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Abstract:

In this article we present how we can use fast Fp2 multiplication to
speed-up arithmetic on elliptic curves. We use parallel computations
for multiplication in Fp2 which is not much slower than multiplica-
tion in Fp. We show two applications of this method.

In the �rst we show that using twisted Edwards curves over Fp2
with fast computable endomorphism (GLV-GLS method) may be
nowadays on of the fastest (or even the fastest) solution in hardware
applications.

In the second we show how we can speed-up point scalar multiplica-
tion on NIST P-224 and NIST P-256 curves. We use �eld extension
(Fp2) to �nd isomorphic to these curves twisted Hessian curves over
Fp2 . Our solution is faster than classic solutions up to 28:5% for
NIST P-256 and up to 27:2% for NIST P-224 if we consider solution
invulnerable for side channel attacks. We can also use di¤erent for-
mula for point doubling and points addition and then our solution is
faster up to 21:4% for NIST P-256 and up to 19:9% for NIST P-224
comparing to classic solutions.

Keywords: Field extension, twisted Hessian curves, GLV-GLS, twisted
Edwards curves, point scalar multiplication

1 Introduction

In 1999 NIST published in [1] its standard elliptic curve. From 1999 till now
has been published many e¢ cient methods for point scalar multiplication on
elliptic curves. Most of them are not applicable for NIST elliptic curves over
prime �elds.
In 2001 Gallant, Lambert and Vanstone proposed in [2] e¢ cient method

(GLV method) for fast point scalar multiplication for elliptic curves on which
exist fast computable endomorphism. In 2007 Edwards published �rst article
about his new idea of elliptic curve (Edwards curve, see [3]) and in the same
year Birkner et al. gave in [4] its generalization - twisted Edwards curve. In
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2009 Galbraith, Lin and Scott showed in [5] that GLV method may be applied to
many elliptic curves over Fp2 (GLS method). In 2011 there was presented four
dimensional GLV method (see [6], [7]). Today there are many other publications
which extend GLV-GLS methods.
What is the most important, GLV and GLS methods allow us to speed-

up point scalar multiplication only for special types of elliptic curves. In 2010
Ghosh et al. presented in [8] method of hardware parallel multiplication in Fp2
(in application to pairing) which is up to three times faster than classic methods
of multiplication in Fp2 . In 2011 Cheung et al. presented in [9] fast hardware
arithmetic in Fp2 using RNS method, also in application to pairing.
In 2010 Farashahi and Joye presented in [18] e¢ cient arithmetic on general-

ized Hessian curves. In 2015 Bernstein et. all presented in [16] new method for
fast arithmetic on twisted Hessian curves (twisted Hessian curves are isomorphic
to generalized Hessian curves). We found that we can speed-up point scalar mul-
tiplication on NIST P-224 and NIST P-256 curves using twisted Hessian curves
arithmetic over Fp2 . We can also use complete formula to prevent our solution
against side channel attacks.
This idea bases on similar method used by us in [17], when we used arithmetic

on (twisted) Edwards curve to speed-up arithmetic on NIST curves over Fp. New
solution which base on twisted Hessian curves, although is not applicable to all
NIST curves over Fp, ensures similar speed-up as using (twisted) Edwards curve
arithmetic over Fp3 but requires much less resources.
In this article we present how to connect these all techniques and use them

for construction of fast hardware point scalar multiplication for special types of
elliptic curves.
Firstly we present how we can use twisted Edwards curves over Fp2 with fast

computable endomorphism. Presented solution is faster than classic solutions
with similar level of security from �ve to nine times. We present method for
generation of such curves. We also propose to use this solution (or some similar)
in hardware applications of elliptic curve arithmetic.
Secondly we present how we can use twisted Hessian curves arithmetic over

Fp2 to speed-up computations on NIST P-224 and NIST P-256 curves. This
method is faster than classic solutions up to 28:5% for NIST P-256 and up to
27:2% for NIST P-224.

2 Arithmetic in Fp2

Every element in A 2 Fp2 may be written as A = a1x+ a0, where a0; a1 2 Fp.
Let�s A;B 2 Fp2 . And A = a1x + a0 and B = b1x + b0. Then A � B =

a1x + a0 + b1x + b0 = (a1 � b1)(mod p)x + (a0 � b0)(mod p). Addition and
subtraction are not costly operations. In hardware we are able to compute
them in only one processor cycle. Although fast Fp2 arithmetic is presented in
[8] to speed-up pairing, we show its di¤erent application. We also use some ideas
to speed-up this arithmetic for given irreducible polynomial. We also show how
we can make fast inversion of element in Fp2 , basing on idea presented in [11].
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2.1 Choosing of irreducible polynomial

The cost of multiplication and inversion depends on form of irreducible polyno-
mial we operate on. We prefer irreducible polynomials of form f(t) = t2 � c,
where c 2 Fp is small. Using such kind of irreducible polynomial decreases
amount of necessary computations.
The form of irreducible polynomial depends on the kind of prime number p.

Because we are interested in large primes, we need to consider three cases:

1. p � 3(mod 4). In this case it is easy to show that f(t) = t2+1 is irreducible
polynomial. If we use Legendre symbol

�
a
p

�
� a

p�1
2 (mod p) it is quite

obvious that for a = �1 we have
�
�1
p

�
� �1(mod p) and it means that �1

is non-quadratic residue mod p. It means that f(t) = t2 + 1 is irreducible
over Fp.

2. p � 5(mod 8). In this case we can show that f(t) = t2 � 2 is irreducible
polynomial. Using Legendre symbol we get

�
2
p

�
� �1(mod p) and thus

f(t) = t2 � 2 is irreducible over Fp.

