
Cryptanalysis of HMAC/NMAC-Whirlpool

Jian Guo1, Yu Sasaki2, Lei Wang1, and Shuang Wu1

1 Nanyang Technological University, Singapore.
2 NTT Secure Platform Laboratories, Japan.

ntu.guo@gmail.com, sasaki.yu@lab.ntt.co.jp, {wang.lei,wushuang}@ntu.edu.sg

Abstract. In this paper, we present universal forgery and key recovery attacks on the most popular
hash-based MAC constructions, e.g., HMAC and NMAC, instantiated with an AES-like hash function
Whirlpool. These attacks work with Whirlpool reduced to 6 out of 10 rounds in single-key setting.
To the best of our knowledge, this is the first result on “original” key recovery for HMAC (previous
works only succeeded in recovering the equivalent keys). Interestingly, the number of attacked
rounds is comparable with that for collision and preimage attacks on Whirlpool hash function
itself. Lastly, we present a distinguishing-H attack against the full HMAC- and NMAC-Whirlpool.

Key words: HMAC, NMAC, Whirlpool, key recovery, universal forgery

1 Introduction

AES (Advanced Encryption Standard) [6] is the probably most used block cipher nowadays, and it also
inspires many designs for other fundamental primitives of modern cryptography, e.g., hash function. As
cryptographic algorithms for security applications, AES and AES-like primitives should receive continuous
security analysis under various protocol settings. This paper discusses the security evaluation of these
primitives in one notable setting; the MAC (Message Authentication Code) setting.

A MAC is a symmetric-key construction to provide integrity and authenticity for data. There are two
popular approaches to build a MAC. The first approach is based on a block cipher or a permutation,
e.g., the well-known CBC (Cipher Block Chaining) MAC [1]. Such designs with an AES-like block cipher
(or permutation) include CMAC-AES [28], PC-MAC-AES [19], ALPHA-MAC [7] and PELICAN-MAC [8]. A series
of analysis results have been published on these AES-like block ciphers (or unkeyed permutations) under
the CBC MAC setting. Refer to [12, 13, 32, 4, 9]. From a high-level view, cryptanalysts have managed to
extend several analysis techniques devised on block cipher itself to also work in the CBC MAC setting,
e.g., [32, 9] use the impossible differential attack. The second approach is based on a hash function. Such
designs with an AES-like hash function include HMAC-Whirlpool and HMAC-Grøstl. Surprisingly, there
is NO algorithmic analysis result yet on these AES-like hash functions in the MAC setting to our best
knowledge, though a side-channel attack was published on HMAC-Whirlpool [33].

We briefly discuss the difficulty of applying the analysis techniques, which are devised to analyze
public AES-like hash functions or to analyze AES-like block ciphers in the CBC MAC setting, to evaluate
AES-like hash functions under the hash-based MAC setting. More precisely, we make a comparison of
their model from an attacker’s view by focusing on the underlying iterated small primitives; compression
function of a hash function and block cipher of CBC MAC, which is also explained in Figure 1. A few new
notations are introduced here: x is an internal state after processing previous message blocks, m is a
current message block, y is an updated internal state, k is a secret key of block cipher, F is a compression
function, and E is a block cipher.

For a hash function in public setting and in MAC setting, the main difference from an attacker’s
view is that x and y are public in the former setting, but are secret in the latter setting. Note that
the effective analysis techniques rebound attack [18] and splice-and-cut preimage attack [25] on AES-like
hash functions in public setting use a start-from-the-middle approach, which requires to know and to
control the internal values of the compression function, and thus requires that x is public to the attacker.
Therefore these techniques cannot be applied trivially in MAC setting.

For CBC MAC and hash-based MAC, the main difference is how a message block is injected to an internal
state. CBC MAC uses a simple XOR sum x ⊕m, while hash-based MAC usually compresses x and m in a
complicated process, e.g., the Miyaguchi-Preneel (MP) scheme Ex(m)⊕m⊕x. It affects the applicability
of differential cryptanalysis. The attacker is able to derive the internal state difference ∆x in the CBC MAC

setting (i.e., randomize message block m to find a pair m and m′ that leads to a collision on the input to

c©IACR 2013. This article is the final version submitted by the authors to the IACR and to Springer-Verlag on 9 September
2013. The version published by Springer-Verlag is available at http://dx.doi.org/10.1007/978-3-642-42045-0_2.

Fig. 1. Comparison of attack models

E detectable from the colliding MAC outputs, and derive ∆x = m⊕m′). On the other hand, the internal
state difference cannot be derived in the hash-based MAC setting except the collision case ∆x = 0, which
sets a constraint on the differentials of the underlying block cipher that can be exploited by an attacker.

This paper gives the first step on the algorithmic security evaluation of AES-like hash functions in
the hash-based MAC setting. The main attack target is the Whirlpool hash function in the HMAC setting,
which is motivated by the fact that both schemes are internationally standardized.

Whirlpool [24] was proposed by Barreto and Rijmen in 2000. Its compression function is built from an
AES-like block cipher following Miyaguchi-Preneel mode. Whirlpool has been standardized by ISO/IEC,
and has been implemented in many cryptographic software libraries such as FreeOTFE and TrueCrypt.
Its security has been evaluated and approved by NESSIE [20]. The first cryptanalysis result was published
by Mendel et al. in 2009 [18], which presented a collision attack on 4-round Whirlpool hash function
(full version: 10 rounds). Later Lamberger et al. extended the collision attack to 5 rounds [16]. After
that, Sasaki published a (second) preimage attack on 5-round Whirlpool hash function in 2011 [25], and
the complexity of his attack was improved by Wu et al. in 2012 [31]. Later Sasaki et al. extended the
preimage attack to 6 rounds [27]. In addition to hash function attacks, several cryptanalysis results on
the compression function of Whirlpool have also been published [16, 27], and particularly a distinguisher
on the full compression function was found [16].

HMAC [2] was proposed by Bellare et al. in 1996. It has been standardized by ANSI, IETF, ISO and
NIST, and widely deployed in SSL, TLS and IPsec. HMAC based on a hash function H takes a secret key
K and a message M as input and is computed by

HMAC(K,M) = H(K ⊕ opad ‖ H(K ⊕ ipad ‖M)),

where ipad and opad are two different public constants. HMAC is always viewed as a single-key variant of
NMAC [2]. NMAC based on a hash function H takes two keys; the inner key Kin and the outer key Kout,
and a message M as input, and is computed by

NMAC(Kout,Kin,M) = HKout
(HKin

(M)),

where the function HKin
(·) stands for the hash funtion H with its initial value replaced by Kin, and

similarly for HKout
(·). The internal states F (IV,K ⊕ opad) and F (IV,K ⊕ ipad) of HMAC is equivalent

to the Kout and the Kin of NMAC respectively, where F is the compression function and IV is the public
initial value of H . This paper refers F (IV,K ⊕ opad) and F (IV,K ⊕ ipad) to as the equivalent outer
key and the equivalent inner key respectively. Note that if these two equivalent keys are recovered, the
attacker will be able to forge any message, resulting in a universal forgery attack on HMAC.

