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Abstract. One way to guarantee security against malicious voting servers is to use NIZK shuffle
arguments. Up to now, only two NIZK shuffle arguments in the CRS model have been proposed. Both
arguments are relatively inefficient compared to known random oracle based arguments. We propose a
new, more efficient, shuffle argument in the CRS model. Importantly, its online prover’s computational
complexity is dominated by only two (n + 1)-wide multi-exponentiations, where n is the number of
ciphertexts. Compared to the previously fastest argument by Lipmaa and Zhang, it satisfies a stronger
notion of soundness.
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1 Introduction

A mix network, or mix-net, is a network of mix-servers designed to remove the link between ciphertexts and
their senders. To achieve this goal, a mix-server of a mix-net initially obtains a list of ciphertexts (zi)

n
i=1. It

then re-randomizes and permutes this list, and outputs the new list (z′i)
n
i=1 together with a non-interactive

zero knowledge (NIZK, [BFM88]) shuffle argument [SK95] that proves the re-randomization and permutation
was done correctly, without leaking any side information. If enc is a multiplicatively homomorphic public-key
cryptosystem like Elgamal [Elg85], a shuffle argument convinces the verifier that there exists a permutation ψ
and a vector t of randomizers such that z′i = zψ(i) ·encpk(1; ti), without revealing any information about ψ or t.
Mix-nets improve security against malicious voting servers in e-voting [Cha81,PIK93]. Other applications of
mix-nets include anonymous web browsing, payment systems, and secure multiparty computation [KMW12].

It is important to have a non-interactive shuffle argument outputting a short bit string that can be verified
by anybody (possibly years later) without interacting with the prover. Many NIZK shuffle arguments are
known in the random oracle model, see for example [FS01,Nef01,Fur05,TW10,Gro10a]. Since the random
oracle model is only a heuristic, it is strongly recommended to construct NIZK arguments in the common
reference string (CRS) model [BFM88], without using random oracles. See App. A for motivation for using
the CRS model.1 We note that the most efficient shuffle arguments in the random oracle model like [Gro10a]
also require a CRS.

Up to now, only two NIZK shuffle arguments in the CRS model have been proposed, by Groth and
Lu [GL07] and Lipmaa and Zhang [LZ12,LZ13], both of which are significantly slower than the fastest
arguments in the random oracle model (see Tbl. 1). The Groth-Lu shuffle argument only provides culpable
soundness [GL07,GOS12] in the sense that if a malicious prover can create an accepting shuffle argument
for an incorrect statement, then this prover together with a party that knows the secret key can break
the underlying security assumptions. Relaxation of the soundness property is unavoidable, since [AF07]
showed that only languages in P/poly can have direct black-box adaptive perfect NIZK arguments under a
(polynomial) cryptographic hardness assumption. If the underlying cryptosystem is IND-CPA secure, then
the shuffle language is not in P/poly, and thus it is necessary to use knowledge assumptions [Dam91] to

1 In a practical implementation of a mix-net, one can use the random oracle model also for other purposes, such as
to construct a pseudo-number generator or a public-key cryptosystem. In most of such cases, it is known how to
avoid the random oracle model, although this almost always incurs some additional cost.



Table 1. A comparison of different NIZK shuffle arguments, compared with the computationally most efficient known
shuffle argument in the random oracle model [Gro10a].

[GL07] [LZ13] This work [Gro10a]

|CRS| 2n+ 8 7n+ 6 8n+ 17 n+ 1
Communication 15n+ 120 (+3n) 6n+ 11 (+6n) 7n+ 2 (+2n) 480n bits
pro’s comp. 51n+ 246 (+3n) 22n+ 11 (+6n) 16n+ 3 (+2n) 6n (+2n)
ver’s comp. 75n+ 282 28n+ 18 18n+ 6 6n exp.
Lifted No Yes No No

Soundness Culp. sound White-box sound Culp. sound Sound
Arg. of knowl. no yes yes yes

PKE (knowl. assm.) no yes yes no
Random oracle no yes

prove its adaptive soundness. Moreover, [GL07] argued that culpable soundness is a sufficient security notion
for shuffles, since in any real-life application of the shuffle argument there exists some coalition of parties
who knows the secret key.

Lipmaa and Zhang [LZ12] proposed a more efficient NIZK shuffle argument by using knowledge assump-
tions under which they also bypassed the impossibility result of [AF07] and proved that their shuffle argument
is sound. However, their shuffle argument is sound only under the assumption that there is an extractor that
has access to the random coins of all encrypters, e.g., all voters, allowing her to extract all plaintexts and
randomizers. We say in this case that the argument is white-box sound. White-box soundness is clearly a
weaker security notion than culpable soundness of [GL07], and it would be good to avoid it.

In addition, the use of knowledge assumptions in [LZ12] forces the underlying BBS [BBS04] cryptosystem
to include knowledge components (so ciphertexts are twice as long) and be lifted (meaning that one has to
solve discrete logarithm to decrypt, so plaintexts must be small). Thus, one has to use a random oracle-
less range argument [RKP09,CLZ12,FLZ13,Lip14] to guarantee that the plaintexts are small and thus to
guarantee the soundness of the shuffle argument (see [LZ12] for a discussion). While range proofs only have
to be verified once (e.g., by only one mix-server), this still means that the shuffle argument of [LZ12] is
somewhat slower than what is given in Tbl. 1. Moreover, in the case of e-voting, using only small plaintexts
restricts the applicability of a shuffle argument to only certain voting mechanisms like majority. On the
other hand, a mechanism such as Single Transferable Vote would likely be unusable due to the length of the
ballots.

Tbl. 1 provides a brief comparison between known NIZK shuffle arguments in the CRS model and the
most computationally efficient known shuffle argument in the random oracle model [Gro10a]. We emphasize
that the values in parentheses show the cost of computing and communicating the shuffled ciphertexts
themselves, and must be added to the rest. Moreover, the cost of the shuffle argument from [LZ12] should
include the cost of a range argument. Unless written otherwise, the communication and the CRS length are
given in group elements, the prover’s computational complexity is given in exponentiations, and the verifier’s
computational complexity is given in bilinear pairings. In each row, highlighted cells denote the best efficiency
or best security (e.g., not requiring the PKE assumption) among arguments in the CRS model. Of course, a
full efficiency comparison can only be made after implementing the different shuffle arguments.

This brings us to the main question of the current paper:

Is it possible to construct an NIZK shuffle argument in the CRS model that is comparable in efficiency
with existing random oracle model NIZK shuffle arguments? Moreover, can one do it while minimizing
the use of knowledge assumptions (i.e., not requiring the knowledge extractor to have access to the
random coins used by all encrypters) and using a standard, non-lifted, cryptosystem?

Our Contributions. We give a partial answer to the main question. We propose a new pairing-based NIZK
shuffle argument in the CRS model. Differently from [LZ12], we prove the culpable soundness of the new
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argument instead of white-box soundness. Compared to [GL07], which also achieves culpable soundness, the
new argument has 3 times faster proving and more than 4 times faster verification. Compared to [GL07,LZ12],
it is based on a more standard cryptosystem (Elgamal). While the new shuffle argument is still at least 2
times slower than the most efficient known random oracle based shuffle arguments, it has almost optimal
online prover’s computation. Of course, a full efficiency comparison can only be made after implementing
the different shuffle arguments.

Our construction works as as follows. We first commit to the permutation ψ (by committing separately to
first n−1 rows of the corresponding permutation matrix Ψ) and to the vector t of blinding randomizers. Here,
we use the polynomial commitment scheme (see Sect. 2) with com(ck;m; r) = (g1, g

γ
2 )rP0(χ)+

∑n
i=1miPi(χ) ∈

G1 × G2, in pairing-based setting, where ê : G1 × G2 → GT is a bilinear pairing, gi is a generator of Gi
for i ∈ {1, 2}, (Pi(X))ni=0 is a tuple of linearly independent polynomials, χ is a trapdoor, γ is a knowledge
secret, and ck = ((g1, g

γ
2 )Pi(χ))ni=0 is the CRS. For different values of Pi(X), variants of this commitment

scheme have been proposed before [GJM02,Gro10b,Lip12].

We show that Ψ is a correct permutation matrix by constructing n witness-indistinguishable succinct
unit vector arguments, each of which guarantees that a row of Ψ is a unit vector, for implicitly constructed
Ψn = 1n −

∑n−1
i=1 Ψ i. We use the recent square span programs (SSP, [DFGK14]) approach to choose the

polynomials Pi(X) = yi(X) so that the unit vector argument is efficient. Since unit vectors are used in many
contexts, we hope this argument is of independent interest.

After that, we postulate a natural concrete verification equation for shuffles, and construct the shuffle
argument from this. If privacy were not an issue (and thus z′i = zψ(i) for every i), the verification equation

would just be the tautology
∏n
i=1 ê(z

′
i, g

yi(χ)
2 ) =?

∏n
i=1 ê(zi, g

yψ−1(i)(χ)

2 ). Clearly, if the prover is honest, this

equation holds. However, it does not yet guarantee soundness, since an adversary can use g
yj(χ)
1 (given in

the CRS) to create (z′i)
n
i=1 in a malicious way. To eliminate this possibility, by roughly following an idea

from [GL07], we also verify that
∏n
i=1 ê(z

′
i, g

ŷi(χ)
2 ) =?

∏n
i=1 ê(zi, g

ŷψ−1(i)(χ)

2 ) for some well-chosen polynomials
ŷi(X). (We note that instead of n univariate polynomials, [GL07] used n random variables χi, increasing the
size of the secret key to Ω(n) bits.)

To show that the verifications are instantiated correctly, we also need a same-message argument that
shows that commitments w.r.t. two tuples of polynomials (yi(X))ni=1 and (ŷi(X))ni=1 commit to the same
plaintext vectors. We construct an efficient same-message argument by using an approach that is (again,
roughly) motivated by the QAP-based approach of [GGPR13]. This argument is an argument of knowledge,
given that the polynomials ŷi(X) satisfy an additional restriction.

Since we also require privacy, the actual verification equations are more complicated. In particular,

z′i = zψ(i) · encpk(1; ti), and (say) g
yψ−1(i)(χ)

2 is replaced by the second element g
γ(riy0(χ)+yψ−1(i)(χ))

2 of a
commitment to Ψ i. The resulting complication is minor (it requires one to include into the shuffle argument
a single ciphertext U ∈ G2

1 that compensates for the added randomness). The full shuffle argument consists
of commitments to Ψ and to t (both committed twice, w.r.t. the polynomials (yi(X))ni=0 and (ŷi(X))ni=0), n
unit vector arguments (one for each row of Ψ), n− 1 same-message arguments, and finally U .

If ŷi(X) are well-chosen, then from the two verification equations and the soundness of the unit vector
and same-message arguments it follows, under a new computational assumption PSP (Power Simultaneous
Product, related to an assumption from [GL07]), that z′i = zψ(i) for every i.

We prove culpable soundness [GL07,GOS12] of the new argument. Since the security of the new shuffle
argument does not depend on the cryptosystem either having knowledge components or being lifted, we
can use Elgamal encryption [Elg85] instead of the non-standard knowledge BBS encryption introduced
in [LZ12]. Since the cryptosystem does not have to be lifted, one can use more complex voting mechanisms
with more complex ballots. The use of knowledge assumptions means that the new argument is an argument
of knowledge.

The new shuffle argument can be largely precomputed by the prover and forwarded to the verifier even be-
fore the common input (i.e., ciphertexts) arrive. Similarly, the verifier can perform a large part of verification
before receiving the ciphertexts. (See [Wik09] for motivation for precomputation.) The prover’s computation
in the online phase is dominated by just two (n + 1)-wide multi-exponentiations (the computation of U).
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The multi-exponentiations can be parallelized; this is important in practice due to the wide availability of
highly parallel graphics processors.

Main Technical Challenges. While the main objective of the current work is efficiency, we emphasize
that several steps of the new shuffle argument are technically involved. Throughout the paper, we use and
combine very recent techniques from the design of efficient succinct non-interactive arguments of knowledge
(SNARKs, [GGPR13,PGHR13,DFGK14], that are constructed with the main goal of achieving efficient verifi-
able computation) with quite unrelated techniques from the design of efficient shuffle arguments [GL07,LZ12].

