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Abstract

A fundamental communication primitive in distributed computing is Reliable Message
Transmission (RMT), which refers to the task of correctly sending a message from a party to
another, despite the presence of Byzantine corruptions. In this work we address the problem
in the general adversary model of Hirt and Maurer [5], which subsumes earlier models such as
the global or local threshold adversaries. Regarding the topology knowledge, we employ the
recently introduced Partial Knowledge Model [12], which encompasses both the full knowledge
and the ad hoc model; the latter assumes knowledge of the local neighborhood only.

Our main contribution is a tight condition for achieving RMT in the partial knowledge
model under a general adversary. A key algorithmic tool that we define and use is the joint
view operation which imposes a semilattice structure on the partial knowledge possessed
by different parties. In this context, we prove that the worst possible adversary structure,
conforming with the initial knowledge of a set of parties, can be expressed as the supremum
of the parties’ knowledge under the semilattice partial order. The new operation allows for
the definition of an appropriate network separator notion that yields a necessary condition
for achieving RMT. In order to show the sufficiency of the condition, we propose the RMT
Partial Knowledge Algorithm (RMT-PKA), an algorithm that also employs the joint view
operation to solve RMT whenever the condition is met. This implies that RMT-PKA achieves
reliable message transmission in every instance where this is possible, therefore it is a unique
algorithm [13]. To the best of our knowledge, this is the first unique protocol for RMT against
general adversaries in the partial knowledge model. Due to the generality of the model, our
results provide, for any level of topology knowledge and any adversary structure, an exact
characterization of instances where RMT is possible and an algorithm to achieve RMT on
such instances.

1 Introduction

Achieving reliable communication in unreliable networks is fundamental in distributed comput-
ing. Of course, if there is an authenticated channel between two parties then reliable communi-
cation between them is guaranteed. However, it is often the case that certain parties are only
indirectly connected, and need to use intermediate parties as relays to propagate their message
to the actual receiver. The Reliable Message Transmission problem (RMT) is the problem of
achieving correct delivery of a message m from a dealer (sender) D to a receiver R even if some
of the intermediate nodes are corrupted and do not relay the message as agreed. In this work
we consider the worst case corruption scenario, in which the adversary is unbounded and may
control several nodes and be able to make them deviate from the protocol arbitrarily by blocking,
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rerouting, or even altering a message that they should normally relay intact to specific nodes.
An adversary with this behavior is referred to as Byzantine adversary.

The RMT problem has been initially considered by Dolev [2] in the context of the closely
related Reliable Broadcast (Byzantine Generals) problem, introduced by Lamport, Shostak and
Pease [9]. In Reliable Broadcast the goal is to achieve correct delivery of the dealer’s D message
to all parties in the network.

The problem of message transmission under Byzantine adversaries has been studied exten-
sively in various settings: secure or reliable transmission, general or threshold adversary, perfect
or unconditional security, full or local topology knowledge. Here we focus on perfectly reliable
transmission under a general adversary and the partial knowledge model. In the general ad-
versary model, introduced by Hirt and Maurer [5], the adversary may corrupt any player-set
among a given family of all possible corruption sets (adversary structure); it subsumes both the
global [9] and the local threshold adversary model [7]. For instance, the global threshold model,
which assumes that the adversary can corrupt at most t players, corresponds to the family of sets
with cardinality at most t. Regarding the topology knowledge, the recently introduced Partial
Knowledge Model [12] assumes that each player only has knowledge over some arbitrary subgraph
including itself and the intersection of this subgraph with the adversary structure; it encompasses
both the full knowledge and the ad hoc (unknown topology) models.

The motivation for partial knowledge considerations comes from large scale networks (e.g.
the Internet) where topologically local estimation of the power of the adversary may be possible,
while global estimation may be hard to obtain due to geographical or jurisdiction constraints. Ad-
ditionally, proximity in social networks is often correlated with an increased amount of available
information, further justifying the relevance of the model.

The strength of this work lies in the combination of these two quite general models (general
adversary and partial knowledge), forming the most general setting we have encountered so far
within the synchronous deterministic model.

1.1 Related work

The RMT problem under a threshold Byzantine adversary, where a fixed upper bound t is set
for the number of corrupted players was addressed in [3, 1], where additional secrecy restrictions
were posed and in [15] where a probability of failure was allowed. Results for RMT in the general
adversary model [5], where given in [8, 17, 16]. In general, very few studies have addressed RMT
or related problems in the partial knowledge setting despite the fact that this direction was
already proposed in 2002 by Kumar et al. [8].

