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Abstract. This paper discusses provable security of two types of cascade encryptions. The first
construction CEl, called l-cascade encryption, is obtained by sequentially composing l blockcipher
calls with independent keys. The security of CEl has been a longstanding open problem until
Gaži and Maurer [9] proved its security up to 2κ+min{n

2
,κ} query complexity for large cascading

length, where κ and n denote the key size and the block size of the underlying blockcipher,

respectively. We improve this limit by proving the security of CEl up to 2κ+min{κ,n}− 16
l (n

2
+2)

query complexity: this bound approaches 2κ+min{κ,n} with increasing cascade length l.
The second construction XCEl is a natural cascade version of the DESX scheme with intermediate
keys xored between blockcipher calls. This can also be viewed as an extension of double XOR-

cascade proposed by Gaži and Tessaro [10]. We prove that XCEl is secure up to 2κ+n−
8
l (n

2
+2)

query complexity. As cascade length l increases, this bound approaches 2κ+n.
In the ideal cipher model, one can obtain all the evaluations of the underlying blockcipher by
making 2κ+n queries, so the (κ+n)-bit security becomes the maximum that key-length extension
based on a single κ-bit key n-bit blockcipher is able to achieve. Cascade encryptions CEl (with
n ≤ κ) and XCEl provide almost optimal security with large cascade length.

1 Introduction

The key length of a blockcipher, say κ, is a crucial factor that limits its achievable security
level: no matter how carefully designed, one can recover its secret key simply by trying all
possible 2κ keys. For example, the Data Encryption Standard (DES) [1] using 56-bit keys
was one of the most predominant algorithms for encryption of data. No feasible attacks faster
than a brute-force attack have been proposed (as most of them require a huge amount of
data), while advances in computational power made a brute-force attack itself practical. As
a result, DES was replaced by a new standard algorithm AES [4]. On the other hand, in
order to protect legacy applications based on DES, there have been considerable research
on constructing DES-based encryption schemes which employ longer keys. This approach is
called key-length extension, for which Triple-DES [2, 3, 5] and DESX (due to Rivest) are the
most popular constructions.

The Triple-DES approach transforms a κ-bit key n-bit blockcipher E into an encryption
scheme that accepts three κ-bit keys k1, k2, k3 ∈ {0, 1}κ and encrypts an n-bit message block

u as v = Ek3(Ek2(Ek1(u))). Bellare and Rogaway [6] proved its security up to 2κ+
min{n,κ}
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query complexity assuming E is an ideal blockcipher. The triple encryption can be naturally
extended to sequentially composing more than three blockcipher calls with independent keys.
It has been a longstanding open problem if the security of cascade encryption improves with
increasing cascade length. Recently, Gaži and Maurer [9] partially answered this question by
showing the security bound (in terms of the threshold number of queries) approaches roughly
the value 2κ+min{n

2
,κ}. In this paper, we will revisit this question.

The DESX approach transforms a κ-bit key n-bit blockcipher E into an encryption scheme
that accepts a κ-bit key k ∈ {0, 1}κ and additional n-bit whitening keys ki, ko ∈ {0, 1}n and
encrypts an n-bit message block u as v = ko ⊕ Ek(ki ⊕ u). Killan and Rogaway [13] proved

its security up to 2
κ+n
2 query complexity. As an efficient key-length extension, Gaži and

Tessaro [10] proposed a cascade of two DESX schemes with some refinement, and proved its
security up to 2κ+

n
2 query complexity.

Our Contribution. Since one can obtain all the evaluations of a κ-bit key n-bit blockcipher
by making 2κ+n queries, the (κ + n)-bit security becomes the maximum that key-length
extension based on a single κ-bit key n-bit blockcipher is able to achieve: a standard brute-
force attack of 2κ+n query complexity is given in Appendix A.

Therefore it is natural to ask if there is key-length extension with the optimal (κ+ n)-bit
security. In order to answer this question, we consider two types of cascade encryptions. The
first construction is a regular cascade encryption. Formally, l-cascade encryption CEl accepts
an lκ-bit key k = (k1, . . . , kl) ∈ ({0, 1}κ)l and encrypts a plaintext u ∈ {0, 1}n by computing

v = CElk[E](u) = Ekl ◦ Ekl−1
◦ · · · ◦ Ek2 ◦ Ek1(u).

In this paper, we prove that CEl is pseudorandom up to 2κ+min{κ,n}− 16
l (n2+2) query complex-

ity (ignoring log factor). As cascade length l increases, this bound approaches 2κ+min{κ,n},
improving the limit 2κ+min{n

2
,κ} given by Gaži and Maurer when n

2 < κ.
The second construction can be viewed as a cascade of DESX: l-xor-cascade encryption

XCEl accepts an (lκ+ (l + 1)n)-bit key (k, z) ∈ ({0, 1}κ)l × ({0, 1}n)l+1 and for

k = (k1, . . . , kl) ∈ ({0, 1}κ)l and z = (z0, . . . , zl) ∈ ({0, 1}n)l+1 ,

encrypts a plaintext u ∈ {0, 1}n by computing

v = XCElk,z[E](u) = ⊕zl ◦ Ekl ◦ ⊕zl−1
◦ · · · ◦ ⊕z1 ◦ Ek1 ◦ ⊕z0(u),

where for z ∈ {0, 1}n, ⊕z denotes the mapping x 7→ x⊕ z from {0, 1}n to itself. We prove the

security of XCEl up to 2κ+n−
8
l (
n
2
+2) query complexity. With increasing cascade length, this

bound approaches 2κ+n. So XCEl asymptotically provides optimal security with large cascade
length, and this observation also applies to cascade encryption CEl if n ≤ κ (as in the case of
DES and AES). See Figure 1 for pictorial representation of CEl and XCEl.

Proof Techniques. We will use a combinatorial framework that lifts the NCPA-security
of l/2-cascade construction to the CPA security of l-cascade construction. Maurer, Pietrzak,
and Renner [15] proved that if two independent encryption schemes F and G are NCPA-
secure, then F ◦ G−1 is CPA-secure. Combinatorial interpretation of this property, based
on Lemma 2, was first introduced in [14], where the key-alternating cipher of t rounds is
viewed as a composition of two independent key-alternating cipher of t/2 rounds, and the
NCPA-security of each component is analyzed. A similar approach can be applied to our
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Fig. 1. Two types of cascade encryptions

constructions, while a difficulty comes from the fact that the two components are commonly
based on a single blockcipher. We address this problem by using random key space separation:
randomly partition a key space into two subspaces of the same size and make the first l/2
blockcipher calls use keys from one key subspace and the last l/2 calls from the other. The
modified key sampling process is shown to be indistinguishable from the original one, while
by having the two components use their keys from separate key subspaces, we can view a
cascade encryption as a composition of two independent ones.