The security of the new shuffle argument relies on a new assumption, PSP. We prove that PSP holds
in the generic bilinear group model, given that polynomials ŷi(X) satisfy a very precise criterion. For the
security of the SSP-based unit vector argument, we need yi(X) to satisfy another criterion, and for the
security of the same-message argument, we need yi(X) and ŷi(X) to satisfy a third criterion. The fact that
polynomials yi(X) and ŷi(X) that satisfy all three criteria exist is not a priori clear; yi(X) and ŷi(X) (see
Prop. 3) are also unlike any polynomials from the related literature on non-interactive zero knowledge.

Finally, the PSP assumption was carefully chosen so it will hold in the generic bilinear group model,
and so the reduction from culpable soundness of the shuffle argument to the PSP assumption would work.
While the PSP assumption is related to the SP assumption from [GL07], the situation in [GL07] was less
fragile due to the use of independent random variables Xi and X2

i instead of polynomials yi(X) and ŷi(X).
In particular, the same-message argument is trivial in the case of using independent random variables.

This is the full version of a conference paper [FL16].

2 Preliminaries

Let n be the number of ciphertexts to be shuffled. Let Sd be the symmetric group of d elements. Let G∗
denote the group G without its identity element. For a ≤ b, let [a .. b] := {c ∈ Z : a ≤ c ≤ b}. Denote
(a, b)c := (ac, bc). For a set of polynomials F that have the same domain, denote gF(a) := (gf(a))f∈F .

A permutation matrix is a Boolean matrix with exactly one 1 in every row and column. If ψ is a permuta-
tion then the corresponding permutation matrix Ψψ is such that (Ψψ)ij = 1 iff j = ψ(i). Thus (Ψψ−1)ij = 1
iff i = ψ(j). Clearly, Ψ is a permutation matrix iff its every row is a unit vector, and the sum of all its row
vectors is equal to the all-ones vector 1n.

Let κ be the security parameter. We denote f(κ) ≈κ g(κ) if |f(κ)−g(κ)| is negligible in κ. We abbreviate
(non-uniform) probabilistic-polynomial time by (NU)PPT. On input 1κ, a bilinear map generator BP returns
(p,G1,G2,GT , ê), where G1, G2 and GT are multiplicative cyclic groups of prime order p, and ê is an efficient
bilinear map ê : G1×G2 → GT that satisfies the following two properties, where g1 (resp., g2) is an arbitrary
generator of G1 (resp., G2): (i) ê(g1, g2) 6= 1, and (ii) ê(ga1 , g

b
2) = ê(g1, g2)ab. Thus, ê(ga1 , g

b
2) = ê(gc1, g

d
2) iff

ab ≡ cd (mod p). We give BP another input, n (related to the input length), and allow p to depend on n.
Finally, we assume that all algorithms that handle group elements reject if their inputs do not belong to
corresponding groups.

We will now give short explanations of the main knowledge assumptions. For formal definitions see App I.
Let 1 < d(n) < d∗(n) = poly(κ) be two functions. We say that BP is
– d(n)-PDL (Power Discrete Logarithm, [Lip12]) secure if any NUPPT adversary, given values

((g1, g2)χ
i

)
d(n)
i=0 , has negligible probability of producing χ.

– (d(n), d∗(n))-PCDH (Power Computational Diffie-Hellman, [GJM02,Gro10b,GGPR13]) secure if any

NUPPT adversary, given values ((g1, g2)χ
i

)i∈[0 .. d∗(n)]\{d(n)+1}, has negligible probability of producing

gχ
d(n)+1

1 .
– d(n)-TSDH (Target Strong Diffie-Hellman, [BB04,PGHR13]) secure if any NUPPT adversary, given

values ((g1, g2)χ
i

)
d(n)
i=0 , has negligible probability of producing a pair of values

(
r, ê(g1, g2)1/(χ−r)

)
where

r 6= χ.
For algorithms A and XA, we write (y; y′) ← (A||XA)(χ) if A on input χ outputs y, and XA on the same
input (including the random tape of A) outputs y′ [AF07]. We will need knowledge assumptions w.r.t. up to
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2 knowledge secrets γi. Let m be the number of different knowledge secrets in any concrete argument, in the
current paper m ≤ 2. Let F = (Pi)

n
i=0 be a tuple of univariate polynomials, and G1 (resp., G2) be a tuple

of univariate (resp., m-variate) polynomials. For i ∈ [1 ..m], BP is (F ,G1,G2, γi)-PKE (Power Knowledge of
Exponent, [Gro10b]) secure if for any NUPPT adversary A there exists a NUPPT extractor XA, such that

Pr


gk← BP(1κ, n), (g1, g2, χ)←r G∗1 ×G∗2 × Zp,γ ←r Zmp ,

γ−i = (γ1, . . . , γi−1, γi+1, . . . , γm), aux←
(
g
G1(χ)
1 , g

G2(χ,γ−i)
2

)
,

(h1, h2; (ai)
n
i=0)← (A||XA)(gk; (g1, g

γi
2 )F(χ), aux) :

ê(h1, g
γi
2 ) = ê(g1, h2) ∧ h1 6= g

∑n
i=0 aiPi(χ)

1

 ≈κ 0 .

Here, aux can be seen as the common auxiliary input to A and XA that is generated by using benign auxiliary
input generation [BCPR14]. The definition implies that aux may depend on γ−i but not on γi. If F = (Xi)di=0

for some d = d(n), then we replace the first argument in (F , . . . )-PKE with d. If m = 1, then we omit the
last argument γi in (F , . . . , γi)-PKE.

We will use the Elgamal cryptosystem [Elg85] Π = (BP, genpkc, enc, dec), defined as follows, in the
bilinear setting.

Setup (1κ): Let gk← (p,G1,G2,GT , ê)← BP(1κ).
Key Generation genpkc(gk): Let g1 ←r G∗1. Set the secret key sk←r Zp, and the public key pk← (g1, h =

gsk1 ). Output (pk, sk).
Encryption encpk(m; r): To encrypt a message m ∈ G1 with randomizer r ∈ Zp, output the ciphertext

encpk(m; r) = pkr · (1,m) = (gr,mhr).
Decryption decsk(c1, c2): m = c2/c

sk
1 = mhr/hr = m.

Elgamal is clearly multiplicatively homomorphic. In particular, if t ←r Zp, then for any m and r,
encpk(m; r) · encpk(1; t) = encpk(m; r+ t) is a random encryption of m. Elgamal is IND-CPA secure under the
XDH assumption.

An extractable trapdoor commitment scheme consists of two efficient algorithms gencom (that outputs a
CRS and a trapdoor) and com (that, given a CRS, a message and a randomizer, outputs a commitment),
and must satisfy the following four security properties.

Computational binding: without access to the trapdoor, it is intractable to open a commitment to two
different messages.

Trapdoor: given access to the original message, the randomizer and the trapdoor, one can open the com-
mitment to any other message.

Perfect hiding: commitments of any two messages have the same distribution.
Extractable: given access to the CRS, the commitment, and the random coins of the committer, one can

obtain the value that the committer committed to.

See, e.g., [Gro10b] for formal definitions.

We use the following extractable trapdoor polynomial commitment scheme that generalizes various earlier
commitment schemes [GJM02,Gro10b,Lip12]. Let n = poly(κ), n > 0, be an integer. Let Pi(X) ∈ Zp[X],
for i ∈ [0 .. n], be n + 1 linearly independent low-degree polynomials. First, gencom(1κ, n) generates gk ←
BP(1κ, n), picks g1 ←r G∗1, g2 ←r G∗2, and then outputs the CRS ck ← ((g

Pi(χ)
1 , g

γPi(χ)
2 )ni=0) for χ ←r

Zp \ {j : P0(j) = 0} and γ ←r Zp. The trapdoor is equal to tdcom = χ.

The commitment of a ∈ Znp , given a randomizer r ←r Zp, is com(ck;a; r) := (g
P0(χ)
1 , g

γP0(χ)
2 )r ·∏n

i=1(g
Pi(χ)
1 , g

γPi(χ)
2 )ai ∈ G1 × G2. The validity of a commitment (A1, A

γ
2) can be checked by verifying

that ê(A1, g
γP0(χ)
2 ) = ê(g

P0(χ)
1 , Aγ2). To open a commitment, the committer sends (a, r) to the verifier.

The rather standard proof of the following theorem is given in App. B.

Theorem 1. Denote Fcom = (Pi(X))ni=0. The polynomial commitment scheme is perfectly hiding and trap-
door. Let d := maxf∈Fcom(deg f). If BP is d-PDL secure, then it is computationally binding. If BP is
(Fcom, ∅, ∅)-PKE secure, then it is extractable.
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Alternatively, we can think of com as being a commitment scheme that does not depend on the concrete
polynomials at all, and the description of Pi is just given as a part of ck. We instantiate the polynomial
commitment scheme with concrete polynomials later in Sect. 3 and Sect. 6.

An NIZK argument for a group-dependent language L consists of four algorithms, setup, gencrs, pro and
ver. The setup algorithm setup takes as input 1κ and n (the input length), and outputs the group description
gk. The CRS generation algorithm gencrs takes as input gk and outputs the prover’s CRS crsp, the verifier’s
CRS crsv, and a trapdoor td. (td is only required when the argument is zero-knowledge.) The distinction
between crsp and crsv is only important for efficiency. The prover pro takes as input gk and crsp, a statement
u, and a witness w, and outputs an argument π. The verifier ver takes as input gk and crsv, a statement u,
and an argument π, and either accepts or rejects.

Some of the properties of an argument are: (i) perfect completeness (honest verifier always accepts
honest prover’s argument), (ii) perfect witness-indistinguishability (argument distributions corresponding to
all allowable witnesses are equal), (iii) perfect zero knowledge (there exists an efficient simulator that can,
given u, (crsp, crsv) and td, output an argument that comes from the same distribution as the argument
produced by the prover), (iv) adaptive computational soundness (if u 6∈ L, then an arbitrary non-uniform
probabilistic polynomial time prover has negligible success in creating a satisfying argument), and (v) adaptive
computational culpable soundness [GL07,GOS12] (if u 6∈ L, then an arbitrary NUPPT prover has negligible
success in creating a satisfying argument together with a witness that u 6∈ L). An argument is an argument
of knowledge, if from an accepting argument it follows that the prover knows the witness. See App. J for
formal definitions.

3 Unit Vector Argument

In a unit vector argument, the prover aims to convince the verifier that he knows how to open a commitment
(A1, A

γ
2) to some (eI , r), where eI denotes the Ith unit vector for I ∈ [1 .. n]. We construct the unit vector

argument by using square span programs (SSP-s, [DFGK14], an especially efficient variant of the quadratic
arithmetic programs of [GGPR13]).

Clearly, a ∈ Znp is a unit vector iff the following n+ 1 conditions hold:
– ai ∈ {0, 1} for i ∈ [1 .. n] (i.e., a is Boolean), and
–
∑n
i=1 ai = 1.

We use the methodology of [DFGK14] to obtain an efficient NIZK argument out of these conditions. Let
{0, 2}n+1 denote the set of (n + 1)-dimensional vectors where every coefficient is from {0, 2}, let ◦ denote

the Hadamard (entry-wise) product of two vectors, let V :=
(

2·In×n
1>n

)
∈ Z(n+1)×n

p and b :=
(
0n
1

)
∈ Zn+1

p .

Clearly, the above n+ 1 conditions hold iff V a+ b ∈ {0, 2}n+1, i.e.,

(V a+ b− 1n+1) ◦ (V a+ b− 1n+1) = 1n+1 . (1)

Let ωi, i ∈ [1 .. n + 1] be n + 1 different values. Let Z(X) :=
∏n+1
i=1 (X − ωi) be the unique degree

n + 1 monic polynomial, such that Z(ωi) = 0 for all i ∈ [1 .. n + 1]. Let the ith Lagrange basis polynomial
`i(X) :=

∏
i,j∈[1 .. n+1],j 6=i((X − ωj)/(ωi − ωj)) be the unique degree n polynomial, s.t. `i(ωi) = 1 and

`i(ωj) = 0 for j 6= i. For a vector x ∈ Zn+1
p , let Lx(X) =

∑n+1
i=1 xi`i(X) be a degree n polynomial that

interpolates x, i.e., Lx(ωi) = xi.
For i ∈ [1 .. n], let yi(X) be the polynomial that interpolates the ith column of the matrix V . That is,

yi(X) = 2`i(X) + `n+1(X) for i ∈ [1 .. n]. Let y0(X) = −1 + `n+1(X) be the polynomial that interpolates
b−1n+1. We will use an instantiation of the polynomial commitment scheme with Fcom = (Z(X), (yi(X))ni=1).