The approach that we follow here stems from a line of work which addresses the Reliable
Broadcast problem with an honest dealer in incomplete networks, initiated by Koo [7]. Koo
studied the problem in ad hoc networks of specific topology under the t-locally bounded adversary
model, in which at most a certain number t of corruptions are allowed in the neighborhood of
every node. A simple, yet powerful Reliable Broadcast protocol called Certified Propagation
Algorithm (CPA) was proposed in this work; CPA is based on the idea that if a set of t + 1
neighbors of v provides the same information to v then the information is valid because at least
one of them is honest. This work was extended in the context of generic networks by Pelc, Peleg
in [13] who also pointed out how full knowledge of the topology yields better solvability results.
After a series of works ([6, 10, 18]) tight conditions for the correctness of CPA were obtained in
the ad hoc case. Observe that all of these aforementioned works only considered the t-locally
bounded adversary model and did not not provide tight conditions for the solvability of the
problem. Finally, in [12] the Partial Knowledge Model was introduced, in which the players only
have partial knowledge of the topology and the adversary structure. In [12] both the t-locally
bounded adversary model and the general adversary model were considered and tight conditions
for the solvability of the problem along with matching algorithms for the extreme cases of full
topology knowledge and ad hoc setting were proposed. Trivially all the aforementioned results
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for Reliable Broadcast with an honest dealer can be adapted for the RMT problem. However,
it was left as an open problem in [12] to determine a necessary and sufficient condition (tight)
for the most general case of the partial knowledge model. Moreover these previous studies have
focused on feasibility and not efficiency and no complexity studies have been conducted in this
context. The latter two issues appeared to be most challenging and are both considered and
answered in this work.

1.2 Our results

We study the RMT problem under partial knowledge and general adversaries. Our contribution
concerns the feasibility of RMT in the Partial Knowledge model. We prove a necessary and
sufficient condition for achieving RMT in this setting, and present RMT-PKA, an algorithm
that achieves RMT whenever this condition is met. In terminology of [13] (formally defined
in [12]) this is a unique algorithm for the problem, in the sense that whenever any algorithm
achieves RMT in a certain instance so does RMT-PKA. This settles an open question of [12] and
is, to the best of our knowledge, the first algorithm with this property. It is worth mentioning
that RMT-PKA can achieve RMT with the minimal amount of player’s knowledge that renders
the problem solvable. This new algorithm encompasses earlier algorithms such as CPA [7],
PPA and Z-CPA [12] as special cases. A remarkable property of our algorithm is its safety :
even when RMT is not possible the receiver will never make an incorrect decision despite the
increased adversary’s attack capabilities, which include reporting fictitious topology and false
local knowledge among others.

A key algorithmic tool that we define and use is the joint view operation which computes
the joint adversary structure of (a set of) players, i.e., the worst case adversary structure that
conforms to each player’s initial knowledge. This operation is crucial in obtaining the tight
condition mentioned above since it provides a way to safely utilize the maximal valid information
from all the messages exchanged. We show that this operation actually implies a semilattice
structure on the partial knowledge that players may have. In semilattice terminology, the joint
adversary structure is the supremum of the adversary structures known by the involved players
under the induced partial order.

To obtain our result we also generalize earlier pair-cut techniques, introduced by Pelc and
Peleg [13] and extended in [12] in the context of Broadcast. This technique was used in [12] to
obtain characterizations of classes of graphs for which Broadcast is possible for various levels
of topology knowledge and types of corruption distribution; however, an exact characterization
for the partial knowledge setting was left as an open question. Here we address this ques-
tion by proposing a new type of pair-cut appropriate for the partial knowledge model, coupled
with a proof that RMT-PKA works exactly whenever no such pair-cut exists. This, as already
mentioned, implies a tight solvability condition for RMT in the quite general model of partial
knowledge with general adversaries. A useful by-product of practical interest is that the new
cut notion can be used, in a network design phase, in order to determine the exact subgraph in
which RMT is possible.

1.3 Model and definitions

In this work we address the problem of Perfectly Reliable Message Transmission, hereafter simply
referred as Reliable Message Transmission (RMT) under the influence of a general Byzantine
adversary. In our model the players have partial knowledge of the network topology and of the
adversary structure.

We assume a synchronous network represented by a graph G = (V,E) consisting of the player
(node) set V (G) and edge set E(G) which represents undirected authenticated channels between
players. The set of neighbors of a player v is denoted with N (v). In our study we will often make
use of node-cuts (separators) which separate the receiver R from the dealer, hence, node-cuts
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that do not include the dealer. From here on we will simply use the term cut to denote such a
separator. The problem definition follows.