Our contribution. We present universal forgery (i.e., recover the two equivalent keys) and key recovery
attacks on HMAC based on round-reduced Whirlpool, and a distinguishing-H attack on HMAC based on full
Whirlpool. These attacks are also applicable to NMAC based on Whirlpool. All the results are summarized
in Table 1. Interestingly, our attacks on the Whirlpool hash function in HMAC and NMAC setting reach
attacked round numbers comparable to that in the public setting (even with respect to classical security
notions; forgery and key recovery in MAC setting and collision and preimage attacks in public setting).

For HMAC and NMAC based on 5-round Whirlpool, we generate a structured collision on the first
message block of the first call of hash function, which can be detected from the MAC output collisions
and verified by the length extension property. For the structured collision, we know the differential path
inside the block cipher EKin

. Based on it, we apply a meet-in-the-middle attack to recover the value of

c©IACR 2013. This article is the final version submitted by the authors to the IACR and to Springer-Verlag on 9 September
2013. The version published by Springer-Verlag is available at http://dx.doi.org/10.1007/978-3-642-42045-0_2.

Table 1. Summarization of our results. These results are based on the minimization of max{data, time, memory}.
More tradeoffs towards minimizing each parameter of data, time and memory are provided in the paper.

Our Result Summarization

Attack Target #Rounds Attack mode
Complexity

Reference
Time Memory Data

HMAC-Whirlpool 5 universal forgery 2402 2384 2384 Section 3
5 key recovery 2448 2377 2321 Section 3
6 universal forgery 2451 2448 2384 Section 4
6 key recovery 2496 2448 2384 Section 4

10 (full) distinguishing-H 2256 2256 2256 Section 5
10 (full) distinguishing-H 2384 2256 2384 [17]

NMAC-Whirlpool 5 key recovery 2402 2384 2384 Section 3
6 key recovery 2451 2448 2384 Section 4

10 (full) distinguishing-H 2256 2256 2256 Section 5
10 (full) distinguishing-H 2384 2256 2384 [17]

Previous best results on Whirlpool hash function

Whirlpool 5 collision attack 2120 264 − [16]
6 preimage attack 2481 2256 − [27]

Kin. After that, we apply two attacks. One is to recover the value of Kout, which results in a universal
forgery attack on HMAC and a full-key recovery attack on NMAC. The attack of recovering Kout is similar
with that of recovering Kin, except the procedure of finding target pairs. Instead of generating collisions
as for recovering Kin, we will first recover the values of an intermediate chaining variable of the outer
hash function, and then find a near collision on this intermediate chaining variable. The other attack
is to recover the key of HMAC. Recall that Kin = F (IV,K ⊕ ipad), recovering K from Kin is similar to
inverting F (IV, ·) to find a preimage of Kin. Thus we apply an attack similar with the splice-and-cut
preimage attack to recover K from Kin. To our best knowledge, this is the first result of recovering the
(original) key of HMAC, while previous results [11, 22, 23, 29] only succeeded in recovering the equivalent
keys.

We investigate the extension by one more round, namely 6-round Whirlpool, and find an interesting
observation. More precisely, Kout can be recovered if a value of an intermediate chaining variable in the
first call of hash function is recovered or leaked. Differently from the above attacks on 5 rounds, the
procedure is based on generating a multi-near-collision on an intermediate chaining variable of the outer
hash function. After Kout is recovered, we apply two attacks. One is to recover Kin, which results in a
universal forgery attack on HMAC and a full-key recovery attack on NMAC. The other attack is to recover
the key of HMAC. From a high-level overview, our observation reduces the problem of breaking the classical
security notions (with significant impacts) universal forgery and key recovery to the problem of breaking
a weak security notion (usually with rather limited impacts) internal-state recovery for HMAC and NMAC

based on 6-round Whirlpool. We stress that such a reduction is not trivial. As an example, an internal-
state recovery attack was published on HMAC/NMAC-MD5 in the single-key setting back to 2009 [30], but
no universal forgery or key recovery attack is published on HMAC/NMAC-MD5 in the single-key setting
yet to our best knowledge. Moreover, very recently Leurent et al. find a generic single-key internal-state
recovery attack on HMAC and NMAC [17]. Combing their attack with our observation, we get universal
forgery and key recovery attacks on HMAC and NMAC based on 6-round Whirlpool.

We would like to point out that the above universal forgery and key recovery attacks on round-
reduced Whirlpool are also applicable in other hash-based MAC setting. More precisely, we can attack
LPMAC and secret-suffix MAC with 6-round Whirlpool and Envelop MAC with 5-round Whirlpool, all
in the single-key setting.

Lastly, we find a distinguishing-H attack on HMAC and NMAC with full Whirlpool, which in fact has
wide applications besides Whirlpool. Recall HMAC and NMAC make two calls of hash function, and the
outer hash function takes the inner hash outputs as input messages. Thus the outer hash function always
processes n bits long messages, where n is the bit size of hash digests. Note that usually the length
and the value of the padding bits are solely determined by the bit size of an input message. Therefore
it is possible that the last block of the outer hash function of HMAC and NMAC contains fully padding

c©IACR 2013. This article is the final version submitted by the authors to the IACR and to Springer-Verlag on 9 September
2013. The version published by Springer-Verlag is available at http://dx.doi.org/10.1007/978-3-642-42045-0_2.

bits and thus is with a constant value, and indeed this is the case for HMAC- and NMAC-Whirlpool. Our
distinguishing-H attack can be applied with a complexity 2n/2 (n is 512 for Whirlpool). Our distinguisher
has two advantages compared with Leurent et al.’s generic attack [17]. One is that our queried messages
have practical length. The other one is that the complexity of our attack is significantly lower as long
as the specification of the n-bit hash function restricts the input message with a block length shorter
than 2n/2. Our distinguishing-H attack on HMAC- and NMAC- Whirlpool has a complexity of 2256, while
Leurent et al.’s attack has a complexity of at least 2384.

Note that we focus on HMAC-Whirlpool using a 512-bit key and producing 512-bit MAC outputs in this
paper. One may doubt the large size of the key and the tag. We would like to point out that besides
pure theoretical research interests, evaluating such an instance of HMAC-Whirlpool also has practical
impacts. This is due to the fact that ever since HMAC was designed and standardized, it has been widely
implemented beyond the mere MAC applications. For example, the above instance of HMAC-Whirlpool will
be used in HMAC-based Extract-and-Expand Key Derivation Function (HKDF) [15] if one instantiates this
protocol with Whirlpool hash function, providing that Whirlpool is a long-stand secure hash function
and has been implemented in many cryptographic software library. Based on these facts, HMAC-Whirlpool
may have more applications in industry in the future, and thus deserves a careful security evaluation
from the cryptography community in advance.

In the rest of the paper, Section 2 gives the specifications. Section 3 presents our attacks on HMAC and
NMAC with 5-round Whirlpool. Section 4 describes our results on one more round. Section 5 provides
a distinguishing-H attack on HMAC and NMAC with full Whirlpool. Finally we give conclusion and open
discussions in Section 6.