As in [DFGK14], we arrive at the polynomial Q(X) = (
∑n
i=1 aiyi(X)+y0(X))2−1 = (yI(X) + y0(X))

2−1
(here, we used the fact that a = eI for some I ∈ [1 .. n]), such that a is a unit vector iff Z(X) | Q(X). As
in [GGPR13,DFGK14], to obtain privacy, we now add randomness to Q(X), arriving at the degree 2(n+ 1)

polynomial Qwi(X) = (rZ(X) + yI(X) + y0(X))
2 − 1. By [GGPR13,DFGK14], Eq. (1) holds iff

(i) Qwi(X) = (A(X) + y0(X))2 − 1, where A(X) = raZ(X) +
∑n
i=1 aiyi(X) ∈ span(Fcom), and
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(ii) Z(X) | Qwi(X).
An honest prover computes the degree ≤ n+ 1 polynomial πwi(X)← Qwi(X)/Z(X) ∈ Zp[X], and sets the

argument to be equal to π∗uv := g
πwi(χ)
1 for a secret χ that instantiatesX. If it exists, πwi(X) := Qwi(X)/Z(X)

is equal to r2Z(X) + r · 2(yI(X) + y0(X)) + ΠI(X), where for i ∈ [1 .. n], Πi(X) := ((yi(X) + y0(X))2 −
1)/Z(X) is a degree ≤ n− 1 polynomial and Z(X) | ((yi(X) + y0(X))2 − 1). Thus, computing π∗uv uses two
exponentiations.

We use a knowledge (PKE) assumption in a standard way to guarantee that A(X) is in the span of
{Xi}n+1

i=0 . As in [GGPR13,DFGK14], we then guarantee condition (i) by using a PCDH assumption and
condition (ii) by using a TSDH assumption. Here, we use the same technique as in [GGPR13] and subsequent

papers by introducing an additional secret, β, and adding one group element Aβ1 to the argument.
System parameters: Let com be the polynomial commitment scheme and let Fcom = (Z(X), (yi(X))ni=1).
Setup setupuv(1

κ, n): Let gk← BP(1κ, n).
CRS generation gencrsuv(gk): Let (g1, g2, χ, β, γ) ←r G∗1 × G∗2 × Z3

p, s.t. Z(χ) 6= 0.

Set ck ← (g1, g
γ
2 )Fcom(χ), crsuv,p ← (ck, (g

2(yi(χ)+y0(χ))
1 , g

Πi(χ)
1 )ni=1, g

β·Fcom(χ)
1 ), crsuv,v ←

(g1, g
y0(χ)
1 , gγ2 , g

γy0(χ)
2 , g

γZ(χ)
2 , gγβ2 , ê(g1, g

γ
2 )−1). Return crsuv = (crsuv,p, crsuv,v).

Common input: (A1, A
γ
2) = ((g1, g

γ
2 )Z(χ))r(g1, g

γ
2 )yI(χ) where I ∈ [1 .. n].

Proving prouv(gk, crsuv,p;A1, A
γ
2 ;wuv = (a = eI , r)): Set π∗uv ← (g

Z(χ)
1 )r

2 · (g2(yI(χ)+y0(χ))1 )r · gΠI(χ)1 . Set

Aβ1 ← (g
βZ(χ)
1 )rg

βyI(χ)
1 . Output πuv = (π∗uv, A

β
1 ) ∈ G2

1.

Verification veruv(gk, crsuv,v;A1, A
γ
2 ;πuv): Parse πuv as πuv = (π∗uv, A

β
1 ). Verify that (1) ê(π∗uv, g

γZ(χ)
2 ) =

ê(A1 · gy0(χ)1 , Aγ2 · g
γy0(χ)
2 ) · ê(g1, gγ2 )−1,(2) ê(g1, A

γ
2) = ê(A1, g

γ
2 ), and (3) ê(A1, g

γβ
2 ) = ê(Aβ1 , g

γ
2 ).

Set Fuv,1 = {1} ∪Fcom ∪XβFcom and Fuv,2 = Y Fcom ∪ {Y, Y Xβ}. The formal variable Xβ (resp., Y ) stands
for the secret key β (resp., γ). Since other elements of crsuv are only needed for optimization, crsuv can be

computed from crs∗uv = (g
Fuv,1(χ,β)
1 , g

Fuv,2(χ,β,γ)
2 ). If n > 2 then 1 6∈ span({Z(X)} ∪ {yi(X)}ni=1), and thus

{1, Z(X)} ∪ {yi(X)}ni=1 is a basis of all polynomials of degree at most n+ 1. Thus, Fuv,1 can be computed
iff {Xi}n+1

i=0 ∪ {XβFcom} can be computed.

Theorem 2. The new unit vector argument is perfectly complete and witness-indistinguishable. If BP is
(n + 1, 2n + 3)-PCDH secure, (n + 1)-TSDH secure, and (n + 1, XβFcom, {Y Xβ})-PKE secure, then this
argument is an adaptive argument of knowledge.

The proof of this theorem is given in App. C. The proof of the following proposition is straightforward and
thus omitted.

Proposition 1. The computation of (π∗uv, A
β
1 ) takes one 2-wide multi-exponentiation and 1 exponentiation

in G1. In addition, it takes 2 exponentiations (one in G1 and one in G2) in the master argument to compute
(A1, A

γ
2). The verifier computation is dominated by 6 pairings.

4 New Same-Message Argument

In a same-message argument, the prover aims to convince the verifier that he knows, given two commitment
keys ck and ĉk (that correspond to two tuples of polynomials (Pi(X))ni=0 and (P̂i(X))ni=0, respectively), how

to open (A1, A
γ
2) = com(ck;m; r) and (Â1, Â

γ̂
2) = com(ĉk;m; r̂) as commitments (w.r.t. ck and ĉk) to the

same plaintext vector m (but not necessarily to the same randomizer r).
We propose an efficient same-message argument using Fcom = (Z(X), (yi(X))ni=1) as described in Sect. 3.

In the shuffle argument, we need (P̂i(X))ni=0 to satisfy some specific requirements w.r.t. Fcom, see Sect. 5.

We are free to choose P̂i otherwise. We concentrate on a choice of P̂i that satisfies those requirements yet
enables us to construct an efficient same-message argument.

Denote Ẑ(X) = P̂0(X). For the same-message argument to be an argument of knowledge and efficient,
we choose P̂i such that (P̂i(ωj))

n+1
j=1 = (yi(ωj))

n+1
j=1 = 2ei + en+1 for i ∈ [1 .. n]. Moreover, (Ẑ(ωj))

n+1
j=1 =

(Z(ωj))
n+1
j=1 = 0n+1.
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Following similar methodology as in Sect. 3, define

Qwi(X) := (r̂Ẑ(X) +
∑n
i=1 m̂iP̂i(X))− (rZ(X) +

∑n
i=1miyi(X)) .

Let n̂ be the maximum degree of polynomials in (yi(X), P̂i(X))ni=0, thus degQwi ≤ n̂. SinceQwi(ωj) = 2(m̂j−
mj) for j ∈ [1 .. n], Qwi(ωj) = 0 iff mj = m̂j . Moreover, ifm = m̂ then Qwi(ωn+1) =

∑n
i=1 m̂i−

∑n
i=1mi = 0.

Hence, m = m̂ iff

(i) Qwi(X) = Â(X) − A(X), where A(X) ∈ span({Z(X)} ∪ {yi(X)}ni=1), and Â(X) ∈ span({Ẑ(X)} ∪
{P̂i(X)}ni=1), and

(ii) there exists a degree ≤ n̂− (n+ 1) polynomial πwi(X) = Qwi(X)/Z(X).

If the prover is honest, then πwi(X) = r̂Ẑ(X)/Z(X)− r+
∑
mi · ((P̂i(X)− yi(X))/Z(X)). Note that we do

not need that Qwi(X) = 0 as a polynomial, we just need that Qwi(ωi) = 0, which is a deviation from the
strategy usually used in QAP/QSP-based arguments [GGPR13].

We guarantee the conditions similarly to Sect. 3. The description of the argument follows. (Since it is
derived as in Sect. 3, we omit further explanations.)

System parameters: Let n = poly(κ). Let com be the polynomial commitment scheme and let Fcom =
(Z(X), (yi)

n
i=1) and F̂com = (Ẑ(X), (P̂i)

n
i=1), where P̂i(X) is such that yi(ωj) = P̂i(ωj) for i ∈ [0 .. n+ 1]

and j ∈ [1 .. n+ 1].
Setup setupsm(1κ, n): Let gk← BP(1κ, n).
CRS generation gencrssm(gk): Let (g1, g2, χ, β, γ, γ̂) ←r G∗1 × G∗2 × Z4

p with

Z(χ) 6= 0. Set ck ← (g1, g
γ
2 )Fcom(χ) and ĉk ← (g1, g

γ̂
2 )F̂com(χ). Let crssm,p ←

(ck, ĉk, g
β·Fcom(χ)
1 , g

Ẑ(χ)/Z(χ)
1 , g1, (g

(P̂i(χ)−yi(χ))/Z(χ)
1 )ni=1), and crssm,v ← (g1, g

γ
2 , g

γ̂
2 , g

γβ
2 , g

γZ(χ)
2 ). Re-

turn crssm = (crssm,p, crssm,v).

Common input: (A1, A
γ
2) = com(ck;m; r), (Â1, Â

γ̂
2) = com(ĉk;m; r̂).

Argument generation prosm(gk, crssm,p;A1, A
γ
2 , Â1, Â

γ̂
2 ;m, r, r̂): Set π∗sm ← g

πwi(χ)
1 = (g

Ẑ(χ)/Z(χ)
1 )r̂ ·g−r1 ·∏n

i=1(g
(P̂i(χ)−yi(χ))/Z(χ)
1 )mi . Set Aβ1 ← (g

βZ(χ)
1 )r

∏n
i=1(g

βyi(χ)
1 )mi . Output πsm = (π∗sm, A

β
1 ) ∈ G2

1.

Verification versm(gk, crssm,v; (A1, A
γ
2), (Â1, Â

γ̂
2);πsm):

Parse πsm as πsm = (π∗sm, A
β
1 ). Verify that (1) ê(g1, A

γ
2) = ê(A1, g

γ
2 ),(2) ê(A1, g

γβ
2 ) =

ê(Aβ1 , g
γ
2 ),(3) ê(g1, Â

γ̂
2) = ê(Â1, g

γ̂
2 ), and(4) ê(π∗sm, g

γZ(χ)
2 ) = ê(Â1/A1, g

γ
2 ).

Let Ŷ be the formal variable corresponding to γ̂. In the following theorem, it suffices to take crs∗ =

(g
Fsm,1(χ,β)
1 , g

Fsm,2(χ,β,γ,γ̂)
2 ), where Fsm,1 = {1} ∪ Fcom ∪ F̂com ∪ XβFcom ∪ {Ẑ(X)/Z(X)} ∪ {(P̂i(X) −

yi(X))/Z(X)}ni=1 and Fsm,2 = Y · ({1, Xβ} ∪ Fcom) ∪ Ŷ · ({1} ∪ F̂com).

Theorem 3. The same-message argument is perfectly complete and witness-indistinguishable. Let n̂ be as
above. If BP is (n̂, n̂+ n+ 2)-PCDH secure, n̂-TSDH secure, (n+ 1,Fsm,1 \ ({1} ∪ Fcom),Fsm,2 \ Y · ({1} ∪
Fcom), γ)-PKE secure, and (F̂com,Fsm,1 \ F̂com,Fsm,2 \ Ŷ F̂com, γ̂)-PKE secure, then this argument is an
adaptive argument of knowledge.

The proof of this theorem is similar to the proof of Thm. 2, see App. D.

The proof of the following proposition is straightforward and thus omitted.

Proposition 2. The prover’s computation is dominated by one (W + 2)-wide and one (W + 1)-wide multi-
exponentiation in G1, where 0 ≤ W ≤ n is the number of elements in the vector m that are not in {0, 1}.
The verifier’s computation is dominated by 8 pairings.