Reliable Message Transmission. We assume the existence of a designated player D ∈ V ,
called the dealer, who wants to propagate a certain value xD ∈ X, where X is the initial message
space, to a designated player R, called the receiver. We say that a distributed protocol achieves
(or solves) RMT if by the end of the protocol the receiver R has decided on xD, i.e. if it has been
able to output the value xD originally sent by the dealer.

The Adversary Model. The general adversary model was introduced by Hirt and Maurer
in [5]. In this work they study the security of multiparty computation protocols with respect
to an adversary structure, that is, a family of subsets of the players; the adversary is able to
corrupt one of these subsets. More formally, an adversary structure Z for the set of players V is
a monotone family of subsets of V , i.e. Z ⊆ 2V , where all subsets of a set Z are in Z if Z ∈ Z.
In this work we obtain our results w.r.t. a general byzantine adversary, i.e., a general adversary
which can make all the corrupted players deviate arbitrarily from the given protocol.

The Partial Knowledge Model [12]. In this setting each player v only has knowledge
of the topology of a certain subgraph Gv of G which includes v. Namely if we consider the
family G of subgraphs of G we use the view function γ : V (G) → G, where γ(v) represents
the subgraph over which player v has knowledge of the topology. We extend the domain of γ
by allowing as input a set S ⊆ V (G). The output will correspond to the joint view of nodes
in S. More specifically, if γ(v) = Gv = (Vv, Ev) then γ(S) = GS = (

⋃
v∈S Vv,

⋃
v∈S Ev). The

extensively studied ad hoc model can be seen as a special case of the Partial Knowledge Model,
where we assume that the topology knowledge of each player is limited to its own neighborhood,
i.e., ∀v ∈ V (G), γ(v) = N (v).

In order to capture partial knowledge in this setting we need to define the restriction of some
structure to an a set of nodes.

Definition 1. For an adversary structure E and a node set A let EA = {Z ∩A | Z ∈ E} denote
the restriction of E to the set A.

Hence, we assume that given the actual adversary structure Z each player v only knows
the possible corruption sets under his view Zv, which is equal to ZV (γ(v)) (the local adversary
structure).

We denote an instance of the problem by the tuple I = (G,Z, γ,D,R). We next define some
useful protocol properties.

We say that an RMT protocol is resilient for an instance I if it achieves RMT on instance
I for any possible corruption set and any admissible behavior of the corrupted players. We say
that an RMT protocol is safe if it never causes the receiver R to decide on an incorrect value in
any instance.

Definition 2 (Uniqueness of algorithm). Let A be a family of algorithms. An algorithm A is
unique (for RMT) among algorithms in A if the existence of an algorithm of family A which
achieves RMT in an instance I implies that A also achieves RMT in I.

A unique algorithm A among A, naturally defines the class of instances in which the problem
is solvable by A-algorithms, namely the ones that A achieves RMT in.

2 The algebraic structure of partial knowledge

In this section we delve into the algebraic structure of the knowledge of players regarding the
adversary. We do this by first defining an operation used to calculate their joint knowledge. The
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operation takes into account potentially different adversarial structures, so that it is well defined
even if a corrupted player provides a different structure than the real one to some honest player.

Definition 3. Let V be a finite node set; let also T = {(E , A) | E ⊆ 2A, A ⊆ V, E is monotone}
denote the space all pairs consisting of a monotone family of subsets of a node set along with that
node set. The operation ⊕ : T× T→ T, is defined as follows:

(E , A)⊕ (F , B) = ({Z1 ∪ Z2|(Z1 ∈ E) ∧ (Z2 ∈ F) ∧ (Z1 ∩B = Z2 ∩A)}, A ∪B)

A B

Z1 Z2

Z3 Z4

Z5 Z6

Figure 1: Example of the ⊕ operation in the pairs (E , A), (F , B): Z1 ∪Z2 and Z3 ∪Z4 belong to
(E , A)⊕ (F , B) but Z5 ∪ Z6 does not, neither does Z1 ∪ Z4.

Informally, (E , A)⊕ (F , B) unites possible corruption sets from E and F that ‘agree’ on A∩B
(see Figure 1). The following theorem offers further insight on the algebraic properties of this
operation, by revealing a semilattice structure on the space of partial knowledge obtained by
the players. The semilattice structure is shown by proving the commutativity, associativity and
idempotence properties of operation ⊕ (see [14]). The proof is deferred to the Appendix.

Theorem 1. 〈T,⊕〉 is a semilattice.