2 Specifications

2.1 Whirlpool hash function [24]

The Whirlpool hash function follows the Merkle-Damg̊ard structure and produces 512-bit digests. The
input message M is padded by a ‘1’, a least number of ‘0’s, and 256-bit representation of the original
message length, such that the padded message becomes a multiple of 512 bits.

The padded message is divided into 512-bit blocks and used in the iteration of compression functions.
The compression function F is constructed based on a block-cipher E in Miyaguchi-Preneel mode (MP
mode), i.e., F (C,M) = EC(M)⊕ C ⊕M . Starting from a constant initial value C0 = IV , the chaining
value is updated for each of the message block Ci+1 = F (Ci,Mi). After all message blocks are processed,
the final chaining value is used as the hash value.

The underlying block cipher uses an AES-like structure with an 8×8 byte matrix. The round function
of the key schedule consists of four operations, i.e.,

Ki+1 = AC ◦ MR ◦ SC ◦ SB(Ki), for i ∈ {0, 1, . . . , 9}.

• SubBytes(SB): apply an Sbox to each byte.

• ShiftColumns(SC): cyclically rotate the j-th column downwards by j bytes.

• MixRows(MR): multiply the state by an 8× 8 MDS matrix.

• AddRoundConstant(AC): XOR a 512-bit round constant to the key state.

We denote the key state after SB, after SC and after MR in the (i + 1)-th round of the key schedule by
KSB

i , KSC
i , KMR

i respectively.

The round function of the encryption is almost the same as the key schedule, except for the AddRoundKey(AK)
operation, which XORs the key state to the data state, i.e., the initial state is the XOR sum of the
whitening key and the plaintext S0 = K0 ⊕M and

Si+1 = AK ◦ MR ◦ SC ◦ SB(Si), for i ∈ {0, 1, . . . , 9}.

The final state S10 is used as the ciphertext. We denote the state after SB, after SC and after MR in the
(i+ 1)-th round of the round encryption function by SSB

i , SSC
i and SMR

i respectively.

c©IACR 2013. This article is the final version submitted by the authors to the IACR and to Springer-Verlag on 9 September
2013. The version published by Springer-Verlag is available at http://dx.doi.org/10.1007/978-3-642-42045-0_2.

ipadKÅIV E E

E E TopadKÅ

M

inK

outK

IV

T ¢

EP T ¢¢

T ¢¢¢

EP

Fig. 2. HMAC/NMAC based on Whirlpool

2.2 HMAC and NMAC [2]

NMAC replaces the initial vector (IV) of a hash function H by a secret key K to produce a keyed hash
function HK . NMAC uses two secret key Kin and Kout and is defined by

NMACKout,Kin
(M) = HKout

(HKin
(M)).

Kin and Kout are usually referred to as the inner and the outer keys. Correspondingly HKin
and HKout

are referred to as the inner and the outer hash functions. HMAC is a single-key variant of NMAC. Denote
the compression function by F .

HMACK(M) = NMACF (IV,K⊕ipad),F (IV,K⊕opad)(M).

3 Attacks of HMAC and NMAC based on 5-round Whirlpool

In this section, we use one block long messages M to present our attack. Fig. 2 shows how HMAC/NMAC-
Whirlpool processes M . Note that both M and T ′′ are one full block long, and thus an extra padding
block P is appended in both calls of the hash function.

The attack starts with recovering value of (equivalent) Kin. We generate a structured collision on
the internal state T ′. Then for the collision, we get the differential path inside EKin

, and recover some
internal value of EKin

by a meet-in-the-middle (MitM) attack approach. Finally Kin is derived by a
simple backward computations. Once Kin is recovered, we have two directions: 1) recover the value of
(equivalent) Kout to amount a universal forgery for HMAC or to amount a full-key recovery for NMAC, and
2) recover the key of HMAC.

For the Kout recovery, note that T ′′ is public to the attacker now since Kin is recovered. We firstly
derive the values of T ′′′ with a technique similar to [26], and then obtain the values of EKout

⊕ Kout:
T ′′ ⊕ T ′′′. Given that Kout has no difference, we search for a pair of messages that satisfies a pre-
determined difference constraint on the outputs of EKout

, and get the inside differential path. Finally we
recover an internal value of EKout

, and backwards compute the value of Kout.
For the key recovery of K, from Kin = F (IV,K ⊕ ipad), we observe that K ⊕ ipad is a preimage

of Kin regarding the Whirlpool compression function with a fixed chaining value F (IV, ·). Note that
the problem of inverting the compression function of Whirlpool has already been solved in [31] and [27]
with splice-and-cut MitM approach. We use a similar approach to recover the value of K ⊕ ipad and
then derive the value of K.

Moreover, we provide time-memory-data tradeoffs for recovering Kin and Kout.

3.1 How to recover (equivalent) Kin

In this section, we demonstrate the Kin recovery attack with optimizing its complexity for the key
recovery of HMAC, and introduce the time-memory-data tradeoff in the next section.

Our attack is based on a 5-round differential path of the compression function, which is shown in
Fig. 3. Each cell in this figure stands for a byte of the key or the state. Blank cells are non-active
and cells with a dot inside are active. If the value of a byte is unknown, the cell is in white color.
Red bytes are initially known from the message, tag or the recovered chaining value. Blue and green
bytes are the guessed bytes in the forward and backward directions of the MitM step. Moreover, some

c©IACR 2013. This article is the final version submitted by the authors to the IACR and to Springer-Verlag on 9 September
2013. The version published by Springer-Verlag is available at http://dx.doi.org/10.1007/978-3-642-42045-0_2.

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

S 2
MR

S '1
SC

S 2

SB

SB SC MR

SC MR AC

SB SC MR

SC MR AC SB

SB SC MR

SC MR AC SB

SB

SB

SB SC

SC AC' SB

MR

MR

#diff=224 for

each row

initially known

backward guess

forward guess

colors legends difference value

zero unknown

non-zero unknown

known unknown

known known

zero known

Step D: 384-bit filter Guess 6 diagonals (384 bits)

Guess value and difference for 5

rows: 5(64+24) = 440 bits

Differntial form:

MR(3 diagonals)

SC MR

SC MR AC

Fig. 3. Differential path for recovering Kin for HMAC and NMAC with 5-round Whirlpool

round functions are illustrated in equivalent expressions in this figure. The new operation AC′ XORs
the constant MR−1(RCi) to the key state, where RCi is used in the original AC operation, and it implies
AC ◦ MR = MR ◦ AC′.

