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Abstract

To have an efficient asymmetric key encryption scheme such as elliptic curves,
hyperelliptic curves, pairing etc., we have to go through an arithmetic optimization
then a hardware one. Taking into consideration restricted environments’ compro-
mises, we should strike a balance between efficiency and memory resources. For
this reason, we studied the mathematical aspect of pairing computation and gave
new development of the methods that compute the hard part of the final exponen-
tiation in [2]. They prove that these new methods save an important number of
temporary variables, and they are certainly faster than the existing one. In this pa-
per, we will also present a new way of computing Miller loop, more precisely in
the doubling algorithm. So we will use this result and the arithmetic optimization
presented in [2]. Then, we will apply hardware optimization to find a satisfactory
design which give the best compromise between area occupation and execution
time. Our hardware implementation on a Virtex-6 FPGA(XC6VHX250T) used
only 5976 Slices, 30 DSP, which is less resources used compared with state-of-
the-art hardware implementations, so we can say that our approach cope with the
limited resources of restricted environment. keywords: BN curves, Optimal Ate
Pairing, Arithmetic optimization, memory resources, hardware implementations.

1 Introduction
The performance of pairing based protocols depends on the efficiency of pairing com-
putation. The computation of these pairings consists of two parts: the Miller loop
and then the final exponentiation. The Miller loop consists of the computation of
the function fu,P and then evaluate this function on the point Q, where P and Q
are two points of an elliptic curve E. The function fu,P is defined by its divisor

∗This work was supported in part by Laboratory of electronic and microelectronic of Monastir
(LR99ES30) and Henri Lebesgue center in France (ANR-11-LABX-0020-01).
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Div(fu,P ) = u(P ) − ([u]P ) − (u − 1)(P∞) where u is an integer and P∞ denotes
the point at infinity. The computation of this function is done thanks to the equality of
Miller:

f[i+j],P = f[i],P f[j],P
l[i]P,[j]P

v[i+j]P

where

• l[i]P,[j]P is the line passing through [i]P and [j]P ,

• v[i+j]P is the vertical to E at [i+ j]P .

The efficiency of the Miller step depends certainly on the bit length of u and also on
its hamming. After computing the Miller loop f1 = fu,P (Q), we have to raise the
result f1 to the power pk−1

r . Thanks to the cyclotomic polynomial, this exponent can
be simplified using the following decomposition (let k′ = k/2):

pk − 1

r
=
(
pk
′
− 1
)[ (pk′ + 1)

φk(p)

] [
φk(p)

r

]
with r is a large prime divisor of the order of the group of rational points of E, and
k is the embedding degree which is defined as the smallest integer such that r divides
pk − 1.
In our case the embedding degree k is equal to 12. Then we compute the final expo-
nentiation

p12 − 1

r
=
(
p6 − 1

) (
p2 + 1

) p4 − p2 + 1

r

on two steps: at first we compute f = f
(p6−1)(p2+1)
1 which is the easy part, then we

have to evaluate f to the power p
4−p2+1
r which is the hard part of the final exponenti-

ation.

New hardware approaches are needed in order to implement some computational
heavy and power consuming functions in order to meet the current restricted environ-
ment requirements. In general, hardware implementations have been proved better
approaches compared with the software developments, in the terms of throughput, area
and operating frequency, but every algorithm should be demonstrated in software be-
fore coming to hardware. In this paper we will be interested by the FPGA implementa-
tion of Optimal Ate Pairing. During the last years, several hardware implementations
of bilinear pairings, targeting the 128-bit security level, have been presented. In 2011,
Ray C.C.Cheung et al. [4] give two designs using the Residue Number System which
is suitable for parallel architectures and lazy reduction to speed up optimal ate pairing
at 126-bit security. In 2012, J.Fan and al. [5] present a hardware implementation of
Fp-arithmetic for pairing, and they introduce a new reduction algorithm for polyno-
mial form modulo which is Hybrid Modular Multiplication composed of four phases,
polynomial multiplication, a partial coefficient reduction, polynomial reduction and co-
efficient reduction.Then in 2013, S.Ghosh and al. [8] speed up optimal ate pairing com-
putation having 126-bit security by exploiting IP cores available in modern FPGAs and
they present a pipe-lined data-paths for Fp-operations. Until now, many hardware and
software implementations was presented. To speed-up pairing computation, we should
speed-up arithmetic operations. For this reason, many mathematical studies are done
to accelerate arithmetic calculus. Our work focuses on two important mathematical
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results: First, optimized algorithms presented by Duquesne et al. in [2]. Second, new
way of computing Miller loop detailed in section 2.2. Our approach touch resource con-
strained embedded systems, which can benefit greatly from employing cryptographic
algorithms that are tuned to consume as little system resources as possible, while at
the same time providing reasonable performance. The latest years, pairing implemen-
tations have been very attractive for the hardware designers, and retrained environment
which have limited computing power and minimized storage capacity. Therefore, to
provide good level of security for these applications, we should define a flexible archi-
tecture.