The NCPA-security of each component is proved by coupling technique. Since first intro-
duced by Mironov [16] in a cryptographic context and recently revisited by Morris, Rogaway
and Stegers [17] to analyze the security of maximally unbalanced Feistel networks, it became
a powerful tool used for the security proof of various types of iterated constructions includ-
ing generalized Feistel networks, shuffling-based encryption schemes and key-alternating ci-
phers [14, 11, 12]. Careful definition and analysis of a coupling, given in the proof of Lemma 5,
is the core of our security proof.

Other Related Work. Recently, Gaži [8] presented a distinguishing attack on cascade

encryption of odd (resp. even) length l using roughly 2κ+
l−1
l+1

n (resp. 2κ+
l−2
l
n) queries. For

xor-cascade encryption of length l (and its generalization), a distinguishing attack of 2κ+
l−1
l
n

query complexity is presented. In the random system framework, the security of xor-cascade

encryption of odd (resp. even) length l is proved up to 2κ+
l−1
l+1

n (resp. 2κ+
l−2
l
n) query com-

plexity, and especially up to 2κ+
l−1
l
n query complexity for l ∈ {3, 4}. These lower bounds are

tighter than ours.

2 Preliminaries

2.1 General Notation

For an integer n ≥ 1, let In = {0, 1}n be the set of binary strings of length n. The set of all
permutations on In will be denoted Pn. We will usually write N = 2n.

For a set T and an integer s ≥ 1, T ∗s denotes the set of all sequences that consists of s
pairwise distinct elements of T . For integers 1 ≤ s ≤ t, we will write (t)s = t(t−1) · · · (t−s+1).
If |T | = t, then (t)s becomes the size of T ∗s.

2.2 The Ideal Cipher Model

A blockcipher is a function family E : K × {0, 1}n → {0, 1}n such that for all k ∈ K the
mapping E(k, ·) is a permutation on In. We write BC(K, n) to mean the set of all such block-
ciphers, shortening to BC(κ, n) when K = {0, 1}κ. In the ideal cipher model, a blockcipher E
is chosen from BC(K, n) uniformly at random. It allows for two types of oracle queries E(k, x)



and E−1(k, y) for x, y ∈ {0, 1}n and k ∈ K.1 The response to an inverse query E−1(k, y) is
x ∈ {0, 1}n such that E(k, x) = y.

2.3 Indistinguishability

Let C ∈ {CEl,XCEl} be an n-bit encryption scheme that employs λ-bit keys and makes
oracle queries to a blockcipher E ∈ BC(κ, n). So each key k ∈ {0, 1}λ and a blockcipher
E ∈ BC(κ, n) define a permutation Ck[E] on In. In the indistinguishability framework (in the
ideal cipher model), Ck[E] uses a random secret key k and makes oracle queries to an ideal
blockcipher E, while a permutation P is chosen uniformly at random from Pn. A distinguisher
A would like to tell apart two worlds (Ck[E], E) and (P,E) by adaptively making forward
and backward queries to the permutation and the blockcipher. Formally, A’s distinguishing
advantage is defined by

AdvPRP
C (A) = Pr

[
P

$← Pn, E
$← BC(κ, n) : A[P,E] = 1

]
−Pr

[
k

$← {0, 1}λ, E $← BC(κ, n) : A[Ck[E], E] = 1
]
.

For q1, q2 > 0, we define

AdvPRP
C (q1, q2) = max

A
AdvPRP

C (A),

where the maximum is taken over all adversaries A making at most q1 queries to the outer
permutation and at most q2 queries to the underlying blockcipher.

Combinatorial Framework. We assume that a distinguisher A making q1 forward and/or
backward queries to the permutation oracle records a query history

Q1 = (ui, vi)1≤i≤q1 ,

where (ui, vi) represents the evaluation obtained by the i-th query to the permutation oracle.
So according to the instantiation, it implies either Ck[E](ui) = vi or P (ui) = vi. By making
q2 queries to the underlying blockcipher E, A also records the second query history

Q2 = (xi, ki, yi)1≤i≤q2 ,

where (xi, ki, yi) represents the evaluation E(ki, xi) = yi obtained by the i-th query to the
blockcipher. The pair of the query histories

T = (Q1,Q2)

is called the transcript of the attack; it contains all the information that A has obtained at
the end of the attack. In this work, we will only consider information theoretic distinguishers.
Therefore we can assume that a distinguisher is deterministic without making any redundant
queries, and hence the output of A can be regarded as a function of T , denoted A(T ) or
A(Q1,Q2).

If a permutation Ck[E](resp. P ) is consistent with Q1, i.e., Ck[E](ui) = vi(resp. P (ui) =
vi) for every i = 1, . . . , q1, then we will write Ck[E] ` Q1(resp. P ` Q1). Similarly, if a

1 We interchangeably use both representations E(k, x) and Ek(x), and similarly E−1(k, y) and E−1
k (y).



blockcipher E ∈ BC(κ, n) is consistent with Q2 (i.e., E(ki, xi) = yi for i = 1, . . . , q2), then
we will write E ` Q2. Using these notations, we have

AdvPRP
C (A) =

∑
A(Q1,Q2)=1

Pr
[
P

$← Pn, E
$← BC(κ, n) : P ` Q1 ∧ E ` Q2

]
−

∑
A(Q1,Q2)=1

Pr
[
k

$← {0, 1}λ, E $← BC(κ, n) : Ck[E] ` Q1 ∧ E ` Q2

]
, (1)

where the sum is taken over all the possible transcripts T = (Q1,Q2) such that A(Q1,Q2) =
1.2

2.4 Coupling Technique

Given a finite event space Ω and two probability distributions µ and ν defined on Ω, the total
variation distance between µ and ν, denoted ‖µ− ν‖, is defined as

‖µ− ν‖ =
1

2

∑
x∈Ω
|µ(x)− ν(x)|.

The following definitions are also all equivalent.

‖µ− ν‖ = max
S⊂Ω
{µ(S)− ν(S)} = max

S⊂Ω
{ν(S)− µ(S)} = max

S⊂Ω
{|µ(S)− ν(S)|}.