3. p � 1(mod 8). In this case we need to �nd values �c with the smallest
bitlength using brutal searching method.

2.2 Multiplication

Multiplication is crucial operation in elliptic curve arithmetic. However it is not
the longest operation (the longest is inversion) during scalar point multiplication
we need to compute multiplication in Fp2 many times. Inversion we can compute
only once, at the end of all computations.
Let A;B 2 Fp2 where A = a1t + a0 and B = b1t + b0. Then A � B =

(a1t+ a0) (b1t+ b0) = a1b1t
2+(a1b0+a0b1)t+a0b0. We should remember that

t2 = �c (because t2 � c = 0). Then:
C = A �B = (a1b0 + a0b1)t+ a0b0 + ca1b1 = �c1t+ c0.
So:
c1 = a1b0 + a0b1
c0 = a0b0 � ca1b1

It is easy to see that we need to make 4 multiplications, 1 multiplication
by small constant and 2 additions in Fp. The number of processor cycles for
multiplication in Fp2 for jcj > 1is TM + dlog2 ce+ 1.
In the case when p � 3(mod 4) we can choose f(t) = t2+1 and then the cost

of multiplication is TM + 1 processor cycles. In the case p � 5(mod 8) we can
choose f(t) = t2 � 2 and then the cost of multiplication is TM + dlog2 ce+ 1 =
TM + 2 processor cycles.

Fortunately using Karatsuba algorithm we are able to decrease number of
multiplications.
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Figure 1: Scheme of multiplication method in Fp2 using classic method (for each
block x is the upper line, y is the lower line on input)

Let f(t) = t2 � c. Then:
L = (a1 + a0)(b1 + b0)
M = a1b1
N = a0b0
R = L�M �N = a1b0 + a0b1
Then:
A �B = (a1b0 + a0b1)t+ a0b0 � ca1b1 = Rt�Mc+N
And it easy to see that:
c1 = R and c2 = �Mc+N .
Of course we need to count 3 multiplications, 5 additions; 1 multiplication

by small constant.
Although in software applications multiplication in Fp2 is still much longer

than multiplication in Fp, in hardware we are able to do it in almost the same
time using parallelism.
The total number of processor cycles to make multiplication is MAXfTM +

2; TM + dlog2 ce + 1g (without initialization cycles). It is easy to see that the
smaller c we choose, the less operations we need to do.
In the case when p � 3(mod 4) we can choose f(t) = t2 + 1 and then the

cost of multiplication is MAXfTM + 2; TM + blog2 1c+ 1g = TM + 2 processor
cycles. In the case p � 5(mod 8) we can choose f(t) = t2 � 2 and then the cost
of multiplication isMAXfTM +2; TM +dlog2 2e+1g = TM +2 processor cycles.
As we can see, although using Karatsuba method decreases the resources we

need to use, in some situations increases time needed for making computations.
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Figure 2: Scheme of multiplication in Fp2 using Karatsuba method for jcj > 2

Figure 3: Scheme of multiplication in Fp2 using Karatsuba method for c = �2
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2.3 Inversion

It is possible for A 2 Fp2 to count its inversion A�1 by count one inversion of
element from Fp. We will show the method for irreducible polynomial of form
f(t) = t2 � c. The idea we base on may be found in [11].
Let�s write:

A =

�
a1
a0

�
, and A�1 =

�
b1
b0

�
.

If M =

�
a0 a1
�a1c a0

�
then

M �
�
b1
b0

�
=

�
a0 a1
�a1c a0

�
�
�
b1
b0

�
=

�
0
1

�
Coe¢ cients in matrix M may be taken from general form of element C =

A �B.
We will make transformation:

�
b1
b0

�
=

�
a0 a1
�a1c a0

��1
�
�
0
1

�
=M�1 �

�
0
1

�
Now we can do as follow: the determinant of matrix M is equal to:

det(M) = a20 � a21c
Then:

M�1 = 1
det(M)

�
a0 �a1
�a1c a0

�
And�

b1
b0

�
= 1

det(M)

�
a0 �a1
�a1c a0

�
�
�
0
1

�
= 1

det(M)

�
�a1
a0

�
We can compute it making substitutions:

1. D = a20

2. E = a21c

3. H = E +D = det(M)

4. H = H�1

5. b1 = �a1H

6. b0 = a0H

Of course to count inversion in Fp2 we need to count one inversion, 4 multi-
plications, 1 multiplication by small constant c and 1 addition in Fp.
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3 GLV and GLS methods

Elliptic curve cryptosystems are very popular nowadays. The most important
operations are point multiplication [k]P and multiexponentiation [k]P + [l]Q.
There are used di¤erent methods to compute [k]P when k vary and P is �xed
and di¤erent when both k and P vary.
Unfortunately decomposition is not so easy in the case when both n and

P vary. Fortunately for some types of elliptic curves there is possibility to
make decomposition of [k]P into [k]P + [k1]P1 using endomorphism. Because
we want to speed-up the computations, the chosen endomorphism should be
fast computable.
In [5] Galbraith, Lin and Scott found out that this method may be used to

speed-up computations on many elliptic curves over Fp2 . Elliptic curves over
Fp2 are less vulnerable for index calculus attacks than curves de�ned over Fpm
for m > 2.
Unfortunately operations in �eld extensions Fpm are much more computa-

tionally harder (and longer) than the same operations in Fp, especially inversion
and multiplication. It is hard to avoid this problem in software solutions but in
hardware we are able to make multiplication and inversion in Fp2 in almost the
same time like in Fp.
In [9] it is described how to make hardware multiplication in Fp2 using

RNS (Residue Number System) method. We propose an alternative method of
hardware implementation of operations in Fp2 using parallel computations. It
is generic method so any method of multiplication (for example RNS) may be
applied. Moreover, using this method we can make point scalar multiplication
2� 2:6 times faster comparing to methods using standard multiplication in Fp2
and 5� 9 times faster comparing to classic solutions for elliptic curves over Fh,
where h is prime number about twice longer than p. It is important that curves
over Fp2 and curves over Fh have then similar level of security.