In this paper, we are interested, first, by the arithmetic optimization concerning
the first part optimal ate pairing algorithm, which is the Miller Loop computation, so
we present a new way of computing it, more precisely in the doubling algorithm. In
addition we will apply our results given in [2] and our hardware optimization to find
an efficient architecture computing the optimal ate pairing, where we found a compro-
mise between efficiency and memory resources. The proposed architecture design is
based on an hybrid methodology. This paper deals with three issues, namely, propos-
ing architecture for hardware implementation on FPGA, optimizing the architecture
and comparing the performance metrics of different FPGA, that implement a pairing.
Our implementation proved the results given by Duquesne et al. in [2] and verified
that is more efficient than others implementations presented in the literature and that
our design is the most performing in term of area and cycle number which let it more
suitable for restricted environments.

The remaining paper is organized as follow, the second section is a presentation
of BN curves, Optimal ate pairing and also we detailed the computation of doubling
step where we present a new variant of the original work and we detailed also addition
step. In section 3, the proposed system presented and the internal components of this
architecture are described in detail. Hardware optimization are given in section 4. The
synthesis results of the FPGA implementation and a comparison with other related
works are presented in section 5. Finally, conclusions and observations are given in
section 6.
Notations and Assumptions:
In the rest of this paper we use the following notations.

• Mk is a multiplication in Fpk .

• Sk is a squaring in Fpk .

• Fk is a Frobenius map application in Fpk .

• Ik is an inversion in Fpk .

• Ak is an addition in Fpk .

• we is the Hamming weight of an integer | e |.

• le is the length of | e | in base 2.

For simplicity, we use M,A, S and I instead of M1, A1, S1 and I1.
Practically, when we compute the final exponentiation, we must perform the operations
one by one in each line. For that, we assume that all operations of type a ← ab are
possible in place. This hypothesis is reasonable because our computations are in the
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field extensions. Anyway, our results would be similar if such operations were not
possible.

2 Background of pairings
In this section, we will give a brief background of pairings: BN-Curves, Miller Loop,
and Final exponentiation.

2.1 BN curves presentation
Barreto and Naherig presented in [31] a method to generate pairing friendly elliptic
curves over a prime field Fp with embedding degree k = 12 and a prime order n.
These curves are called BN curves and are defined over Fp by the following equation

E : y2 = x3 + b,

where b 6= 0 is nor a square neither a cube and by a parameter u such that

t = 6u2 + 1
n = 36u4 + 36u3 + 18u2 + 6u+ 1
p = 36u4 + 36u3 + 24u2 + 6u+ 1

where t is the trace of Frobenius map on the curve. The parameter u is chosen such that
E has prime order. We assume this is the case in this paper, and more precisely in our
implementations we will choose a special value for u given in the following example.

Example 1 Nogami et al. [29] have suggested the following choice of

u = −(4080000000000001)16.

The Hamming weight of −u is wu = 3 and the length of −u in base 2 is lu = 63.

Barreto-Naherig (BN) curves are the ideal solution for computing pairing for a 128
bits security level, specially for computing Optimal Ate pairing which is the following
map:

eopt : G2 ×G1 → G3

(Q,P ) 7−→ (fs,Q(P )l[s]Q,φp(Q)(P )l[s]Q+φp(Q),−φ2
p(Q)(P ))

pk−1
r

with:

• s = 6u+ 2,

• φp the Frobenius map,

• G1 = E(Fp)[r]

• G2 = E′(Fp2)[r]

• G3 = F×p12

To compute a pairing, as we said, we have two steps: Miller loop and final exponenti-
ation. At first, we have to compute the Miller function. Then, we carry out the result
to the power p12−1

r which is the final exponentiation. Let us at first present the Miller
loop in the next section.
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2.2 Miller loop
In the case of Optimal Ate pairing, the Miller function consists in the computation of
the following expression:

f = fs,Q(P )l[s]Q,φp(Q)(P )l[s]Q+φp(Q),−φ2
p(Q)(P )

The Miller loop is computed thanks to Algorithm 1 [32]. Points doubling and corre-
sponding their line evaluations dominate the cost of Miller loop. Also, the additions
points with their corresponding line evaluations depend to the Hamming weight of the
Miller variable u. Pairing can be computed over elliptic curves represented in any
coordinates system such affine coordinates, Jacobien coordinates and projective coor-
dinates. The choice of projective coordinates has proven especially advantageous at
the 128-bit security level for single pairing computation [32] and it is our case in this
paper.

