal mode for the accumulator

related parameters, so it computes (PPhAcc, ŵ0, ˆstore0) ← hAcc.Setup(1λ;T). The remaining steps
are exactly identical to the corresponding ones in the previous hybrid. Finally, the challenger
outputs an obfuscation of F̂ 0,2,j,i,9 which is similar to F̂ 0,2,j,i,8 except PPhAcc of the normal mode.
To generalize it, simply let G0,2,j,i,9 = null. The indistinguishability between this and the previous
one is based on indistinguishability of read-setup hAcc, (CH ′0,2,j,i,8, 1/2) = (CH hAcc,r, 1/2). Again,
similar to Claim 1, we claim this is a nice proof.

Hyb0,2,j,i,10. In this hybrid, the challenger computes (σC,one, vkC,one, skC,abo, vkC,abo) = Spl.Split(skC ,m
i),

but does not compute (skD, vkD). It outputs an obfuscation of F̂ 0,2,j,i,10 which is similar to F̂ 0,2,j,i,9

except that it hardwires
(KA{(j, i)},KB{(j, i)}, σC,one, vkC,one, skC,abo, vkC,abo,mi). Note that the hardwired keys for ver-
ification/signing (σC,one, vkC,one, skC,abo, vkC,abo) are all derived from the same signing key skC ,
whereas the first two from skC and the next two from skD in the previous hybrid. To generalize it,
simply let G0,2,j,i,10 = null. The indistinguishability between this and the previous one is based on
splitting indistinguishability of splittable signature, (CH ′0,2,j,i,9, 1/2) = (CH Spl, 1/2).

Hyb0,2,j,i,11. In this hybrid, the challenger chooses (skC , vkC) ← Spl.Setup(λ) and then outputs

an obfuscation of F̂ 0,2,j,i,11 which only hardwires (KA{(j, i)},KB{(j, i)}, skC , vkC ,mi). Comparing
to F̂ 0,2,j,i,1, it does the following modifications in F̂ 0,2,j,i,11.

Lines 6 and 7: If t 6= i + 1, compute rtype = PRF(Ktype{(j, i)}, (sid, t − 1)), and (sktype,
vktype, vktype,rej) = Spl.Setup(λ; rtype) for all type ∈ {A,B}. Else, set vkA = vkC .

Line 10: If α = ‘-’ and (t > t∗j or t ≤ i+ 1) output reject.

Lines 22 and 23: If t 6= i, compute r′type = PRF(Ktype{(j, i)}, (sid, t)), and (sk′type, vk
′
type,

vk′type,rej) = Spl.Setup(λ; r′type) for all type ∈ {A,B}. Else, set sk′A = skC .

Lines 25 to 30: If t = i, compute σout = Spl.Sign(sk′A,mout).
Else if t = i+ 1 and min = mi, compute σout = Spl.Sign(sk′A,mout).
Else if t = i+ 1 and min 6= mi, compute σout = Spl.Sign(sk′B,mout).
Else, compute σout = Spl.Sign(sk′α,mout)

To generalize it, simply let G0,2,j,i,11 = null. The indistinguishability between this and the previous
one is based on iO security, (CH ′0,2,j,i,10, 1/2) = (CH iO, 1/2).

Hyb0,2,j,i,12. In this hybrid, the challenger chooses the randomness rC used to compute (skC , vkC)
pseudorandomly; that is, it sets rC = PRF(KA, (j, i)). To generalize it, simply let G0,2,j,i,12 = null.
The indistinguishability between this and the previous one is based on selectively secure puncturable
PRF, (CH ′0,2,j,i,11, 1/2) = (CH PRF, 1/2).

Hyb0,2,j,i,13. This hybrid corresponds to Hyb0,2′,j,i. To generalize it, simply let G0,2,j,i,13 = null.
The indistinguishability between this and the previous one is based on iO security, (CH ′0,2,j,i,12, 1/2) =
(CH iO, 1/2).

63

	Introduction
	Our Contributions in More Detail
	Applications
	On the Existence of IO
	Concurrent and Related Works
	Organization

	Overview
	Classical Complexity Leveraging
	Generalized Security Games
	Small-loss Complexity Leveraging
	Local Application
	The CCC+ Scheme and Its Nice Proof

	Preliminaries
	Indistinguishability Obfuscation
	Puncturable Pseudorandom Functions
	Tools of KLW15
	Iterators
	Splittable Signatures

	RAM Computation

	Abstract Proof
	Cryptographic Experiments and Games
	Generalized Cryptographic Games
	Small-loss Complexity Leveraging
	Step 1: G-Selective Security
	Step 2: Fully Adaptive Security

	Nice Indistinguishability Proof

	Adaptive Delegation for RAM computation
	Definition

	History-less Accumulators
	Overview
	Definition
	Security

	Extended Two-to-One SPB Hash
	History-less Accumulators from Extended Two-to-One SPB Hash

	Instantiation: Adaptive Delegation for RAM with Persistent Database
	Roadmap
	Adaptive CiO for RAM with Persistent Database
	Definition of CiO
	Construction of CiO
	Checking Niceness for Security Proof of CiO

	Adaptive GRAM with Persistent Database
	Definition of GRAM
	Construction of GRAM with Persistent Database
	Checking Niceness for Security Proof of GRAM

	Garbled RAM to Delegation: Adaptive Setting

	Detailed Check for the Proof of Lemma 6