In the shuffle argument below, the prover uses r = r̂, so prover’s computation is 2W + 2 exponentiations.
For a unit vector m, we additionally have W = 0 and computing Aβ1 and the first two verification steps
are already done in the unit vector argument anyway, so the argument only adds 1 exponentiation for the
prover, and 4 pairings for the verifier.
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5 New Assumption: PSP

We will next describe a new computational assumption (PSP) that is needed in the shuffle argument. The
PSP assumption is related to but not equal to the SP assumption (see App. H, that also provides short
comparison to PSP) from [GL07]. Interestingly, the generic group proof of the PSP assumption relies on
the Schwartz-Zippel lemma, while in most of the known interactive shuffle arguments (like [Nef01]), the
Schwartz-Zippel lemma is used in the reduction from the shuffle security to some underlying assumption.

Let let d(n) > n be a function. Let F̂ = (P̂i(X))ni=0 be a tuple of polynomials. We say (d(n), F̂) is

PSP-friendly, if the following set is linearly independent: F̂d(n) := {Xi}2d(n)i=0 ∪ {Xi · P̂j(X)}0≤i≤d(n),0≤j≤n ∪
{P̂0(X)P̂j(X)}nj=0.

Let (d(n), F̂) be PSP-friendly. Let F = (Pi(X))ni=0 be a tuple of polynomials of degree ≤ d(n). The

(F , F̂)-Power Simultaneous Product (PSP) assumption states that for any n = poly(κ) and any NUPPT
adversary A,

Pr


gk← BP(1κ, n), (g1, g2, χ)←r G∗1 ×G∗2 × Zp,

Gn+2
1 3 (t, t̂, (si)

n
i=1)← A(gk; ((g1, g2)χ

i

)
d(n)
i=0 , (g1, g2)F̂(χ)) :

tP0(χ) ·
n∏
i=1

s
Pi(χ)
i = t̂ P̂0(χ) ·

n∏
i=1

s
P̂i(χ)
i = 1 ∧ (∃i ∈ [1 .. n] : si 6= 1)

 ≈κ 0 .

In this section, we prove that the PSP assumption holds in the generic bilinear group model. PSP-friendliness
and the PSP assumption are defined so that both the generic model proof and the reduction from the
shuffle soundness to the PSP in Thm. 5 would go through. As in the case of SP, it is essential that two
simultaneous products have to hold true; the simpler version of the PSP assumption with only one product

(i.e., tP0(χ) ·
∏n
i=1 s

Pi(χ)
i = 1) does not hold in the generic bilinear group model. Differently from SP, the PSP

assumption incorporates possibly distinct t and t̂ since the same-message argument does not guarantee that
the randomizers of two commitments are equal.

Generic Security of the PSP Assumption. We will briefly discuss the security of the PSP assumption
in the generic bilinear group model. Similarly to [GL07], we start by picking a random asymmetric bilinear
group gk := (p,G1,G2,GT , ê) ← BP(1κ). We now give a generic bilinear group model proof for the PSP
assumption.

Theorem 4. Let F = (Pi(X))ni=0 be linearly independent with 1 6∈ span(F). Let d = max{degPi(X)} and

let F̂ = (P̂i(X))ni=0 be such that (d, F̂) is PSP-friendly. The (F , F̂)-PSP assumption holds in the generic
bilinear group model.

Proof. Assume there exists a successful adversary A. In the generic bilinear group model, A acts obliviously
to the actual representation of the group elements and only performs generic bilinear group operations such
as multiplying elements in Gi for i ∈ {1, 2, T}, pairing elements in G1 and G2, and comparing elements to see
if they are identical. hence it can only produce new elements in G1 by multiplying existing group elements
together.

Recall that the A’s input is gk and crs = (((g1, g2)χ
i

)di=0, (g1, g2)F̂(χ)). Hence, keeping track of the

group elements we get that A outputs t, t̂, si ∈ G1, where logg1 t =
∑d
j=0 tjχ

j +
∑n
j=0 t

′
jP̂j(χ), logg1 t̂ =∑d

j=0 t̂jχ
j +

∑n
j=0 t̂

′
jP̂j(χ), and logg1 si =

∑d
j=0 sijχ

j +
∑n
j=0 s

′
ijP̂j(χ), for known constants tj , t

′
j , t̂j , t̂

′
j ,

sij , s
′
ij . Taking discrete logarithms of the PSP condition tP0(χ) ·

∏n
i=1 s

Pi(χ)
i = t̂P̂0(χ) ·

∏n
i=1 s

P̂i(χ)
i = 1, we
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get that the two polynomials (for known coefficients)

d1(X) :=

 d∑
j=0

tjX
j +

n∑
j=0

t′jP̂j(X)

 · P0(X) +

n∑
i=1

 d∑
j=0

sijX
j +

n∑
j=0

s′ijP̂j(X)

Pi(X) ,

d2(X) :=

 d∑
j=0

t̂jX
j +

n∑
j=0

t̂′jP̂j(X)

 · P̂0(X) +

n∑
i=1

 d∑
j=0

sijX
j +

n∑
j=0

s′ijP̂j(X)

 P̂i(X)

satisfy d1(χ) = d2(χ) = 0. Since the adversary is oblivious to the actual representation of the group elements
it will do the same group operations no matter the actual value of X(= χ); so the values tj , . . . , s′ij are

generated (almost2) independently of χ. By the Schwartz-Zippel lemma there is a negligible probability that
di(χ) = 0, for non-zero di(X), when we choose χ randomly. Thus, with all but a negligible probability d1(X)
and d2(X) are zero polynomials.

Since F and {Xi}2di=0 ∪ {Xi · P̂j(X)}i∈[0 .. d],j∈[0 .. n] are both linearly independent, {Xi}2di=0 ∪
{Pi(X)P̂j(X)}i,j∈[0 .. n] is also linearly independent. We get from d1(X) = 0 that

∑n
j=0 t

′
jP0(X)P̂j(X) +∑n

i=1

∑n
j=0 s

′
ijPi(X)P̂j(X) = 0, which implies s′ij = 0 for i ∈ [1 .. n], j ∈ [0 .. n]. Substituting these values

into d2(X) = 0, we get that
(∑d

j=0 t̂jX
j +

∑n
j=0 t̂

′
jP̂j(X)

)
P̂0(X)+

∑n
i=1

∑d
j=0 sijX

jP̂i(X) = 0. Since F̂d is

linearly independent, we get that all coefficients in the above equation are zero, and in particular sij = 0 for
i ∈ [1 .. n], j ∈ [0 .. n]. Thus si = 1 for i ∈ [1 .. n]. Contradiction to the fact that the adversary is successful. ut

6 New Shuffle Argument

Let Elgamal operate in G1 defined by gk. In a shuffle argument, the prover aims to convince the verifier
that, given the description of a group, a public key, and two vectors of ciphertexts, the second vector of the
ciphertexts is a permutation of rerandomized versions of the ciphertexts from the first vector. However, to
achieve better efficiency, we construct a shuffle argument that is only culpably sound with respect to the
next relation (i.e., Rguilt

sh -sound, see App. J):

Rguilt
sh,n =

{
(gk, (pk, (zi)

n
i=1, (z

′
i)
n
i=1), sk) : gk ∈ BP(1κ, n)∧

(pk, sk) ∈ genpkc(gk) ∧
(
∀ψ ∈ Sn : ∃i : decsk(z

′
i) 6= decsk(zψ(i))

)} .

The argument of [GL07] is proven to be Rguilt
sh -sound with respect to the same relation. See [GL07] or the

introduction for an explanation why Rguilt
sh is sufficient.

As noted in the introduction, we need to use same-message arguments and rely on the PSP assumption.
Thus, we need polynomials P̂j that satisfy two different requirements at once. First, to be able to use the

same-message argument, we need that yj(ωk) = P̂j(ωk) for k ∈ [1 .. n + 1]. Second, to be able to use the

PSP assumption, we need (d, F̂) to be PSP-friendly, and for this we need P̂j(X) to have a sufficiently large

degree. Recall that yj are fixed by the unit vector argument. We now show that such a choice for P̂j exists.
(See App. E for a proof.)

Proposition 3. Let ŷj(X) := (XZ(X) + 1)j−1(X2Z(X) + 1)yj(X) for j ∈ [1 .. n], and Ẑ(X) = ŷ0(X) :=

(XZ(X) + 1)n+1Z(X). Let F̂com = (ŷj(X))nj=0. Then ŷj(ωk) = yj(ωk) for all j, k, and (n + 1, F̂com) is
PSP-friendly.

Next, we will provide the full description of the new shuffle argument. Note that (ci)
n
i=1 are commitments

to the rows of the permutation matrix Ψ , proven by the n unit vector arguments (πuv,i)
n
i=1 and by the

implicit computation of cn. We denote Ê((a, b), c) := (ê(a, c), ê(b, c)).

2 A generic bilinear group adversary may learn a negligible amount of information about χ by comparing group
elements; we skip this part in the proof.

10



System parameters: Let (genpkc, enc, dec) be the Elgamal cryptosystem. Let com be the polynomial com-
mitment scheme. Consider polynomials Fcom = {Z(X)}∪(yi(X))ni=1 from Sect. 3. Let F̂com = (ŷi(X))ni=0

be as in Prop. 3.
Setup setupsh(1κ, n): Let gk← BP(1κ, n).
CRS generation gencrssh(gk): Let (g1, g2, χ, β, γ)←r G∗1×G∗2×Z3

p with Z(χ) 6= 0. Let (crsuv,p, crsuv,v)←r

gencrsuv(gk, n), (crssm,p, crssm,v) ←r gencrssm(gk, n), but by using the same (g1, g2, χ, β, γ) in both

cases. Let ck ← (g1, g
γ
2 )Fcom(χ) and ĉk ← (g1, g

γ̂
2 )F̂com(χ). Set (D1, D

γ
2 ) ← com(ck; 1n; 0), (D̂1, D̂

γ̂
2 ) ←

com(ĉk; 1n; 0). Set crssh,p ← (crsuv,p, ĉk, g
Ẑ(χ)/Z(χ)
1 , g1, (g

(ŷi(χ)−yi(χ))/Z(χ)
1 )ni=1, D1, D

γ
2 , D̂1, D̂

γ̂
2 ), crssh,v ←

(crsuv,v, g
γ̂
2 , {g

γyi(χ)
2 , g

γ̂ŷi(χ)
2 }ni=0, D1, D

γ
2 , D̂1, D̂

γ̂
2 ), and tdsh ← χ. Return ((crssh,p, crssh,v), tdsh).

Common input: (pk, (zi, z
′
i)
n
i=1), where pk = (g1, h) ∈ G2

1, zi ∈ G2
1 and z′i = zψ(i) · encpk(1; ti) ∈ G2

1.
Argument prosh(gk, crssh,p; pk, (zi, z

′
i)
n
i=1;ψ, (ti)

n
i=1):

(1) Let Ψ = Ψψ−1 be the n× n permutation matrix corresponding to ψ−1.
(2) For i ∈ [1 .. n− 1]:

– Set ri ← Zp, (ci1, c
γ
i2)← com(ck;Ψ i; ri), (ĉi1, ĉ

γ̂
i2)← com(ĉk;Ψ i; ri).

(3) Set rn ← −
∑n−1
i=1 ri, (cn1, c

γ
n2)← (D1, D

γ
2 )/

∏n−1
i=1 (ci1, c

γ
i2).

(4) Set (ĉn1, ĉ
γ̂
n2)← (D̂1, D̂

γ̂
2 )/

∏n−1
i=1 (ĉi1, ĉ

γ̂
i2).

(5) For i ∈ [1 .. n]: set πuv,i = (π∗uv,i, c
β
i1)← prouv(gk, crsuv,p; ci1, c

γ
i2;Ψ i, ri).

(6) Set rt ←r Zp, (d1, d
γ
2)← com(ck; t; rt), and (d̂1, d̂

γ̂
2)← com(ĉk; t; rt).

(7) For i ∈ [1 .. n− 1]:

– Set (π∗sm,i, c
β
i1)← prosm(gk, crssm,p; ci1, c

γ
i2, ĉi1, ĉ

γ̂
i2;Ψ i, ri, ri).

(8) Set πsm,d ← prosm(gk, crssm,p; d1, d
γ
2 , d̂1, d̂

γ̂
2 ; t, rt, rt).