Algorithm 1 : Miller loop of Optimal Ate pairing

Input: P ∈ G1, Q ∈ G2, s =| 6u+ 2 |=
∑log2(s)
i=0 si2

i

Output: eopt(Q,P )
1: d← lQ,Q(P ), S ← 2Q, e← 1
2: if sblog2(s)c−1 = 1 then e← lS,Q(P ), S ← T +Q
3: f ← d.e
4: for i = blog2(s)c − 2 down to 0 do
5: f ← f2.lS,S(P ), S ← 2S
6: if si = 1 then f ← f.lS,Q(P ), S ← S +Q
7: end for
8: If u < 0 S ← −S, f ← fp

6

9: Q1 ← φp(Q), Q2 ← φp2(Q)
10: d← lS,Q1(P ), S ← S +Q1, e← lS,Q2(P ), S ← S −Q2, f ← f.(d.e)
11: return f

Now, we present at first the projective coordinates. Then to perform step 5 in Miller
algorithm, we present the way of the computation of lQ,Q(P ) which is the tangent to
E at the point Q and the doubling step. Also to compute step 6 in algorithm 1 we have
to compute lS,Q(P ) the line joint S and Q evaluated at P and the addition step.
The elliptic curve E which we consider in our implementation is defined over Fp in
affine coordinates by:

y2 = x3 + 2

As we said, we will compute the pairing in the projective coordinates. So we have to
make the following change of variables:

(x, y) =

(
X

Z
,
Y

Z

)
So the elliptic curve equation in the projective coordinates E is given by:

E : y2z = x3 + 2z3.

The twist curve is so presented by:

E′ : y2z = x3 + (1− i)z3.
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Computation of lQ,Q(P ) and the doubling step The slope of the tangent at S is

λS,S =
3x2S
2yS

=
3x′2S′

2y′S′
γ =

N1

D1
γ

where N1 = 3x2S′ and D1 = 2yS′zS′ in Fp2 . Then,

lS,S(P ) = yP −yS−λS,S(xP −xS) = yP −
yS′

zS′
γ3− 3x2S′

2yS′zS′
γ(xP −

xS′

zS′
γ2) =

N2

D2

where D2 = 2yS′z
2
S′ and

N2 = yPD2 − 3xPx
2
S′zS′γ + (3x3S′ − 2y2S′zS′)γ

3.

Because D1 is in Fp2 it suffices to compute in the doubling step in Miller loop f ← f2

then updating f by computing f ← fN2.
These operations cost in projective coordinate S12 + 15M2 + 21A2 + 4A′2.

Algorithm 2:

Input: x′P = −3xP , yP Complexity Complexity
X1, Y1, Z3

Output:X3, Y3, Z3,
t0, t1, t2

1. T1 ← X2
1 S2 16. t3 ← t0 + Y3 A2

2. T2 ← Y 2
1 S2 17. Z3 ← T2 − t3 A2

3. T3 ← Z2
1 S2 18. X3 ← X3Z3 M2

4. X3 ← X1 + Y1 A2 19. t3 ← T2 + t3 A2

5. X3 ← X2
3 S2 20. t3 ← t23 S2

6. X3 ← X3 − T1 A2 21. Y3 ← Y 2
3 S2

7. X3 ← X3 − T2 A2 22. t3 ← t3 − Y3 A2

8. t1 ← Y1 + Z1 A2 23. Y3 ← 2Y3 A2

9. t1 ← t21 S2 24. Y3 ← t3 − Y3 A2

10. t1 ← t1 − T2 A2 25. Z3 ← T2t1 M2

11. t1 ← t1 − T3 A2 26. Z3 ← 2Z3 A2

12. t0← (1− i)T3 A2 27. Z3 ← 2Z3 A2

13. t3 ← 2t0 A2 28. t3 ← T2 − t0 A2

14. t0 ← t0 + t3 A2 29. t0 ← yP t1 2M
15. Y3 ← 2t0 A2 30. t1 ← x′PT1 2M

Let S = (X1, Y1, Z1) ∈ E′(Fp2) a point in projective coordinates, we compute the
doubling of S so 2S with the following formula presented in [1]:

• X3 = 2xT yT zT (9x
3
T − 8y2T zT )

• Y3 = 9x3T (4y
2
T zT − 3x3T )− 8y4T z

2
T

• Z3 = (2yT zT )
3

To simplify these expressions, we can use the equation of the curve where we have
y2S′zS′ − (1− i)z2S′ = x3S′ . Then we got:

• X3 = 2xT yT z
2
T (y

2
T − 9(1− i)z2T )
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• Y3 = z2T
(
(y2T + 9(1− i)z2T )2 − 108(1− i)2z4T

)
• Z3 = (2yT zT )

3

So that:
N2 = yP (2yT z

2
T )− 3xPx

2
T zT γ +

(
y2T zT − 3(1i)z

3
T

)
γ3

The advantage of these expressions that they are a multiple of z2T which is an element
of Fp2 . So we can simplify xT , yT and zT and get the following formulae:

• X3 = 2xS′yS′(y
2
S′ − 9(1− i)z2S′

• Y3 =
(
(y2S′ + 9(1− i)z2S′)2 − 108(1− i)2z4S′

)
• Z3 = 8y3T zT

Then;
N2 = 2yS′zS′yP − 3xPx

2
S′γ +

(
y2S′ − 3(1i)z

2
S′
)
γ3

LetX1, Y1, Z3 the projective coordinates of S′ inE′(Fp2) andX3, Y3, Z3 the projec-
tive coordinates of 2S′. We consider that the tangent toE at S evaluated on P is lS,S =
t0+t1γ+t3γ

3. So, we present Algorithm 2, with T1, T2, and T3 are the used temporary
variables. This algorithm requires 2M2+7S2+4M+18A2+A

′
2 for computing the line

N ′ which is lS,S(P ) and updating S′ ← 2S′ instead of 2M2+7S2+4M+23A2+A
′
2

if we use the Jacobien coordinates. In this algorithm also for computing 2XY , we use
the fact that 2XY = (X +Y )2−X2−Y 2. In our case it is better to compute directly
2XY by a multiplication and an addition.

Computation of lS,Q(P ) and the addition step We assume that S must be different
to {Q,−Q}, The slope of the line lS,Q is

λS,Q =
yS − yQ
xS − xQ

=
y′S′ − y′Q′
x′S′ − x′Q′

γ =
N ′1
D′1

γ

Where N ′1 = yS′ − yQ′zS′ and D′1 = xS′ − xQ′zS′ , D′1 ∈ Fp2 .
The line lS,Q evaluated on the point P is:

lS,Q(P ) = yP − yQ − λS,Q(xP − xQ)

= yP −
xP (yS′ − yQ′zS′)
xS′ − xQ′zS′

γ +

(
xQ′(yS′ − yQ′zS′)
xS′ − xQ′zS′

− yQ′
)
γ3

= yP −
xPN

′
1

xS′ − xQ′zS′
γ +

(
xQ′yS′ − yQ′xS′
xS′ − xQ′zS′

)
γ3

=
N ′2
D′2

Because D′2 ∈ Fp2 then we will evaluate lS,Q as

lS,Q = yPD
′
2 − xP (N ′1)γ + (xQ′yS′ − yQ′xS′)γ3.

Finally, to compute the addition of the two points S′ and Q′, we need to the following
expressions:

• C = (N ′1)
2zS′ + (D′1)

3 − 2(D′1)
2xS′
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• X3 = D′1.C

• Y3 = N ′1((D
′
1)

2xS′ − C)− (D′1)
3yS′

• Z3 = (D′1)
3zS′

So, to evaluate this equation and also to update S′ ← S′ +Q′, we implemented Algo-
rithm 3 with A, D, and N are the used temporary variables..
Let X1, Y1, Z3 the projective coordinates of S′ in E′(Fp2), X2, Y2, Z2 the projective
coordinates of Q′ in E′(Fp2) and X3, Y3, Z3 the projective coordinates of S′ + Q′.
We consider that the line joint S and Q evaluated on P is lS,Q(P ) = t0 + t1γ + t3γ

3.

Algorithm 3:

Input: x”P = −xP , yP Complexity Complexity
X1, Y1, Z3, X2, Y2, Z2

Output:X3, Y3, Z3

t0, t1, t2

1. t0 ← X2Y1 M2 13. A← A+ t1 A2

2. t1 ← X1Y2 M2 14. A← A− t0 A2

3. t3 ← t0− t1 A2 15. A← A− t0 A2

4. A← X2Z2 M2 16. X3 ← DA M2

5. D ← X1 −A A2 17. Y3 ← t1Y1 M2

6. A← Y2Z2 M2 18. t0 ← t0 −A A2

7. N ← Y1 −A A2 19. t0 ← Nt0 M2

8. t0 ← D2 S2 20. Y3 ← t0 − Y3 A2

9. t1 ← Dt0 M2 21. Z3 ← t1Z1 M2

10. t0 ← t0X1 M2 22. t0 ← yPD 2M
11. A← N2 S2 23. t1 ← xP ”N 2M
12. A← AZ1 M2

The global cost of this algorithm which allows as to compute the line lS,Q and the
addition of T and P is 11M2 + 2S2 + 4M + 8A2. We need also to add the cost
of the update f ← flS,Q which is 15M2 + 21A2 + 4A′2 for computing the addition
step in Miller loop. So, the total cost of the addition step in Miller’s algorithm is
26M2 + 2S2 + 4m+ 29A2 + 4A′2.

2.3 Final Exponentiation
The final exponentiation has become the most significant parameter of the overall cost
of the pairing. This step consists on the fact that a Miller loop result must be raised to
the power p

k−1
r . Our paper is based on the implementation of a new variants of the final

exponentiation presented by Duquesne et al. in [2]. Recall that the final exponentiation
can be broken down into three components as follow.