Produce a structured collision on T
′. We use a structure of chosen messages in which any two

messages satisfy a constraint of the differential form in Fig. 3. First we choose a set of 2192 values
{M1,M2, . . . ,M2192} such that the value of three specific rows of the messages take all possible 2192

values and all other bytes are chosen as constants. The positions of the three active rows are the top
three rows in Fig. 3. Then, update the set by Mi ← MR ◦ SC(Mi) for i = 1, 2, . . . , 2192. This requires
about 2192 computations. Note that for any two distinct indexes i1 and i2, SC

−1 ◦ MR−1(Mi1 ⊕Mi2) has
three active rows in the pre-specified positions. Query the messages and obtain the corresponding tags
Ti = MAC(K,Mi), for i = 1, 2, . . . , 2192. Check if there is a collision of the tags. If a collision is found, we
need to verify if it collides on T ′ by the length extension attack (i.e., append a random message block M
to each of the colliding messages Mi1 and Mi2 , and query Mi1‖M and Mi2‖M to see whether their tags
collide). For a collision on T ′, it is ensured that the output difference of EKin

converted by SC−1 ◦ MR−1

has three active rows.
For a structure of 2192 messages generated by applying MR ◦ SC for each, we query them to MAC,

store the corresponding tags and search for a collision. So it requires 2192 queries, 2192 computations,

and 2192 memory. For one structure, we can make
(

2192

2

)

= 2383 pairs. After repeating the process for
2129 structures with different chosen constants, one collision is expected. The total number of queries is
2192+129 = 2321, the computational complexity is 2321 and the required memory is 2192.

Recover Kin. Recall T ′ = F (Kin,M) = EKin
(M) ⊕M ⊕Kin. For an inner collision on T ′, we know

△T ′ = 0. In the single-key attacks, the difference of Kin is also zero: △Kin = 0. Thus the difference of
the output of the block cipher can be computed as △EKin

(M) = △T ′⊕△M ⊕△Kin = △M . So we get
△S5 = △M , and thus SC−1 ◦ MR−1(△S5) has three active rows. It ensures that the number of differences
at each row of SMR

2 is at most 224. Now we describe the attack step by step.

Step A. Guessing in the forward direction
Guess the values of m diagonals of Kin (264m values) which are marked in blue, as in Fig. 3. Then

we can determine the value of corresponding m diagonals in S′SC
1 . Now there are m known diagonals

on the left side of the matching point - the MR operation in the second round. All the candidates are
stored in a lookup table T1.

c©IACR 2013. This article is the final version submitted by the authors to the IACR and to Springer-Verlag on 9 September
2013. The version published by Springer-Verlag is available at http://dx.doi.org/10.1007/978-3-642-42045-0_2.

Step B. Guessing in the backward direction
Guess the values and differences of n rows of SMR

2 (2(64+24)n candidates) which are marked in green,
as in Fig. 3. Then we can determine the value of corresponding n (reverse) diagonals in S2. Now
there are n known diagonals on the right side of the matching point. All the candidates are stored
in another lookup table T2.

Step C. MitM matching across the MR operation
The technique of matching across an MDS transformation is already proposed and well-discussed
in [25, 31, 27]. Here we directly give the result. For a 64-byte state, the bit size of the matching
point is calculated as 64(m + n − 8), where m and n are the number of known diagonals in both
sides. Because we can match both of the value and difference on a 64-byte state, the bit size of
the matching point is 128(m+ n − 8). Therefore, the number of expected matches between T1 and
T2 is 264m+(64+24)n−128(m+n−8) = 2−64m−40n+1024. Note that the matching candidate is a pair of
(S′SC

1 , S2) where all bytes are fully determined. Then, the corresponding K ′AC
1 is also fully deter-

mined. We use a pre-computation of complexity 265 to build a table of size 265, which is used for
(S′SC

1 , S2) to determine the remaining two diagonals of the corresponding Kin by just a table lookup.
More precisely, for all values of each unguessed diagonal of Kin, compute the corresponding diagonal
values in S′SC

1 , and store them in a lookup table. The number of remaining candidates is also the
number of suggested keys. The correctness of each suggested keys can be verified by the differential
path from S3 to S5.

The total complexity of the attack is

264m + 2(64+24)n + 2−64m−40n+1024.

When m = 6 and n = 5, we get the complexity of about 2384 + 2440 + 2440 ≈ 2441 computations.
The sizes of T1 and T2 are 2384 and 2440 respectively. Since we only need to store one of them and leave
the calculations of other direction “on the fly”, the memory requirement is 2384. Taking into account
the phase to find the inner collision, the total time complexity for recovering Kin is 2441 time and 2384

memory, along with 2321 chosen queries. Recall that we chose the attack parameters by considering that
the original key recovery attack on HMAC will require 2448 computations as we later show in Section 3.4.
We balanced the time complexity and then reduced the memory and queries as much as possible.

3.2 Time-Memory-Data Tradeoff for Kin Recovery

For the differential path in Fig. 3, the number of active rows does not have to be three. Indeed, this
derives a tradeoff between data (the number of queries) and time-memory. Intuitively, the more data we
use, the more restricted differential path we can satisfy and thus time and memory can be smaller. On
the other hand, data can be minimized by spending more time and memory. Let r be the number of

active rows in Fig. 3. For a single structure,
(

264r

2

)

= 2128r−1 pairs can be constructed with 264rqueries.
In the end, a collision can be found with 2513−64r queries.

Then, the MitM phase is performed. The time complexity for the forward computation does not
change, which is 264m, while the complexity for the backward computation is dependent on r, which is
2(64+8r)n. We can further introduce the tradeoff between time and memory, where their product takes
a constant value. For simplicity, let us assume that 264m < 2(64+8r)n. The simple method computes
the forward candidates with 264m computations and stores them. Then, the backward candidates are
computed with 2(64+8r)n. Hence, the time is 2(64+8r)n and the memory is 264m. Here, we divide the free
bits for the forward computation into two parts; 64m − t and t. An attacker firstly guesses the value
of t bits, and for each guess, computes the 264m−t forward candidates and stores them in a table with
264m−t entries. The backward computation does not change. Finally, the attack is iterated for 2t guesses.
In the end, the memory complexity becomes 264m−t while the time complexity becomes 2(64+8r)n+t

computations.
Let us demonstrate the impact of the time-memory-data tradeoff. In section 4.1, we aimed to achieve

the time complexity of 2448, and chose the parameter (r,m, n, t) = (3, 6, 5, 0) which resulted in (data,
time, memory) = (2321, 2441, 2384). By choosing parameters (r,m, n, t) = (3, 6, 5, 7), memory can be
saved by 7 bits, i.e., (data, time, memory)= (2321, 2448, 2377). Then let us consider the optimization from
different aspects. First, we minimize the value max{data, time,memory}. We should choose (r,m, n, t) =
(2, 6, 5, 0), which results in (data, time, memory)= (2384, 2400, 2384). Next, we try to minimize each of

c©IACR 2013. This article is the final version submitted by the authors to the IACR and to Springer-Verlag on 9 September
2013. The version published by Springer-Verlag is available at http://dx.doi.org/10.1007/978-3-642-42045-0_2.

time, data, and memory complexities. If we minimize the time complexity, we should choose (r,m, n, t) =
(1, 6, 5, 0), which results in (data, time, memory)= (2448, 2384, 2360). If we minimize the data complexity,
we should choose (r,m, n, t) = (4, 7, 5, t) which results in (data, time, memory)= (2257, 2480+t, 2448−t). If
we minimize the memory complexity, we should choose (r,m, n, t) = (1, 6, 5, 144) which results in (data,
time, memory)= (2449, 2504, 2240).