From semilattice theory, it is well known that the algebraic definition of the join-semilattice 1

〈T,⊕〉 implies a binary relation ≥ that partially orders T in the following way: for all elements
x, y ∈ T, x ≥ y if and only if x = x ⊕ y. This binary relation provides the equivalent order
theoretic definition of the same semilattice 〈T,≥〉.

The following theorem reveals the binary relation implied by the ⊕ operation.

Theorem 2. The partial ordering ” ≥ ” induced by the ⊕ operation on T satisfies the following:
for (E , A), (F , B) ∈ T, (E , A) ≥ (F , B) if and only if (B ⊆ A) ∧ (EB ⊆ F).

Proof. By the relation of the algebraic and order theoretic definitions of a semilattice we have to
show that

(E , A)⊕ (F , B) = (E , A)⇔ (B ⊆ A) ∧ (EB ⊆ F)

“⇐ ”
Observe that (B ⊆ A) implies that A∪B is equal to A. Therefore let (E , A)⊕(F , B) = (H, A).

From EB ⊆ F and the monotonicity property it follows that:

∀Z1 ∈ E ,∃Z2 ∈ F : (Z1 ∩B = Z2 ∩A) ∧ (Z1 ∪ Z2 = Z1)⇒ E ⊆ H

Notice that, due to monotonicity even if Z1 ∩B = ∅ the relation holds for Z2 = ∅. It remains to
show that H ⊆ E . From the definition of the ⊕ operation it follows that:

∀Z ∈ H,∃Z1 ∈ E , Z2 ∈ F : (Z1 ∩B = Z2 ∩A) ∧ (Z1 ∪ Z2 = Z)⇒ H ⊆ E
1We make the convention 〈T,⊕〉 is a join-semilattice because the implied partial order ≥ captures our case

more intuitively. The notion of meet-semilattice can be used as well by inversing the ordering.
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where the implication follows by the fact that Z1 ∪ Z2 = Z1. Thus, H = E .
”⇒ ”

By Definition 3 it is implied that A∪B = A or equivalently B ⊆ A. Thus, it suffices to show
that EB ⊆ F . For the sake of contradiction, assume that EB 6⊆ F . It holds that:

EB 6⊆ F ⇒ ∃Z1 ∈ EB : Z1 6∈ F
⇒ ∃Z1 ∈ E , ∀Z2 ∈ F : Z1 ∩B = Z2 ∩A
⇒ (E , A)⊕ (F , B) 6= (E , A)

which leads to a contradiction. Thus, the theorem follows.

The semilattice structure guarantees that every non-empty finite subset of 〈T,≥〉 has a
supremum with respect to the “ ≥ ” relation (also called a join). Moreover it holds that for
(E , A), (F , B) ∈ T, sup{(E , A), (F , B)} = (E , A)⊕ (F , B). The latter implies a property of the ⊕
operation which is important in our study. Namely,

Corollary 3. Let 〈T,≥〉 be a semilattice as defined above. For any z ∈ T it holds that if x, y ≤ z,
then x⊕ y ≤ z.

Proof. The join of x, y is their least upper bound. Thus, since z is an upper bound of x, y, it
must also be greater or equal to their join, i.e. x⊕ y. The Corollary follows.

Returning to our problem after this short detour, notice that for any adversary structure Z it
holds that (ZA, A), (ZB, B) ≤ (ZA∪B, A ∪B). We immediately get by Corollary 3 the following
corollary.

Corollary 4. For any adversary structure Z and node sets A,B:

if (H, A ∪B) = (ZA, A)⊕ (ZB, B) then Z(A∪B) ⊆ H

What Corollary 4 tells us is that the ⊕ operation gives the maximal (w.r.t inclusion) possible
adversary structure that is indistinguishable by two agents that know ZA and ZB respectively,
i.e., it coincides with their knowledge of the adversary structures on sets A and B respectively.

Now recall that Zu = ZV (γ(u)). This allows us to define the combined knowledge of a set of
nodes B about the adversary structure Z as follows. For a given adversary structure Z, a view
function γ and a node set B let

(ZB, V (γ(B))) =
⊕
v∈B

(Zv, V (γ(v))) =
⊕
v∈B

(ZV (γ(v)), V (γ(v)))

Note that ZB exactly captures the maximal adversary structure possible, restricted in γ(B),
relative to the initial knowledge of players in B. Also notice that using Corollary 4 we get
ZV (γ(B)) ⊆ ZB. The interpretation of this inequality in our setting, is that what nodes in B
conceive as the worst case adversary structure indistinguishable to them, always contains the
actual adversary structure in their scenario.