In our case k = 12, so the final exponent becomes

p12 − 1

r
=
(
p6 − 1

) (
p2 + 1

) p4 − p2 + 1

r

This is the natural decomposition used for the calculation of the final exponentiation.
There are certainly many methods in the literature which allow us to compute this part
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Table 1: Important result of computing the hard part of the final exponentiation.

Method Cost in Fp Cost Temp. Memory
saving var. in Fp saving

Naive 25671M + I 34
Lucas Sequence I + 22903M 46
Devigili 3938M + 2 I 70
Their variant 3711M+ 3 I 5.75% 58 17%
Addition chain 3366M + 3 I 130
Their variant 3363M+ 3 I −0.1% 82 37%
Fuentes method 3324M + 3 I 82
Their variant 3318M+ 3 I 0,2% 70 15%
New multiple 3591M+ 3 I −6.4% 58 29%

of the pairing, but in our implementation we are interested by reducing memory usage.
For this reason, we will present our implementation results of new variants presented
by Duquesne et al in [2]. We will not present their studied methods, but we will just
present its final results in the table 1; which give a comparison between Duquesne et
al. [2] results and results given in the literature.

After studying mathematical aspect and finding the appropriate arithmetic opti-
mization, we will apply the resulting algorithm and the hardware techniques to present
an efficient hardware design, in the following section where we will detail all compo-
nents used to compute Optimal Ate Pairing.

3 Pairing Processor Design
In this section, we will present our proposal optimal ate pairing hardware design. It is
based on two steps: Miller Loop and Final Exponentiation. Based on Algorithm 1, the
major operations to compute optimal ate pairing are divided into two categories:

1. Dependent operations which are:

• The point addition, point doubling, line computation l(Q) (in step 1, 2, and
10), and φ(Q) (in step 9): are performed in Fp2 ,

• f2 × l(Q), f × l(Q) (in step 5 and 6 respectively) are performed in Fp12 .

2. Independent operations which are Fp operations (multiplication, inversion, and
square).

The data-path shown in Figure 1 uses serial/parallel approaches. According to Fpk
sub-algorithm, it executes some of the independent operations in parallel, and disabled
the others in order to save resources in pairing computations. For this reason, only one
Fpk arithmetic unit (Fpk AU) is used. It included independent operations to perform
Fpk sub-algorithms. The inputs data to the Fpk AU come firstly from RDU, then from
respective registers where results were stored. To synchronize and manage the conflicts
between different blocks, a Controller Unit is needed. It send controller lines and
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multiplex every block in order to be used or disabled. In addition, it treat their requests
and manipulate register access.

Figure 1: Pairing Computation Processor Design

Reducing the overall hardware costs of pairing computation is our first objective for
designing the proposal architecture. It consists of several independent and dependent
blocks which operate in serial or parallel according to the algorithm steps dependency.
The whole architecture is based on five principal blocks which are:

1. The Random Data Unit (RDU): generated random values are need in the pair-
ing first step, Random Number Generator (RNG), in other high level languages,
is a function of a special library. But in VHDL, RNG is achieved by designing a
pseudo-random sequence generator (PRSG) of suitable length. The RDU values
will be the inputs of all Fpk Arithmetic Unit(FpkAU) and Pairing Functions Unit
(PFU).

2. The Storage Unit (SU): to calculate Frobenius, we have some precalculations
to do, this values will be calculated once time and they will be constants during
optimal ate computation. Precalculations stored in RAMs, will increase the area
occupation and decrease execution time. In our design we need three different
precalculations, so we will use three 256-bits-RAM. In every one we will store
ten 256-bits-values.

3. The Control Unit (CU): is designed to control the flow of data in the design, as
well as the movement of data between registers and the execution units (FpkAU
and PFU). It is the main block of the design data path. After generating random
values, the ACU is totally responsible for the system management; it coordinates
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all the system blocks by sending control lines. After every Fpk operations, it
stores results in different registers to be used in the next step.

4. The Fpk Arithmetic Unit (FpkAU): is the first block of the execution unit. It is
responsible for computing all arithmetic operations in Fp, Fp2 , Fp6 and Fp12 . All
sub-algorithms are performed by FpkAU. Firstly, it uses random values to exe-
cute first arithmetic operations, and then stores results in the different registers
as it is shown in Figure 1. Stored values will be the inputs of different FpkAU
models.

5. The Pairing Function Unit (PFU): it’s the second block of the execution unit. It
executes firstly the Miller Loop (Point Addition Step (PAS), Point Doubling Step
(PDS) and φ calculus), then the Final Exponentiation . It uses results generated
by FpkAU models to compute base algorithms.

In the next section, we will present the hardware optimizations used in our design
to find the efficient way to compute optimal ate pairing.