A coupling of µ and ν is a distribution τ on Ω×Ω such that for all x ∈ Ω,
∑

y∈Ω τ(x, y) = µ(x)
and for all y ∈ Ω,

∑
x∈Ω τ(x, y) = ν(x). In other words, τ is a joint distribution whose marginal

distributions are respectively µ and ν. We will use the following two lemmas in subsequent
security proofs.

Lemma 1. Let µ and ν be probability distributions on a finite event space Ω, let τ be a
coupling of µ and ν, and let (X,Y ) be a random variable sampled according to distribution τ .
Then ‖µ− ν‖ ≤ Pr[X 6= Y ].

Lemma 2. Let Ω be some finite event space and ν be the uniform probability distribution on
Ω. Let µ be a probability distribution on Ω such that ‖µ− ν‖ ≤ ε. Then there is a set S ⊂ Ω
such that

1. |S| ≥ (1−
√
ε)|Ω|,

2. µ(x) ≥ (1−
√
ε)ν(x) for every x ∈ S.

The proof of the above lemmas is given in [14]. For completeness, we include the same proof
in Appendix B.

2 Here we only consider “valid” transcripts that A might produce by communicating with a permutation
P ∈ Pn and a blockcpher E ∈ BC(κ, n). For example, in a valid transcript T = (Q1,Q2), (x, y) and (x′, y)
with x 6= x′ could not be both contained in Q1.



3 Security Proofs

In the security proof of cascade encryption CEl, we will assume that for any x, y ∈ In, there
are at most β keys k such that (x, k, y) ∈ Q2. Define the weight of Q2 by

ω(Q2) = max
x,y∈In

|{k : (x, k, y) ∈ Q2}| .

Then we have

Pr
[
E

$← BC(κ, n) : ω(Q2) > β
]
≤ 22n−β (2)

for any β ≥ e2κ−n+1. Note that a distinguisher A is deterministic, so once E is chosen then
Q2, and hence ω(Q2) is uniquely determined. This bound has already been used in [6, 9],
while for completeness we give a proof in Appendix C. With this probabilistic restriction, the
security proof of cascade encryption CEl will use the following lemma.

Lemma 3. Let δ > 0 and β ≥ e2κ−n+1. Assume that for any transcript T = (Q1,Q2) such
that |Q1| = q1, |Q2| = q2 and ω(Q2) ≤ β, we have

p1(Q1|Q2) ≥ (1− δ)p2(Q1|Q2),

where

p1(Q1|Q2) = Pr

[
k

$← I lκ, E
$← BC(κ, n) : CElk[E] ` Q1 |E ` Q2

]
,

p2(Q1|Q2) = Pr

[
P

$← Pn, E
$← BC(κ, n) : P ` Q1 |E ` Q2

]
= 1/(N)q1 .

Then we have

AdvPRP
CEl

(A) ≤ δ + 22n−β.

Proof. For a transcript T = (Q1,Q2), define

p(Q2) = Pr
[
E

$← BC(κ, n) : E ` Q2

]
,

p1(Q1,Q2) = Pr
[
k

$← I lκ, E
$← BC(κ, n) : CElk[E] ` Q1 ∧ E ` Q2

]
= p1(Q1|Q2)p(Q2),

p2(Q1,Q2) = Pr
[
P

$← Pn, E
$← BC(κ, n) : P ` Q1 ∧ E ` Q2

]
= p2(Q1|Q2)p(Q2).



Then by (1) and (2), we have

AdvPRP
CEl

(A) =
∑

A(Q1,Q2)=1

p2(Q1,Q2)−
∑

A(Q1,Q2)=1

p1(Q1,Q2)

=
∑

A(Q1,Q2)=1
ω(Q2)≤β

p2(Q1|Q2)p(Q2)−
∑

A(Q1,Q2)=1
ω(Q2)≤β

p1(Q1|Q2)p(Q2)

+
∑

A(Q1,Q2)=1
ω(Q2)>β

p2(Q1,Q2)−
∑

A(Q1,Q2)=1
ω(Q2)>β

p1(Q1,Q2)

≤
∑

A(Q1,Q2)=1
ω(Q2)≤β

p2(Q1|Q2)p(Q2)−
∑

A(Q1,Q2)=1
ω(Q2)≤β

p1(Q1|Q2)p(Q2) +
∑

ω(Q2)>β

p2(Q2)

≤
∑

A(Q1,Q2)=1
ω(Q2)≤β

p2(Q1|Q2)p(Q2)− (1− δ)
∑

A(Q1,Q2)=1
ω(Q2)≤β

p2(Q1|Q2)p(Q2) + 22n−β

≤ δ
∑

A(Q1,Q2)=1
ω(Q2)≤β

p2(Q1,Q2) + 22n−β ≤ δ + 22n−β. ut

In the security proof of xor-cascade encryption XCEl, we put no restriction on the weight
of Q2. In this case, we can use the following lemma whose proof is similar as Lemma 3. (We
might simply apply β =∞ to Lemma 3.)

Lemma 4. Let δ > 0. Assume that for any transcript T = (Q1,Q2) such that |Q1| = q1 and
|Q2| = q2, we have

p1(Q1|Q2) ≥ (1− δ)p2(Q1|Q2),

where

p1(Q1|Q2) = Pr

[
k

$← I lκ, z
$← I l+1

n , E
$← BC(κ, n) : XCElk,z[E] ` Q1 |E ` Q2

]
,

p2(Q1|Q2) = Pr

[
P

$← Pn, E
$← BC(κ, n) : P ` Q1 |E ` Q2

]
= 1/(N)q1 .

Then we have

AdvPRP
XCEl

(q1, q2) ≤ δ.

3.1 Security of Cascade Encryption

In this section, we analyze the security of cascade encryption CEl for even length l = 2d. We
begin with slightly modifying the key sampling process of CEl. Consider the following three
key sampling processes.

A: Choose k ∈ I lκ uniformly at random.

B: Choose k ∈ (Iκ)∗l uniformly at random.

C: Randomly partition T1 ∪ T2 = Iκ so that |T1| = |T2|, choose k′ ∈ (T1)
∗d and k′′ ∈ (T2)

∗d

uniformly at random, and then define k = (k′,k′′).



One can distinguish sampling processes A and B with advantage at most(
l

2

)
1

2κ
≤ l2

2κ+1
. (3)

On the other hand, sampling processes B and C have exactly the same probability distribu-
tion. (See Appendix D for the proof.) Taking into account (3), we will analyze the security
of

CElk[E] = CEdk′′ [E] ◦ CEdk′ [E],

where k, k′ and k′′ are defined by key sampling process C instead of the original process A.