3 A tight condition for RMT

In RMT we want the dealer D to send a message to some player R (the receiver) in the network.
We assume that the dealer knows the id of player R. We denote an instance of the problem by
the tuple (G,Z, γ,D,R). To analyze feasibility of RMT we introduce the notion of RMT-cut.

Definition 4 (RMT-cut). Let (G,Z, γ,D,R) be an RMT instance and C = C1 ∪ C2 be a cut
in G, partitioning V \ C in two sets A,B′ 6= ∅ where D ∈ A and R ∈ B′. Let B ⊆ B′ be
the node set of the connected component that R lies in. Then C is a RMT-cut iff C1 ∈ Z and
C2 ∩ V (γ(B)) ∈ ZB.

6



The necessary condition proof adapts techniques and ideas from [13, 12] to the partial knowl-
edge with general adversary setting.

Theorem 5 (Necessity). Let (G,Z, γ,D,R) be an RMT instance. If there exists a RMT-cut in
G then no safe and resilient RMT algorithm exists for (G,Z, γ,D,R).

Proof. Let C = C1 ∪C2 be the RMT-cut which partitions V \C in sets A,B 6= ∅ s.t. D ∈ A and
R ∈ B. Without loss of generality assume that B is connected. If it is not, then by adding to
A all nodes that do not belong to the connected component of R, an RMT-cut with the desired
property is obtained. Consider a second instance where Z ′ = ZB and all other parameters are
the same as in the original instance. Recall that ZB is defined using the ⊕ operator and exactly
captures (by Corollary 4) the worst case adversary structure possible, restricted to V (γ(B)),
relative to the initial knowledge of players in B. Hence, all nodes in B have the same initial
knowledge in both instances, since ZB = Z ′

B.
The proof is by contradiction. Suppose that there exists a safe algorithm A which is resilient

for (G,Z, γ,D,R). We consider the following executions σ and σ′ of A :

• Execution σ is on instance (G,Z, γ,D,R), with dealer’s value xD = 0, and corruption set
C1; in each round, each corrupted player in C1 performs the actions that its corresponding
player performs in the respective round of execution σ′ (where C1 consists of honest players
only).

• Execution σ′ is on instance (G,Z ′, γ,D,R), with dealer’s value xD = 1, and corruption set
C2; in each round, each corrupted player in C2 performs the actions that its corresponding
player performs in the respective round of execution σ (where C2 consists of honest players
only).

Note that C1, C2 are admissible corruption sets in scenarios σ, σ′ respectively since they
belong to Z and Z ′ (resp.) It is easy to see that C1 ∪ C2 is a cut which separates D from B in
both instances and that actions of every node of this cut are identical in both executions σ, σ′.
Consequently, the actions of any honest node w ∈ B must be identical in both executions. Since,
by assumption, algorithm A is resilient on (G,Z, γ,D,R), R must decide on the dealer’s message
0 in execution σ, and must do the same in execution σ′. However, in execution σ′ the dealer’s
message is 1. Therefore A makes R decide on an incorrect message in (G,Z ′, γ,D,R). This
contradicts the assumption that A is safe.

3.1 The RMT Partial Knowledge Algorithm (RMT-PKA)

We next present the RMT Partial Knowledge Algorithm (RMT-PKA), an RMT protocol which
succeeds whenever the condition of Theorem 5 (in fact, its negation) is met, rendering it a tight
condition on when RMT is possible. To prove this we provide some supplementary notions.

In RMT-PKA there are two types of messages exchanged. Type 1 messages are used to
propagate the dealer’s value and are of the form (x, p) where x ∈ X and p is a path. Type 2
messages of the form ((v, γ(v),Zv), p) are used for every node v to propagate its initial information
γ(v),Zv throughout the graph. Let M denote a subset of the messages of type 1 and 2 that the
receiver node R receives at some round of the protocol on (G,Z, γ,D,R). We will say that
value(M) = x if and only if all the type 1 messages of M report the same dealer value x, i.e.,
for every such message (y, p), it holds that y = x, for some x ∈ X. Observe that M may consist
of messages which contain contradictory information. We next define the form of a message set
M which contains no contradictory information in our setting (a valid set M).

Definition 5 (Valid set M). A set M of both type 1 and type 2 messages corresponds to a valid
scenario, or more simply is valid, if
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• ∃x ∈ X s.t. value(M) = x. That is, all type 1 messages relay the same x as dealer’s value.

• ∀m1,m2 ∈M of type 2, their first component is the same when they refer to the same node.
That is, if m1 = ((v, γ(v),Zv), p) and m2 = (((v′, γ′(v),Z ′

v), p
′), then v = v′ implies that

γ(v) = γ′(v) and Zv = Z ′
v.