(9) Compute U = (U1, U2)← pkrt ·
∏n
i=1 z

ri
i ∈ G2

1. // The only online step

(10) Output πsh ← ((ci1, c
γ
i2, ĉi1, ĉ

γ̂
i2)n−1i=1 , d1, d

γ
2 , d̂1, d̂

γ̂
2 , (πuv,i)

n
i=1, (π∗sm,i)

n−1
i=1 , πsm,d, U)

Verification versh(gk, crssh,v; pk, (zi, z
′
i)
n
i=1, πsh):

(1) Let (cn1, c
γ
n2)← (D1, D

γ
2 )/

∏n−1
i=1 (ci1, c

γ
i2).

(2) Let (ĉn1, ĉ
γ̂
n2)← (D̂1, D̂

γ̂
2 )/

∏n−1
i=1 (ĉi1, ĉ

γ̂
i2).

(3) For i ∈ [1 .. n]: reject if veruv(gk, crsuv,v; ci1, c
γ
i2;πuv,i) rejects.

(4) For i ∈ [1 .. n− 1]: reject if versm(gk; crssm,v; ci1, c
γ
i2, ĉi1, ĉ

γ̂
i2;πsm,i) rejects.

(5) Reject if versm(gk, crssm,v; d1, d
γ
2 , d̂1, d̂

γ̂
2 ;πsm,d) rejects.

(6) Check the PSP-related verification equations: // The only online step

(a)
∏n
i=1 Ê(z′i, g

γyi(χ)
2 )/

∏n
i=1 Ê(zi, c

γ
i2) = Ê((g1, h), dγ2)/Ê(U, g

γZ(χ)
2 ),

(b)
∏n
i=1 Ê(z′i, g

γ̂ŷi(χ)
2 )/

∏n
i=1 Ê(zi, ĉ

γ̂
i2) = Ê((g1, h), d̂γ̂2)/Ê(U, g

γ̂Ẑ(χ)
2 ).

Since ck, ĉk ⊂ crssh,p, (D1, D
γ
2 ) = com(ck; 1n; 0) and (D̂1, D̂

γ̂
2 ) = com(ĉk; 1n; 0) can be computed from

the rest of the CRS. (These four elements are only needed to optimize the computation of (cn1, c
γ
n2) and

(ĉn1, ĉ
γ̂
n2).) For security, it suffices to take crs∗sh = (g

Fsh,1(χ,β)
1 , g

Fsh,2(χ,β,γ,γ̂)
2 ), where Fsh,1 = Fuv,1 ∪ F̂com ∪

{Ẑ(X)/Z(X)} ∪ {(ŷi(X)− yi(X))/Z(X)}ni=1 and Fsh,2 = Fuv,2 ∪ Ŷ · ({1} ∪ F̂com).

Theorem 5. The new shuffle argument is a non-interactive perfectly complete and perfectly zero-knowledge
shuffle argument for Elgamal ciphertexts. If the (n + 1)-TSDH, (n̂, n̂ + n + 2)-PCDH, (Fcom, F̂com)-PSP,
(n + 1,Fsh,1 \ ({1} ∪ Fcom),Fsh,2 \ Y · ({1} ∪ Fcom), γ)-PKE, (F̂com,Fsh,1 \ F̂com,Fsh,2 \ Ŷ F̂com, γ̂)-PKE
assumptions hold, then the shuffle argument is adaptively computationally culpably sound w.r.t. the language
Rguilt
sh,n and an argument of knowledge.

A full proof of this theorem is given in App. F. When using a Barreto-Naehrig curve [BN05], exponentiations
in G1 are three times cheaper than in G2. Moreover, a single (N + 1)-wide multi-exponentiations is consid-
erably cheaper than N + 1 exponentiations. Hence, we compute separately the number of exponentiations
and multi-exponentiations in both G1 and G2 [Str64,Pip80]. For the sake of the simplicity, Prop. 4 only
summarizes those numbers. See App. G for a proof.
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Proposition 4. The prover’s CRS consists of 6n + 7 elements of G1 and 2n + 4 elements of G2. The
verifier’s CRS consists of 4 elements of G1, 2n+ 8 elements of G2, and 1 element of GT . The total CRS is
6n + 8 elements of G1, 2n + 8 elements of G2, and 1 element of GT , in total 8n + 17 group elements. The
communication complexity is 5n+ 2 elements of G1 and 2n elements of G2, in total 7n+ 2 group elements.
The prover’s and the verifier’s computational complexity are as in Tbl. 1.

Importantly, both the proving and verification algorithm of the new shuffle argument can be divided
into offline (independent of the common input (pk, (zi, z

′
i)
n
i=1)) and online (dependent on the common input)

parts. The prover can precompute all elements of πsh except U (i.e., execute all steps of the proving algorithm,
except step (9)), and send them to the verifier before the inputs are fixed. The verifier can verify πsh \ {U}
(i.e., execute all steps of the verification algorithm, except step (6)) in the precomputation step. Thus, the
online computational complexity is dominated by two (n+1)-wide multi-exponentiations for the prover, and

8n + 4 pairings for the verifier (note that Ê((g1, h), dγ2) and Ê((g1, h), d̂γ̂2) can also be precomputed by the
verifier).

Low online complexity is highly important in e-voting, where the online time (i.e., the time interval after
the ballots are gathered and before the election results are announced) can be limited for legal reasons. In
this case, the mix servers can execute all but step (9) of the proving algorithm and step (6) of the verification
algorithm before the votes are even cast, assuming one is able to set a priori a reasonable upper bound on
n, the number of votes. See [Wik09] for additional motivation.
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Council.
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A On Random Oracle Versus CRS Model

NIZK arguments for non-trivial languages require the use of either the random oracle (RO, [FS86]) model
or the common reference string (CRS, [BFM88]) model. In the random oracle model, it is assumed that all
parties have an oracle access to a uniformly random function. In practice, this is instantiated with say a
secure hash function [FS86]. Many shuffle arguments have been proposed in the random oracle model, see,
e.g., [Nef01,FS01,Fur05,TW10,Gro10a]. However, it is well known that the random oracle model is not always
instantiable [CGH98,GK03]. Thus, one should aim to provide a security proof in the in the (random oracle-
less) CRS model. In the CRS model, all parties have access to an honestly generated CRS. In addition, the
simulator will have access to a trapdoor. The CRS model is much more realistic than the RO model, especially
since the common CRS can be generated by using either multi-party computation or secure hardware.

B Proof of Thm. 1 (Security of Commitment Scheme)

Proof. Perfect Hiding: since P0(X) is a non-zero polynomial (this follows from linear independence),
then due to the choice of χ, rP0(χ) (and thus also logg1 A1) is uniformly random in Zp. Thus, (A1, A

γ
2) is a

uniformly random element of the multiplicative subgroup of G∗1 × G∗2 generated by (g1, g
γ
2 ), independently

of the committed value.

Extractability: clear from the statement.

Computational Binding: assume that the adversary outputs (a, ra) and (b, rb) with (a, ra) 6= (b, rb),
such that d(X) := (raP0(X) +

∑n
i=1 aiPi(X))− (rbP0(X) +

∑n
i=1 biPi(X)) has a root at χ. If the adversary

is successful, then d(X) ∈ Zp[X] is a non-trivial polynomial. Since the coefficients of d(X) are known, we
can use an efficient polynomial factorization algorithm to compute all roots ri of d(X). Since one of these
roots has to be equal to χ, the adversary can just output one of the ri randomly. (We note that in previous
papers like [Gro10b], one instead compared gχ1 (given in the CRS) to all values gri1 . In our case, it is not
guaranteed that both g1 and gχ1 belong to the CRS, and thus for simplicity, we have this randomized step.)

Trapdoor: given χ, a, r, a∗, and c = com(ck;a; r), we compute r∗ such that (r∗−r)P0(χ)+
∑n
i=1(a∗i −

ai)Pi(χ) = 0. This is possible since P0(χ) 6= 0. Clearly, c = com(ck;a∗; r∗). ut
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C Proof of Thm. 2 (Security of Unit Vector)

Proof. Perfect completeness follows from the above derivation. Perfect witness indistinguisha-
bility is due to the fact that there is a unique value of πuv that satisfies the verification equations.

Argument of knowledge: Assume that the PKE assumption holds. According to the preceding dis-
cussion, in this case, the argument of knowledge property means that any NUPPT adversary has negligible
chance of outputting an input uuv ← (A1, A

γ
2), an accepting argument πuv = (π∗uv, A

β
1 ), and a witness

wuv = a′ ∈ Zn+2
p , such that

1. (A1, A
γ
2) = (g1, g

γ
2 )A(χ) with A(X) =

∑n+1
i=0 a

′
iX

i,
2. One of the following holds:

(a) A(X) 6∈ span(Fcom), where Fcom = (Z(X), (yi(X))ni=1), or
(b) Z(X) - Qwi(X) where Qwi(X) = (A(X) + y0(X))2 − 1.

Suppose there exists an adversary Aaok that breaks the argument of knowledge property. Then given a
correctly generated CRS, he can output (uuv, πuv, wuv) such that both conditions 1 and 2 hold. By the PKE
assumption, condition 1 holds (it will also be guaranteed in the master argument by a similar knowledge
assumption). We will handle separately the cases when the conditions 2a and 2b hold. In each case we derive
a contradiction to one security assumption.

Condition 2a holds: assume that there exists an adversary Aaok that, given gk and (crsuv,p, crsuv,v)
output by gencrsuv(gk), breaks the argument of knowledge property of the unit vector argument (with
some non-negligible probability ε) by outputting A(X) such that A(X) ∈ span({Xi}n+1

i=0 ) \ span(Fcom). We
construct the following (n + 1, 2n + 3)-PCDH adversary Apcdh. Apcdh receives an (n + 1, 2n + 3)-PCDH

challenge ch = (gk, ((g1, g2)χ
i

)i∈[0 .. 2n+3]\{n+2}). Let D be the set of polynomials q(X) from Zp[X], such
that deg q ≤ n+ 1 and q(X)f(X) has a zero coefficient for Xn+1 for all f ∈ Fcom.

Apcdh picks q(X) randomly from D. Note that deg(q(X)f(X)) ≤ (n + 1) + (n + 1) = 2(n + 1) for any
f(X) ∈ Fcom. There are (n+2)−|Fcom| = 1 > 0 degrees of freedom for choosing q(X). Thus, for a polynomial
π(X) outside of the span of Fcom, the coefficient of Xn+1 in q(X)π(X) will be random.

Apcdh then picks b ←r Zp, sets β(X) ← Xq(X) + b and β ← β(χ). Since D consists of polynomials of
degree at most n+ 1, then for f ∈ Fcom, β(X)f(X) is of degree at most (n+ 2) + (n+ 1) = 2n+ 3, with a

zero coefficient for Xn+2. This means that Apcdh can compute g
βf(χ)
1 from ch by using generic bilinear group

operations.

With the given values, Apcdh generates γ ←r Zp, and computes a correct CRS which is sent to Aaok.

Suppose that Aaok replies with (uuv, πuv, wuv) such that A(X) =
∑n+1
i=0 a

′
iX

i is not in the span of Fcom,

verification succeeds, and A1 = g
A(χ)
1 . Since A(X) is not in the span of Fcom, the coefficient of Xn+1 in

q(X)A(X) is random. This means that with probability 1 − 1/p, the coefficient c of Xn+2 in the known

polynomial β(X)A(X) is non-zero. Since ê(A1, g
γβ
2 ) = ê(Aβ1 , g

γ
2 ), Apcdh can compute Aβ1 = g

βA(χ)
1 . However,

Apcdh knows all the coefficients of β(X)A(X), and hence from ch she can compute gχ
n+2

1 = (gcχ
n+2

1 )c
−1

.
Thus, Apcdh solves the (n+ 1, 2n+ 3)-PCDH problem with non-negligible probability (1− 1/p) · ε.

Condition 2b holds: assume that there exists an adversary Aaok that, given gk and (crsuv,p, crsuv,v) output
by gencrsuv(gk), breaks the argument of knowledge property of the unit vector argument by outputting A(X)
such that Z(X) - Qwi(X) where Qwi(X) is defined as in condition 2b. In this case we construct a TSDH

adversary Atsdh. Assume that Atsdh gets as an input a TSDH challenge ch = ((g1, g2)χ
i

)n+1
i=0 . Then, Atsdh

generates random γ, β, and uses them together with ch to generate a correct CRS for Aaok. Assume that
(with some probability ε) Aaok then outputs uuv, an accepting argument πuv, and a witness wuv.