4 Edwards curves and twisted Edwards curves

Edwards and twisted Edwards curves are described with many additional details
in [3], [4] and [13]. Below we present only the most important information about
Edwards and twisted Edwards curves.

4.1 Edwards and twisted Edwards curves

Twisted Edwards curve over �eld K with characteristic not equal 2 is given by
formula:
Et : ax

2 + y2 = 1 + dx2y2, where ad(a� d) 6= 0
For every twisted Edwards curve exists birationally equivalent short Weier-

strass curve but not for every short Weierstrass curve exists birationally equiv-
alent twisted Edwards curve. The sum of two points in a¢ ne coordinates
(x1; y1); (x2; y2) on curve Et is:
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P +Q = ( x1y2+y1x2
1+dx1x2y1y2

; y1y2�ax1x21�dx1x2y1y2 )

These formula is complete (or uni�ed) if a is square and d is non-square in
K.
Edwards curve has a = 1 and d 6= f0; 1g. For such curve it is easy to see that

point (0; 1) is the neutral element of addition law. Points (1; 0) and (�1; 0) have
order 4 and point (0;�1) has order 2. Point (�x; y) is negative to point (x; y).
Moreover, the presented addition law is uni�ed: it can be used to double a point
and works also for neutral element. If d is nonsquare in K then addition law is
complete (works for all pairs of inputs). Using Edwards addition law (especially
using inverted coordinates) requires much less multiplications than standard
coordinates systems on short Weierstrass curve (like projective coordinates).
Points addition on twisted Edwards curve in inverted coordinates requires 12

multiplications (9multiplications, 1 squaring and 2multiplications by constants)
and 7 additions/subtractions. Sometimes we can assume that Z1 = 1. Then
algorithm requires 1 multiplication less.
Point doubling requires 9 multiplications (3 multiplications, 4 squares, 2

multiplications by constants) and 6 additions/subtractions.
Moreover, in both algorithms if we put a = 1 then we obtain arithmetic

on Edwards curve and algorithm for point doubling and algorithm for points
addition require one multiplication less.
On the other hand, on short Weierstrass curve in projective coordinates we

need to compute for points addition 14 multiplications (12 multiplications and
2 squares) and 7 additions/subtractions (or 6 additions and one multiplication
by 2).
The point doubling on short Weierstrass curve requires 12 multiplications (5
multiplications, 6 squares and 1multiplication by constant) and 12 additions/subtractions
(7 additions/subtractions, 3 multiplications by 2 and 1 multiplication by 3).
Moreover, on Edwards and twisted Edwards curves we can use uni�ed arith-

metic (use addition formula both for addition and doubling) which is not possible
on short Weierstrass curve.

4.2 Endomorphism on twisted Edwards curves

Theorem. ([12], theorem 3, p. 8)
Let char(Fp) > 3 be prime number and let EE;a;d be a twisted Edwards

curve over Fp with p+ 1� t points. Let EtE;a;d over Fp2 be the quadratic twist
of EE;a;d(Fp2), then#EtE;a;d(Fp2) = (p�1)2+t2. Let rj#EtE;a;d(Fp2) be a prime
number such that r > 2q. Let � : EE;a;d ! EtE;a;d be the twisting isomorphism
de�ned over Fp4 . Let:
�tp = � � � � ��1.
For P 2 EtE;a;d(Fp2)[r], we have (�tp)2(P ) + P = O.
Proof:
by well-known Weil theorem, we have EE;a;d(Fp2) = (p + 1)2 � t2 and

EtE;a;d(Fp2) = (p � 1)2 + t2. Since r > 2p, hence r - #EE;a;d(Fp2) = (p +
1 � t)(p + 1 + t). Therefore by the assumption of the theorem, one have
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rj#EtE;a;d(Fp2) = #EtE;a;d(Fp2)#EE;a;d(Fp2) while r - #EtE;a;d(Fp4). This im-
plies that for P 2 EtE;a;d(Fp2)[r], �tp(P ) belongs to EtE;a;d(Fp2)[r]. It follows
that for P 2 EtE;a;d(Fp2)[r] there exists � 2 Z, such that �tp(P ) = [�]P .
By the de�nition as above, �tp(x; y) =

�
�

p�1
2 xp; yp

�
, where � 2 Fp2 is not a

square in Fp2 . And hence:�
�tp
�2
(x; y) =

�
�

p2�1
2 xp

2

; yp
2
�
. Since � 2 Fp2 is not square in Fp2 , so

�
p2�1
2 = �1. By the assumption of the theorem, P 2 EtE;a;d(Fp2), we have

xp
2

= x, yp
2

= y. Therefore,�
�tp
�2
(x; y) = (�x; y).

Using corollary 1 p. 5 from [5] we get that �2 + 1 � 0(mod r), so we can
easy precompute �.