For every valid M we can define the pair (GM , xM ) where xM = value(M); we assume that
xM = ⊥ if no type 1 messages are included in M . To define GM let VM be the set of nodes
u for which the information γ(u),Zu is included in M , namely VM = {v | ((v, γ(v),Zv), p) ∈
M for some path p}. Then, GM is the node induced subgraph of graph γ(VM ) on node set VM .
Therefore, a valid message set M uniquely determines the pair (GM , xM ). We next propose two
notions that we use to check if a valid set M contains correct information.

Definition 6 (full message set). A full message set M received by R, is a valid set M , with
value(M) 6= ⊥, that contains all the D  R paths which appear in GM as part of type 1
messages.

Next we define the notion of adversary cover of a full message set M . If such a cut exists,
then there is a scenario where all propagated values might be false.

D R

GM
C

B

x

x
...

γ(B)

γ(B) ∩ C /∈ ZB

Figure 2: Node set C is an adversary cover of message set M , if it disconnects D,R in GM
and “looks” corruptible under the joint knowledge of B, which represents the node set of the
connected component that R lies in.

Definition 7 (Adversary cover of full message set M). A set C ⊆ VM is an adversary cover of
full message set M if C has the following property: C is a cut between D and R on GM and if
B is the node set of the connected component that R lies in, it holds that (C ∩ V (γ(B))) ∈ ZB.

A graphical representation of the adversary cover is depicted in Figure 2. With the predicate
nocover(M) we will denote the non existence of an adversary cover of M .

We next show the somewhat counterintuitive safety property of RMT-PKA, i.e., that the re-
ceiver will never decide on an incorrect value despite the increased adversary’s attack capabilities,
which includes reporting fictitious nodes and false local knowledge.

Theorem 6 (RMT-PKA Safety). RMT-PKA is safe.

Proof. It is trivial to see that the receiver R will not decide on an incorrect dealer value by using
the dealer propagation rule (case R ∈ N (D)) due to the dealer’s presumed honesty.

The hard part is to prove that R will not decide on any value x 6= xD by using the full
message set propagation rule (case R /∈ N (D)). Let T ∈ Z be any admissible corruption set
and consider the run eT of RMT-PKA where T is the actual corruption set. Assume that at
some round of eT , R receives a full message set M ′ with value(M ′) = x 6= xD. Since all D  R

8



RMT Partial Knowledge Algorithm (RMT-PKA)

Input for each node v: dealer’s label D, γ(v), Zv.
Additional input for D : value xD ∈ X (message space).
Type 1 message format : pair (x, p)
Type 2 message format : pair ((u, γ(u),Zu), p),
where x ∈ X, u the id of some node, γ(u) is the view of node u, Zu is the local adversary
structure of node u, and p is a path of G (message’s propagation trail).

Code for D: send messages (xD, {D}) and ((D, γ(D),ZD), {D}) to all neighbors and terminate.

Code for v 6∈ {D,R}: send message ((v, γ(v),Zv), {v}) to all neighbors.

upon reception of type 1 or type 2 message (a, p) from node u do:

if (v ∈ p) ∨ (tail(p) 6= u)2 then discard (a, p) else send (a, p||v) 3 to all neighbours.

Code for R: Initialize MR ← ∅
upon reception of type 1 or type 2 message (x, p) from node u do:

if (v ∈ p) ∨ (tail(p) 6= u) then discard (x, p) else MR ←MR ∪ (a, p)
if (x, p) is a type 1 message then

lastmsg ← (x, p)
if decision(MR, lastmsg) = x then output x and terminate.

function decision(MR, lastmsg)

if R ∈ N (D) then
if lastmsg = (xD, {D}) then return xD
else return ⊥.

for all valid M ⊆MR with value(M) = value(lastmsg) do
compute graph GM
M1 ← type 1 messages of M
P1 ← set of all paths p with (x, p) ∈M1

PD,R ← set of all D  R paths of GM
if (PD,R ⊆ P1) ∧ nocover(M) then B full message set with no

return value(lastmsg) else return ⊥. B adversary cover

function nocover(M)