If CElk[E] ` Q1 for a query history Q1 = (ui, vi)1≤i≤q1 , then it follows that

CEdk′ [E] ` (ui, wi)1≤i≤q1 and CEdk′′ [E] ` (wi, vi)1≤i≤q1 ,

for some w = (wi)1≤i≤q1 ∈ (In)∗q1 . Therefore for a transcript T = (Q1,Q2), we have

p1(Q1|Q2) =
∑
w∈Ω

Pr[T1 $← P2κ−1(Iκ),k′
$← (T1)

∗d,k′′
$← (T2)

∗d,

E
$← BC(κ, n) : CEdk′ [E] ` (ui, wi) ∧ CEdk′′ [E] ` (wi, vi) |E ` Q2],

where Ω = (In)∗q1 , P2κ−1(Iκ) is the set of all subsets of Iκ of size 2κ−1, and T2 = Iκ\T1.
Given a partition (T1, T2) of Iκ, a blockcipher E ∈ BC(κ, n) is naturally partitioned into

two blockciphers E′ ∈ BC(T1, n) and E′′ ∈ BC(T2, n), and vice versa. Given a query history
Q2 for E, then this partition also induces two query historiesQ′2 for E′ andQ′′2 for E′′. Namely,
for Q2 = (xi, ki, yi)1≤i≤q2 , Q′2 = (xi, ki, yi)1≤i≤q2,ki∈T1 and Q′′2 = (xi, ki, yi)1≤i≤q2,ki∈T2 . With
these notations, we have

Pr[T1 $← P2κ−1(Iκ),k′
$← (T1)

∗d,k′′
$← (T2)

∗d, E
$← BC(κ, n) :

CEdk′ [E] ` (ui, wi) ∧ CEdk′′ [E] ` (wi, vi) |E ` Q2]

=
1(
2κ

2κ−1

) ∑
T1∪T2=Iκ

|T1|=|T2|=2κ−1

Pr[k′ $← (T1)
∗d,k′′

$← (T2)
∗d, E′

$← BC(T1, n),

E′′
$← BC(T2, n) : CEdk′ [E

′] ` (ui, wi) ∧ CEdk′′ [E
′′] ` (wi, vi) |E′ ` Q′2 ∧ E′′ ` Q′′2],

and hence

p1(Q1|Q2) =
1(
2κ

2κ−1

) ∑
T1∪T2=Iκ

|T1|=|T2|=2κ−1

∑
w∈Ω

Pr[k′ $← (T1)
∗d,k′′

$← (T2)
∗d, E′

$← BC(T1, n),

E′′
$← BC(T2, n) : CEdk′ [E

′] ` (ui, wi) ∧ CEdk′′ [E
′′] ` (wi, vi) |E′ ` Q′2 ∧ E′′ ` Q′′2],



where∑
w∈Ω

Pr[k′ $← (T1)
∗d,k′′

$← (T2)
∗d, E′

$← BC(T1, n), E′′
$← BC(T2, n) :

CEdk′ [E
′] ` (ui, wi) ∧ CEdk′′ [E

′′] ` (wi, vi) |E′ ` Q′2 ∧ E′′ ` Q′′2]
=
∑
w∈Ω

Pr[k $← (T1)
∗d, E

$← BC(T1, n) : CEdk[E] ` (ui, wi) |E ` Q′2]

×Pr[k $← (T2)
∗d, E

$← BC(T2, n) : CEdk[E] ` (wi, vi) |E ` Q′′2]. (4)

In order to upper bound each factor of the products appearing in (4), we fix a query
history Q2 = (xi, ki, yi)1≤i≤q′ such that q′ ≤ q2 and ω(Q2) ≤ β, and define a probability
distribution µs for each s = (si)1≤i≤q1 ∈ Ω, where for each w = (wi)1≤i≤q1 ∈ Ω,

µs(w) = Pr

[
k

$← (Iκ)∗d, E
$← BC(κ, n) : CEdk[E] ` (si, wi)1≤i≤q1 |E ` Q2

]
.

Using the coupling technique, we can upper bound the statistical distance between µs and
the uniform probability distribution. The proof will be given at the end of this section.

Lemma 5. Let d be even, let µs be the probability distribution defined as above, and let ν be
the uniform probability distribution on Ω. Then for M > 0, we have ‖µs − ν‖ ≤ ε, where

ε = q1

(
2q2

M(2κ − d)
+

2Mβ

2κ − d
+

2M

N −M

) d
2

.

Applying Lemma 5 with s = u = (ui)1≤i≤q1 , Q2 = Q′2 and

µu(w) = Pr[k $← (T1)
∗d, E

$← BC(T1, n) : CEdk[E] ` (ui, wi) |E ` Q′2],
and using Lemma 2, we have a subset S1 ⊂ Ω such that |S1| ≥ (1−

√
ε)|Ω| and

Pr[k $← (T1)
∗d, E

$← BC(T1, n) : CEdk[E] ` (ui, wi) |E ` Q′2]
≥ (1−

√
ε)ν(w) =

1−
√
ε

(N)q1

for every w ∈ S1, where

ε = q1

(
2q2

M(2κ−1 − d)
+

2Mβ

2κ−1 − d
+

2M

N −M

) d
2

.

Here BC(T1, n) is viewed as equivalent to BC(κ− 1, n).
For Q′′2, define Q′′′2 where (x, k, y) ∈ Q′′2 if and only if (y, k, x) ∈ Q′′′2 . Again, applying

Lemma 5 with s = v = (vi)1≤i≤q1 , Q2 = Q′′′2 and

µv(w) = Pr[k $← (T2)
∗d, E

$← BC(T2, n) : CEdk[E] ` (vi, wi) |E ` Q′′′2 ]
= Pr[k $← (T2)

∗d, E
$← BC(T2, n) : CEdk[E] ` (wi, vi) |E ` Q′′2],



we have a subset S2 ⊂ Ω such that |S2| ≥ (1−
√
ε)|Ω| and

Pr[k $← (T2)
∗d, E

$← BC(T2, n) : CEdk[E] ` (wi, vi) |E ` Q′′2]
≥ (1−

√
ε)ν(w) =

1−
√
ε

(N)q1

for every w ∈ S2. Let S = S1 ∩ S2. Since |S| ≥ (1− 2
√
ε)|Ω|, it follows that

∑
w∈Ω

Pr[k $← (T1)
∗d, E

$← BC(T1, n) : CEdk[E] ` (ui, wi) |E ` Q′2]

×Pr[k $← (T2)
∗d, E

$← BC(T2, n) : CEdk[E] ` (wi, vi) |E ` Q′′2]
≥ (1− 2

√
ε)|Ω| ·

(
1−
√
ε

(N)q1

)2

≥ (1− 4
√
ε)p2(Q1|Q2).