4.3 Choosing proper curve and its parameters

It is easy to see that if we want to use GLV-GLS method we have to carefully
choose parameters of our twisted Edwards curve. We know that p � 1(mod 4).
Moreover, because equation �2 + 1 = 0(mod r) must have solution, it means
that r � 1(mod 4).
Because of these all assumptions it is easy to see that irreducible polynomial

which will generates Fp2 cannot be of form x2 + 1. It may be of the form:

1. x2 + 2 if p � 5(mod 8)

2. x2 � c, c 6= 1; 2 if p � 1(mod 8)

In the second case we will be supposed to use Karatsuba multiplication
method in Fp2 . In the �rst case we need to choose best solution for our appli-
cation.
We give our proposition of algorithm for searching twisted Edwards curves

over Fp2 which are proper for cryptographic solutions.

Algorithm: Generation of twisted Edwards curve parameters:
Input: Prime p for which p � 1(mod 4)

1. Find the smallest jdj for which:

(a) d 6= f0; 1g
(b) d is not-square in K

(c) r = #Et
4 is prime and r � 1(mod 4), where Et

E;
p
d;
p
d3
:
p
dx2 + y2 =

1 +
p
d3x2y2 over Fp2

(d) � =
p
�1(mod r) and (� = b

p
rc or r � � = b

p
rc)

2. Find G 2 Et
E;
p
d;
p
d3
(Fp2) for which #G = r
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3. � = d
1�p
4

4. if � = r � b
p
rc

5. � = ��

6. end if

7. if Et
E;
p
d;
p
d3
(Fp2) is not cryptographically secure go to 1.

Output: Parameters for twisted Edwards curve given by equation:EtE;a;d :
atx

2 + y2 = 1 + dtx
2y2 with parameters:

at =
p
d

dt =
p
d3

r = #Et
4

G = (xt; yt) for which Ord(G) = r
� = r � b

p
rc or � = b

p
rc

a = d
1�p
4

Note that if � = b
p
rc then [�]P = (�xp; yp) and if � = r � b

p
rc then

[�]P = �(�xp; yp) = (��xp; yp)
Example 1.
Let p = 1048589 be the prime number. We are looking for twisted Edwards

curve over Fp2 which is given by equation (see [12] p.9). We have Edwards curve
given by equation:
EE;1;d : x

2 + y2 = 1 + dx2y2 and twisted Edwards curve given by equation
Et
E;
p
d;
p
d3
:
p
dx2 + y2 = 1 +

p
d3x2y2

We choose d = 229 which is not-square in Fp. Then of course d is square in
Fp2 and

p
d = 361057t and

p
d3 = 892111t.

#Et is equal to 1099536793748. Then Et has torsion subgroups Z=2Z �
Z=549 768 396874Z. Because number 549 768 396874 is not prime, then we need
to �nd generator G0 of order equal to 274 884 198 437, because it is the biggest
prime order of any point on this curve. We can to do this �nding �rstly gen-
erator G of torsion subgroups Z=549 768 396874. Then G0 = [2]G has order
274 884 198 437. We should note, that Edwards and twisted Edwards curves
always have order of points group divisible by 4. Because r = Ord(G0) =
274 884 198 437 > 2p then twist Frobenius map on Et

E;
p
d;
p
d3
may be writ-

ten as �tp(x; y) = (d
1�p
4 xp; yp). Then for every P 2 Et

E;
p
d;
p
d3
(Fp2) there is�

�tp
�2
(x; y) = (d

1�p2
4 xp

2

; yp
2

). If d is not square in Fp and p � 1(mod 4), then
d
1�p2
4 = �1 in Fp2 . It means that if �tp(x; y) = (d

1�p
4 xp; yp) = [�]P , then�

�tp
�2
(P ) + P = OEt and �

2 + 1 � 0(mod r).
Then:
G0 = (620046t+ 978259; 716864t+ 443811)

� = d
1�p
4 = 1009596

� = 524294
One can note that b

p
rc = 524294 = �. It means that � is chosen optimal.
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4.4 Computing of endomorphism

We should see that we can count the endomorphism very fast. Let�s look that
if x = x1t+ x0 and y = y1t+ y0 then xp = (x1t+ x0)

p
= xp1t

p+ xp0 = x1t
p+ x0.

Because we make all computations modulo F (t) = t2 � c then we can easy �nd
out that for every k 2 Fp there is tk = (�c)b

k
2 ctkmod 2 over Fp2 . Then for k = p

we get tp = (�c)b
p
2 ctpmod 2 = �t. So �nally xp = x1tp + x0 = �x1t + x0. As

same: yp = �y1t+y0 and [�]P = [�](x; y) = [�](x1t+x0; y1t+y0) = (�xp; yp) =
(�(�x1t+ x0);�y1t+ y0). Finally:
[�]P = (�xp; yp) = (��x1t+ �x0;�y1t+ y0).
This endomorphism is very easy to compute and requires only two multipli-

cations in Fp.
Because we want to use this endomorphism to make decomposition of [k]P

into [k1]([�]P ) + [k0]P it would the best, if k1 and k0 would be of the same
bitlength. If we choose such � that �2 + 1 = r, then � = b

p
rc and �nally k1

and k0 will have the same bitlength (in average case).
The decomposition will be given then by formula [k]P =

�
k
�

�
([�]P ) +

[kmod�]P =
�
k
�

�
P1 + [kmod�]P .

In FPGA such decomposition will require additional component which would
be used to count both

�
k
�

�
and [kmod�]. Although it is not so much complicated

it will require additional resources and time.

4.5 �2 + 1 = r. Is it possible?