3.3 How to recover Kout

With the knowledge of Kin, we can calculate the value of T ′′ for any M at offline (refer to Fig. 2).
Moreover, we can recover the value of T ′′′ using a technique similar to [26]. Thus we are able to get the
output value of EKout

⊕Kout: T
′′⊕T ′′′. For a pair of outputs ofEKout

⊕Kout that has a difference satisfying
the constraint on the output difference of EKin

in Fig. 3, more precisely SC−1 ◦ MR−1(∆(T ′′ ⊕ T ′′′)) has
r active rows, the exactly same procedure of recovering Kin described in Section 3.1 can be applied to
recover Kout in a straight-forward way. This section mainly describes the procedure of finding such a
pair. Moreover, we provide a time-memory-data tradeoff for recovering Kout.

It is interesting to point out the difference for finding a target pair of recovering Kin and that of
recovering Kout. For recovering Kin, we can freely choose the input M , but cannot derive the output
differences of EKin

unless a collision occurs on the compression function. For recovering Kout, we cannot
control the input T ′′, but can compute the output differences of EKout

easily since we know the values
of both T ′′ and T ′′′.

Produce (8 − r)-row near collision on SC−1 ◦ MR−1(T ′′ ⊕ T
′′′). We need to recover the value of

T ′′′, which is as follows. Firstly, choose 2x different random values Xi, calculate Yi = F (Xi, P) and store
(Xi, Yi) in a lookup table T1 at offline. Secondly, choose 2y different random values of Mi, query them
to MAC, obtain Zi = MAC(K,Mi) and store (Mi, Zi) in another lookup table T2. Finally we match Yi in
T1 and Zj in T2, and get 2x+y−511 matches on average. For each match, the internal state T ′′′ of Mj is
equal to Xi with a probability 1/2. We stress that in fact we need to store only one of T1 and T2, and
generate the other on the fly.

Next, we continue to search for a target pair. For each match of Yi and Zj, we compute the value
of T ′′ of Mj , then compute W = SC−1 ◦ MR−1(T ′′ ⊕ Xi), and store them in a lookup Table T3 to
find (8 − r)-row near collisions on W . Recall the recovered value of T ′′′ of a message is correct with
a probability of 1/2. Thus we need to generate 4 near collisions to ensure that one is a target pair. It
implies 22(x+y−511)−1 = 4× 264(8−r), and thus 2x+ 2y + 64r = 1537.

In total, the data complexity is 2y queries, the time complexity is 2x + 2x+y−511, and the memory
requirement is min{2x, 2y}.

Time-memory-data tradeoff. The attack contains two tradeoffs. The first one is for finding a target
pair, which is described above. The second one is for MitM phase, which is described in Section 3.2.
Note that the MitM has to be applied to all the 4 near collisions, and so the time complexity of the
tradeoff for MitM phase is increased by 4 times. Both tradeoffs depend on the parameter r, and thus we
first determine the value of r, and analyze the two tradeoffs together. We provide the parameters that
minimize the time complexity, the data complexity, or the memory complexity. Note that recovering
Kout needs to recover Kin first, and so we should also take the tradeoff results on recovering Kin

into account. Let us minimize the value max{data, time,memory}. Considering that the same MitM
procedure of recovering Kin is used for recovering Kout, we just need to minimize that of recovering Kin,
and obtain that (data, time,memory) = (2384, 2402, 2384). If we minimize the time complexity, we should
choose parameters (r,m, n, t) = (1, 6, 5, 0) for recovering Kin and (x, y, r,m, n, t) = (360, 397, 1, 6, 5, 0)
for recovering Kout, which results in (data, time,memory) = (2448, 2386, 2360). If we minimize the data
complexity, we should choose parameters (r,m, n, t) = (4, 7, 5, t) for recoveringKin and (x, y, r,m, n, t) =
(448, 225, 3, 6, 5, 0) for recovering Kout, which results in (data, time,memory) = (2257, 2480+t, 2448−t). If
we minimize the memory complexity, then the time and data are dominated by the Kin recovery, and
thus (data, time,memory) = (2449, 2504, 2240) by choosing the parameters given in Section 3.2.

3.4 Key recovery for HMAC

As previously mentioned, we will recover the key of HMAC based on the splice-and-cut preimage attacks
on the compression function with a fixed input chaining variable F (IV, ·).

c©IACR 2013. This article is the final version submitted by the authors to the IACR and to Springer-Verlag on 9 September
2013. The version published by Springer-Verlag is available at http://dx.doi.org/10.1007/978-3-642-42045-0_2.

The attack model for the preimage attack on hash functions and the one for the key recovery attack
on HMAC are slightly different. For a given hash value, there are two possibilities: 1) there exists one or
more preimages; 2) no preimage exists. For the first case, the aim of the attacker is to find any one of the
preimages, instead of all of them. The second case may occur when the size of input is restricted. In our
sub-problem, i.e., for a compression function with fixed chaining value, the sizes of the input message
and the hash digest are the same. Thus for a random output, the probability that no preimage exists is
not negligible: about e−1.

For a key recovery attack, the solution (the secret key) always exists. However, the attacker has to go
over all possible preimages to ensure that the correct key is covered. In the process of the MitM attack,
sometimes there is some entropy loss in the initial structure, i.e., the attacker only looks for the preimage
in a subspace. When the size of the input space is bigger than the output space, a preimage attack is
still possible with entropy loss. If such a preimage attack is used for key recovery, the real key could be
missed.

In the preimage attacks of [31] and [27], no entropy is lost and all the possible values of the state
can be covered. Thus the key recovery attack based on this preimage attack can always succeed. The
complexity is 2448 time and 264 memory.

Recall the discussion in Section 3.1, where Kin is recovered with (data, time, memory) = (2321,
2448, 2377). Together with the preimage attack on the compression function, the original key for HMAC
with 5-round Whirlpool is recovered with (data, time,memory) = (2321, 2448, 2377).

3.5 Summary

In short, we have solved three sub-problems: (1) Recover Kin with 2384 chosen queries, 2400 time and
2384 memory. Then with the knowledge of Kin, we can solve another two sub-problems:(2) Recover Kout

with 2303 known message-tag pairs, 2402 time and 2384 memory; and (3) Recover the key of HMAC from
Kin with 2448 time and 264 memory. The time-memory-data tradeoff exists in (1), and we can optimize
its complexity depending on the final goal; (2) or (3).

Combining (1) and (2) with optimized trade-off, we have a key recovery attack on NMAC and a universal
forgery attack on HMAC with 2384 chosen queries, 2402 time, and 2384 memory. Combining (1) and (3)
with optimized trade-off, we have a key recovery attack on HMAC with 2321 chosen queries, 2448 time, and
2377 memory.

4 Analysis of HMAC and NMAC based on 6-round Whirlpool

This section presents how to extend an attack of recovering an intermediate chaining variable of the inner
hash function to universal forgery and key recovery attacks for HMAC and NMAC with 6-round Whirlpool.
Note that a generic single-key attack of recovering such an intermediate chaining variable for HMAC and
NMAC has been published by Leurent et al. [17]. It takes around a complexity of 2384 blocks for all queries
to recover an internal state value of a short message, e.g. one block long. Thus combining their results
with our analysis, we get universal forgery and key recovery attacks on HMAC with 6-round Whirlpool.