Therefore we have

p1(Q1|Q2) ≥
1(
2κ

2κ−1

) ∑
T1∪T2=Iκ

|T1|=|T2|=2κ−1

(1− 4
√
ε)p2(Q1|Q2)

= (1− 4
√
ε)p2(Q1|Q2). (5)

By (3), (5) and Lemma 3, we have the following theorem.

Theorem 1. Let CEl be an l-cascade encryption scheme using a κ-bit key n-bit blockcipher.
If l = 2d and d is even, then for M > 0 and β ≥ e2κ−n,

AdvPRP
CEl

(q1, q2) ≤
l2

2κ+1
+ 4q

1
2
1

(
2q2

M(2κ−1 − d)
+

2Mβ

2κ−1 − d
+

2M

N −M

) d
4

+ 22n−β.

Optimizing parameters. Let β ≥ max{3n, e2κ−n}. Then 3n ≤ β, and hence 22n−β ≤ 1/2n.

Let M =
√

q2
β by solving 2q2

M(2κ−1−d) = 2Mβ
2κ−1−d . Then for q2 ≤ 2κ+n, M ≤

√
2κ+n

e2κ−n ≤
N√
e

and

hence
1

N −M
≤
(

1− 1√
e

)−1 1

N
≤ e

N
.

This implies
2M

N −M
≤ 2M · e2κ−n

2κ
≤ 2Mβ

2κ−1 − d

(
=

4Mβ

2κ − l

)
.

Using this inequality, the upper bound of Theorem 1 is simplified as follows.

Corollary 1. Let CEl be an l-cascade encryption scheme using a κ-bit key n-bit blockcipher.
If l is a multiple of 4, then for β ≥ max{3n, e2κ−n},

AdvPRP
CEl

(q1, q2) ≤
l2

2κ+1
+ 4q

1
2
1

(
12
√
βq2

2κ − l

) l
8

+
1

2n
.



Interpretation. Assuming that l2/2κ+1 and 1/2n are negligible, focus on the second term
of the above upper bound. If we set q1 = 2n to the maximum number of queries to the
outer permutation and approximate 2κ − l ≈ 2κ, then the distinguishing advantage becomes
negligible when

q2 �
22κ−

16
l
(n
2
+2)

144β
≤ min

{
22κ−

16
l
(n
2
+2)

432n
,
2κ+n−

16
l
(n
2
+2)

144e

}
.

Alternatively, let q2 = min
{

22κ

432n ,
2κ+n

144e

}
. Then the second term is upper bounded by 2

n
2
+2− l

8 ,

approaching zero as the length l increases.

Proof of Lemma 5. Fix s = (si)1≤i≤q1 and for m = 0, . . . , q1, define probability distributions
πm where for each w = (w1, . . . , wq1) ∈ Ω,

πm(w) = Pr[(um+1, . . . , uq1)
$← (In\{s1, . . . , sm})∗(q1−m),k

$← (Iκ)∗d,

E
$← BC(κ, n) : CEdk[E] ` (si, wi)1≤i≤m ∧ CEdk[E] ` (ui, wi)m+1≤i≤q1 |E ` Q2].

Then we can check that π0 = ν and πq1 = µs. Since

‖µs − ν‖ ≤
q1−1∑
m=0

‖πm+1 − πm‖, (6)

we will focus on upper bounding ‖πm+1 − πm‖ for each m = 0, . . . , q1 − 1. In order to couple
πm+1 and πm, we will define a random variable (T, V ) on Ω × Ω by the sampling process
described in Figure 2. In this description,

D(k) = {x ∈ In : (x, k, y) ∈ Q2 for some y},
R(k) = {y ∈ In : (x, k, y) ∈ Q2 for some x},

for each key k ∈ Iκ. So they denote the domain points and the range points of the evaluations
of E(k, ·) determined by Q2, respectively.

In lines 1 to 4, the first m+ 1 elements are initialized. They are updated in lines 5 to 23
along cascade encryption. Specifically, the first m elements are faithfully updated in lines 7 to
11, while the (m+1)-th element is updated in lines 12 to 23 according to four conditions. The
last q1 −m − 1 elements of the output are determined in lines 24 to 29 without any update
process.
As for this random variable, we point out some noteworthy properties.

1. In any case, the first m elements of T and V are equal.
2. If t[d] = v[d], then T = V at the end of the experiment.
3. By ignoring the steps used to sample V , we obtain the process for sampling T as described

in Figure 3(a). Similarly, we obtain the process for sampling V as described in Figure 3(b).
We can check that T and V follow probability distributions πm+1 and πm, respectively.

Therefore by Lemma 1, we have

‖πm+1 − πm‖ ≤ Pr [T 6= V ] = Pr [t[d] 6= v[d]] . (7)



1: for i← 1 to m do
2: wi[0]← si

3: t[0]← sm+1

4: v[0]
$← In\{s1, . . . , sm}

5: for j ← 1 to d do

6: k[j]
$← Iκ\{k[1], . . . , k[j − 1]}

7: for i← 1 to m do
8: if wi[j − 1] ∈ D(k[j]) then
9: wi[j]← E(k[j], wi[j − 1])

10: else if wi[j − 1] /∈ D(k[j]) then

11: wi[j]
$← In\({w1[j], . . . , wi−1[j]} ∪ R(k[j]))

12: if t[j − 1] ∈ D(k[j]) and v[j − 1] ∈ D(k[j]) then
13: t[j]← E(k[j], t[j − 1])
14: v[j]← E(k[j], v[j − 1])
15: else if t[j − 1] ∈ D(k[j]) and v[j − 1] /∈ D(k[j]) then
16: t[j]← E(k[j], t[j − 1])

17: v[j]
$← In\({w1[j], . . . , wm[j]} ∪ R(k[j]))

18: else if t[j − 1] /∈ D(k[j]) and v[j − 1] ∈ D(k[j]) then

19: t[j]
$← In\({w1[j], . . . , wm[j]} ∪ R(k[j]))