Since Z(X) =
∏n+1
i=1 (X − ωi) and all X − ωi are pairwise relatively prime, Z(X) - Qwi(X) means there

exists i ∈ [1 .. n + 1] such that (X − ωi) does not divide Qwi(X). Thus, there exists a non-zero constant
t ∈ Zp and a degree 2n+ 1 polynomial q(X) such that Qwi(X) = (X − ωi)q(X) + t.

Since Qwi(X) = (A(X) + y0(X))2 − 1 and the first verification equation accepts,

ê(π∗uv, g
γZ(χ)
2 ) =ê(A1 · gy0(χ)1 , Aγ2 · g

γy0(χ)
2 )/ê(g1, g

γ
2 ) = ê(g1, g

γ
2 )Qwi(χ) = ê(g1, g

γ
2 )(χ−ωi)q(χ)+t .
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Then ê(g1, g
γ
2 )q(χ)+t/(χ−ωi) = ê(π∗uv, g

γZ(χ)/(χ−ωi)
2 ), that is,

ê(g1, g
γ
2 )1/(χ−ωi) = (ê(π∗uv, g

γZ(χ)/(χ−ωi)
2 )/ê(g1, g

γ
2 )q(χ))t

−1

.

Since degZ(X) = n + 1, there exist polynomials q1(X), q2(X) of degree at most n such that q(X) =

q1(X)Z(X) + q2(X). Thus we can evaluate ê(g1, g
γ
2 )q(χ) as ê(g1, g

γ
2 )q1(χ)Z(χ)+q2(χ) = ê(g

q1(χ)
1 , g

γZ(χ)
2 ) ·

ê(g
q2(χ)
1 , gγ2 ) by using elements (gχ

i

1 )ni=0, gγ2 , and g
γZ(χ)
2 . We can also evaluate g

γZ(χ)/(χ−ωi)
2 from (g

γyi(χ)
2 )ni=1

and g
γ`n+1(χ)
2 , since Z(X)/(X −ωi) = `i(X)

∏
j 6=i(ωi−ωj), and for i 6= n+ 1, `i(X) = (yi(X)− `n+1(X))/2.

So since gγ2 , g
γZ(χ)
2 and g

γ`n+1(χ)
2 can all be computed from (gγχ

i

2 )n+1
i=0 , ê(g1, g

γ
2 )1/(χ−ωi) can be computed

from ch.
Thus, the adversary Atsdh, given as input the TSDH challenge, uuv, πuv, and wuv, can efficiently compute

(r = ωj , ê(g1, g
γ
2 )1/(χ−r)) (and thus also, with probability 1 − 1/p over the choice of γ, (r, ê(g1, g2)1/(χ−r)))

for some j ∈ [1 .. n+1], hence solving the (n+1)-TSDH problem with non-negligible probability (1−1/p) ·ε.
Thus, this argument is an argument of knowledge. ut

D Proof of Thm. 3 (Security of Same-Message)

Proof. Perfect witness-indistinguishability: All witnesses result in the same argument πsm, hence this
argument is witness-indistinguishable. Perfect completeness: Follows from the argumentation preceding
the same-message argument description.

Argument of knowledge: Suppose there exists an adversary Aaok that breaks the argument of knowl-
edge property. That is, Aaok can output a common input usm = (A1, A

γ
2 , Â1, Â

γ̂
2) and an accepting argument

πsm, but (A1, A
γ
2) and (Â1, Â

γ̂
2) are commitments to different message vectors.

We first use the PKE assumptions to argue that from Aaok and certain extractors we can construct
another adversary A∗aok who outputs (usm, πsm) together with a witness wsm = (a, m̂, r̂):
– By the (. . . , γ)-PKE assumption and since the verification equation (1) holds, there exists an extractor

that can obtain a ∈ Zn+2
p such that (A1, A

γ
2) = (g1, g

γ
2 )A(χ), where A(X) =

∑n+1
i=0 aiX

i.
– By the (. . . , γ̂)-PKE assumption and since the verification equation (3) holds, there exists an extractor

that can obtain (m̂, r̂) such that (Â1, Â
γ̂
2) = com(ĉk; m̂; r̂) = (g1, g

γ̂
2 )Â(χ) for some Â(X) ∈ span(F̂com).

(If any of the extractors fails, then we can abort. By assumption, this happens with a negligible probability.)
Thus, assume A∗aok outputs (usm, πsm, wsm = (a, m̂, r̂)), such that the verification holds.

As in the case of Thm. 2, if A∗aok is successful, then either
(a) A(X) 6∈ span(Fcom), or
(b) A(X) ∈ span(Fcom) but Z(X) - Qwi(X).

Case (a). Assume A(X) 6∈ span(Fcom). We construct the following (n̂, n̂+n+ 2)-PCDH adversary Apcdh.

Apcdh receives a (n̂, n̂+ n+ 2)-PCDH challenge ch = (gk, ((g1, g2)χ
i

)i∈[0 .. n̂+n+2]\{n̂+1}). Let

D :=

{
q(X) ∈ Zp[X] : deg(q) ≤ n̂∧
q(X)f(X) has a zero coefficient for X n̂ for all f ∈ Fcom

}
.

Apcdh picks q(X) randomly from D. Note that deg(q(X)f(X)) ≤ n̂ + (n + 1) = (n̂ + n + 2) − 1 for any
f(X) ∈ Fcom. There are (n̂+ 1)− |Fcom| > 0 degrees of freedom for choosing q(X). Thus, for a polynomial
π(X) outside of the span of Fcom, the coefficient of X n̂ in q(X)π(X) will be random.

Apcdh then picks b ←r Zp, sets β(X) ← Xq(X) + b and β ← β(χ). Since D consists of polynomials of
degree at most n̂, then for f ∈ Fcom, β(X)f(X) is of degree at most (n̂+1)+(n+1) = n̂+n+2, with a zero

coefficient for X n̂+1. This means that Apcdh can compute g
βf(χ)
1 from ch by using generic group operations.

With the given values, Apcdh can now generate (γ, γ̂) ←r Z2
p, and compute a correct CRS which is sent

to A∗aok. (To be able to compute the CRS, we need n̂ to be like chosen in the theorem.) Suppose that A∗aok
replies with (usm, πsm, wsm) such that A(X) =

∑n+1
i=0 aiX

i is not in the span of Fcom, verification succeeds,
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and A1 = g
A(χ)
1 . Since A(X) is not in the span of Fcom, the coefficient of X n̂ in q(X)A(X) is random.

This means that with probability 1 − 1/p, the coefficient c of X n̂+1 in the known polynomial β(X)A(X)

is non-zero. Since ê(A1, g
γβ
2 ) = ê(Aβ1 , g

γ
2 ), Apcdh can compute Aβ1 = g

βA(χ)
1 . However, Apcdh knows all the

coefficients of β(X)A(X), and hence from ch she can compute gχ
n̂+1

1 = (gcχ
n̂+1

1 )c
−1

. Thus, Apcdh solves the
PCDH problem with non-negligible probability (1− 1/p) · ε.

So A(X) ∈ span((yi(X))ni=0) and thus A∗aok knows a witness (m = (m1, . . . ,mn), r) such that (A1, A
γ
2) =

com(ck;m; r).

Case (b). We construct a n̂-TSDH adversary Atsdh. Assume that Atsdh gets as an input a TSDH challenge

ch = ((g1, g2)χ
i

)n̂i=0. Then, Atsdh generates random γ, γ̂, β, and uses them together with ch to generate a
correct CRS for A∗aok. (Again, to create correct CRS we need the chosen value of n̂.) Assume that (with some

probability ε), A∗aok then outputs usm, accepting argument πsm = (π∗sm, A
β
1 ), and a witness wsm.

Since Z(X) =
∏n+1
i=1 (X − ωi) and all the X − ωi are pairwise relatively prime, Z(X) - Qwi(X) means

there exists i ∈ [1 .. n+ 1] such that (X − ωi) - Qwi(X). Thus, there exists a non-zero constant t ∈ Zp and a
degree ≤ n̂− 1 polynomial q(X) such that Qwi(X) = (X − ωi)q(X) + t.

Since Qwi(X) = Â(X) − A(X) and the verification equation (4) holds, we have that

ê(π∗sm, g
γZ(χ)
2 ) = ê(Â1/A1, g

γ
2 ) = ê(g1, g

γ
2 )Qwi(χ) = ê(g1, g

γ
2 )(χ−ωi)q(χ)+t . But then ê(g1, g

γ
2 )q(χ)+t/(χ−ωi) =

ê(π∗sm, g
γZ(χ)/(χ−ωi)
2 ), which is equivalent to

ê(g1, g
γ
2 )1/(χ−ωi) = (ê(π∗sm, g

γZ(χ)/(χ−ωi)
2 )/ê(g1, g

γ
2 )q(χ))t

−1

.

Since degZ(X) = n+1, there exist polynomials q1(X), q2(X) of degree at most n̂−(n+2) and n respectively,
such that q(X) = q1(X)Z(X) + q2(X). Thus, by the same argumentation used in Thm. 2, we can evaluate
ê(g1, g

γ
2 )q(χ), ê(g1, g

γ
2 )1/(χ−ωi), and finally, with probability 1− 1/p, (r = ωi, ê(g1, g2)1/(χ−r)) from the given

values ch, breaking the n̂-TSDH assumption. Thus, this argument is an argument of knowledge. ut

E Proof of Prop. 3 (PSP-friendliness of F̂com)

Proof. First, since Z(ωk) = 0, ŷj(ωk) = yj(ωk) and Ẑ(ωk) = Z(ωk) for j ∈ [1 .. n], k ∈ [1 .. n + 1]. To prove

(n+ 1, F̂com) is PSP-friendly, it suffices to show that the degrees of all polynomials in (F̂com)n+1 are distinct.

◦ For j > 0, ŷj(X) has degree (j − 1)(n + 2) + (n + 3) + n = (2n + 3) + (j − 1)(n + 2), while deg Ẑ(X) =
(n+ 1)(n+ 2) + (n+ 1) = (2n+ 3) + n(n+ 2).

◦ The degrees of all polynomials Xiŷj(X), for i ∈ [0 .. n+ 1], j ∈ [0 .. n], are unique (namely, (2n+ 3) + (j−
1)(n+2)+i for j ∈ [1 .. n] and (2n+3)+n(n+2)+i for j = 0) and also larger than max{degXi}i∈[0 .. 2(n+1)].

◦ The degree of Ẑ(X)ŷj(X) is at least deg Ẑ(X) + (2n + 3) > deg Ẑ(X) + (n + 1) =
max{degXiŷj(X)}i∈[0 .. n+1],j∈[0 .. n].

Thus, (n+ 1, F̂com) is PSP-friendly, and n̂ = deg Ẑ(X) = (n+ 1)(n+ 3). ut

F Full Proof of Thm. 5 (Security of Shuffle Argument)

Proof. Perfect completeness: Assume that the prover is honest. To verify the proof, the verifier first
checks the consistency of the commitment (d1, d

γ
2) and n unit vector arguments; here we use the fact that the

unit vector argument is perfectly complete. Moreover, since Ψn = 1n −
∑n−1
i=1 Ψ i, (cn1, c

γ
n2) (and similarly,

(ĉn1, ĉ
γ̂
n2)) is a commitment to Ψn with randomizer rn. Also, since the same-message argument is perfectly

complete, the verification equations on steps (4) and (5) all hold. The verification equations on step (6) hold
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since for the verification equation (6a) (the verification equation (6b) is true similarly),

n∏
i=1

Ê(z′i,g
γyi(χ)
2 )/

n∏
i=1

Ê(zi, c
γ
i2)

=

n∏
i=1

Ê(zψ(i) · (g1, h)ti , g
γyi(χ)
2 )/

n∏
i=1

Ê(zi, g
γ(riZ(χ)+yψ−1(i)(χ))

2 )

=

n∏
i=1

Ê((g1, h)ti , g
γyi(χ)
2 )/

n∏
i=1

Ê(zi, g
γriZ(χ)
2 )

=Ê((g1, h), g
γ
∑n
i=1 tiyi(χ)

2 )/Ê(

n∏
i=1

zrii , g
γZ(χ)
2 )

=Ê((g1, h), g
γ(rtZ(χ)+

∑n
i=1 tiyi(χ))

2 )/Ê(

n∏
i=1

zrii · (g1, h)rt , g
γZ(χ)
2 )

=Ê((g1, h), dγ2)/Ê(U, g
γZ(χ)
2 ) .