4 Hardware Optimization
After algorithmic optimization presented in [2], we concentrated our optimization ef-
forts on hardware design. The problem of hardware implementation is a function of
two different factors: cryptographic algorithms architectures and the efficient integra-
tion of them. The algorithms used to compute our optimal ate processor are partitioned
into a sequence of hardware implementable models. Every model represents the serial
behavior of the algorithm and can be executed sequentially. In this section, we will
present different optimizations done to perform our architecture.

4.1 Precalculation and RAM use
Precalculation is needed to compute Frobenius calculus. Its hardware implementation
occupies an important memory and increases execution time. In order to face this
problem, time and memory usage can be reduced by using a storage unit capable of
storing all precalculation values and constants needed in our implementation using
FPGA Block RAM features. In Xilinx FPGA, we find a distributed RAM’s used for
implementing large and wide memory functions and it’s ideal for small sized memories.
Xilinx can automatically connect several distributed RAM’s in parallel done by its
synthesizer.

4.2 Arithmetic operation optimization
In most of the cryptosystems, there is a need of big number calculation. Operations
complexities in Fp6 and Fp12 can be expressed in term of Fp arithmetic. So, it neces-
sary to explore different arithmetic functions such as multiplication, inversion, addition
and square. The modular multiplication and the modular inversion are the most impor-
tant operations for computing a cryptographic pairing. Until now, inversion operation
doesn’t have optimization and it is avoided mostly by use of projective coordinates.
Moreover, squaring is considered a special case of multiplication. Whereas, researches
are oriented to the modular multiplication. Many efficient multiplication algorithms
had been proposed. The three most popular ones for big number multiplication are

11



the Karatsuba-Ofman, Toom-Cook, and FFT. Every algorithm has a certain complex-
ity, which is essentially a measure for how long it takes to run the algorithm and the
difficulty of computational problems against many different computational resources
such as time, area etc. Thus, to design an efficient cryptosystem, computational com-
plexity is a primordial step to choose algorithms that are easy to implement but hard
to break. Karatsuba [30], Toom [33] and Cook [34] found polynomial multiplica-
tion methods which have lower asymptotic complexity, from O(n2) to O(ne), where
1 < e ≤ log2 3. Many efforts have been done to find optimized implementations.

Table 2: Performance Comparison of different 256-bits Multiplier

Work Mult.Type Platform Area Freq. Time
(Slices; DSP) (MHz) (µs)

Ours Toom-Cook-Karatsuba Virtex6 2250; 15 145 0.89
[3] R4MIM Virtex6 4630 86.6 1.487
[3] R8MIM Virtex6 5657 71 0.93
[3] IMM Virtex6 3566 116 2.21
[27] MIM on ML Virtex6 3475 128 2
[28] MIM on ML Virtex6 3600 145 1.8
[26] MR Virtex6 4815; 12 223 -

Area occupation and running time are the most important constraints in hardware
implementation. They depend on the algorithm steps. To find an efficient way to mul-
tiply two number we can apply ”Divide and conquer algorithm” which is a method
for solving a problem by dividing it into different sub-problems, each one is recur-
sively solved, and the sub-problems solutions are then combined to find the solution to
the main problem. One of the good approaches is to use Toom-Cook and Karatsuba
methods. Karatsuba method was used to split the input numbers into limbs of smaller
size and equal width, and then expresses the larger input product in terms of calcula-
tions made on the smaller parts. Then, for the Toom-Cook multiplier, we could choose
B = 231 or B = 1090, and stored each digit as a separate 32-bit binary word. So,
to maximize FPGA’s resources exploitation, we used DSP features devices comput-
ing 32-bits multiplication. After performing multiplication, result should be reduced.
The most used method is Montgomery reduction, specially by cryptosystems which are
based on arithmetic operations modulo a large number. It is easier to be implemented
in hardware, because the modulus reduction is done by shift operations avoiding the
division operations (which are costly in execution time).
Table 2 compares the performance of our proposed 256-bits multiplier with different
256-bits modular multiplication implementations in the literature. Our proposed 256-
bits multiplier computes one multiplication using 2250 Slices and 15 DSP in only 0.89
µs achieving a maximum frequency of 145 MHz which is less area occupation com-
paring to the others, and it presents the best compromise between area, frequency and
execution time.

4.3 Miller Loop and Final Exponentiation optimization
Optimal ate pairing is based on Miller Loop and Final Exponentiation which need Fpk
arithmetic operations as it is shown in Figure 2. There are two ways to compute it.
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First, it can be implemented using one processor performing Miller Loop then final ex-
ponentiation. Second, two separate processors can be implemented on which these two
operations are pipe-lined. We should remark that two separate processors in pipeline
help to reduce the computation time, but at the same time they need larger area.This
paper attempts to optimize the area of the optimal ate pairing cryptoprocessor respect-
ing a reasonable computation time. Our architecture is based on a common data-path
for computing both the Miller algorithm and the Final Exponentiation one. The most
famous methods to compute the hard part of the Final Exponentiation are listed and
compared in Table 1. These new variant require less memory resources than the pre-
vious ones, and offer a gain of complexity with a negligible losses in execution time
which makes these method very interesting for hardware implementations.