20: v[j]← E(k[j], v[j − 1])
21: else if t[j − 1] /∈ D(k[j]) and v[j − 1] /∈ D(k[j]) then

22: t[j]
$← In\({w1[j], . . . , wm[j]} ∪ R(k[j]))

23: v[j]← t[j]

24: if t[d] = v[d] then

25: (vm+2, . . . , vq1)
$← (In\{w1[d], . . . , wm[d], v[d]})∗(q1−m−1)

26: (tm+2, . . . , tq1)← (vm+2, . . . , vq1)
27: else
28: (vm+2, . . . , vq1)

$← (In\{w1[d], . . . , wm[d], v[d]})∗(q1−m−1)

29: (tm+2, . . . , tq1)
$← (In\{w1[d], . . . , wm[d], t[d]})∗(q1−m−1)

30: T ← (w1[d], . . . , wm[d], t[d], tm+2, . . . , tq1)
31: V ← (w1[d], . . . , wm[d], v[d], vm+2, . . . , vq1)
32: return (T, V )

Fig. 2. Sampling process for random variable (T, V )



1: for i← 1 to m do
2: wi[0]← si

3: t[0]← sm+1

4: for j ← 1 to d do

5: k[j]
$← Iκ\{k[1], . . . , k[j − 1]}

6: for i← 1 to m do
7: if wi[j − 1] ∈ D(k[j]) then
8: wi[j]← E(k[j], wi[j − 1])
9: else if wi[j − 1] /∈ D(k[j]) then

10: wi[j]
$← In\({w1[j], . . . , wi−1[j]} ∪ R(k[j]))

11: if t[j − 1] ∈ D(k[j]) then
12: t[j]← E(k[j], t[j − 1])
13: else if t[j − 1] /∈ D(k[j]) then

14: t[j]
$← In\({w1[j], . . . , wm[j]} ∪ R(k[j]))

15: (tm+2, . . . , tq1)
$← (In\{w1[d], . . . , wm[d], t[d]})∗(q1−m−1)

16: return T = (w1[d], . . . , wm[d], t[d], tm+2, . . . , tq1)

(a) Sampling T

1: for i← 1 to m do
2: wi[0]← si

3: v[0]
$← In\{s1, . . . , sm}

4: for j ← 1 to d do

5: k[j]
$← Iκ\{k[1], . . . , k[j − 1]}

6: for i← 1 to m do
7: if wi[j − 1] ∈ D(k[j]) then
8: wi[j]← E(k[j], wi[j − 1])
9: else if wi[j − 1] /∈ D(k[j]) then

10: wi[j]
$← In\({w1[j], . . . , wi−1[j]} ∪ R(k[j]))

11: if v[j − 1] ∈ D(k[j]) then
12: v[j]← E(k[j], v[j − 1])
13: else if v[j − 1] /∈ D(k[j]) then

14: v[j]
$← In\({w1[j], . . . , wm[j]} ∪ R(k[j]))

15: (vm+2, . . . , vq1)
$← (In\{w1[d], . . . , wm[d], v[d]})∗(q1−m−1)

16: return V = (w1[d], . . . , wm[d], v[d], vm+2, . . . , vq1)

(b) Sampling V

Fig. 3. Sampling T and V separately



Since t[j] = v[j] implies t[j + 2] = v[j + 2] for j = 0, . . . , d− 2 (actually, t[j′] = v[j′] for every
j′ > j), we have

Pr [t[d] 6= v[d]] ≤

d
2∏

h=1

Pr

[
t[2h] 6= v[2h] |t[2h− 2] 6= v[2h− 2]

]
. (8)

For a fixed h = 1, . . . , d2 , assume that t[2h − 2] 6= v[2h − 2], and on this condition, consider
the probability that t[2h] and v[2h] are different. In order for this event to happen, either
t[2h − 2] or v[2h − 2] should map to a point within D(k[2h]) since otherwise t[2h − 1] and
v[2h− 1] both outside D(k[2h]) would map to an identical point t[2h] = v[2h]. We divide this
event into three subcases. In the following description, we fix a parameter M > 0, and call a
key k heavy if |R(k)| = |D(k)| > M .

Case 1: Either k[2h− 1] or k[2h] is heavy. Since there are at most q2/M heavy keys and
k[2h− 1] and k[2h] are chosen from the set of size at least 2κ− d, the probability of this case
is at most

2q2
M(2κ − d)

. (9)

Case 2: k[2h] is not heavy, and either (t[2h− 2], k[2h− 1], y) ∈ Q2 or (v[2h− 2], k[2h−
1], y) ∈ Q2 for some y ∈ D(k[2h]). First, assume that k[2h] is not heavy. Since |D(k[2h])| ≤
M and ω(Q2) ≤ β, the number of keys k such that either (t[2h − 2], k, y) ∈ Q2 or (v[2h −
2], k, y) ∈ Q2 for some y ∈ D(k[2h]) is at most 2Mβ. Therefore the probability that one of
such keys is chosen as k[2h− 1] is at most

2Mβ

2κ − d
. (10)

Case 3: The remaining case. Here we assume that any of k[2h−1] and k[2h] is not heavy.
Furthermore, k[2h−1] and Q2 do not determine a mapping from one of t[2h−2] and v[2h−2]
to any point within D(k[2h]). However either t[2h−2] or v[2h−2] might still go into D(k[2h])
by probabilistic sampling. Since |D(k[2h])| ≤M and |R(k[2h−1])| ≤M , this case occurs with
probability at most

2M

N −M
. (11)

We notice that the update of wi[2h − 2], i = 1, . . . ,m, does not affect this upper bounding.
By (6), (7), (8), (9), (10) and (11), we obtain

‖µs − ν‖ ≤ q1
(

2q2
M(2κ − d)

+
2Mβ

2κ − d
+

2M

N −M

) d
2

.

3.2 Security of Xor-cascade Encryption

In this section, we analyze the security of xor-cascade encryption XCEl for even length l = 2d.
The argument is very similar to the security proof of the original cascade encryption except
modifying key sampling process and applying Lemma 6. First, the following original key
sampling process A is modified into B:

A: Choose k ∈ I lκ and z ∈ I l+1
n uniformly at random.