In the rest of this section, we denote byM1 the message whose intermediate chaining value is recovered
by the attacker. We start with recovering Kout, which is depicted in Fig. 4.

Produce a 3-near-collision on MR−1(T ′′ ⊕T
′′′). We append random messages M ′ to M1, and query

them to MAC. Note that we are able to compute their values of T ′′ at offline. We recover the values
of T ′′′ for those messages in the same way as we did for 5-round Whirlpool. After that, we compute
W = MR−1(T ′′ ⊕ T ′′′), and search three messages that all collide on specific 56 bytes of W as shown in
Fig. 4. We call such three messages 3-near-collision.

With 2x online queries and 2y offline computations, 2x+y−511 values of T ′′′ are recovered, and the
same number of W are collected. Note that around 3

√
3! ·2 2

3
448 ≈ 2300 values of W are necessary to find a

target 3-near-collision [10]. Moreover, we need to generate 8 such 3-near-collisions to ensure one is indeed
our target, since each value of recovered T ′′′ is correct with a probability 1/2. So we get 2x+y−511 = 2303,
which implies that x+ y = 814.

c©IACR 2013. This article is the final version submitted by the authors to the IACR and to Springer-Verlag on 9 September
2013. The version published by Springer-Verlag is available at http://dx.doi.org/10.1007/978-3-642-42045-0_2.

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

SC

SC

SB SC MR

SC MR AC SB

SB SC MR

SC MR AC SB

SB

SB AC' SC

SC MR

#diff=264

MR

MR AC

SB

SB SC

SC

SC

SC

MR

MR AC

SB

SB AC'

MR

MR

SB SC MR

SC MR AC SB

SB

SB

512-bit filter in total Guess 7 diagonals (448 bits)

Guess 3 rows of differences and values (384 bits)

Fig. 4. How to recover Kout for HMAC and NMAC with 6-round Whirlpool

Recover Kout. A pair of messages from a 3-near-collision follows the differential path in Fig. 4 such
that only one (reversed) diagonal of S4 is active. Thus the number of possible differences in SSB

3 is 264.

Denote three messages of a 3-near-collision as m1,m2 and m3. Denote the values of the states S′SC
1 and

S2 as Li and Ri for mi. We will apply the meet-in-the-middle attack two times, one for the pair (m1,m2)
and the other for the pair (m2,m3).

Step A. Guessing in the forward direction
Guess the values ofm diagonals of K0 as shown in Fig. 4 (264m values, marked in blue) and determine

the value of corresponding m diagonals in K ′SC
1 and S′SC

1 .

Step B. Guessing in the backward direction
Guess the values and differences of n diagonals of S2 (2128n values) which are marked in green. Then
we can determine the value of corresponding n rows in SMR

2 . After the injection of K3, we only
know the difference in S3. Since the number of possible differences of SSB

3 is only 264. According to
rebound attack, we expect 264 solutions for each guess of S2. XOR 264 values of S3 and the guessed
value of SMR

2 , and obtain 264 values for the top n rows of K3 and n diagonals of K2. In total, the
number of candidates on the right side of the MitM part is 2128n+64.

Step C. MitM matching across MR on both the key and the state
For the differential path betweenm1 andm2, the value and difference of S2 are in fact R1 and R1⊕R2.
Once we have matched the value and difference of the state, i.e., MR(L1) = R1 and MR(L1 ⊕ L2) =
R1 ⊕ R2, it is equivalent to match both the values MR(L1) = R1 and MR(L2) = R2. For the second
differential path between m2 and m3, we only need to match another state MR(L3) = R3, since
MR(L2) = R2 is already fulfilled. We come to an observation that the size of the matching point (filter
size) is actually (1+3)× 64× (m+n− 8) bits, i.e., one from the key, three from the 3-near-collision.
The expected number of matches (suggested keys) is 264m+128n+64−256(m+n−8) = 22112−192m−128n.

The overall complexity to recover Kout is

264m + 2128n+64 + 22112−192m−128n.

When m = 7 and n = 3, the complexity is 2448 time and memory.

Note that the above procedure will be applied by 8 times. Thus the time complexity is 2451. By setting
y = 451, we get x = 363, and thus the data complexity is dominated by the recovery of an intermediate
chaining variable of the inner hash function [17], namely 2384.

c©IACR 2013. This article is the final version submitted by the authors to the IACR and to Springer-Verlag on 9 September
2013. The version published by Springer-Verlag is available at http://dx.doi.org/10.1007/978-3-642-42045-0_2.

Fig. 5. Distinguishing-H attack on HMAC-Whirlpool

Universal forgery and key recovery. After Kout is recovered, almost the same procedure can be
applied to recover Kin. So we get universal forgery on HMAC and full-key recovery on NMAC. Note that
for recovering Kin, it is easy to verify whether a obtained 3-near-collision is our target. Thus the total
complexity is dominated by recovering Kout, and we get (data, time, memory)=(2384, 2451, 2448). More-
over, we apply the splice-and-cut preimage attack to recover K from Kout according to [27], which takes
a time complexity of 2496 and a memory requirement of 264. Thus the total complexity of recovering K
is (data, time, memory)=(2384, 2496, 2448).

5 Distinguishing-H Attack on Full HMAC/NMAC-Whirlpool

In this section, we present a distinguishing-H attack on HMAC-Whirlpool, which is also applicable to
NMAC-Whirlpool in a straightforward way. First, recall the definition of distinguishing-H [14]. A distin-
guisher D is to identify an oracle being either HMAC-Whirlpool or another primitive built by replacing the
compression function F of HMAC-Whirlpool to a random function R with the same domain and range.
For a hash function with n-bit digests, it is believed that a generic distinguishing-H attack requires 2n

complexity if the hash function is ideal.
We observe that during the computation of the outer Whirlpool in HMAC-Whirlpool, the last message

block is always a constant denoted as P , more precisely P = 105001010 where 0l means l consecutive 0s.
This is because of the equal size of message block and hash digest and the padding rule of Whirlpool.
The input messages to the outer Whirlpool consist of one block of K ⊕ opad and one block of the inner
Whirlpool digest, and thus are always two full blocks long (namely 1024 bits), which are padded with
one more block. Note that the padded block P , which is the last message block of the outer Whirlpool,
is solely determined by the bit length of the input messages, and thus is always a constant. Based on the
observation, we launch a distinguishing-H attack.

We first explain the overview of the attack. In the online phase, query random messages M to the
oracle, and receive tag values T . In the offline phase, choose random values X (this simulates the value
of T ′′′), and compute Y = F (X,P). As depicted in Fig. 5, if the compression function of the oracle is F ,
two events lead to the occurrence of Y = T : one is X = T ′′′; and the other is F (X,P) = F (T ′′′, P) under
X 6= T ′′′. If the compression function of the oracle is R, only one event leads to the occurrence of Y = T :
F (X,P) = R(T ′′′, P). Therefore, the probability of the event Y = T in the former case is (roughly)
twice higher than that in the latter case. Thus, by counting the number of occurrence of Y = T , the
compression function being either F or R can be distinguished. A detailed attack procedure is described
below.

Online phase. Send 2256 different messages M , which are one block long after padding, to the oracle.
Receive the responses T and store them.