Our aim is to count both
�
k
�

�
and [kmod�] very fast. We can see that it would

be possible if � = 2s. Then
�
k
2s

�
we can count just shifting k for s position right

and [kmod2s] would be given by s least signi�cant bits of number k.
Because �2+1 � 0(mod r) then if � = 2s then (2s)2+1 = 22s+1 � 0(mod r).
If it is not necessary that both k1 and k0 are of the same bitlength, then

we can, for example, to search for � 2 [
bprc
4 ; 4 b

p
rc]. However, we should

remember then that one of k1; k0 will be longer than n
2 bits (of course if �

2 +
1 6= r) and then, even if we will count [k1]P1 and [k0]P0, even using parallel
computations one of these computations will require more time. That is why
we would like to �nd such � that �2 + 1 = r.
It is easy to see that if �2 + 1 = 22s + 1 = r (where r is prime number) it

implies that 2s = 2h and then 22s = 22
h

+1 = r must be Fermat prime number.
Fermat number Fn is given by formula 22

n

+ 1.
Unfortunately, there are only �ve such numbers F0; F1; F2; F3 and F4 which

are known to be prime. Moreover, even if there are some other Fermat prime
numbers they would be to big to use them in real applications and F0; F1; F2; F3
and F4 are to small.
Instead of this fact, let�s look that if � = 22

h�1
and �2+1 = 22

h

+1 = r and r
is Fermat prime number then k1 and k0 are of the same bitlength and we would
be able to compute k1 making shifting k and k2 getting the least signi�cant bits
of number k. It means that we would not have to make additional component
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which would require many resources and we would save some time, because
shifting is very fast operation.
We should also remember that these values we may get only for some primes

p. We should remember that:
#Et

E;
p
d;
p
d3
(Fp2) = (p� 1)2 + t2, where t 2 f�2

p
p+ 1; :::; 2

p
p+ 1g.

It means, that:
(p� 1)2 � #Et

E;
p
d;
p
d3
(Fp2) = 4r � (p� 1)2 + (2

p
p+ 1)2 = p2 � 2p+ 1 +

4p+ 4
p
p+ 1 = p2 + 2p+ 4

p
p+ 2

Unfortunately, that there are only (at most) three integers satisfying this
formula:
Let�s denote by pmax the biggest value for which formula is true, which means

that:
(pmax � 1)2 � #EtE;pd;pd3(Fp2max) so pmax �

q
#Et

E;
p
d;
p
d3
(Fp2max) + 1.

Let�s denote by pmin the smallest value for which formula is true. Then:
#Et

E;
p
d;
p
d3
(Fp2min) � p

2
min+2pmin+4

p
pmin+2 < (pmin+2)

2 = p2min+4pmin+

4, so pmin >
q
#Et

E;
p
d;
p
d3
(Fp2min)�2 and �nally pmin �

q
#Et

E;
p
d;
p
d3
(Fp2min)�

1
So p 2 f

q
#Et

E;
p
d;
p
d3
(Fp2) � 1;

q
#Et

E;
p
d;
p
d3
(Fp2);

q
#Et

E;
p
d;
p
d3
(Fp2) +

1g.
The only curve we found with the smallest possible #Et

E;
p
d;
p
d3
(Fp2) = 4r

was curve with p = 5 and � = 22
0

= 2. #Et
E;
p
d;
p
d3
(Fp2) = 20 = 5 �4. Of course

this curve is absolutely useless in real applications.

5 GLV-GLSmethod for twisted Edwards curves
over Fp2 in hardware implementations

Presented solution using parallel computations to speed-up multiplication in Fp2
seems to be very useful in hardware implementations. There is work [9] which
presents FPGA implementation of GLV method but it uses RNS method. RNS
method is very vulnerable for DPS blocks which we have in device. Moreover,
in our solution may be used any method of multiplication in Fp if only in device
will be enough resources for its implementation.

6 Speed-up

Our method may be used to speed up, especially hardware, implementations.
Comparing to others implementations, when operations in Fp2 were not made
parallel our solution may up to three time faster.
We know that point addition on twisted Edwards curve requires 12 multipli-

cations (8 multiplications, 1 squaring and 2 multiplications by constants) and 7
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additions/subtractions. Point doubling requires 9 multiplications (3 multiplica-
tions, 4 squares, 2 multiplications by constants) and 6 additions/subtractions.
We assume that addition requires one processor cycle.
Let TM be the number of processor cycles required for multiplication in Fp.

Then it is easy to count the number of processor cycles for other operation. In
table below we present comparison between our solution, solution with standard
method of multiplication in Fp2 and classic solution of elliptic curve in short
Weierstrass form over Fh where h is about twice longer than p. We consider
inversion method using fast exponentiation, because this method is easy to
implement in hardware and not need many additional resources. Moreover,
inversion is counted only once, at the end of point scalar multiplication. We
consider that we compute inversion by fast exponentiation method (FE).

Operation Ours p � 1(mod 8)
Multiplication in Fp TM + dlog2 ce+ 1

Inversion in Fp using FE 3
2 dlog2(p� 2)eTM � 3

2nTM
Inversion in Fp2 TM

�
3
2n+ 4

�
+ dlog2 ce+ 1

Points addition 12TM + 12 dlog2 ce+ 19
Point doubling 9TM + 9 dlog2 ce+ 15

multiplication ununi�ed n (7:5TM + 7:5 dlog2 ce+ 12:25)
multiplication ununi�ed

with inversion
TM (9n+ 4) + dlog2 ce

�
1 + 15

2 n
�
+

+1 + 49
4 n

Multiplication uni�ed n (9TM + 9 dlog2 ce+ 14:25)
multiplication uni�ed

with inversion
TM (4 + 10:5n) + (9n+ 1) dlog2 ce+

+14: 25n+ 1

Table 1. Number of processor cycles for operations in Fp2 using our method for p � 1(mod 8)
Operation Ours p � 5(mod 8)