B: Randomly partition T1 ∪ T2 = Iκ so that |T1| = |T2|, choose k′ ∈ (T1)
∗d and k′′ ∈ (T2)

∗d

uniformly at random, and then define k = (k′,k′′). Next, choose z′ = (z′0, . . . , z
′
d) ∈ Id+1

n

and z′′ = (z′′0 , . . . , z
′′
d) ∈ Id+1

n uniformly at random, and then define

z = (z′0, . . . , z
′
d ⊕ z′′0 , . . . , z′′d) ∈ I l+1

n .

One can distinguish sampling processes A and B with advantage at most(
l

2

)
1

2κ
≤ l2

2κ+1
. (12)

Taking into account (12), we analyze the security of

XCElk,z[E] = XCEdk′′,z′′ [E] ◦ XCEdk′,z′ [E],

where (k, z), (k′, z′) and (k′′, z′′) are defined by key sampling process B.
For Q1 = (ui, vi)1≤i≤q1 and Q2 = (xi, ki, yi)1≤i≤q2 , we can prove

p1(Q1|Q2) =
1(
2κ

2κ−1

)×
∑

T1∪T2=Iκ
|T1|=|T2|=2κ−1

∑
w∈Ω
(Pr[k $← (T1)

∗d, z
$← Id+1

n , E
$← BC(T1, n) : XCEdk[E] ` (ui, wi) |E ` Q′2]

×Pr[k $← (T2)
∗d, z

$← Id+1
n , E

$← BC(T2, n) : XCEdk[E] ` (wi, vi) |E ` Q′′2]),
with the same notations as the previous section. In order to estimate the probabilities ap-
pearing as the summands, we fix a query history Q2 = (xi, ki, yi)1≤i≤q′ such that q′ ≤ q2, and
for each s ∈ Ω define a probability distribution µs such that for each w = (wi)1≤i≤q1 ∈ Ω,

µs(w) = Pr[k $← (Iκ)∗d, z
$← Id+1

n , E
$← BC(κ, n) :

XCEdk[E] ` (si, wi)1≤i≤q1 |E ` Q2].
Then we have the following lemma.

Lemma 6. Let d > 0, let µs be the probability distribution defined as above, and let ν be the
uniform probability distribution on Ω. Then for M > 0, we have ‖µs − ν‖ ≤ ε, where

ε = q1

(
q2

M(2κ − d)
+

2M

N

)d
.

The proof will be given at Appendix E. Using this lemma and exactly the same argument for
the original cascade encryption, we can also prove the following theorem.

Theorem 2. Let XCEl be an l-xor-cascade encryption scheme using a κ-bit key n-bit block-
cipher. If l = 2d, then for M > 0,

AdvPRP
XCEl

(q1, q2) ≤
l2

2κ+1
+ 4q

1
2
1

(
q2

M(2κ−1 − d)
+

2M

N

) d
2

.



Optimizing Parameters. By solving q2
M(2κ−1−d) = 2M

N , we set M =
√

Nq2
2κ−l , obtaining the

following corollary.

Corollary 2. Let XCEl be an l-cascade encryption scheme using a κ-bit key n-bit blockcipher.
If l is even, then

AdvPRP
XCEl

(q1, q2) ≤
l2

2κ+1
+ 4q

1
2
1

(
16q2

N(2κ − l)

) l
8

.

Interpretation. Assuming that l2/2κ+1 is negligible, set q1 = 2n and approximate 2κ− l ≈
2κ. Then the distinguishing advantage becomes negligible when

q2 � 2κ+n−4−
8
l
(n
2
+2).

Alternatively, let q2 = 2κ+n−5. Then we can check that AdvPRP
CEl

(2n, 2κ+n−5) approaches zero

as the length l increases (up to the condition that l2/2κ+1 is negligible).
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A A Brute-force Attack of 2κ+n Query Complexity

In this section, we describe a standard information theoretic brute-force attack against a λ-
bit key m-bit encryption scheme C that makes a certain number of calls to a κ-bit key n-bit
blockcipher E.3 An adversary A executes the following steps.

1. A makes all possible 2κ+n queries to the underlying blockcipher E.

2. A makes t nonadaptive forward queries to the outer permutation, recording query history
Q = (ui, vi)1≤i≤t.

3. If there is a λ-bit key k such that Ck[E](ui) = vi for every i = 1, . . . , t, then A outputs 0.
Otherwise, A outputs 1.

Since we have

Pr
[
k

$← {0, 1}λ, E $← BC(κ, n) : A[Ck[E], E] = 0
]

= 1,

Pr
[
P

$← Pn, E
$← BC(κ, n) : A[P,E] = 0

]
≤ 2λ

(2m)t
,

AdvPRP
C (A) gets close to 1 as t� λ

m .

B Proof of Lemma 1 and Lemma 2

Proof of Lemma 1. Let λ be a coupling of µ and ν and let (X,Y ) ∼ λ. By definition, for
any z ∈ Ω, λ(z, z) ≤ min{µ(z), ν(z)}. Since Pr [X = Y ] =

∑
z∈Ω λ(z, z), we have

Pr [X = Y ] ≤
∑
z∈Ω

min{µ(z), ν(z)}.

Therefore we have

Pr [X 6= Y ] ≥ 1−
∑
z∈Ω

min{µ(z), ν(z)} =
∑
z∈Ω

(µ(z)−min{µ(z), ν(z)})

=
∑
z∈Ω

µ(z)≥ν(z)

(µ(z)− ν(z)) = max
S⊂Ω
{µ(S)− ν(S)} = ‖µ− ν‖.

Proof of Lemma 2. Let S = {x ∈ Ω : µ(x) ≥ (1−
√
ε)ν(x)}. By definition, any element of S

satisfies the second condition. Contary to the first condition, suppose that |S| < (1−
√
ε)|Ω|.

This implies ν(Ω\S) = 1− |S|/|Ω| >
√
ε, and hence

ν(Ω\S)− µ(Ω\S) ≥ ν(Ω\S)−
(
1−
√
ε
)
ν(Ω\S) =

√
εν(Ω\S) >

(√
ε
)2

= ε.

This is a contradiction to ‖µ− ν‖ ≤ ε.

3 The output size m of C might be different from the block size n of E.



C Proof of Inequality (2)

Fix x, y ∈ In. For any β > 0,

Pr
[
E

$← BC(κ, n) : |{k : E(k, x) = y}| ≥ β
]
≤
(

2κ

β

)(
1

2n

)β
≤
(
e2κ

β2n

)β
.

Therefore for any Q2 (which might be the maximum query history of size 2κ+n including all
the evaluations of E), ω(Q2) is smaller than β except with probability

P = 22n
(
e2κ

β2n

)β
,

where P ≤ 22n−β if β ≥ e2κ−n+1.