Offline phase. Choose a random value as X , and compute Y = F (X,P). Match Y to the set of T s
stored in the online phase. If a match is found, terminate the procedure, and output 1. Otherwise, choose
another random value of X and repeat the procedure. After 2256 trials, if no match is found, terminate
the procedure and output 0.

The complexity is 2256 online queries and 2256 offline computations. The memory cost is 2256 tag
values. Next we evaluate the advantage of the distinguisher. Denote by DF the case D interacts with

c©IACR 2013. This article is the final version submitted by the authors to the IACR and to Springer-Verlag on 9 September
2013. The version published by Springer-Verlag is available at http://dx.doi.org/10.1007/978-3-642-42045-0_2.

HMAC-Whirlpool, and by DR the other case. The advantage of the distinguisher AdvInd−H

D is defined as

AdvInd−H

D := |Pr[DF = 1]− Pr[DR = 1]|.

In the case of DF , the probability of X = T ′′′ is 1 − (1 − 2−512)2
512 ≈ 1 − 1/e ≈ 0.63 since there are

2512 pairs of (X,T ′′′). The probability of Y = T and X 6= T ′′′ is (1 − 1/e) × 1/e ≈ 0.23. Therefore,
Pr[DF = 1] is 0.86 (= 0.63 + 0.23). In the other case, Pr[DR = 1] is 0.63 by a similar evaluation. Overall,
the advantage of the distinguisher is 0.23 (= 0.86− 0.63).

Note that a trivial Data-Time tradeoff exists with the same advantage, Data× Time = 2512.

Remarks on applications. We emphasize that the above distinguishing-H attack has wide applications
besides Whirlpool. For example, there are 11 out of 12 collision resistance PGV modes [21] including
well-known Matyas-Meyer-Oseas mode and Miyaguchi-Preneel mode such that the chaining variable and
the message block have equal bit size due to either the feed-forward or the feed-backward operations. If
a hash function HF is built by iterating one of those PGV compression function schemes in the popular
(strengthened) Merkle-Damg̊ard domain extension scheme, the last message block of the input messages
to the outer HF in HMAC or NMAC setting is always a constant, and thus the above distinguishing-H attack
is applicable.

6 Conclusion and Open Discussions

In conclusion, we presented the first forgery and key recovery attacks against HMAC and NMAC based on the
Whirlpool hash function reduced to 5 and 6 out of 10 rounds in single key setting. In addition to HMAC and
NMAC, our attacks apply to other MACs based on reduced Whirlpool, such as LPMAC, secret-suffix MAC

and Envelop MAC. We also gave a distinguishing-H attack against the full HMAC- and NMAC-Whirlpool.
As open discussion, it is interesting to see if the techniques presented in this paper are useful to analysis

of other AES-like hash functions in hash-based MAC setting. First let us have a closer look at our analysis
of the underlying AES-like block cipher in a hash function. One main and crucial strategy is restricting
the differences to appear only in the encryption process and thus keep the key schedule process identical
between the pair messages. For example, Whirlpool uses Miyaguchi-Preneel scheme EC(M) ⊕M ⊕ C
(notations follows Section 2), and the differences is introduced only by M . Recall through our analysis, C
is kept the same during finding target message pairs. The main reason of this strategy is that a difference
introduced from the keys propagates in both the key schedule and the encryption process, which usually
makes it harder to analyze. For example, in our analysis on HMAC-Whirlpool, we need to derive the
differential path in the encryption process, which becomes much harder when differences also propagate
in the key schedule. Moreover, as briefly explained in Section 1, differently from that in CBC MAC setting,
one cannot derive a difference on intermediate hash variable ∆C except ∆C = 0. Thus the difference has
to be introduced from M . After an investigation on proven secure PGV schemes [21], we find that our
analysis approach is applicable to other three schemes besides Miyaguchi-Preneel scheme: EC(M)⊕M
(well known as Matyas-Meyer-Oseas scheme), EC(C ⊕M)⊕M and EC(C ⊕M)⊕ C ⊕M .

It is also interesting to see if the strategies proposed to analyze MD4-like hash functions (designed
in a framework differently from AES) can be applied to AES-like hash functions from a high-spirit level,
in hash-based MAC setting. There are two strategies to analyze MD4-family hash function in hash-based
MAC setting to the best of our knowledge. The first one was proposed by Contini and Yin [5]. Their
strategy heavily relies on one design character of MD4-like hash function: a message block is splitted into
words, and these words are injected into the hash process sequentially. More precisely, an attacker can
fix the beginning message words that have been ensured to satisfy the first steps of differential path, and
randomize the other message words. Unfortunately, this strategy seems not promising to be applied to
AES-like hash functions, because the latter injects the whole message block into the hash process at the
same time, and moreover a byte difference propagates to the whole state very quickly due to the wide trail
design of AES. The other strategy was proposed byWang et al. [30]. Their strategy uses two message blocks
and each block have differences. Firstly they generate a high-probability differential path on the second
compression function (∆C,∆M)→ ∆C′ = 0, where C′ is the output of the second compression function.
Secondly they randomize the first message block to generate pairs of the compression function outputs
that can satisfy ∆C, and each such pair can be obtained by a birthday bound complexity. Finally these
pairs will be filtered out using the high-probability differential path on the second compression function,

c©IACR 2013. This article is the final version submitted by the authors to the IACR and to Springer-Verlag on 9 September
2013. The version published by Springer-Verlag is available at http://dx.doi.org/10.1007/978-3-642-42045-0_2.

and exploited to amount further attacks. Interestingly, this strategy seems applicable to AES-like hash
functions in MAC setting. One may build a high-probability related-key differential path on an AES-like
compression function, e.g., using the local collisions between the key schedule and the encryption process
functions which has been found on AES [3] and on Whirlpool [27]. If it is achieved, then Wang et al.’s
strategy seems to be applicable. Note that previous constraint ∆C = 0 is now removed, and thus this
strategy has a potentiality to be applied to more PGV schemes such as EM (C) ⊕ C (well known as
Davies-Meyer scheme).

As our result is the first step in this research topic, we expect that future works will provide deeper
understanding of the security of AES-like hash functions in MAC setting.

Acknowledgements

We would like to thank Jiqiang Lu, and anonymous reviewers for their helpful comments. This research
was initially started from a discussion at the second Asian Workshop on Symmetric Key Cryptography
(ASK 2012). We would like to thank the organizers of ASK12. Jian Guo, Lei Wang and Shuang Wu are
supported by the Singapore National Research Foundation Fellowship 2012 (NRF-NRFF2012-06).

References

1. ISO/IEC 9797-1. Information Technology-security techniques-data integrity mechanism using a cryptographic
check function employing a block cipher algorithm. International Organizatoin for Standards.

2. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions for Message Authentication. In
Neal Koblitz, editor, CRYPTO, volume 1109 of LNCS, pages 1–15. Springer, 1996.

3. Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher and Related-Key Attack on the Full
AES-256. In Shai Halevi, editor, CRYPTO, volume 5677 of Lecture Notes in Computer Science, pages
231–249. Springer, 2009.

4. Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque. Automatic Search of Attacks on Round-
Reduced AES and Applications. In Phillip Rogaway, editor, CRYPTO, volume 6841 of LNCS, pages 169–187.
Springer, 2011.

5. Scott Contini and Yiqun Lisa Yin. Forgery and Partial Key-Recovery Attacks on HMAC and NMAC Using
Hash Collisions. In Xuejia Lai and Kefei Chen, editors, ASIACRYPT, volume 4284 of Lecture Notes in

Computer Science, pages 37–53. Springer, 2006.
6. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryption Standard.

Springer, 2002.
7. Joan Daemen and Vincent Rijmen. A New MAC Construction ALRED and a Specific Instance ALPHA-

MAC. In Henri Gilbert and Helena Handschuh, editors, FSE, volume 3557 of LNCS, pages 1–17. Springer,
2005.

8. Joan Daemen and Vincent Rijmen. The Pelican MAC Function. IACR Cryptology ePrint Archive, 2005:88,
2005.

9. Orr Dunkelman, Nathan Keller, and Adi Shamir. ALRED Blues: New Attacks on AES-Based MAC’s. IACR
Cryptology ePrint Archive, 2011:95, 2011.

10. William Feller. An introduction to probability theory and its applications, volume 1. Wiley, New York, 3rd
edition, 1967.

11. Pierre-Alain Fouque, Gaëtan Leurent, and Phong Q. Nguyen. Full Key-Recovery Attacks on HMAC/NMAC-
MD4 and NMAC-MD5. In Alfred Menezes, editor, CRYPTO, volume 4622 of LNCS, pages 13–30. Springer,
2007.

12. Jianyong Huang, Jennifer Seberry, and Willy Susilo. On the Internal Structure of Alpha-MAC. In Phong Q.
Nguyen, editor, VIETCRYPT, volume 4341 of LNCS, pages 271–285. Springer, 2006.

13. Jianyong Huang, Jennifer Seberry, and Willy Susilo. A five-round algebraic property of AES and its appli-
cation to the ALPHA-MAC. IJACT, 1(4):264–289, 2009.

14. Jongsung Kim, Alex Biryukov, Bart Preneel, and Seokhie Hong. On the Security of HMAC and NMAC
Based on HAVAL, MD4, MD5, SHA-0 and SHA-1 (Extended Abstract). In Roberto De Prisco and Moti
Yung, editors, SCN, volume 4116 of LNCS. Springer, 2006.

15. Hugo Krawczyk. RFC: HMAC-based Extract-and-Expand Key Derivation Function (HKDF). https://

tools.ietf.org/html/rfc5869.txt, May 2010.
16. Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen, and Martin Schläffer. Rebound

Distinguishers: Results on the Full Whirlpool Compression Function. In Mitsuru Matsui, editor, ASI-

ACRYPT, volume 5912 of LNCS, pages 126–143. Springer, 2009.
17. Gaëtan Leurent, Thomas Peyrin, and Lei Wang. New Generic Attacks Against Hash-based MACs. In

ASIACRYPT, 2013.

c©IACR 2013. This article is the final version submitted by the authors to the IACR and to Springer-Verlag on 9 September
2013. The version published by Springer-Verlag is available at http://dx.doi.org/10.1007/978-3-642-42045-0_2.

18. Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In Orr Dunkelman, editor, FSE, volume 5665 of LNCS,
pages 260–276. Springer, 2009.

19. Kazuhiko Minematsu and Yukiyasu Tsunoo. Provably Secure MACs from Differentially-Uniform Permuta-
tions and AES-Based Implementations. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of LNCS,
pages 226–241. Springer, 2006.

20. NESSIE. New European Schemes for Signatures, Integrity, and Encryption. IST-1999-12324. Available online
at http://cryptonessie.org/.

21. Bart Preneel, René Govaerts, and Joos Vandewalle. Hash Functions Based on Block Ciphers: A Synthetic
Approach. In Douglas R. Stinson, editor, CRYPTO, volume 773 of LNCS, pages 368–378. Springer, 1993.

22. Christian Rechberger and Vincent Rijmen. On Authentication with HMAC and Non-random Properties. In
Sven Dietrich and Rachna Dhamija, editors, Financial Cryptography, volume 4886 of LNCS, pages 119–133.
Springer, 2007.

23. Christian Rechberger and Vincent Rijmen. New Results on NMAC/HMAC when Instantiated with Popular
Hash Functions. J. UCS, 14(3):347–376, 2008.

24. Vincent Rijmen and Paulo S. L. M. Barreto. The WHIRLPOOL Hashing Function. Submitted to NISSIE,
September 2000.

25. Yu Sasaki. Meet-in-the-Middle Preimage Attacks on AES Hashing Modes and an Application to Whirlpool.
In Antoine Joux, editor, FSE, volume 6733 of LNCS, pages 378–396. Springer, 2011.

26. Yu Sasaki. Cryptanalyses on a Merkle-Damg̊ard Based MAC - Almost Universal Forgery and Distinguishing-
H Attacks. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT, volume 7237 of LNCS,
pages 411–427. Springer, 2012.

27. Yu Sasaki, Lei Wang, Shuang Wu, and Wenling Wu. Investigating Fundamental Security Requirements on
Whirlpool: Improved Preimage and Collision Attacks. In Xiaoyun Wang and Kazue Sako, editors, ASI-

ACRYPT, volume 7658 of LNCS, pages 562–579. Springer, 2012.
28. JH. Song, R. Poovendram ad J. Lee, and T. Iwata. The AES-CMAC Algorithm, June 2006.
29. Lei Wang, Kazuo Ohta, and Noboru Kunihiro. New Key-Recovery Attacks on HMAC/NMAC-MD4 and

NMAC-MD5. In Nigel P. Smart, editor, EUROCRYPT, volume 4965 of LNCS, pages 237–253. Springer,
2008.

30. Xiaoyun Wang, Hongbo Yu, Wei Wang, Haina Zhang, and Tao Zhan. Cryptanalysis on HMAC/NMAC-MD5
and MD5-MAC. In Antoine Joux, editor, EUROCRYPT, volume 5479 of LNCS, pages 121–133. Springer,
2009.

31. Shuang Wu, Dengguo Feng, Wenling Wu, Jian Guo, Le Dong, and Jian Zou. (Pseudo) Preimage Attack on
Round-Reduced Grøstl Hash Function and Others. In Anne Canteaut, editor, FSE, volume 7549 of LNCS,
pages 127–145. Springer, 2012.

32. Zheng Yuan, Wei Wang, Keting Jia, Guangwu Xu, and Xiaoyun Wang. New Birthday Attacks on Some
MACs Based on Block Ciphers. In Shai Halevi, editor, CRYPTO, volume 5677 of LNCS, pages 209–230.
Springer, 2009.

33. Fan Zhang and Zhijie Jerry Shi. Differential and Correlation Power Analysis Attacks on HMAC-Whirlpool.
In ITNG, pages 359–365. IEEE Computer Society, 2011.

c©IACR 2013. This article is the final version submitted by the authors to the IACR and to Springer-Verlag on 9 September
2013. The version published by Springer-Verlag is available at http://dx.doi.org/10.1007/978-3-642-42045-0_2.