Multiplication in Fp TM + 2
Inversion in Fp using FE 3

2 dlog2(p� 2)eTM � 3
2nTM

Inversion in Fp2
�
3
2n+ 4

�
TM + 2

Points addition 12TM + 31
Point doubling 9TM + 24

multiplication ununi�ed n (7:5TM + 19:75)
multiplication ununi�ed

with inversion
(4 + 9n)TM + 19: 75n+ 2

Multiplication uni�ed n (9TM + 23:25)
multiplication uni�ed

with inversion
(4 + 10:5n)TM + 23: 25n+ 2

Table 2. Number of processor cycles for operations in Fp2 using our method for p � 5(mod 8)
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Operation Standard
Multiplication in Fp 3TM + 4

Inversion in Fp using FE 3
2 dlog2(p� 2)eTM � 3

2nTM
Inversion in Fp2

�
3
2n+ 4

�
TM + 2

Points addition 36TM + 55
Point doubling 27TM + 42

Multiplication ununi�ed n (22:5TM + 34:75)
Multiplication ununi�ed

with inversion
(4 + 24n)TM + 34:75n+ 2

Multiplication uni�ed n (27TM + 41:25)
Multiplication uni�ed

with inversion
(4 + 28:5n)TM + 41:25n+ 2

Table 3. Number of processor cycles for operations in Fp2 using standard multiplication method

Operation Classic
Multiplication in Fp 2TM (because log2 h � 2 log2 p)

Inversion in Fh using FE 3 dlog2(h� 2)eTM � 6nTM
Points addition 28TM + 14
Point doubling 24TM + 24

Multiplication ununi�ed n (76TM + 62)
Multiplication ununi�ed

with inversion
n (82TM + 62)

Multiplication uni�ed impossible
multiplication uni�ed

with inversion
impossible

Table 4. Number of processor cycles for operations in Fh using classic method ( log2 h � 2 log2 p = 2n)
Method cycles % of classic method
Ours p � 1(mod 8)

ununi�ed
TM (9n+ 4)+

+ dlog2 ce
�
1 + 15

2 n
�
+ 1 + 49

4 n
Depends on jcj

Ours p � 1(mod 8)
uni�ed

TM (4 + 10:5n)+
+(9n+ 1) dlog2 ce+ 14: 25n+ 1

Depends on jcj

Ours p � 5(mod 8)
ununi�ed

(4 + 9n)TM + 19: 75n+ 2 11:0% � Nc � 20:0%

Ours p � 5(mod 8)
uni�ed

(4 + 10:5n)TM + 23: 25n+ 2 12:8% � Nc � 23:4%

Standard ununi�ed (4 + 24n)TM + 34:75n+ 2 29:3% � Nc � 48:4%
Standard uni�ed (4 + 28:5n)TM + 41:25n+ 2 34:8% � Nc � 48:4%
Classic n (79TM + 62) Nc = 100%

Table 5. Comparison of mutliplication methods with inversion at the end of computations

7 Twisted and generalized Hessian curves
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7.1 Generalized Hessian curve

Generalize Hessian curves are described in [18]. Generalized Hessian curve
EG;c;d over �eld F is given by equation:
In a¢ ne coordinates EG;c;d : x3 + y3 + c = dxy
or by

EG;c;d : X
3+Y 3+ cZ3 = dXY Z in projective coordinates. There is require-

ment that c
�
27c� d3

�
6= 0.

If c = 1 then EG;1;d : x3 + y3 + 1 = dxy is Hessian curve.
The inversion of P = (x1; y1) is �P = (y1; x1) in a¢ ne coordinates
In projective coordinates neutral element is (1;�1; 0) and inversion of P =

(X1; Y1; Z1) is point �P = (Y1; X1; Z1). We can use on generalized Hessian
curve complete addition formula over Fq for example always when q � 1(mod 3)
and c is not cube in Fq.
Addition formula on generalized Hessian curve requires 13 multiplications

(12 multiplications by vary elements and 1 multiplication by constant) and 3
additions/subtractions:
Doubling formula requires (for p 6= 2) takes 9 multiplications (7 multipli-

cations by vary elements, 1 square and 1 multiplication by constant) and 14
additions/subtractions.

7.2 Twisted Hessian curves

Twisted Hessian curves are described in [16] by Bernstein et. all.
Twisted Hessian curve over �eld K is given by equation:
EH;a;d : ax

3 + y3 + 1 = dxy with special point (0;�1) in a¢ ne coordinates
or:
aX3 + Y 3 + Z3 = dXY Z in projesctive coordinates with special point

(0;�1; 1).
Elements a; d 2 K and a(27a� d3) 6= 0.
If a = 1 then EH;a;d : ax3 + y3 + 1 = dxy is Hessian curve
On twisted Hessian curve we can use fast arithmetic. Moreover, we can use

complete formula (the same formula for all operations: points addition, point
doubling etc.) on twisted Hessian curve over Fq if q � 1(mod 3) and a i not
cube in Fq.
Arithmetic on twisted Hessian curves is described with all details in [16].
Best complete addition formula requires 12 multiplications (11 multiplica-

tions of vary elements and 1multiplication by constant) and 17 additions/subtractions.
We can also use complete addition formula which requires 13 multiplications

(12 multiplications of vary elements and 1 multiplication by constant) and 3
additions/subtractions.
Because we assume that in Fq multiplication requires the same time as

square, we can use di¤erent formulas for doubling if we need not complete
formula.
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We can choose doubling with cost of 9 multiplications (7 multiplications of
vary elements, 1 square, 1 multiplication by constant) and 11 additions (we as-
sume that for doubling and tripling we use addition of elements). This formulas
may be found in [16], p. 19-20. There is requirement that 2 6= 0 in the �eld.
However generalized Hessian curves and twisted Hessian curves are isomor-

phic, on twisted Hessian curves we can use a little bit faster arithmetic.