Culpable soundness: Let Aguilt be an NUPPT adversary that, given gk and a correctly generated crs,
outputs a statement (pk = (g1, h), (zi, z

′
i)
n
i=1), a secret key sk, and an accepting shuffle argument πsh, such

that the plaintext vector (z′i)
n
i=1 is not a permutation of the plaintext vector (zi)

n
i=1. (I.e., Aguilt is an adversary

against Rguilt
sh,n.) Assume that the unit vector argument and the same-message argument are arguments of

knowledge, and that both PKE assumptions hold (these claims are guaranteed by the assumptions of Thm. 5).
We construct the following adversary Apsp that breaks the (Fcom, F̂com)-PSP assumption.

Apsp obtains input (gk, crspsp) where crspsp = (((g1, g2)χ
i

)n+1
i=0 , (g1, g2)F̂com(χ)). Apsp then generates random

γ, γ̂, and β. Apsp constructs crs∗sh as follows:

(a) from ((g1, g2)χ
i

)n+1
i=0 and Fcom, she can create ck = (g1, g2)Fcom(χ).

(b) from g1, g
Fcom(χ)
1 , and β, she can create g

βFcom(χ)
1 , g

Fuv,1(χ,β)
1 and g

Fsm,1(χ,β)
1 , and thus g

Fsh,1(χ,β)
1 ;

(c) from g2, γ, and β, she can create gγ2 , gγβ2 , and g
γFcom(χ)
2 , and thus g

Fuv,2(χ,β,γ)
2 ;

(d) finally, from g2 and γ̂, she can create gγ̂2 , and thus g
Fsh,2(χ,β,γ,γ̂)
2 .

So Apsp can create a valid CRS crs∗sh = (crssh,p, crssh,v) of the shuffle argument. Apsp then sends crssh,p to
Aguilt, who returns ((pk, (zi, z

′
i)
n
i=0), sk, πsh), such that the verification algorithm versh accepts πsh.

Recall that πuv,i = (π∗uv,i = g
πwi,i(χ)
1 , cβi1). By applying the relevant knowledge assumption, we can pos-

tulate the existence of the following NUPPT knowledge extractors that, with all but a negligible probability,
return some witness:

1. By the (. . . , γ)-PKE assumption and the PCDH assumption, for every i ∈ [1 .. n − 1] there exists a
knowledge extractor that, given (ci1, c

γ
i2) and access to Aguilt’s random coins, returns ((Ψ ij)j∈[1 .. n], ri)

such that (ci1, c
γ
i2) = com(ck;Ψ i; ri). Let Ψn ← 1n −

∑n−1
i=1 Ψ i and rn ← −

∑n−1
i=1 ri.

2. By the the (. . . , γ)-PKE assumption and the PCDH assumption, there exists a knowledge extractor that,
given (d1, d

γ
2) and access to Aguilt’s random coins, returns (t∗, r∗t ), such that (d1, d

γ
2) = com(ck; t∗; r∗t ).

3. By the (. . . , γ̂)-PKE assumption, for every i ∈ [1 .. n − 1] there exists a knowledge extractor that,

given (ĉi1, ĉ
γ̂
i2) and access to Aguilt’s random coins, returns ((Ψ̂ ij)j∈[1 .. n], r̂i), such that (ĉi1, ĉ

γ̂
i2) =

com(ĉk; Ψ̂ i; r̂i). Let Ψ̂n ← 1n −
∑n−1
i=1 Ψ̂ i and r̂n ← −

∑n−1
i=1 r̂i.

4. By the (. . . , γ̂)-PKE assumption, there exists a knowledge extractor that, given (d̂1, d̂
γ̂
2) and access to

Aguilt’s random coins, returns (t̂∗, r̂∗t ), such that (d̂1, d̂
γ̂
2) = com(ĉk; t̂∗; r̂∗t ).

Since we assume the PKE and PCDH assumptions are true, the probability that any of these extractors fails
is negligible, in this case we can abort. In the following, we will assume that all extractors succeeded.

Let a be Aguilt’s output. Based on Aguilt and the output of extractors, we can build an adversary A∗guilt
that returns a to Apsp together with the witness ((Ψ i, ri, Ψ̂ i, r̂i)i∈[1 .. n−1], t

∗, r∗t , t̂
∗, r̂∗t ).
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Since the unit vector argument is an argument of knowledge, Ψn = 1n −
∑n−1
i=1 Ψ i, and πuv,i verifies

for each i ∈ [1 .. n], we have that (ci1, c
γ
i2)ni=1 commits to a permutation matrix. (Otherwise, we can break

the unit vector arguments and thus either the PCDH or the TSDH assumption.) Hence, Ψ corresponds to a

permutation ψ ∈ Sn, such that for i ∈ [1 .. n], ci1 = g
ri+yψ−1(i)(χ)

2 .

Since the same-message argument is an argument of knowledge, it must be the case that Ψ = Ψ̂ . In
particular, (ĉi1, ĉ

γ̂
i2) = com(ĉk;Ψ i; r̂i).

Finally, the verification equation (6a) accepts. Then (since we are proving culpable soundness
and thus Apsp knows sk) setting µ∗ ← U2/U

sk
1 , µi ← zi2/z

sk
i1, and µ′i ← z′i2/(z

′
i1)sk, the veri-

fication equation (6a) is equivalent to verifying that
∏n
i=1 Ê((z′i1, µ

′
i), g

γyi(χ)
2 )/

∏n
i=1 Ê((zi1, µi), c

γ
i2) =

Ê((g1, 1), dγ2)/Ê((U1, µ
∗), g

γZ(χ)
2 ). Here, Apsp knows all mentioned variables. After eliminating γ, we get

(with probability 1− 1/p over the choice of γ) that

n∏
i=1

Ê((z′i1,µ
′
i), g

yi(χ)
2 )/

n∏
i=1

Ê((zi1, µi), g
riZ(χ)+yψ−1(i)(χ)

2 )

=Ê((g1, 1), g
r∗tZ(χ)+

∑n
i=1 t

∗
i yi(χ)

2 )/Ê((U1, µ
∗), g

Z(χ)
2 ) .

Set R0 = U1/(
∏n
i=1 z

ri
i1 · g

r∗t
1 ), M0 = µ∗/

∏n
i=1 µ

ri
i , Ri = z′i1/(g

t∗i yi(χ)
1 zψ(i),1), and Mi = µ′i/µψ(i) for

i ∈ [1 .. n]. Since the pairing is non-degenerate, by reordering the terms we get that R
Z(χ)
0 ·

∏n
i=1R

yi(χ)
i = 1

and M
Z(χ)
0 ·

∏n
i=1M

yi(χ)
i = 1.

From the verification equation (6b), we get that R̂
Ẑ(χ)
0 ·

∏n
i=1R

ŷi(χ)
i = 1 and M̂

Ẑ(χ)
0 ·

∏n
i=1M

ŷi(χ)
i = 1 for

(due to the soundness of the same-message argument) the same values of Mi and Ri for i ∈ [1 .. n] as before.

Now, due to the construction of the CRS we can apply the PSP assumption to R
Z(χ)
0 ·

∏n
i=1R

yi(χ)
i = 1

and R̂
Ẑ(χ)
0 ·

∏n
i=1R

ŷi(χ)
i = 1 (getting Ri = 1 for all i ∈ [1 .. n]), and to M

Z(χ)
0 ·

∏n
i=1M

yi(χ)
i = 1 and

M̂
Ẑ(χ)
0 ·

∏n
i=1M

ŷi(χ)
i = 1 (getting Mi = 1 for all i ∈ [1 .. n]). Thus, (z′i1, z

′
i2) = (zψ(i),1, z

′
ψ(i),2) for i ∈ [1 .. n],

and the shuffle argument is culpably sound.

Argument of knowledge: follows from the proof of culpable soundness, where ψ and ti were recovered
by using the PKE assumption.

Perfect zero-knowledge: We construct the following simulator S. It inputs gk ← setup(1κ, n),
((crssh,p, crssh,v), tdsh)← gencrs(gk), and the common input (pk, (zi, z

′
i)
n
i=1), and does the following:

(1) Pick rt ←r Zp. For i ∈ [1 .. n− 1]: pick ri ←r Zp.
(2) Simulate commitments (ci1, c

γ
i2):

(a) For i ∈ [1 .. n− 1]: set (ci1, c
γ
i2)← com(ck; ei; ri).

(b) Set (cn1, c
γ
n2)← com(ck; en;−

∑n−1
i=1 ri).

(3) Simulate commitments (ĉi1, ĉ
γ̂
i2):

(a) For i ∈ [1 .. n− 1]: set (ĉi1, ĉ
γ̂
i2)← com(ĉk; ei; ri).

(b) Set (ĉn1, ĉ
γ
n2)← com(ĉk; en;−

∑n−1
i=1 ri).

(4) For i ∈ [1 .. n]: set πuv,i ← prouv(gk, crsuv,p; ci1, c
γ
i2; ei, ri).

(5) For i ∈ [1 .. n− 1]: set πsm,i ← prosm(gk, crssm,p; ci1, c
γ
i2, ĉi1, ĉ

γ̂
i2; ei, ri, ri).

(6) Set (d1, d
γ
2)← com(ck; 0n; rt) and (d̂1, d̂

γ̂
2)← com(ĉk; 0n; rt).

(7) Set πsm,d ← prosm(gk, crssm,p; d1, d
γ
2 , d̂1, d̂

γ̂
2 ; 0n, rt, rt).

(8) Set U ← (g1, h)rt ·
∏n
i=1(z

ri+yi(χ)/Z(χ)
i /(z′i)

yi(χ)/Z(χ)).

(9) Output πsh ← ((ci1, c
γ
i2, ĉi1, ĉ

γ̂
i2)n−1i=1 , d1, d

γ
2 , d̂1, d̂

γ̂
2 , (πuv,i)

n
i=1, (π

∗
sm,i)

n−1
i=1 , πsm,d, U)

Note that we need to ensure Z(χ) 6= 0.

Next, we give an analysis of the simulated proof. Clearly, (d1, d
γ
2), (d̂1, d̂

γ̂
2), (ci1, c

γ
i2), and (ĉi1, ĉ

γ̂
i2) for

i ∈ [1 .. n− 1] are independent and random variables in G1 ×G2, exactly as in the real run of the protocol.

Moreover, the values (cn1, c
γ
n2) and (ĉn1, ĉ

γ̂
n2) are generated in the same way as in the real run of the
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protocol, and the unit vector and same-message arguments are generated exactly as in the honest case.
Thus, verification steps (4) to (5) hold.

After that, S defines U so that it satisfies the verification equations. Since U is uniquely defined by the
verification equation, it also has the same distribution as in the real protocol. Thus, we are now only left to
show that the verification equations in step (6) of the new shuffle argument hold. But

n∏
i=1

Ê(z′i, g
γyi(χ)
2 )/

n∏
i=1

Ê(zi, c
γ
12)

=

n∏
i=1

Ê(z′i, g
γyi(χ)
2 )/

n∏
i=1

Ê(zi, g
γ(riZ(χ)+yi(χ))
2 )

=Ê(

n∏
i=1

(z′i)
yi(χ), gγ2 )/Ê(

n∏
i=1

z
riZ(χ)+yi(χ)
i , gγ2 )

=Ê(

n∏
i=1

((z′i)
yi(χ)/Z(χ)/z

ri+yi(χ)/Z(χ)
i )), g

γZ(χ)
2 )

=Ê((g1, h), g
γrtZ(χ)
2 )/Ê((g1, h)rt ·

n∏
i=1

(z
ri+yi(χ)/Z(χ)
i /(z′i)

yi(χ)/Z(χ)), g
γZ(χ)
2 )

=Ê((g1, h), dγ2)/Ê(U, g
γZ(χ)
2 ) .