check ← true

for all C ⊆ VM do

if C is a (D,R) cut on GM then

B ← connected component of R in GM \ C
(ZB, V (γ(B)))←

⊕
v∈B

(Zv, V (γ(v))) B joint adversary structure

if (C ∩ V (γ(B))) ∈ ZB then check ←false

return check
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paths of GM ′ propagate an incorrect value x it means that C = T ∩ VM ′ forms a (D,R) cut in
graph GM ′ , otherwise there would be a D  R path in GM ′ consisting only of honest nodes and
propagating xD, a contradiction because value(M ′) = x. Since C ∈ Z, it holds by definition
that C ∩ V (γ(S)) ∈ ZS , ∀S ⊆ V (G). Therefore if B is the connected component that R lies in
under the partition that C imposes in GM ′ , it holds that C ∩V (γ(B)) ∈ ZB due to the fact that
B only contains honest nodes; more specifically, B does not contain any corrupted nodes due to
the definition of C. Moreover, the adversary cannot introduce any fictitious nodes in B because
T has to be a cut between R and every nonexistent node claimed by the adversary. The latter
observations about B imply that R can correctly compute ZB. Thus M ′ has an adversary cover
and R will not decide in value x 6= xD due to the full message set propagation rule.

The sufficiency proof combines techniques from [12] (correctness of the Path Propagation
Agorithm) with the novel notions of full message set M , adversary cover of M and corresponding
graph GM .

Theorem 7 (Sufficiency). Let (G,Z, γ,D,R) be an RMT instance. If no RMT-cut exists, then
RMT-PKA achieves reliable message transmission.

Proof. Observe that if R ∈ N (D) then R trivially decides on xD due to the dealer propagation
rule, since the dealer is honest. Assuming that no RMT-cut exists, we will show that if R /∈ N (D)
then R will decide on xD due to the full message set propagation rule.

Let T ∈ Z be any admissible corruption set and consider the run eT of RMT-PKA where T
is the actual corruption set. Let P be the set of all paths connecting D with R and are composed
entirely by nodes in V (G)\T (honest nodes). Observe that P 6= ∅, otherwise T is a cut separating
D from R which is trivially a RMT-cut, a contradiction.

Since paths in P are entirely composed by honest nodes, it should be clear by the protocol that
by round |V (G)|, R will have obtained xD through all paths in P by receiving the corresponding
type 1 messages M1. Furthermore, by round |V (G)|, R will have received type 2 messages set
M2 which includes information for all the nodes connected with R via paths that do not pass
through nodes in T . This includes all nodes of paths in P . Consequently, R will have received
the full message set M = M1 ∪M2 with value(M) = xD.

We next show that there is no adversary cover for M and thus R will decide on xD through
the full message set propagation rule on M . Assume that there exists an adversary cover C for
M . This, by definition means that C is a cut between D,R on GM and if B is the node set of
the the connected component that R lies in, it holds that and (C ∩V (γ(B))) ∈ ZB (observe that
R can compute ZB using the information contained in M2 as defined in the previous paragraph).
Then obviously T ∪ C is a cut in G separating D from R, since every path of G that connects
D with R contains at least a node in T ∪ C. Let the cut T ∪ C partition V (G) \ {T ∪ C} in the
sets A,B s.t. D ∈ A. Then clearly T ∪ C is an RMT cut by definition, a contradiction. Thus
there is no adversary cover for M and R will decide on xD. Moreover, since RMT-PKA is safe,
the receiver will not decide on any other value different from xD.

Corollary 8 (Uniqueness). RMT-PKA is unique among safe algorithms, i.e., given an RMT in-
stance (G,Z, γ,D,R), if there exists any safe RMT algorithm which is resilient for this instance,
then RMT-PKA also achieves reliable message transmission on this instance.

RMT under minimal knowledge. Observe that the non-existence of an RMT-cut proves
to be a necessary and sufficient condition for achieving RMT safely (with a safe algorithm).
Equivalently we observe that the condition describes the minimal amount of initial knowledge
needed to achieve RMT. Namely, we can define a natural partial ordering of the view functions
s.t. for a certain graph G = (V,E) and adversary structure Z it holds that γ′ < γ if and only if
∀v ∈ V, γ′(v) is a subgraph of γ(v). Then a minimal amount of initial knowledge which is needed
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to achieve RMT corresponds to a minimal function γ, with respect to the above partial ordering,
such that there does not exist an RMT-cut in G.

4 Conclusions and open questions

Regarding the partial knowledge model, the RMT-PKA protocol employs topology information
exchange between players. Although topology discovery was not our motive, techniques used
here (e.g. the ⊕ operation) may be applicable to that problem under a Byzantine adversary
([11],[4]). A comparison with the techniques used in this field might give further insight on how
to efficiently extract information from maliciously crafted topological data.

We have shown that RMT-PKA protocol is unique for the partial knowledge model; this
only addresses the feasibility issue. A natural question is whether and when we can devise a
unique and also efficient algorithm for this setting. The techniques used so far to reduce the
communication complexity (e.g. [8]) do not seem to be directly applicable to this model. So,
exploring this direction further is particularly meaningful.
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Appendix

A Proof of Theorem 1 (Algebraic Properties of the ⊕ operation)

A set L with some operation ∗ is a semilattice if the operation ∗ is commutative, associative and
idempotent. In the following theorems we prove that all these properties hold for the ⊕ operation
on set T.