7.3 Isomorphism between twisted Hessian curves and el-
liptic curves in shortWeierstrass form over �nite �elds

Let�s consider that we want to compute on elliptic curve EW;A;B(Fq) : y2 = x3+
Ax + B and generator PW;A;B point QW;A;B = [k]PW;A;B in short Weierstrass
form we can �nd isomorphic twisted Hessian curve if and only if 3j#EW;A;B(Fq)
and q � 1(mod 3), what means that there is point of order 3 on EW;A;B(Fq).
Of course none of elliptic curves over Fp for which #EW;A;B(Fp) is prime has
isomorphic twisted Hessian curve over Fp.
It is easy to see that for some elliptic curves over Fp for which #EW;A;B(Fp)

is prime we will be able to �nd for #EW;A;B(Fp2) subgroup isomorphic to this
curve on twisted Hessian curve over Fp2 .
Let�s see, thet if #EW;A;B(Fp) = p + 1 � t over Fp then #EW;A;B(Fp2) =

(p + 1)2 � t2 over Fp2 . It means that there is possibility that #EW;A;B
�
Fp2
�

is divisible by 3. For large p of course p2 � 1(mod 3). It means that if
3j#EW;A;B(Fp2), then we can make operations on twisted Hessian curve over
Fp2 instead of short Weierstrass curve over Fp.
We checked this property for NIST elliptic curves over Fp. We found that

for NIST P-224 and NIST P-256 we can �nd twisted Hessian curve over Fp2
isomorphic to EW;A;B(Fp2).
Now we will show how to �nd such twisted Hessian curve:
Let�s suppose that we have given triangular elliptic curve ETR;a;d : y2 =

dxy + ay = x3 over Fp2 , where a; d 2 Fp. We can make transformations:

(y + dx+a
2 )2 =

�
x+ d2

12

�3
+
�
da
2 �

d4

48

��
x+ d2

12

�
� d2

12

�
da
2 �

d4

48

�
+ a2. If:

EW;A;B : y
2 = x3 +Ax+B then:

x = x+ d2

12

y = y + dx+a
2

A = da
2 �

d4

48

B = �d2

12A+ a
2

For elliptic curves over Fp we can extend �eld form Fp to Fp2 . Then of course
coe¢ cients of such curve over �eld extension stil belong to Fp. Then If we know
A;B 2 Fp and we want to �nd out a; d 2 Fp2 we need to make computations
below:
d is one of roots of polynomial:
W (s) = �1

6912s
8 � 1

24As
4 �Bs2 +A2

then a = (A+ d4

48 )
2
d
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It is easy to see that in projective coordinates ETR;a;d : VW (V + dU + aW ) =
U3:
Then for triangular curve ETR;a;b we can easy �nd out isomorphic twisted

Hessian curve:
EH;(d3�27a);3d : (d

3 � 27a)X3 + Y 3 + Z3 = 3dXY Z
and
X = U
Y = !(V + dU + aW )� !2V � aW
Z = !2 (V + dU + aW )� !V � aW
where ! is not trivial cubic root from 1 and X;Y; Z; ! 2 Fp2
Now we can use fast arithmetic (or complete arithmetic if someone wants to

have solution invoulnerable for side channel attacks) to count QH;(d3�27a);3d =
[k]PH;(d3�27a);3d on isomorphic twisted Hessian curve instead of on short Weier-
strass curve.
After computations of QH;(d3�27a);3d = (XQ; YQ; ZQ) we need to back on

EW;A;B over Fp to point onQW;A;B = (xQ; xQ) (in a¢ ne coordinates) on EW;A;B
over Fp.
Firstly we �nd point on triangular curve QTR;a;d = (UQ; VQ;WQ):
UQ = XQ
VQ = �(dXQ + !YQ + !2ZQ)=3
WQ = �(dXQ + YQ + ZQ)=(3a)
Finally:
xQ =

UQ
WQ

+ d2

12

yQ =
VQ
WQ

+ dx+a
2

So QW;A;B = (xQ; yQ) = [k]PW;A;B is the result. Now we have point on
EW;A;B and of course xQ; yQ 2 Fp.

7.4 Speed-up for NIST curves

Using presented ideas we are able to speed-up point scalar multiplication on
two NIST curves over Fp. These curves are NIST P-224 and NIST P-256. For
others NIST curves over large prime �elds the smallest �eld extension to get
isomorphic twisted Hessian curve is:
- 8 for NIST P-192 and NIST P-384
- 4 for NIST P-521
Because we showed in [17] that for elliptic curves for which order of points

group is prime number we can always �nd 2-isogenous twisted Edwards curve
over Fp3 we will be interested in isomorphic twisted Hessian curves only if degree
of �eld extension will be at most 2.

7.4.1 NIST P-224

For NIST P-224 we can �nd twisted Hessian curve over Fp2 which has subgroup
isomorphic to NIST P-224.
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We can use irreducible polynomial of form F (t) = t2 + 11 for arithmetic in
Fp2 . Multiplication using such polynomial requires then TM + dlog2 11e + 1 =
TM + 5 processor cycles, where TM is number of processor cycles required for
multiplication in Fp.

7.4.2 NIST P-256

For NIST P-224 we can �nd twisted Hessian curve over Fp2 which has subgroup
isomorphic to NIST P-224.
We can use irreducible polynomial of form F (t) = t2 + 1 for arithmetic in

Fp2 . Multiplication using such polynomial requires then TM+2 processor cycles,
where TM is number of processor cycles required for multiplication in Fp.