Thus, the verification equation (6a) holds. Analogously, the verification equation (6b) holds, and thus
the simulator has succeeded in generating an accepting argument that has the same distribution as the real
argument. ut

G Proof of Prop. 4 (Efficiency of Shuffle Argument)

Proof. CRS. The prover’s CRS of the unit vector argument consists of 4n+ 2 (resp., n+ 1) elements of G1

(resp., G2), while the verifier’s CRS consists of 2 / 4 / 1 elements of G1 / G2 / GT , respectively. The CRS of
the shuffle argument needs 2(n+1)+3 = 2n+5 additional elements of G1 and (n+1)+2 = n+3 additional
elements of G2 for the prover, and 2 (resp., (2n + 4)) additional elements of G1 (resp., G2) for the verifier.
Thus, the claim about the length of the CRS follows.

Communication. The communication complexity of the unit vector arguments (πuv,i)
n
i=1 is 2n − 1

elements of G1 (by the construction of cn1, we do not need to send cβn1), part of the same-message argument
π∗sm,i adds n− 1 elements of G1, and the same-message argument πsm,d adds 2 elements of G1. The shuffle
argument proper adds (2n+ 2) (resp., (2n)) elements of G1 (resp., G2), and hence the result.

Prover’s computational complexity. We write down the computation step-by-step:

(1) (ci1, c
γ
i2)n−1i=1 : commitments are of the form (ci1, c

γ
i2) = (g

P0(χ)
1 , g

γP0(χ)
2 )ri ·

∏n
i=1(g

Pi(χ)
1 , g

γPi(χ)
2 )ai . For an

honest prover ai ∈ {0, 1}, so n− 1 exponentiations (by ri) are needed in both G1 and G2.
(2) (ĉi1, ĉi2)γ)n−1i=1 : by a similar argument, requires n− 1 exponentiations in both G1 and G2.
(3) (πuv,i)

n
i=1: n two-wide exponentiations and n exponentiations in G1, which can be reduced by one

exponentiation, since from rn = −
∑n−1
i=1 ri we can compute cβn1 using only multiplications.

(4) (d1, d
γ
2): one (n+ 1)-wide multi-exponentiation in both G1 and G2,

(5) (d̂1, d̂
γ
2): one (n+ 1)-wide multi-exponentiation in both G1 and G2,

(6) (π∗sm,i, c
β
i1)n−1i=1 : for an honest prover, πuv,i = (π∗uv,i, c

β
i1) uses the same cβi1, so we only need to compute

π∗sm,i = (g
Ẑ(χ)/Z(χ)
1 )r̂ · g−r1 ·

∏n
i=1(g

(P̂i(χ)−yi(χ))/Z(χ)
1 )ai for i ∈ [1 .. n− 1]. Similar to π∗uv,i, this only needs

n− 1 exponentiations (using r̂ = r, and (g
Ẑ(χ)/Z(χ)
1 )r · g−r1 = (g

Ẑ(χ)/Z(χ)
1 /g1)r).

(7) πsm,d: one (n+ 2)-wide multi-exponentiation and one (n+ 1)-wide multi-exponentiation in G1,
(8) U (online): two (n+ 1)-wide multi-exponentiations in G1.
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For the sake of simplicity, assume that an (n + 2)-wide multi-exponentiations are computed by executing
one (n + 1)-wide multi-exponentiation and one exponentiation, and that a three-wide / two-wide multi-
exponentiation is as expensive as three / two exponentiations.

Thus, in total the prover has to execute
(i) (n− 1) + (n− 1) + (3n− 1) + 0 + 0 + (n− 1) + 1 + 0 = 6n− 3 exponentiations in G1,

(ii) 0 + 0 + 0 + 1 + 1 + 0 + 2 + 2 = 6 (n+ 1)-wide multi-exponentiations in G1,
(iii) (n− 1) + (n− 1) + 0 + 0 + 0 + 0 + 0 + 0 = 2n− 2 exponentiations in G2,
(iv) 0 + 0 + 0 + 1 + 1 + 0 + 0 + 0 = 2 (n+ 1)-multi-exponentiations in G2.

Thus we get 16n+ 3 exponentiations in total, only 8n− 5 of which are not part of a multi-exponentiation.
Verifier’s computational complexity. Each unit vector argument can be verified using 6 pairings.

However, for the n unit vector arguments we do not need to check the consistency of (cn1, c
γ
n2) or cβn1, saving

4 pairings.
The shuffle argument proper requires additional bilinear pairings :

(i) two to verify the consistency of (ĉi1, ĉ
γ̂
i2) for i ∈ [1 .. n− 1],

(ii) four to verify the consistency of (d1, d
γ
2) and (d̂1, d̂

γ̂
2),

(iii) two to verify π∗sm,i for i ∈ [1 .. n− 1],
(iv) four to verify the consistency of πsm,d,
(v) 8(n+ 1) to verify the step 6.

However, ê(g1, d
γ
2) and ê(g1, d̂

γ̂
2) are used in steps 5 and 6 of the verification, but only need to be computed

once. Thus, the shuffle argument adds 12n+ 10 pairings to the verifier’s 6n− 4 pairings for the n unit vector
arguments, which means 18n+ 6 pairings in total. ut

H SP Assumption

Assume that we have a symmetric pairing, i.e., G1 = G2 = G. The Simultaneous Pairing [GL07] assumption
states that for any n = poly(κ) and NUPPT adversary A,

Pr


gk := (p,G,GT , ê)← BP(1κ, n), g1 ←r G∗,χ←r Znp ,

(si)
n
i=1 ← A(gk, {(gχi1 , g

χ2
i

1 )}ni=1) : (si)
n
i=1 ∈ Gn∧

n∏
i=1

sχii =

n∏
i=1

s
χ2
i
i = 1 ∧ (∃i ∈ [1 .. n] : si 6= 1)

 ≈κ 0 .

The PSP assumption can be seen as a q-type variant of the SP assumption, where instead of n independent
random variables χi and χ2

i , one uses the values yi(χ) and ŷi(χ) for single random variable χ and public
polynomials yi(X), ŷi(X). The use of independent random variables makes the SP assumption conceptually
simpler; however, it means that the prover of the shuffle argument has a considerably longer secret key.
Finally, since the new efficient same-message argument does not guarantee that the randomizers used in two
commitments are equal, the adversary of the PSP assumption is allowed to output two non-one values t and
t̂. Due to the use of independent random variables χi and the use of specific “polynomials” χ2

i in second
“commitment”, in the case of [GL07] there exist an almost trivial same-message argument.

I Preliminaries: Knowledge Assumptions

We give the formal definitions of the knowledge assumptions introduced in Section 2.
Let 1 < d(n) < d∗(n) = poly(κ) be two functions. We say that BP is

– d(n)-PDL (Power Discrete Logarithm, [Lip12]) secure if for any n = poly(κ) and NUPPT adversary A,

Pr

[
gk← BP(1κ, n), (g1, g2, χ)←r G∗1 ×G∗2 × Zp :

A(gk, ((g1, g2)χ
i

)
d(n)
i=0 ) = χ

]
≈κ 0 .
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– (d(n), d∗(n))-PCDH (Power Computational Diffie-Hellman, [GJM02,Gro10b,GGPR13]) secure if for any
n = poly(κ) and NUPPT adversary A,

Pr

[
gk← BP(1κ, n), (g1, g2, χ)←r G∗1 ×G∗2 × Zp :

A(gk, ((g1, g2)χ
i

)i∈[0 .. d∗(n)]\{d(n)+1}) = gχ
d(n)+1

1

]
≈κ 0 .

– d(n)-TSDH (Target Strong Diffie-Hellman, [BB04,PGHR13]) secure if for any n = poly(κ) and NUPPT
adversary A,

Pr

 gk← BP(1κ, n), (g1, g2, χ)←r G∗1 ×G∗2 × Zp :

A
(
gk, ((g1, g2)χ

i

)
d(n)
i=0

)
=
(
r, ê(g1, g2)1/(χ−r)

)
∧ r 6= χ

 ≈κ 0 .

J Preliminaries: Zero Knowledge

Let R = {(u,w)} be an efficiently computable binary relation with |w| = poly(|u|). Here, u is a statement,
and w is a witness. Let L = {u : ∃w, (u,w) ∈ R} be an NP-language. Let n = |u| be the input length. For
fixed n, we have a relation Rn and a language Ln. Here, as in [GL07], since we argue about group elements,
both Ln and Rn are group-dependent and thus we add gk as an input to Ln and Rn. Let Rn(gk) := {(u,w) :
(gk, u, w) ∈ Rn}.

A non-interactive argument for a group-dependent relation family R consists of four PPT algorithms: a
setup algorithm setup, a common reference string (CRS) generator gencrs, a prover pro, and a verifier ver.
For gk← setup(1κ, n) (where n is the input length) and (crs = (crsp, crsv), td)← gencrs(gk) (where td is not
accessible to anybody but the simulator), pro(crsp;u,w) produces an argument π, and ver(crsv;u, π) outputs
either 1 (accept) or 0 (reject). Here, crsp (resp., crsv) is the part of the CRS given to the prover (resp., the
verifier). Distinction between crsp and crsv is not important from the security point of view, but in many
cases crsv is significantly shorter.

Π is perfectly complete, if for all n = poly(κ),

Pr

[
gk← setup(1κ, n), ((crsp, crsv), td)← gencrs(gk), (u,w)← Rn(gk) :

ver(gk, crsv;u, pro(gk, crsp;u,w)) = 1

]
= 1 .

Π is adaptively computationally sound for L, if for all n = poly(κ) and non-uniform probabilistic polynomial-
time A,

Pr

[
gk← setup(1κ, n), ((crsp, crsv), td)← gencrs(gk),

(u, π)← A(gk, crsp, crsv) : (gk, u) 6∈ Ln ∧ ver(gk, crsv;u, π) = 1

]
≈κ 0 .

We recall that in situations where the inputs have been committed by using a computationally bind-
ing trapdoor commitment scheme, the notion of computational soundness does not make sense (since the
commitments could be to any input messages). Instead, one should either proof culpable soundness or the
argument of knowledge property.

Π is adaptively computationally culpably sound [GL07,GOS12] for L, if for all n = poly(κ), for all
polynomial-time decidable binary relations Rguilt = {Rguilt

n } consisting of elements from L̄ and witnesses
wguilt, and for all non-uniform probabilistic polynomial-time A,

Pr

 gk← setup(1κ, n), ((crsp, crsv), td)← gencrs(gk),

(u, π, wguilt)← A(gk, crsp, crsv) :

(gk, u, wguilt) ∈ Rguilt
n ∧ ver(gk, crsv;u, π) = 1

 ≈κ 0 .

Π is an argument of knowledge, if for all n = poly(κ) and every non-uniform probabilistic polynomial-
time A, there exists a non-uniform probabilistic polynomial-time extractor X, such that for every auxiliary
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input aux ∈ {0, 1}poly(κ),

Pr

 gk← setup(1κ, n), ((crsp, crsv), td)← gencrs(gk),

((u, π);w)← (A||XA)(crsp, crsv; aux) :

(u,w) 6∈ R ∧ ver(crsv;u, π) = 1

 ≈κ 0 .

Here, the notation A||XA is defined in Sect. 2. As in the definition of PKE (see Sect. 2), we can restrict the
definition of an argument of knowledge to benign auxiliary information generators, where aux is known to
come from. For the sake of simplicity, we omit further discussion.

Π is perfectly witness-indistinguishable, if for all n = poly(κ), if gk ∈ setup(1κ, n), ((crsp, crsv), td) ∈
gencrs(gk), and ((gk, u, w0), (gk, u, w1)) ∈ R2

n, then the distributions pro(crsp;u,w0) and pro(crsp;u,w1) are
equal. Π is perfectly zero-knowledge, if there exists a probabilistic polynomial-time simulator S, such that
for all stateful non-uniform probabilistic polynomial-time adversaries A and n = poly(κ),

Pr


gk← setup(1κ, n),

((crsp, crsv), td)← gencrs(gk),

(u,w)← A(gk, crsp, crsv),

π ← pro(gk, crsp;u,w) :

(gk, u, w) ∈ Rn ∧ A(gk, π) = 1

 = Pr


gk← setup(1κ, n),

((crsp, crsv); td)← gencrs(gk),

(u,w)← A(gk, crsp, crsv),

π ← S(gk, crsp, crsv;u, td) :

(gk, u, w) ∈ Rn ∧ A(gk, π) = 1

 .

Here, the prover and the simulator use the same CRS. That is, we have same-string zero knowledge [DDO+01].
We recall that same-string statistical zero knowledge allows to use the same CRS an unbounded number of
times.
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