Theorem 9. Operator ⊕ is commutative.

Proof. For any adversary structures E ,F and node sets A,B:

(E , A)⊕ (F , B) = ({Z1 ∪ Z2 | (Z1 ∈ E) ∧ (Z2 ∈ F) ∧ (Z1 ∩B = Z2 ∩A)}, A ∪B)

= ({Z2 ∪ Z1 | (Z2 ∈ F) ∧ (Z1 ∈ E) ∧ (Z2 ∩A = Z1 ∩B)}, A ∪B)

= (F , B)⊕ (E , A)

Theorem 10. Operation ⊕ is idempotent.

Proof.

(E , A)⊕ (E , A) = ({Z1 ∪ Z2 | (Z1 ∈ E) ∧ (Z2 ∈ E) ∧ (Z1 ∩A = Z2 ∩A)}, A)

= ({Z1 ∪ Z2 | (Z1 ∈ E) ∧ (Z2 ∈ E) ∧ (Z1 = Z2)}, A)

= ({Z1|(Z1 ∈ E)}, A)

= (E , A)

Theorem 11. Operation ⊕ is associative.

Proof. We will prove that ((E , A)⊕ (F , B))⊕ (H, C) = (E , A)⊕ ((F , B)⊕ (H, C)). We have that

((E , A)⊕ (F , B))⊕ (H, C) =({Z1 ∪ Z2|(Z1 ∈ E) ∧ (Z2 ∈ F) ∧ (Z1 ∩B = Z2 ∩A)}, A ∪B)⊕ (H, C)

=({Z1 ∪ Z2 ∪ Z3|(Z1 ∈ E) ∧ (Z2 ∈ F) ∧ (Z3 ∈ H)∧
∧ (Z1 ∩B = Z2 ∩A) ∧ ((Z1 ∪ Z2) ∩ C = Z3 ∩ (A ∪B))}, A ∪B ∪ C)

and

(E , A)⊕ ((F , B)⊕ (H, C)) =(E , A)⊕ ({Z2 ∪ Z3|(Z2 ∈ F) ∧ (Z3 ∈ H) ∧ (Z2 ∩ C = Z3 ∩B)}, B ∪ C)

=({Z1 ∪ Z2 ∪ Z3|(Z1 ∈ E) ∧ (Z2 ∈ F) ∧ (Z3 ∈ H)∧
∧ (Z2 ∩ C = Z3 ∩B) ∧ ((Z2 ∪ Z3) ∩A = Z3 ∩ (B ∪ C))}, A ∪B ∪ C)

therefore it suffices to show the following equivalence

(1)︷ ︸︸ ︷
(Z1 ∩B = Z2 ∩A)∧

(2)︷ ︸︸ ︷
((Z1 ∪ Z2) ∩ C = Z3 ∩ (A ∪B))

⇔
(Z2 ∩ C = Z3 ∩B)︸ ︷︷ ︸

(3)

∧ ((Z2 ∪ Z3) ∩A = Z3 ∩ (B ∪ C))︸ ︷︷ ︸
(4)
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First we prove the ”⇒” direction.

(2)⇒(Z1 ∪ Z2) ∩ C ∩B = Z3 ∩ (A ∪B) ∩B
⇒(Z1 ∩B ∩ C) ∪ (Z2 ∩B ∩ C) = Z3 ∩B
(1)⇒(Z2 ∩A ∩ C) ∪ (Z2 ∩ C) = Z3 ∩B
⇒Z2 ∩ C = Z3 ∩B (5)

which proves that (3) holds. In the same way we obtain that

(2)⇒(Z1 ∪ Z2) ∩ C ∩A = Z3 ∩ (A ∪B) ∩A
⇒(Z1 ∩A ∩ C) ∪ (Z2 ∩A ∩ C) = Z3 ∩A
(1)⇒(Z1 ∩ C) ∪ (Z1 ∩B ∩ C) = Z3 ∩A
⇒Z1 ∩ C = Z3 ∩A (6)

Finally we prove the validity of equation (4),

(Z2 ∪ Z3) ∩A = (Z2 ∩A) ∪ (Z3 ∩A)
(1),(6)

= (Z1 ∩B) ∪ (Z1 ∩ C) =

= Z1 ∩ (B ∪ C)

The proof for the ”⇒” is complete, the other direction follows from symmetry.
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