7.5 Comparison with other methods of point scalar mul-
tiplication

In [17] we presented fast method of point scalar multiplication on all NIST
curves over Fp using (twisted) Edwards curves over Fp3 . Using this solution
it is possible to use complete formula to protect device against side channel
attacks. Unfortunately, arithmetic in Fp3 is much more complicated. We are
able to do this arithmetic only a little bit slower than arithmetic in Fp but such
hardware solutions require many resources.
In this case arithmetic on twisted Hessian curves may be very interesting,

because:
a) It is faster than classic arithmetic on NIST curves in short Weierstrass

form over Fp in hardware
b) It allows us to use complete formula as solution presented in [17]
c) It requires much less resources than solution from [17] but still more

than for short Weierstrass form over Fp (we estimate that using twisted Hessian
curves over Fp2 requires from two to three times more resources)
We show comparison of this three solutions below for each of curves (NIST

P-224 and NIST P-256):
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Curve tHc over Fp2 SWC over Fp
Multiplication TM + 5 TM

Inversion in Fp using FE 3
2 dlog2(p� 2)eTM � 336TM 336TM

Inversion in Fp2 340TM + 1706 -
Points addition 12TM + 77 14TM + 7
Point doubling 9TM + 56 12TM + 12

multiplication ununi�ed 3248TM + 21 168 4256TM + 3472
multiplication ununi�ed

with inversion
3588TM + 22 874 4592TM + 3472

Multiplication uni�ed 4032TM + 25 872 5824TM + 4256
multiplication uni�ed

with inversion
4372TM + 27578 6160TM + 4256

Table 6. Comparison of number of processor cycles for twisted Hessian curve (tHc)
over Fp2 and short Weierstrass curve (SWC) over Fp for NIST P-224

Curve tHc over Fp2 SWC over Fp
Multiplication TM + 2 TM

Inversion in Fp using FE 3
2 dlog2(p� 2)eTM � 384TM 384TM

Inversion in Fp2 388TM + 390 -
Points addition 12TM + 29 14TM + 7
Point doubling 9TM + 20 12TM + 12

multiplication ununi�ed 3712TM + 8832 4864TM + 3968
multiplication ununi�ed

with inversion
4100TM + 9222 5248TM + 3968

Multiplication uni�ed/ladder 4608TM + 11 136 6656TM + 4864
multiplication uni�ed/ladder

with inversion
4996TM + 11 526 7040TM + 4864

Table 7. Comparison of number of processor cycles for twisted Hessian curve (tHc)
over Fp2 and short Weierstrass curve (SWC) over Fp for NIST P-256

Npc is number of processor cycles needed for operation.
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Method cycles % of SWC method
tHc over Fp2

NIST P-224, ununi�ed
3588TM + 22874 80:09%Npc1 �

SWC over Fp
NIST P-224

4592TM + 3472 Npc1

tHc over Fp2
NIST P-224, uni�ed

4372TM + 27578 72:75%Npc2 �

SWC over Fp
NIST P-224, ladder

6160TM + 4256 Npc2

tHc over Fp2
NIST P-256, ununi�ed

4100TM + 9222 78:58%Npc3

SWC over Fp
NIST P-256

5248TM + 3968 Npc3

tHc over Fp2
NIST P-256, uni�ed

4996TM + 11 526 71:41%Npc4 �

SWC over Fp
NIST P-256, ladder

7040TM + 4864 Npc4

Table 8. Comparison of mutliplication methods with inversion at the end of computations

We also made assumptions that to get device involnurable for side channel
attack, we can use Montgomery ladder for point scalar multiplication on short
Weierstrass curve over Fp.
It is not good idea to use twisted Hessian curves over Fp2 in situations when

multiplication is very short, because we have to do then many additions (in
worst case, when multiplication takes 1 processor cycle, it is almost 3:3 times
slower for NIST P-224 and almost 1:5 times for NIST P-256).
Finally, if multiplication is not extremely short, we can make point scalar

multiplication much faster using twisted Hessian curves over Fp2 than on short
Weierstrass curve over Fp (in the best case up to 28:59% for long multiplication
and using complete formula instead of Montgomery ladder). We can also see
that for NIST P-256 our method is more e¢ cient than for NIST P-224, because
for NIST P-256 we can use irreducible polynomial of form F (t) = t2 + 1, which
ensure very fast operations in Fp2 .
This solution gives very similar results for these curve as we got in [17] but

now we require much less resources.

8 Conclusion

We showed that using Fp2 may be very good idea if we want to speed-up hard-
ware implementation of point scalar multiplication on elliptic curves. Firstly
we proposed to use twisted Edwards curve over Fp2 with fast computable endo-
morphism using fast Fp2 arithmetic. This solution is from 5 to 9 times faster
than classic solutions on short Weierstrass curves with similar level of security.
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Secondly we showed how we can �nd for some elliptic curves with cofactor 1
isomorphic twisted Hessian curves in �elds extension. For two NIST curves over
large prime �elds: NIST P-224 and NIST P-256 the degree of such extension is
2 so we can easily use twisted Hessian curve arithmetic over Fp2 . Such solution
is faster than classic solutions up to 28:5% for NIST P-256 and up to 27:2% for
NIST P-224 if we consider solution invulnerable for side channel attacks. We
can also use di¤erent formula for doubling and addition and then our solution is
faster up to 21:4% for NIST P-256 and up to 19:9% for NIST P-224 comparing
to classic solutions.
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