Pairing

Miller Loop Final Exponentiation

φ Calculus

Addition Step

Doubling Step

Fp Arithmetic

Fp2 Arithmetic

Fp6 Arithmetic

Fp12 Arithmetic

Multiplication

Square

Inversion

Figure 2: Pairing Computation Arithmetic

As it is mentioned in Table 3, the reuse of Fpk components can limit the number of
components needed to compute every method of the hard part of the final exponentia-
tion.

Table 3: Components Number Need for final exponentiation computation

Methods Components Number

New development of f
p4−p2+1

r 36A+ 2M + 2S + I
New Addition chain 31A+ 3M + 2S + I
New development of Fuentes 36A+ 2M + 2S + I
Variant of Fuentes 18A+ 2M + 2S + I

Based on Table 1 and Table 3, we note that the Variant of Fuentes method is the
most suitable to compute the entire Optimal Ate Pairing in term of temporary variable
and memory saving.
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4.4 Component Use Optimization
Our approach, to implement our architecture, is based on reuse blocks as possible as
we can, because every algorithm need a defined number of arithmetic operations which
can be computed in parallel or serial. Let’s take the example of Fp6 multiplication in

Table 4: Clock distribution of Fp6 Multiplication Module

Steps MFp2 Add1 Add2 Add3 Add4 Sub1 Sub2

1 X X X X X - -
2 X X X X X - -
3 X - - - - X X
4 - - - - - X X
5 X X - - - X -
6 X X X - - - -
7 - - - - - X X
8 - - - - - X X
9 - X X - - - -
10 - X X X - X -
11 - X X X X - -
12 X - - - - X X
13 - - - - - X X

Algorithm 4 (Appendix A). In every step, parallel operations can be executed in the
same time, and in the next steps we can reuse the same components used before. So,
here we apply the parallel approach first then the serial one and we dress Table 4.
We can note that Fp6 multiplication algorithm need 6 Fp2 multiplication blocks, 14
subtraction blocks (Subi) and 18 addition blocks (Addi). But, considering operation
independence, we will use only 2 Fp2 multiplication blocks, 4 addition blocks and
2 subtraction blocks. The idea of activated and disabled components, can be more
clear in Figure 3 (Appendix A). In every step, the component computing independent
calculus was activated (with their special control lines: Go=1 and Reset=1) and the
other components were disabled (Go=0 and Reset=0). We apply this approach to Fp12
operations.

Table 5: Block Number Optimization for computing calculus in Fp12

Operation Number Bloc Number

M12 197A+ 27M 24A+M
S12 148A+ 18M + 27S 22A+M + S
I12 201A+ 59M + 29S + I 56A+ 7M + 5S + I

Our aim is to gain as much as possible on the number of used components, as it
is mentioned in Table 5. We note that, concerning Fp12 operations, arithmetic block
number decreased in a remarkable way. If we take the example of Fp12 multiplication,
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there was a 88% decrease in Addition blocks number , multiplication block’s number
was 96% lower then before. In this way, the needs of the system resources are reduced
and the system performance are increased . Another point is that our architecture design
is composed of several independent synchronous components which operate with their
own local synchronous clocks, we have a CLK Generator in the ACU, which generate
a clock to every block in the entire architecture.

5 Implementation results
We have to highlight first, that every algorithm should be demonstrated in software,
such as in our case, Optimal Ate Pairing Algorithms was verified using Sage Software
in [35], then being implemented in hardware. The entire architecture of the optimal
ate pairing processor is coded in VHDL language. Then, the code is simulated using
the Modelsim 13.1 software, synthesized using Xilinx ISE 14.7 Design Suite, and im-
plemented on a Virtex-6 FPGA(XC6VHX250T). Our hardware design compute, first
the Miller Loop then the final exponentiation. Mathematical optimization of the hard
part of the Final Exponentiation has a powerful effect on the performance of the en-
tire architecture. So, by applying: mathematical optimizations cited in [2], hardware
optimizations cited in section 4, then by the use of FPGA features (Block RAMs and
DSP), the architecture cost, in terms of area and memory saving, was decreased.