D Equivalence of Key Sampling Processes B and C for CEl

Fix a key k = (k′,k′′) ∈ (Iκ)∗l, where k′ = (k′1, . . . , k
′
d) and k′′ = (k′′1 , . . . , k

′′
d). Then the

number of partitions (T1, T2) such that {k′1, . . . , k′d} ⊂ T1 and {k′′1 , . . . , k′′d} ⊂ T2 is
(
2K−2d
K−d

)
,

where K = 2κ−1. For each (T1, T2), key sampling process C chooses k′ and k′′ from T1 and
T2, respectively, with probability (1/(K)d)

2. So the probability that C chooses k′ and k′′ is(
2K−2d
K−d

)(
2K
K

) (
1

(K)d

)2

=
(2K − 2d)!(K!)2

(2K)!((K − d)!)2
·
(

(K − d)!

K!

)2

=
(2K − 2d)!

(2K)!
=

1

(2κ)2d
,

which is the same as the probability that key sampling process B chooses k = (k′,k′′).

E Proof of Lemma 6

Fix s = (si)1≤i≤q1 and for m = 0, . . . , q1, define probability distributions πm where for each
w = (w1, . . . , wq1) ∈ Ω,

πm(w) = Pr[(um+1, . . . , uq1)
$← (In\{s1, . . . , sm})∗(q1−m),k

$← (Iκ)∗d, z
$← Id+1

n ,

E
$← BC(κ, n) : XCEdk[E] ` (si, wi)1≤i≤m ∧ XCEdk[E] ` (ui, wi)m+1≤i≤q1 |E ` Q2].

Then we can check that π0 = ν and πq1 = µs. Since

‖µs − ν‖ ≤
q1−1∑
m=0

‖πm+1 − πm‖, (13)

we focus on upper bounding ‖πm+1−πm‖ for each m = 0, . . . , q1−1. In order to couple πm+1

and πm, we will define a random variable (T, V ) on Ω×Ω by the sampling process described
in Figure 4. Then we can check that their marginal distributions are πm+1 and πm, and

‖πm+1 − πm‖ ≤ Pr [T 6= V ] = Pr [t[d] 6= v[d]] . (14)



1: for i← 1 to m do
2: wi[0]← si

3: t[0]← sm+1

4: v[0]
$← In\{s1, . . . , sm}

5: for j ← 1 to d do

6: k[j]
$← Iκ\{k[1], . . . , k[j − 1]}

7: z[j − 1]
$← In

8: for i← 1 to m do
9: wi[j − 1]← wi[j − 1]⊕ z[j − 1]

10: if wi[j − 1] ∈ D(k[j]) then
11: wi[j]← E(k[j], wi[j − 1])
12: else if wi[j − 1] /∈ D(k[j]) then

13: wi[j]
$← In\({w1[j], . . . , wi−1[j]} ∪ R(k[j]))

14: if t[j − 1]⊕ z[j − 1] ∈ D(k[j]) and v[j − 1]⊕ z[j − 1] ∈ D(k[j]) then
15: t[j]← E(k[j], t[j − 1]⊕ z[j − 1])
16: v[j]← E(k[j], v[j − 1]⊕ z[j − 1])
17: else if t[j − 1]⊕ z[j − 1] ∈ D(k[j]) and v[j − 1]⊕ z[j − 1] /∈ D(k[j]) then
18: t[j]← E(k[j], t[j − 1]⊕ z[j − 1])

19: v[j]
$← In\({w1[j], . . . , wm[j]} ∪ R(k[j]))

20: else if t[j − 1]⊕ z[j − 1] /∈ D(k[j]) and v[j − 1]⊕ z[j − 1] ∈ D(k[j]) then

21: t[j]
$← In\({w1[j], . . . , wm[j]} ∪ R(k[j]))

22: v[j]← E(k[j], v[j − 1]⊕ z[j − 1])
23: else if t[j − 1]⊕ z[j − 1] /∈ D(k[j]) and v[j − 1]⊕ z[j − 1] /∈ D(k[j]) then

24: t[j]
$← In\({w1[j], . . . , wm[j]} ∪ R(k[j]))

25: v[j]← t[j]

26: z[d]
$← In

27: if t[d] = v[d] then

28: (vm+2, . . . , vq1)
$← (In\{w1[d], . . . , wm[d], v[d]})∗(q1−m−1)

29: (tm+2, . . . , tq1)← (vm+2, . . . , vq1)
30: else
31: (vm+2, . . . , vq1)

$← (In\{w1[d], . . . , wm[d], v[d]})∗(q1−m−1)

32: (tm+2, . . . , tq1)
$← (In\{w1[d], . . . , wm[d], t[d]})∗(q1−m−1)

33: T ← (w1[d]⊕ z[d], . . . , wm[d]⊕ z[d], t[d]⊕ z[d], tm+2, . . . , tq1)
34: V ← (w1[d]⊕ z[d], . . . , wm[d]⊕ z[d], v[d]⊕ z[d], vm+2, . . . , vq1)
35: return (T, V )

Fig. 4. Sampling process for random variable (T, V )



Since t[j] = v[j] implies t[j + 1] = v[j + 1] for j = 0, . . . , l − 1, we have

Pr [t[d] 6= v[d]] ≤
d∏
j=1

Pr

[
t[j] 6= v[j] |t[j − 1] 6= v[j − 1]

]
. (15)

In order to upper bound Pr

[
t[j] 6= v[j] |t[j − 1] 6= v[j − 1]

]
for each j, we first choose

k[j] from the set of size at least 2κ − d. For a parameter M > 0, there are at most q2/M
heavy keys k such that

|R(k)| = |D(k)| > M.

Therefore the probability that k[j] is heavy is at most

q2
M(2κ − d)

. (16)

Conditioned on the case that k[j] is not heavy, either t[j − 1]⊕ z[j − 1] or v[j − 1]⊕ z[j − 1]
should map to a point within D(k[j]) since otherwise t[j] ⊕ z[j − 1] and v[j] ⊕ z[j − 1] both
outside D(k[j]) would map to an identical point t[j + 1] = v[j + 1]. The probability of this
event over the random choice of z[j − 1] is at most

2M

N
. (17)

Then by (13), (14), (15), (16) and (17), we obtain

‖µs − ν‖ ≤ q1
(

q2
M(2κ − d)

+
2M

N

)d
.