Table 6: Pairing Implementation results comparison

Designs Curve FPGA Area Freq. Cycle
Slices; DSP (MHz) (×103)

Our Design BN126 xc6vlx240t-3 5976; 30 145 80
[6] BN128 xc4vlx200-12 52K 50 821
[4] BN126 xc6vlx240t-2 7032; 32 250 143
[5] BN128 xc6vlx240t-3 4014; 42 210 245
[8] BN126 xc6vlx240t-3 5163; 144 166 62

Table 6 compares our results with the state-of-the-art implementations achieving
128-bit security. The proposed design in this paper uses 5976 Slices, 30 DSP48E1s and
3 Block RAMs, and it achieves a maximum frequency of 145 MHz. Since the number
of hardware units is minimized, our design achieves the best improvement in area. By
implementing our hardware design, we proved experimentally that methods computing
the hard part of the final exponentiation presented in [2] necessitate less memory re-
sources and they are in the most of time more quickly than the developments presented
in the literature. Ghosh et al. [6] give the first FPGA implementation of pairings based
on BN curves achieving 128-bit security, they didn’t use the DSP slices on FPGA, but
they used Blakley’s algorithm to compute multiplication, so they have the higher area
occupation with a big counts clock cycles achieving the less frequency comparing to
recent implementation designs. We note here; that to speed-up pairing computations,
we have to speed-up the used multiplier. Implementing pairing computation over BN
curves with similar security level, our design achieves a gain of 16% in area occupation
comparing to the design proposed by R. C.Cheung et all. [4]. Our clock cycle counts
is drastically less, and we present a gain of 44%. J. Fan et all. [5] use, in their design,
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Fp-Arithmetic operations, 74Kbit data memory and an instruction ROM implemented
with FPGA Block RAMs, their design uses 4,014 Slices, 42 DSP48E1s and 5 Block
RAMs (RAMB36E1s). In comparison with our results, we note that we use only 3
Block RAMs (RAMB36E1s) and 30 DSP48E1s, so our design is less costly, but de-
sign in [5] presents a gain in frequency because it achieves a maximum frequency of
210 MHz. Analyzing a result given by S. Ghosh et all. [8], we note that they use in
their design a higher number of DSP blocks comparing to other designs, due to the
parallelism, we used 79% less DSP in our design, but the clock cycle count of [8] is
slightly reduced comparing to our results.
As a conclusion, the results of the proposal design prove that it provides significant
saving of area over the existing designs.

6 Conclusion and Future Work
Efficient hardware implementation is based on optimized and demonstrated algorithms.
In this paper, we implemented optimal ate pairing algorithm exploring FPGA features
devices. Our architecture is based on optimized algorithms which was demonstrated
in software [35]. We evaluated our design performances, we found that our imple-
mentation is less costly. These practical results prove that our optimized cryptographic
architecture turned to consume as little system resources as possible, but it provided
reasonable performance in the same time. For this reason, pairing implementations
become more and more attractive for the hardware designers.
Nowadays a flexible encryption system, which would calculate arithmetic operations,
can be implemented with hardware and software cooperation; hardware/software code-
sign.
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plicit Formulas for Computing Pairings over Ordinary Curves”; Cryptology ePrint
Archive, Report 2010/526, 2010,http://eprint.iacr.org/.

[34] Toom, A. L.:“The complexity of a scheme of functional elements realizing the
multiplication of integers”; Soviet Mathematics Doklady, 3:714-716, 1963.

[35] Duquesne, S., Ghammam, L. https://cloud.sagemath.com/projects/332de229-
174f-4d90-ae79-ca9d3b0fc1f7/files/Algorithms.sagews.

[36] Li, Y., Han , J., Wang, S., Fang, D., Zeng, X.:“An 800 Mhz cryptographic pairing
processor in 65 nm CMOS”; in Proc. IEEE A-SSCC, Kobe, Japan, pp. 217-220,
(November 2012).

19



Appendix A:
Algorithm 4:
Input: a00, a01, a10, a11, a20, a21, c00, c01, c10, c11, c20, c21,p
Output :t8,t9,t6,t7,t0,t1

Step1:
t2,t3= M2(a10,c10,a11,c11)
V1, V2, V3, V4 = (a10+a20,c10+c20,a11+a21,c11+c21)
Step2:
t6,t7=M2 (V1,V2,V3,V4)
V1, V2, V3, V4 = (a00+a10,c00+c10,a01+a11,c01+c11)
Step3:
t4,t5=M2 (a20,c20,a21,c21)
t6, t7 = (t6-t2 , t7-t3)
Step4:
t6, t7 = (t6-t4 , t7-t5)
Step5:
t8,t9=(t6-t7, t6+t7)
t0,t1=M2 (a00,c00,a01,c01)
Step6:
t8,t9=(t8+t0 , t9+t1)
t6,t7=M2 (V1,V2,V3,V4)
Step7:
t6,t7=(t6-t0,t7-t1)
Step8:
t6,t7=(t6-t2,t7-t3)
Step9:
t6, t7= (t6+t4, t7+t5)
Step10:
t6, t7=(t6-t5 , t7+t4)
V1, V2 = (a00+a20,c00+c20)
Step11:
t0,t1=(t0+t4, t1+t5)
V3, V4 = (a01+a21,c01+c21)
Step12:
t0,t1=(t0-t2, t1-t3)
t2,t3=M2 (V1,V2,V3,V4)
Step13:
t0,t1=(t2-t0, t3-t1)
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Figure 3: Chronogram of Step1 of the Fp6 Algorithm
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